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Abstract This paper presents a novel learning method for
human action detection in video sequences. The detecting
problem is not limited in controlled settings like stationary
background or invariant illumination, but studied in real
scenarios. Spatio-temporal volume analysis for actions is
adopted to solve the problem. To develop effective repre-
sentation while remaining resistant to background motions,
only motion information is exploited to define suitable des-
criptors for action volumes. On the other hand, action models
are learned by using boosting techniques to select discrimi-
native features for efficient classification. This paper also
shows how the proposed method enables learning efficient
action detectors, and validates them on publicly available
datasets.

Keywords Action retrieving - Activity analysis -
Video understanding - Visual surveillance -
Local motion histograms

1 Introduction

Automatic human action detection, or called behavior
recognition and localization, is becoming an increasingly
important part in computer vision. For a video sequence, it
will provide semantic annotations (such as “falling down”,
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“shaking hands”, “kissing”, and “drinking”) if a computer
can automatically identify different activities. It is also use-
ful for computer to be able tell what is happening in a moni-
toring scene (such as “running”, “walking”, and “picking”).
The potential applications of human action detection include
film and television content analysis, video index and sum-
marization, real-time active object monitoring for video sur-
veillance, and on-line pedestrian detection for smart vehicles.

However, human action detection remains a challenging
problem. Firstly, appearance and body shape of active sub-
jects cannot be preserved across different viewing angles,
different observing subjects or different wearing apparels.
Secondly, variant illumination, cluttered background,
moving cameras or non-stationary backgrounds make the
analysis harder. Thirdly, human actions never repeat in the
same manner, and the same action from different subjects
probably holds diverse magnitudes and diverse velocities.
Finally, the problem is more difficult when there are multiple
activities in a complex scene, where occlusions and disoc-
clusions exist and the spatio-temporal relationship between
subjects or between body parts is important. Some typical
frames are shown in Fig. 1 to illustrate these difficulties.

To realize a detecting system for actions, researchers in
this area face two challenges. One is how to extract and cha-
racterize behaviors from some video frames, including mul-
tiple behaviors from multiple subjects. The other is how to
learn an efficient classifier to recognize a given behavior in
a new context. With respect to those mentioned difficulties,
the main challenge is to find a set of features that characterize
behaviors well and account for most of those scenarios.

In this paper, we propose a general method based on
spatio-temporal volume analysis to detect behaviors in origi-
nal video streams. Our first contribution is to propose a novel
descriptor set named local motion histograms for represen-
tation of an action volume. Our second contribution is to

@ Springer



Q. Luo et al.

Fig. 1 Sample frames from our
behavior database (25 fps): three
frames sampled by every six
frames are used to characterize
actions (walking). a A normal
behavior of walking; b same
person but with a diverse
appearance; ¢ a different person
with a different velocity;

d action captured from a
different viewpoint; e moving
cameras and dynamic
backgrounds; f multiple active
subjects with occlusions

(e)

introduce “Gentle Adaboost” into our framework for
histogram-based feature selection, and to learn models on the
proposed three kinds of histograms. In turn, we use the stan-
dard window scanning technique and apply the learned clas-
sifiers onto the densely sampled rectangular sub-windows
(i.e., cubic spatio-temporal volumes) within video sequences
for the detection.

The rest of this paper is organized as follows. Section 2
summarizes the related work. Section 3 details feature design
and representation for human actions using local motion
histograms. Section 4 describes how we learn models on
histogram-based features using a boosting framework. Sec-
tion 5 illustrates our experimental settings and presents expe-
rimental results on several video sequences. Section 6
concludes this paper.

2 Related work

Recently, there has been significant interest in approaches
that address human action detection. Many previous
approaches for behavior recognition were based on tracking
models [17,19,22], which apply tracked motion trajectories
of body parts to action recognition. In this case, an accu-
rate segmentation of subjects from backgrounds is assumed
beforehand. Consequently, the robustness of the algorithm
is highly dependent on the segmenting and tracking system.
The authors in [5] have reviewed the previous work on acti-
vity recognition, most of which involve tracking body parts
segmented from the static background.

