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Detection of Quantization Artifacts and Its
Applications to Transform Encoder Identification

Weiqi Luo, Member, IEEE, Yuangen Wang, and Jiwu Huang, Senior Member, IEEE

Abstract—Quantization is one of the commonly used techniques
in most lossy image source encoders. It is observed that the quanti-
zation operation usually introduces some obvious artifacts into the
histogram of the corresponding transform coefficients under var-
ious compression schemes. By investigating such inherent artifacts
over all candidate transform coefficients, it is possible to identify
the transform, as well as some parameters previously employed in
the transform-based encoder from a decompressed image. In this
paper, we first analyze the properties of the quantized coefficients
and present a simple yet effective way to detect the quantization
artifacts, and then we propose an approach to identify the trans-
form-based encoder based on the quantization artifacts detection.
The simulation results evaluated on thousands of natural images
with some popular compression schemes demonstrate the effective-
ness of our method.

Index Terms—Digital image forensics, quantization artifacts,
source encoder identification.

I. INTRODUCTION

D IGITAL images can be easily edited using user-friendly
tools such as Photoshop and GIMP. If these tampered im-

ages are abused, it may cause many serious problems related to
social security and/or legal evidence. Today, authentication of
digital images faces many challenges.

Conventional techniques for image authentication need some
proactive operations, such as inserting a digital watermark or at-
taching a digital signature into the host data, and require them
to facilitate the authentication. However, in many scenarios, the
questionable image does not have such additive information,
and therefore, these methods will fail. Recently, passive forensic
analysis [1], [2] has attracted much attention. This technique as-
sumes that the previous operations, including various modules
and/or the software system in a device, will leave an inherent
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trace in the resulting image. By analyzing and detecting such
inherent patterns, it is possible to identify the operation his-
tory of an image. For instance, since different camera models
typically employ different quantization tables and/or color filter
array (CFA) interpolation algorithms, we can narrow down the
possible camera models of a questionable image or further lo-
cate the tampered regions by observing the quantization table
[3], [4] and estimating specific correlations between pixels [5].
We can also expose JPEG forgeries by detecting the artifacts in-
troduced by double JPEG compression [4], [6], and so on.

In this paper, we focus on the recently proposed problem
of source encoder identification [7]–[9], namely, given a dig-
ital image without any header information or metadata for pre-
vious operations, we wish to identify which transform was used
in the source encoder via detecting the quantization artifacts.
As mentioned in [7], this has many applications in multimedia
security, coding and communication. For instance, it can be
used to verify the datapath integrity of an image, and further
locate the tampered regions or detect the consistency within
an image. Besides, some image enhancement/steganalysis algo-
rithms may rely on the knowledge of image encoders, such as
the block sizes, quantization table, decomposition levels. There-
fore, source coder identification is a first crucial step for many
subsequent analyses, and false identification usually leads to the
invalidation of the analysis.

There have been a few relevant approaches [7]–[9] to address
the problem of source encoder identification. The main idea of
the existing works is to calculate the similarity between the ob-
served histogram of the transform coefficients and the estimated
version of the original histogram. The highest value of the sim-
ilarity measure over the possible candidate encoders indicates
the original of the source encoder. There are two problems in
these approaches. First, it is difficult to approximate the orig-
inal histogram from a decompressed image. Second, defining
a good and uniform similarity criterion for various source en-
coders is a difficult task. Therefore, the detection accuracy of the
existing works usually decreases significantly as the PSNRs of
the test images increase. For instance, in [7], the average accu-
racy for the source encoder identification is around 90% when
the PSNR is less than 36 dB, while it drops to 80% when the
PSNR rises to 40 dB. Besides that, the computation complexity
is high due to the estimation of the original histogram using
nonlinear least-square data fitting. Furthermore, some existing
methods, e.g., [8], usually misclassify the Slant transform as the
discrete cosine transform (DCT). For block sizes estimation, the
average accuracies of the existing approaches [7], [10], [11] are
still far from satisfactory when the PSNR is higher than 40 dB
and/or the block size is larger than 32 32.

The general transform coding system [12] for the image
encoder and decoder is illustrated in Fig. 1. Since quantization
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Fig. 1. General transform coding for digital images.

Fig. 2. Histograms of � � � for Lena image with a quality factor 85 at the posi-
tion (1,1), and the corresponding quantization step 4. (a) Histogram of � ��� ��.
(b) Histogram of � �����.

is an effective technique to reduce the number of coefficients
required to represent an image via compressing a range of
coefficients into a single quantum value, it is widely em-
ployed in these transform-based encoders, such as lossy JPEG,
JPEG2000, and various sub-band image compression schemes.
One of the quantization artifacts is that those transform coef-
ficients with values around zero will usually be quantized to
zero, and thus the number of transform coefficients with zero
value will increase sharply after quantization, especially when
the quantization step is large (see Fig. 2(a) and (b) on JPEG
compression). Since different source encoders may employ
different transforms (e.g., DCT, DWT, etc.) and/or compression
parameters (e.g., block sizes, decomposition levels, etc.), such
quantization artifacts will only be obviously presented in the
histogram of the corresponding coefficients. By detecting the
artifacts over all candidate transforms’ outputs, it is possible
to identify the original source encoder from a decompressed
image. This is the main idea of our proposed scheme, and
the key issue is to detect quantization artifacts—the uniform
feature for various lossy source encoders.

