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Electroencephalogram analysis using fast wavelet transform
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Abstract

The continuous wavelet transform is a new approach to the problem of time–frequency analysis of signals
such as electroencephalogram (EEG) and is a promising method for EEG analysis. However, it requires
a convolution integral in the time domain, so the amount of computation is enormous. In this paper, we
propose a fast wavelet transform (FWT) that the corrected basic fast algorithm (CBFA) and the fast wavelet
transform for high accuracy (FWTH). As a result, our fast wavelet transform can achieve high computation
speed and at the same time to improve the computational accuracy. The CBFA uses the mother wavelets
whose frequencies are 2 octaves lower than the Nyquist frequency in the basic fast algorithm. The FWT for
high accuracy is realized by using upsampling based on a L-Spline interpolation. The experimental results
demonstrate advantages of our approach and show its e:ectiveness for EEG analysis. c© 2001 Elsevier Science
Ltd. All rights reserved.
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1. Introduction

The Electroencephalogram (EEG) is a resultant signal of the active potentials of many nerve cells
in the cerebral cortex, and captures the cerebral function. EEG is one of the irregular and feeble
signals in the living body. Researchers have investigated e:ective analysis methods for many years.
In recent years, the wavelet transform has been used for the analysis of EEG signals, and has been
e:ective in the elucidation of sleep apnea syndrome, epilepsy, etc. [1,2].
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A continuous wavelet transform (WT) maps a time function into a two-dimensional function of
a and b, where a is the scale (1=a denotes frequency) and b is the time translation [3]. For a signal
x(t), the WT can be written as follows:

w(a; b) = a−1=2
∫ ∞

−∞
x(t) H 

(
t − b
a

)
dt; (1)

where  (t) is a mother wavelet (MW), H a;b(t) denotes the complex conjugate of  a;b(t), and  a;b(t)
stands for a wavelet basis function.

The MW  (t) is an oscillatory function whose Fourier transform  ̂ (!) must satisfy the following
admissibility condition:

C =
∫ ∞

−∞
| ̂ (!)|2
|!| d!¡∞: (2)

If this condition is satisJed,  (t) has zero mean, and the original signal can be recovered from its
transform W (a; b) by the inverse transform

x(t) =
1
C 

∫ ∞

−∞

∫ ∞

−∞
W (a; b)a−1=2 

(
t − b
a

)
da db
a2 : (3)

As shown in Eqs. (1) and (3), the WT is a convolution integral in the time domain, so the amount
of computation is enormous and it is impossible to analyze EEG signals in real time. Over the last
two decades, researchers have proposed some fast wavelet transform algorithms [4]. Traditionally,
the Ka-trous algorithm [5] and the fast algorithm in the frequency domain [6] are used. The latter
is used more for computation speed [7] and has the following properties: (1) It uses multiplication
in the frequency domain instead of convolution in the time domain; (2) It uses one octave of
the mother wavelet to obtain other mother wavelets for all octaves by down-sampling based on
the self-similarity of the mother wavelet. However, this algorithm has some major problems, in
particular, the computational accuracy is lower than the usual WT and it is diMcult to satisfy the
accuracy requirement of analysis for EEG.

In this paper, we propose a fast wavelet transform (FWT) which includes the corrected basic fast
algorithm and fast wavelet transform for high accuracy (FWTH) that improves the accuracy at a
high computational speed. We will examine the characteristics of the FWT using a model signal and
demonstrate its e:ectiveness in EEG analysis.

2. Fast wavelet transform

2.1. Basic algorithm of WT

Parameters a and b in Eq. (1) take a continuous value; however, for computational purposes, they
must be digitized. Generally, when the basic scale is set to �= 2, then aj = �j = 2j is called octave j.
For example, the Nyquist frequency fN of the signal corresponds to the scale a0 = 20 = 1, and the
frequency fN=2 corresponds to 21 and is referred to as 1 octave below fN, or simply octave one.
As for the division of the octave, we follow the method of Rioulmay [8] and divide the octave into
M divisions (M voices per octave) and compute the scale as follows:

am = 2i=M2j; (4)
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where i = {0; 1; : : : ; M − 1}; j = {1; : : : ; N}; N is number of the octave, m= i + jM . b is digitized by
setting b= kNt, where Nt denotes sampling interval.