Another class of approaches performs recognition by
using sparsely detected spatio-temporal features. Schuldt
et al. [11,18] devise spatio-temporal feature detectors on
Harris corners in 3D case, and Dollar et al. [3] design the
detectors from local maxima of the response function defined
by separable linear filters. Although these approaches indi-
cate good potentials, they pose a problem toward handling
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more challenging situations, i.e., it requires analyzing the
spatio-temporal configuration between different cuboids in
some cases, such as multiple actions recognition.

An alternative method is to apply spatio-temporal volu-
metric feature that efficiently scan video sequences in space
and time domain [8,12]. In substance this approach extends
the rectangle features used by Viola and Jones [20] into
the spatio-temporal domain for video analysis, which shows
promising results in human action recognition. Most clo-
sely related to our work is that of [12], who apply similar
action classifiers to test videos in all space—time windows
with variable spatial size and temporal extent. Furthermore,
they introduce a technique called “Keyframe Priming” that
combine subject’s appearance with motion into retrieving
actions. In spite of that, we argue that subject’s appearance is
not a stable feature for behavior analysis due to its variance to
different views, different persons and even different clothes.

3 Local motion histograms

We focus on spatio-temporal volume analysis for human
action detection due to its simplicity and effectiveness. Thus
the key problem is to characterize actions within volumes by
some kinds of features.

3.1 Feature design

Feature design is a significant problem because informative
features capture the essence of a behavior pattern which faci-
litates our task of detection. Our idea for feature design is
derived from three considerations:

1. Ttis believed that most of the information salient to reco-
gnizing action can be captured from the optical flow,
and the appearance of object is less relevant [8], which
includes colors and textures, etc.
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Fig. 2 Spatio-temporal unit:
basic blocks

Raw frames

2. Using histogram-based image descriptors has achieved a
remarkable success in object detection on static images
among the vast variety of existing approaches [1,10],
and the Histogram of Oriented Gradient (HOG) has been
proved effective to describe appearance.

3. To simplify the problem, most existing work assumes
that the camera and the background are essentially static
[2]. In our case, we make efforts to design a detector that
could analyze activities where the camera or the back-
ground moves around in the scenes.

Based on the above considerations, we make some
attempts as follows:

1. We do not combine any appearance descriptors directly
into behavior representation, but focus on motion fea-
tures and make full use of optical flow vectors as
descriptors.

2. Local histograms provide effective means to represent
visual information. Besides strong descriptive power,
invariant to noise or affine transformation and spatially
unordered, they have a good property for densely sam-
pled description that all histograms can be efficiently
calculated by using an “integral histograms” technique
[15]. We use the similar idea as HOG to define local
motion histograms.

3. Itis noticeable that local motion histograms can be built
up from both differentials of optical flow and absolute
optical flow orientation. The former description tends to
describe relative motion between different parts against
moving backgrounds.

To make behavior representation tractable, we define local
motion histograms by means of optical flow for capturing
motion independent of appearance. To reduce the compu-
tational requirements of detection task, we iterate the cal-
culation of integral histograms on the base of volumetric
basic blocks rather than pixel points. The term of basic block
refers to a spatio-temporal region at a spatio-temporal loca-
tion (x, y, ) with a small size (dx, dy, d¢), which is defined
as an aggregate

B= {p|x§x(p)<x+dx, ysy(p)<y+dy, r<tP<t+dr} (1)

where p denotes a pixel point at location (x(?), y(P) ¢(P)),

= . . LT 77 77T

Optical flow fields

Basic blocks

As illustrated in Fig. 2, the consecutive optical flow fields
are equally divided into grids of basic blocks, and marginal
areas are truncated if existing.

To explore the descriptive power of optical flow from
each pair of successive video frames, we introduce three
kinds of local motion histograms on basic blocks into dis-
covering complementary information. These histograms are
based upon magnitude function M (u, v) and discrete eight-
orientation function O (u, v):

M(u,v) = |(u, v)| 2

O, v) ) 4 ovsin (I 3)
= max —_— miy —
u,v argie[(?)lj] u Ccos 4 VS 4

where (u, v) stands for a 2D vector, and O (u, v) optimizes
the projection: cos(arctan(u, v) — %) — max.

Intra-block absolute histogram (IAH). When cameras and
backgrounds are largely stationary, the original optical flow
is sufficient to describe those absolute motions caused by
actions of subjects. Even when there exist some camera ope-
rations (pan, tilt, or zoom), the original optical flow is still a
good clue for discovering salient motions.

In this case, we employ the magnitude and orientation
of optical flow vector (U, V) at each sample pixel in a basic
block to represent its inside behavior. If magnitudes are taken
as weights and orientations are used for angular voting, orien-
tation histograms are created as a descriptor to characterize
distributions of optical flow. As shown in Fig. 3a, each his-
togram is arranged in eight discrete directions, whose bins
denote the sum of all contributions along the current direc-
tion, shown as the length of arrows. Since the eight-bin his-
togram accumulates all absolute motions inside a block, we
call the resulting descriptor as intra-block absolute histogram
(TAH). IAH for a given basic block B is formulated as

IAH*(i))=C* D> MUY, vP)s[i—oW P, v?)] 4
peB
with
1

C*= ©)
ZpEB MU®, V)

wherei =0, 1, ..., 7is the bin index and § is the Kronecker
delta function. The normalization constant C* is imposing
the condition ZLO IAH*(i) = 1.
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Fig. 3 Local motion histograms of a plane inside basic blocks: a IAH
is based on (U, V); b NDH is based on (U, Uy) or (Vy, V,); ¢ IDH is
based on (Uy, Vy) or (Uy, Vy)
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Neighbor-point differential histogram (NDH). Obviously,
local differential of optical flow cancels out most effects
of camera motion, such as pan and tilt, which can even
reduce the effects incurred by zoom and rotation. Usually,
the differentials are maximal at motion boundaries between
a stationary region and a motional one, or two motional
regions, which coincide with limb and body edges for human
subjects with a behavior of walking or running. In some
sense, flow differentials possess some character like edge-
based descriptors.

We encode a type of local motion histogram to capture
the local orientations of motion boundaries in a simple way.
The two flow components U, V are regarded as independent
features. Taking local gradients (Uy, Uy) and (V,, Vy) sepa-
rately and calculating the corresponding gradient magnitudes
and orientations (see Fig. 3b), we obtain weighted votes into
local orientation histograms, which results two channels of
eight-bin histograms. This resulting descriptors are called as
neighbor-point differential histogram (NDH). Similar to the
above defined IAH, they are formulated as

NDHY (i) = ¢V > MU” . u™)sli — 0 U]
peB

(6)
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NDH" (i) = €V " MV{”, viP)sli —
peB

o Vi (1)

where CY and CY are both normalization constants.

Inter-block differential histogram (IDH). The differentials
mentioned in the above are calculated from neighboring
points, which usually outstands motion boundaries. In order
to capture the relative motion of body parts, we exploit
inter-block flow differentials. This means we compute flow
differentials across neighboring basic blocks. This type of
differentials is naturally capable to compensate most effects
of global motions caused by camera operations as well.
Figure 3c depicts how the differentials are computed.

Since the spatial displacements (dx, dy) between basic
blocks are relatively large and dx is not essentially equal to
dy, new histograms are encoded on (Uy, Vy) and (Uy, Vy).
They are respectively, taken as pairs for orientation calcu-
lation and angular voting. The resulting descriptors consis-
ting of two channels of eight-bin histograms are called as
inter-block differential histogram (IDH). Similarly, they are
formulated as

IDH* () =C* > MU, viP)sli—0 W, Vi) (8)
peB

IDH’ (1) =C* > MU, Vi”)sli — 0", Vi)l (9)
peB

where C* and C” are both normalization constants. It is worth
noting that the gradients Uy, Uy, Vi, and V, for IDH are
computed in a different way from those for NDH although
the same symbols are used.

Our proposed local motion histograms bear some simi-
larity to Dalal’s motion descriptors [2], where differentials
of optical flow are employed. However, there exists some
substantial distinct between them. Firstly, our proposed des-
criptors are spatio-temporal volumetric features and the his-
tograms are accumulated in the normalized action cuboids.
Secondly, the defined IDH is simpler than Dalal’s internal
motion histograms (IMH), which are calculated over basic
blocks and only two neighboring blocks are involved rather
than eight outer cells. Finally, both absolute values and diffe-
rentials are used for behavior representation, and NDH and
IDH are organized together as complementary features for
TAH, not alternative features for each other.