As shown in Eq. (4), the scale am is 2i=M times 2j, which expresses that the MW has the
self-similarity property and the MW of the scale am can be calculated from the MW of the scale
2i=M by down sampling 2j. In this paper, therefore, we Jrst prepare the  i(n) (i = 0; 1; : : : ; M − 1) for
one octave from the maximum scale (the minimum analysis frequency) of analysis which corresponds
to scale 2N2−i=M :

 i(n) = 2−N=2+i=2M (2−N+i=Mn) (5)

and then calculate  m(n) by a sampling of the 2N−j twice of  i(n)

 m(n) = 2(N−j)=2 i(2N−jn): (6)

Finally, we rewrite Eq. (1) as follows:

w(m; k) = 2(N−j)=2
L2j−1∑
n=0

H i(2
N−jn− k)x(n); (7)

where n= t=Nt; L2j−1 denotes the length of the  m(n). Based on Eq. (7) the number of multiplication
for the WT can be expressed as

MTL
N∑

j=1

2j−1 =MTL(2N − 1); (8)

where T denotes the length of the signal x(t) (data length), N the number of the analysis octaves,
and L the length of the  i(n) in j = 1. As shown in Eq. (8), the amount of calculation in the
conventional WT increases the exponentially as the analyzing octaves number N increases, because
the localization of  m(n) becomes bad as scale becomes large and the length L2j−1 of  m(n) also
increases exponentially. Moreover, the accuracy of computation becomes worse if the length of  m(n)
is longer than the data length T , so the analysis minimum frequency (the maximum scale) will be
limited by the length of the data for short data.

2.2. Basic fast algorithm of FWT

We can compute convolution in the frequency domain, for which we rewrite Eq. (1) as follows:

w(a; b) = a1=2
∫ ∞

−∞
x̂(f) Ĥ (af)ei2�fb df; (9)

where x̂(f);  ̂ (af) are Fourier transforms of the x(t) and  (t=a), respectively, and Ĥ (af) denotes
the complex conjugate of  ̂ (af). In addition a basic fast algorithm (BFA) of wavelet transform in
the frequency domain has been developed [7].

As was done in Section 2.1, we Jrst compute one octave of  ̂ i(n) from fN, the minimum scale
(analysis maximum frequency), a= 2i=M (j = 0),

 ̂ i(n) = 2i=2M  ̂ (2i=Mn); (10)
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where n=f=Nf, and Nf = 1=T ; Nf denotes the frequency interval. We then use the self-similarity
of the MW to obtain another MW for all octaves as follows:

 ̂ m(n) = 2j=2 ̂ i(2
jn): (11)

Consequently, the x̂(f) Ĥ (af) in Eq. (9) can be rewritten as follows:

w(m; n) = 2j=2x̂(n) Ĥ i(2
jn): (12)

So W (m; k) which is a discrete expression of the W (a; b) can be obtained by using the inverse
Fourier transform about k as follows:

w(m; k) = 2j=2
T∑

n=0

w(m; n)ei2�(nk=T ): (13)

We now consider the number of multiplications for the BFA based on Eq. (13). Roughly, L log2 L
multiplications are required for one reverse Fourier transform and T multiplications for x̂(n), and
Ĥ m(n). That is, in order to calculate W (m; k), we need the number of multiplications

MN (T + T log2 T ) =MNT (1 + log2 T ): (14)

As shown above, the amount of calculation of FWT based on BFA is di:erent from the WT, and
is sensitive to the data length T . Moreover, the localization of the MW in the frequency domain
becomes better as the scale becomes larger (analysis frequency becomes small). So the analysis range
available in FWT will be larger than that in the conventional WT. Theoretically, the analyzable the
frequency range of FWT is until when the length of  m(n) becomes one piece. For example, in
this paper, FWT is analyzable to 10 octaves (4.9–5:0 kHz) with T = 512 and symmetrical boundary
condition. However, the WT is analyzable only to six octaves (78 Hz–5:0 kHz) under the same
conditions.

However, the FWT has a higher reconstructed error (RE) than that obtained by WT. In the
following section, we will propose techniques to improve accuracy.

3. Examination of computation accuracy and speed

3.1. Improving accuracy

In order to compare the computational accuracy between WT and FWT, we used a model sig-
nal x(t) shown in Fig. 1 along with its power spectrum. It has the property that each frequency
component changes with time, and has 512 samples at a sampling frequency of 10 kHz. We use
the RI-Spline wavelet which we proposed in [9] as the MW, and Jrst perform a wavelet transform
of the original signal x(t) in order to get W (a; b), then obtain the reconstructed signal y(t) from
the inverse wavelet transform. Fig. 2 shows the reconstructed error |x(t) − y(t)|2 in dB, Fig. 2(a)
shows the result obtained from the WT with 6 analysis octaves (78 Hz–5 kHz) and (b) shows the
result obtained from the FWT based on the BFA with 10 analysis octaves (4:9 Hz–5 kHz). Both
computations used 4 voices per octave.