3.2 Behavior representation

Using basic blocks as the elementary unit, we denote any
behavior region by grouping adjacent basic blocks into a
large spatio-temporal volume. To depict its inside action,
the volume is divided into sub-regions with different sizes
at different positions. Moreover, to reserve some spatial or
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Fig. 4 Four different arrangements of basic blocks

temporal information within a sub-region, the histograms
are calculated with different arrangements of basic blocks
(see Fig. 4), and are respectively, concatenated into a single
feature vector.

The five-channel histograms (IAHx 1, NDHx 2, IDHx2)
under four arrangements with different regional sizes at dif-
ferent positions are calculated separately, then a dense repre-
sentation for an action is built up. This representation leads to
a histogram set with a huge size, which makes it impossible
to be used for detecting directly. It is essential to filter the
resulting descriptors and find those representative and dis-
criminative features to characterize an action. Section 4 will
discuss this in details.

There are two pending problems. One is parameter tuning
for calculation of histograms. Basic blocks are given the sizes
of dx,dy = 4,5,6), dr = (3,4,5), and the normalized
action volumes have different numbers of units dependent
on action types. The other is optical flow estimation, which
is important for building up descriptors. Since optical flow

Fig. 5 Comparison of detecting

depends on the temporal and spatial resolution, it is computed
on the original resolution and then scaled.

However, dense optical flow between two consecutive
frames is known as a coarse feature, which is noisy and unre-
liable. Moreover, some methods are going together with local
aperture effects. The local gradients (Uy, Uy, Vy, V,) are
used to accumulate the histograms, thus smooth and accurate
flow are preferable for NDH and IDH. Based on these consi-
derations, our initial efforts concentrated on some “global”
methods, especially multi-scale non-linear diffusion based
algorithm [16], and high-quality results are desired.

Based on the later boosting framework, we compared the
performance of this optical flow estimation with different
methods on a dataset described later in this paper. Results
are shown in Fig. 5. Almost a same conclusion is drawn as
[2] that Proesmans’s flow does not provide improved per-
formance while it is computationally expensive. It is over-
smoothed which tends to blur the motion boundaries, and in
turn, reduces the descriptive power of NDH and IDH.

In contrast, Horn’s flow [7] is fast to be calculated and pre-
serves the motion boundaries well, which keeps more number
of selected features for NDH and IDH, but the final perfor-
mance does not be promoted apparently. Our explanation is
that Horn’s flow is noisy on some pixels (e.g., spatio-temporal
corners), whose U and V get unexpected big values and make
histograms unstable.

Gennert’s flow [6] relaxes the brightness constant assump-
tions, which sounds appropriate to our framework. In fact,

. 1.0
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it obtains a stable flow field, but it naturally outstands the
moving boundary and despises inner flow. As a result, it
selects relatively less number of NDH and IDH. This method
working with our framework leads to the worst performance.

A saturated Horn’s flow (S-Horn) is introduced into com-
puting motion descriptors, which originates from very simple
idea: the magnitude of Horn’s motion vector is saturated by
its neighbors, if M (u,v) > %21'7:0 M;(u, v), where y is
a experiential factor (y = 3 is recommended). It is ama-
zing that such a small modification enhances the performance
apparently. This flow will be used to compute histograms in
all the later experiments.

4 Learning models for histogram-based features

Given a video database involving human actions with labeled
positive and negative samples, we are required to classify or
detect behaviors in a novel sequence. As outlined above, we
first construct local motion histograms for behavior repre-
sentation.

A naive, nevertheless simple method for classification is
to find the best match to the querying motion descriptor,
which can be performed in a KNN framework. In such a case,
we must provide an appropriate similarity measure for our
proposed motion descriptors. This is really difficult problem
for our method because our descriptor set is composed of
several types of histograms, and it is hard to give the weights
for them. In addition, the dense representation leads to a
large number of features, which makes the computational
cost expensive.

Learning discriminative action models for boosting clas-
sifiers does not need any form of similarity measure, but does
well in good feature selection. It is also a promising approach
to handle the variation within an action category. However,
most existing boosting frameworks have been employed to
select one-dimensional features, such as Haar-like features,
where an efficient classifier can be found by selecting an
optimal decision threshold. Our histogram-based descriptors
are multi-dimensional features with different types and dif-
ferent arrangements, it is difficult to find a proper decision
threshold.