It is clear by comparing Figs. 2(a) and (b) that the WT has a better performance than the FWT.
In the case of the WT about −40 dB of RE has been obtained when removing the low frequency
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Fig. 1. (a) Model signal (b) Energy spectrum.

Fig. 2. RE by using WT and FWT based on BFA. (a) Reconstruction error by WT (b) Reconstruction error by FWT

domain and the high frequency domain, but in the case of the FWT only about −20 dB of RE has
been obtained over the entire frequency domain. As shown in Section 2.2, all MWs in the case of
the FWT based on the BFA are obtained from the MWs near the Nyquist frequency which have
fewer data and calculation accuracy is low, although they have good localization in the time domain.

In order to improve the computational accuracy of the FWT, we use MWs whose frequencies
are 2 octaves lower than the Nyquist frequency. This results in the corrected basic fast algorithm
(CBFA). In this case, the length of the MWs in a time domain is extended 4 times from the length
of the MWs near Nyquist frequency. If one fourth of the beginning of the data is used after carrying
out the Fourier transform of the MWs with 4 times data length, the MWs obtained have the same
length (localization) as the MWs near the Nyquist frequency. Fig. 3 shows the result obtained from
the FWT using the CFBA. Fig. 3(a) shows the RE and (b) shows the basis system which was
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Fig. 3. RE improved by using FWT based on CBFA and wavelet bases for 10 octave, 4 divided. (a) Reconstruction error
improved (b) Basis of FWT.

Fig. 4. RE by using FWTH.

constructed by  ̂ m(n). As shown in Fig. 3, the FWT based on CBFA shows good performance. The
RE obtained is lower than −40 dB over a wide frequency range and the accuracy is better than the
result of WT shown in Fig. 2(a). Our method does not have any inOuence on the computational speed
because the parameters in Eq. (14) have not been changed. However, in the high frequency domain,
the problem that the RE is larger still remains. This is because when the frequency approaches fN,
the amplitude value of

∑ | ̂ (af)|=a (shown in Fig. 3(b)) becomes small.
In order to get a high degree of accuracy in the high frequency domain, we use up-sampling

by using L-Spline interpolation. We assume that the sampling frequency is not changed after the
data is interpolated although the number of samples increases twofold, so that the frequency of each
frequency component falls by half. Therefore, the inOuence due to the reduction of the amplitude
value of

∑ | ̂ (af)|=a near fN is avoided. This method is fast wavelet transform for high accuracy
(FWTH). Fig. 4 shows the result obtained by using FWTH. As shown in Fig. 4, the RE obtained
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Fig. 5. Relative computation time (RCT).

Fig. 6. RCT and RCQ change with octave number.

is lower than −40 dB over the entire frequency range. However, higher accuracy is as the expense
of computational speed because the data length has been doubled.

3.2. Computational speed

The relative calculation time (RCT) for our methods is shown in Fig. 5. The analysis data length
is 512, the number of analysis octaves is 6 and each octave has been divided to 4 voices. The RCT
of each method is expressed relative to WT where calculation time is set at 100. As shown in Fig.
5, the computation time of FWT using CBFA is only 3.33. For FWTH, the computation time is only
7.62 although the data length is double in order to compute FWT with high accuracy. Based on the
discussion above, we may conclude that the proposed fast wavelet transform is indeed e:ective for
improving the computation accuracy at a high computation speed.

The RCT of FWT and WT changes with the increase in the number of analysis octaves was
shown in Fig. 6. The ratio with computation quantity (RCQ) based on Eqs. (8) and (14) changes
with the increase in the number of analysis octaves was also shown in Fig. 6 for comparison. The
value of Both RCT and RCQ are expressed with the ratio that setting the value of WT in Jve



436 Z. Zhang et al. / Computers in Biology and Medicine 31 (2001) 429–440

Fig. 7. Measured points of EEG.

octaves as 100. As shown in Fig. 6, the change of RCT about WT and FWT is well in agreement
with RCQ. The calculation time of FWT increase is small, and oppositely, the calculation time of
WT increases abruptly by the increase in the number of analysis octaves. This is well in agreement
with the discussion in Section 2.2, and it is demostrated that the FWT can be adapted for a wider
analysis frequency range than WT. Moreover, the change of RCT is the same as RCQ approximately
with change of data length T and voice number M , so RCT can be predicted using RCQ.