In this paper, linear projection technique is utilized to deal
with histogram-based features. The classification task is not
directly converted from a multi-dimensional problem to a
one-dimensional one, but weak classifiers for boosting are
learned on unprocessed histograms via this technique. During
the learning process, Gentle AdaBoost will be employed as
a strong learner to select the position, the size, the type, and
the arrangement of our local descriptors in action volumes.
The only criterion is to minimize the training error for the
samples.
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4.1 Boosting framework

Generally, boosting provides a simple way to approximate
additive models of the form

M
H(x) = D" Buhw(x) (10)
m=1

where H (x) is called as a strong learner, x is the input fea-
ture vector with a class label ye(+1, —1), and M is the num-
ber of boosting rounds. The functions /,, (x), also written as
b(x; ym), are base classifiers which are usually simple func-
tions of x. The expansion coefficients g, and the parameters
¥m are jointly fit to training data in a forward “stage-wise”
manner.

All AdaBoost-based techniques can be considered as a
greedy optimization method for minimizing exponential error
function

JIH(x)] = E(e> ) (11)

where the term y H (x) is related to the generalization error
(out-of-sample error rate), and called as “margin”.

For binary classification problems, there are two versions
of the most commonly used AdaBoost procedures: One is
“Discrete Adaboost”, where each h,, (x) is a classifier pro-
ducing values (+1, —1) and B,, are constants, the correspon-
ding prediction is sign(H (x)). The other is “Real Adaboost”,
where real-valued predictions 4, (x) are combined with S,
and absorb 8, in Eq. (10) with a simpler form. The sign of
each h,,(x) gives the classification, and the value of each
|h, (x)] is a measure of the “confidence” in the prediction.

Gentle AdaBoost (GAB) is a more robust and stable ver-
sion of real AdaBoost [4], which has ever been the most
practically efficient boosting algorithm used in object detec-
tor [13]. In this paper Gentle AdaBoost is used to select our
histogram-based features.

Gentle AdaBoost takes adaptive Newton steps to minimize
error J[H (x) + hp,(x)] by

E[e "W y|x]

H(x)(—H(X)-f-E[eTH(X)M

=H@)+Ew(ylx). (12)

Equivalently, the weak hypothesis is written as
hin(x) = Ew(y|x). (13)

Here E, (.|x) refers to aweighted conditional expectation.
The weight w(x, y) = e V2™ is updated by

w(x,y) < wix, y)e Ym0, (14)

To get optimized h,, (x), we expand J[H (x) + hy, (x)] to
the second order about 4,,(x) = 0. Minimizing pointwise
with respect to A, (x), there is

i (x) = arg min(Ewl(y — B (x))?1x1) (15)
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which gives the way to select a trained base classifier 4,, (x)
and produce a weak classification rule.

4.2 Weak learner

Although Adaboost doesn’t have strict requirement for the
choice of weak learners, effective weak learners tends to
enhance the performance of the final classifier. Available
weak learners are usually Classification and Regression Trees
(CART). Whereas, motivated by Laptev’s work [10], we use
Weighted Fischer Linear Discriminant (WFLD) as a weak
learner for multi-valued histogram features, where multi-
dimensional features are projected onto a pre-defined set of
one-dimensional manifolds using a fixed set of functions.
The weak learner is defined as

h(x) =w x +b, withw = (S + S2) (1 — pn2) (16)

where 11, pp stand for the weighted class means and S,
S, for the weighted class covariance matrices, and b is the
threshold obtained by projecting total means with a negative
w. Given the weights {w;} corresponding to samples {x;},
the matrices have the form

1 n
= m—mzijw,-f(m (17)

1

_—n 2 Ny — N AT
S_(n—l).Zw?Zi:w’(f(Zz) W (fe) =

(13)

WEFLD seeks for finding the optimized projecting direc-
tions which are efficient for discrimination. The resulting
linear projection transformation yields the maximum ratio
of between-class scatter to within-class scatter for weigh-
ted samples. In comparison with CART, each trained WFLD
produces a more compact classification rule, which leads to
a more efficient boosting classifier.

4.3 Feature selection with GAB + WLFD

As mentioned before, the proposed five-channel histograms
(IAHx 1, NDHx2, IDH x2) build up a dense representation
for an action with a huge histogram set. Intuitively, each
kind of feature delivers different data semantics for an “ato-
mic” action. However, it keeps unknown whether they indeed
carry a different amount of discriminative information for
action classification. Using the GAB+WLFD algorithm, fea-
ture selection is used to explore the useful histograms for our
application.

To understand the added value of these introduced des-
criptors, results are reported separately for different features
and in combination with each other. Tables 1 and 2 list the
performance independently. From the two tables, the best

Table 1 Accuracy (%) of different feature combinations for detecting
“walking” (lite mode) on the KTH dataset

Number of features 1 5 10 20 35 55 80

IAH 27 45 51 50 54 57 57
NDH 42 53 57 63 65 69 69
IDH 40 52 59 67 69 71 71
IAH + NDH 35 57 80 89 91 93 94
NDH + IDH 44 65 76 87 90 95 95
IAH + IDH 40 63 84 86 91 92 91

IAH + NDH + IDH 51 69 88 90 92 96 97

Table 2 Accuracy (%) of different feature combinations for detecting
“boxing” (lite mode) on the KTH dataset

Number of features 1 5 10 20 35 55 80

IAH 18 35 42 39 44 44 43
NDH 31 52 56 56 55 56 56
IDH 37 54 65 67 67 67 67
IAH + NDH 31 42 54 70 79 79 79
NDH + IDH 39 62 72 85 91 91 92
IAH + IDH 38 57 68 82 89 87 88

IAH + NDH + IDH 39 65 77 87 91 95 95

accuracies of detection are obtained by about 50 features. For
each individual feature, it reaches the best accuracy within
30 features.

The two actions involving in these comparisons hold dif-
ferent moving nature, “walking” action has a relatively stable
moving region, and bears relative motions between body
parts, while most “boxing” actions have a largely stationary
region, the actions focus on the movement from hands. The
results in the two tables coincide with our intuition that IDH
shows great importance on catching motions between parts,
and in most cases, NDH working with IDH achieves a satis-
factory performance without need of IAH, especially when
the moving region has a large size or with simple motions on
the 2D plane.

5 Experiments
5.1 Datasets

To evaluate the performance of the proposed method, we
conducted experiments on three different datasets: Facial
Expression dataset (FE) [3], KTH human activity dataset
(KTH) [18], and Drinking and Smoking dataset (D&S) [12].
They are all publicly available online, and some sample
images from them are shown in Fig. 6.

The face data in the FE dataset involves two subjects, each
expressing six emotions under two lighting setups. Under
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Fig. 6 Sample images from
some public datasets

walking

running

each lighting setup, each individual was asked to repeat six
different expressions eight times. The expressions are anger,
disgust, fear, joy, sadness and surprise. The subject always
start with a neutral express, expresses an emotion, and returns
to neutral, all in about 60 frames.

@ Springer
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The human action data from the KTH dataset contains 25
individuals, each engaged in the following activities: wal-
king, jogging, running, boxing, hand clapping, and hand
waving. Each person repeats the six actions in each of four
scenarios: outdoor, outdoor with camera zooming, outdoor
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wearing different clothes, indoor. And their durations are
about 20 s.

The D&S dataset consists of annotations for two action
classes “Drinking” and “smoking” in the movies “Coffee
and Cigarettes” (2003), “Sea of love” (1989) and in the “drin-
king” sequence recorded by INRIA/Vista. In contrast to most
existing datasets, the actions in this dataset are not recorded in
controlled or simplified setting with simple backgrounds, but
in comprehensive and realistic scenes with different subjects
and from different view points. Although the two kinds of
actions are “atomic” actions with a reasonable well-defined
structure in time, the annotated samples possess large varia-
bility of scales, locations, and surroundings.

5.2 Training and testing settings

When annotating all training samples for detection it is extre-
mely important to align them in both spatial and temporal
domains. Similar to the well-annotated D&S dataset, we dis-
card those original coarse frame-based annotations for the
KTH dataset, and manually segment their action instances
to a fine degree for training. In the spatial domain, actions
are labeled by rectangles or squares which keep the subject
in the middle-center (boxing, hand clapping, etc.) or cover
the active regions (walking, running, etc.). In the temporal
domain, all sorts of actions are defined to start at the same
phrase, and end at the same phrase as well (see Fig. 7),
although acting in various ways with different durations.
Even more, we split periodic actions in the KTH dataset into
non-periodic actions (i.e., “atomic” actions), which conside-
rably simplifies the annotation with temporal alignment.
Besides alignment, normalization on all training samples
is another key technique when training our detectors. In the
spatial domain, each frame from a given action volume is
resized into a preset size by interpolation on pixels. In most
cases, redundant regions or blanks are added in order to main-
tain aspect ratios. Furthermore, temporal interpolation is not
utilized in our method because behavioral durations are good
features for action description. In this way, the action volumes

are normalized with same spatial size but different temporal
lengths, and our detectors will learn to generalize the noisy
durations of actions.