4. EEG analysis using FWT

EEG is an unsteady voltage signal of about 1–60 Hz and 5–300 �V at the suhace of the skull.
The EEG frequency components around 2–4 Hz are usually deJned as � waves and the components
around 4–8, 8–13 and 13–30 Hz as the �; �, and � waves, respectively. We will analyze the EEG
using our FWT.

Fig. 7 shows arrangement of measurement electrodes of EEG. The marks, such as Fp1 in Fig. 7
are abbreviations of the electrode’s location based on the ten-twenty electrode system. As shown in
Fig. 7, Fz and Pz are placed on a straight line which connects the nasion and inion, C3 and C4 are
placed on a straight line which connects both ear holes and the top of the head. Fig. 8 shows some
EEGs of a 14-year-old girl recorded when she was sitting in a chair and opening her eyes. The data
sampling frequency is 64 Hz so that the Nyquist frequency fN is 32 Hz. A spike and wave complex
(SWC) around 3 Hz are recorded near 6–8, and 22–24 s.

In order to examine what was generated in SWC and what changed with time, we took out the
parts of the SWC form EEG of FP2 in Fig. 8 and analyzed it by using the FWT. Fig. 9 shows the
analysis results of SWC in FP2. Moreover, Fig. 9(a) is the result in 4–12 s and 9(b) is the result in
20–28 s, where the ordinates denote frequency, transverse time and the amplitude |w(a; b)| is shown
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Fig. 8. Time series of EEG.

Fig. 9. Wavelet transform of EEG in point FP2. (a) Wavelet Transform of EEG in 4-12 sec (b) Wavelet Transform of
EEG in 20-28 sec.
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Fig. 10. RMS amplitude of �, �, � and � wave of EEG in point FP2.

as the shade level. The analyzing frequency range was chosen as four octaves and each octave was
divided into 48 voices for clarity. The computation time of FWT in above condition is about 17%
of the traditional WT, the improvement of the computation eMciency is conJrmed.

In Fig. 9(a) we can clearly see the �; �, and � waves near 6:4 s. The � and � waves are intermittent.
In contrast, the � waves are continuous, but the frequency decreases with time, that is, the � wave
is changing to the � wave with time. The � and � waves were not observed between 22 and 24 s
in Fig. 9(b), and the change of the � wave is also intermittent. Moreover, the changes of SWC are
di:erent between that near 6–8 s and near 22–24 s although they are measured at the same point
FP2 (Fig. 9).

In order to understand the process generating SWC, the �, �; �, and � waves were reconstructed
from the wavelet transform of the EEG in FP2 shown in Fig. 8. Root mean square (RMS) amplitude
are shown in Fig. 10. As is shown in Fig. 10, we can observe the active change of the �; �; �, and
� waves before and after SWC occurred between 6 and 8 s. The same phenomenon was observed
before and after SWC occurred between 22 and 24 s.

Moreover, the example of the RE of EEG by FWTH is shown in Fig. 11, and the RE of EEG
by WT is also shown for comparison. As shown in Fig. 11, the accuracy obtained with FWTH is
higher than WT. The average value of the RE of FWTH between 4 and 12 s is −44 dB and WT is
0:69 dB. Therefore, we may conclude that our approach proposed in this paper is e:ective for EEG
analysis in real time with high accuracy.

5. Conclusion

In this paper, we propose a fast wavelet transform (FWT) which incorporates CBFA and FWTH to
improve computation accuracy at a high computation speed. We examined the characteristics of FWT
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Fig. 11. RE of EEG in point FP2 from 4 to 12 s by using FWTH and WT.

using a model signal, and the experiments demonstrate advantages of our approaches. Furthermore,
we used our method to analyze EEG; the results obtained show indeed they are e:ective. The main
results obtained can be summarized as follows:

• For improving accuracy, we proposed the corrected basic fast algorithm (CBFA) that uses mother
wavelets whose frequency is 2 octaves lower than the Nyquist frequency in the basic fast algorithm.
FWT based on CBFA improved computation accuracy, at the same time realized high computation
speed.

• Furthermore, to obtain a high degree of accuracy in the high frequency region, using up-sampling
by the L-Spline interpolation, which we call fast wavelet transform for high accuracy (FWTH),
is e:ective.

• Finally, the experimental results on the EEG data have shown that our method is e:ective for
EEG analysis in real time with high accuracy and may be useful for other signal processing tasks.
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