The first set of experiments examines our method’s ability
to classify actions in short segmented video clips. We expe-
riment on the FE dataset whose samples for both training
and testing are well labeled. Specially, training is done on a
single subject under only one lighting setup. Finally we test
the model on three testing sets: (1) the same subject under
different illuminations; (2) different subjects under the same
illumination; (3) different subjects under different illumina-
tions.

The second set of experiments evaluates our method’s per-
formance in classifying actions in unsegmented testing video
sequences by taking a detection measure. For the KTH data-
set different actions tend to have distinct durations, such as
“running” and “walking”, and testing our models on segmen-
ted samples will greatly simplify the problem and make our
results unable to be compared directly. Hence for a given
testing sequence we run our resulting six detectors, respecti-
vely, and summarize the detecting likelihoods to categorize
the entire sequence with the highest likelihood. Particularly
when the highest likelihood is below our threshold, we label
the sequences as “unknown actions”.

In our experiments, training and testing are done on extrac-
ted about 1/4 length of original sequences in the KTH data-
set with two modes. (1) Lite mode: Under two scenarios
(outdoor, outdoor wearing different clothes), we use a light-
weighted subset of the dataset which includes six subjects
for training and six different subjects for testing; (2) Real
Mode: We use the same training and testing sequences as in
previous works [8,18]. Namely, under each of four scena-
rios eight subjects in the training set and nine subjects in the
testing set.

The third set of experiments evaluates our method’s per-
formance in detecting actions in long video sequences. We
train a model for the class “drinking” on the D&S dataset.
For comparison we use the same training set and testing set
as in Laptev’s work [12]. Namely, for training we use 106

#58 #62 #66 #70 #74 #78

#86 #30

Fig. 7 Frames from two “hand clapping” actions after spatial and temporal alignment: fop frames from #0 to #24 (dt = 24) constitute an action
volume; bottom frames from #54 to #90 (dt = 36) constitute an action volume

@ Springer
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Fig. 8 Results on the FE
dataset: a compare with the best
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drinking samples selected from all the video clips as positive
samples, and for testing we scan three episodes containing
38 drinking actions. The training and the testing sets have no
overlap in subjects or scenes.

For the first set of experiments, we learn a multi-class
model for the classifying problem on the FE dataset, and
each action class has the same number of samples. On the
other hand, we train binary classifiers for the detecting tasks
in the later two sets of experiments. In addition, around the
annotated positive samples we choose random durations of
clips at random positions with random scales to generate
negative samples for training binary classifiers.

5.3 Results
For the FE dataset, we compare the overall classification error

rates with the best results of Dollar’s work [3] in Fig. 8a. It
is obvious that our method performs better under changes of
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confusion matrix (3)
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illuminations (case 2 and case 3). Furthermore, the confusion
matrices on three testing sets are presented in Fig. 8b—d,
which show large confusion between similar actions “anger”
and “disgust”.

For the KTH dataset we summarize the recognition rate
through those detecting results, and give the confusion
matrices for the two modes in Fig. 9c, d. It shows large
confusion between “hand clapping” and “boxing”, as well as
“running” and “jogging”. This is consistent with our intuition
that those actions involve similar hand motions or similar leg
motions. The results for the two modes depict that outdoor
with camera zooming and indoor scenarios markedly dege-
nerate our method’s performance. A reasonable explanation
is that various resolutions and changes of illuminations cause
a considerable side effect in calculating optical flow.

Table 3 compares classifying accuracy with previous stu-
dies on the same dataset KTH. Since the experimental setting
of most existing studies are not the same as ours, the results
cannot be compared directly and the listing accuracies do not
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Fig. 9 Results on the KTH
dataset: a classification for
“walking” actions, where the
lighted boxes mark correct
decisions by the “walking”
detector and the darkened boxes
mark false decision by
“jogging” detector; b several
detections obtained by the “hand
waving” detector, where the last
two darkened boxes mean false
detections for “hand clapping”;
¢, d confusion matrices for two
testing modes

C.M. (Lite mode)

walking 03
jogging |
running .04
boxing .00 .00

handclapping | .00 .00

handwaving .00 .00

.00 .00

.00

.00

C.M. (Real mode)

walking .02 00 .00 .03

.00 .00 .08 05 .00

jogging
running = .09

boxing .00

handclapping .00

handwaving .02 .05

oty A,

mean too much. For example, Kim’s method [9] has achieved
an impressive accuracy at 95%, but space—time alignment of
actions is manually done. In fact, a more challenging work
is done in this paper, where the classifying problem is trea-
ted as an automatic detecting problem of multiple actions
from unsegmented testing sequences. Although our detec-
ting method does not specifically aim for whole sequence

ny e, i, o %%%‘%’"

o, "%,

(d)

classification, the accuracy obtained by our method is com-
petitive.

For the D&S dataset we detect human actions in rea-
listic scenarios! with variation in subjects and scenes, etc.
In Fig. 10b precision—-recall curves and average precision

! Demo video: http://ccs.sjtu.edu.cn/673/fld3mh.
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Table 3 Comparison of classifying accuracy on the KTH dataset

Related studies Accuracy (%)

Our method (IAH + NDH + IDH) 85.1
Ke et al. [8] 63.0
Schuldt et al. [18] 71.7
Dollar et al. [3] 81.2
Niebles et al. [14] 81.5
Wong et al. [21] (pLSA-ISM) 83.9
Wong et al. [21] (WX-SVM) 91.6
Kim et al. [9] 95.3

(a)
PR curve for "drinking" detection
1.0 . 7 . . . . 7 . ;
L1 T N { —— IAH+NDH+IDH (ap:0.605) }
L i \ i —— OF5Hist-KFtrained (ap:0.434)
08 H---i-- 4 oo —— B
07 H--- 9 : e
o6 A focd o gl
w | | H
0.6 [ snriossnne T RRBTMENE govs 3 i . b
L O R o |« SRR RSO NN NN B 10 Rasnitis o
03 et Kelat sty i i | ettt kat Mottty S dtel wbabaiatid | '_'_E """ E‘""
7 UG SO RS SHS U UL SO YU S S
) S NS S S S — -
o I SRR S AT (P N IO N S
00 01 02 03 04 05 06 07 08 09 1.0
Recall
(b)

Fig. 10 Results on the D&S dataset: a the first nine detections on the
testing set obtained by our “drinking” detector, where the second box
in the first row and the first box in the second row are false detections;
b comparison of precision—recall curves in “drinking” action detection
task

(AP) values illustrate the detecting performance on “drin-

king” action. Our method outperforms Laptev’s best result
[12] (OF5 with Keyframe priming) with a better average pre-

@ Springer

cision, and our method tends to perform better in rejecting
similar non-drinking actions.

From all above experiments, we observe that the com-
bination of different motion descriptors plays an important
role in action recognition. It is found that without any expli-
cit appearance of shape information, human actions under
clutter background or moving background can also be well
characterized by the local motion histograms. At the same
time, Gentle AdaBoost is proved to be powerful enough to
select parameters for classifiers.

6 Conclusions

In this paper we addressed human action detection in realis-
tic scenarios. Our method shows great potentials in action
representation within a spatio-temporal volume. The extra-
cted histogram-based descriptors act as complementary
information for each other. The Gentle Adaboost framework
working with WFLD is proved to be able to select discrimi-
native histogram-based features and learn robust and efficient
detectors.

Our method is tested in a number of experiments against
well established algorithms, and all experimental tests show
the satisfying results. Despite of different appearance, scale
changes, clutter background or moving background, our
results on classifying and detecting problems are comparable
with the previous studies, or outperform the previous results.

The experimental results not only validate the effective-
ness of our method, but also prove that without the support
of appearance and shape information, only motion informa-
tion is capable of describing human actions well. However,
since we have not combined any appearance or shape des-
criptors with local motion histograms, it is unknown whether
the combination will improve the performance. This is part
of our future work.
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