In this paper, we introduce an effective 2-D feature vector
to detect the quantization artifacts (rather than comparing the
similarity between the transform coefficients and the estimated
version in previous methods), and propose a scheme for identi-
fying the source encoder and/or the corresponding parameters.
The experimental results, evaluated on thousands of natural im-
ages with some popular compression schemes, show the effec-
tiveness of our method.

The rest of the paper is organized as follows. Section II
presents a simple yet effective method for detecting quanti-
zation artifacts. Section III proposes our method for image
source encoder identification. Section IV demonstrates the
experimental results and analysis. The concluding remarks and
discussions will be set out in Section V.

II. DETECTION OF QUANTIZATION ARTIFACTS

JPEG is one of a number of popular transform-based en-
coders. In this section, we will take JPEG images as examples
and show the properties of the histograms of the ac components

Fig. 3. Histogram of � ����� after JPEG decompression.

before and after quantization operations, and then we present a
2-D feature vector to detect such quantization artifacts.

In JPEG compression, the input image is first divided into
nonoverlapping 8 8 blocks. For each block, the forward DCT
is preformed to obtain the DCT coefficients , which are then
quantized by a quantization table . The quantization coeffi-
cients are further compressed using entropy coding. Finally, the
resulting bit stream is combined with a file header to generate
the JPEG file.

In JPEG decompression, the JPEG file is first entropy de-
coded to recover the quantized coefficients, which are then mul-
tiplied by a quantization table to obtain the dequantization
coefficients . Finally, the inverse DCT (IDCT) is applied to

and the results are truncated and rounded to the integers in
the range of to produce the output image .

The relationship between DCT coefficient and its quan-
tized and dequantized version can be formulated as follows:

(1)

where denotes the quantization step.
The previous research in [13] and [14] has shown that the ac

coefficients of natural images can be
approximately modeled as a Laplacian distribution with a mean
around zero, as shown in Fig. 2(a). After quantization and de-
quantization, most values in the histogram of will be quan-
tized to their nearest integers of , where is an integer. As
illustrated in Fig. 2(b), it is observed that the continuous values
of will be reduced to a small quantity of integers that are mul-
tiples of the quantization step .

Note that we cannot recover the exactly from a decom-
pressed image due to the deterministic rounding (and trun-
cating) in the JPEG decoder. As illustrated in Fig. 3, we just
obtain an approximative version of (denoted as ) via per-
forming the forward DCT on each nonoverlapping 8 8 of the
output image . It is also shown that the difference between
and can be regarded as an approximate Gaussian distribution
with mean 0 and variance 1/12. In such a case, the coefficients

will not appear at the multiples of the quantization step ex-
actly, but spread around them at a limited range of ,
just as illustrated in Fig. 3.
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Fig. 4. Distributions of the 2-D features for original images and their JPEG
compressed versions with quality factors of 98, 95, and 90.

The quantization artifacts detection is then converted to dis-
tinguish the histograms between Fig. 2(a) (before quantization)
and Fig. 3 (after quantization). It is observed that the number
of the corresponding ac components in the region

will increase, while the number in the region
will decrease significantly, when the quan-

tization step is larger than 2, which means that

(2)

and

(3)

where , , and denote the probability density function
(pdf) of the coefficients , , and (except for the dc com-
ponent), respectively.

Formulas (2) and (3) show that we can just investigate the
probability of the ac components in the regions and to
identify whether a given bitmap image is an original uncom-
pressed image or a JPEG quantized one .

Fig. 4 shows the distributions of 2-D features (namely, the
probabilities of the ac components in and ) for uncom-
pressed images and their JPEG compression versions with
quality factors of 98, 95, and 90. In the experiments, the 1338
test images come from UCID [15]. It is clearly observed that
the features between the uncompressed and JPEG images are
mostly separate, even for the images after slight compression,
e.g., the quality factor as high as 98 (the average PSNR is 51 dB
in such a case).

The above experimental results show that the proposed 2-D
features are very sensitive to quantization operation. Note that
the quantization artifacts can be analyzed similarly for other

Fig. 5. Feature extraction.

transform codings (as well as various sub-band codings, differ-
ential image encoders, etc.) as long as we can follow the same
compression procedure and get the coefficients (or their approx-
imate versions) before the quantization operation. In the fol-
lowing Section III, we will use the proposed features to identify
the source encoder from a given bitmap image.

III. IDENTIFICATION OF TRANSFORM ENCODER

Given a bitmap image without any previous compression
information, our proposed method is to identify its original
source encoder from some candidates (and/or the same type of
source encoder with different parameters). As mentioned pre-
viously, the quantization operation is usually a necessary step
in most lossy compression schemes. Since different encoders
employ different transforms (such as DCT, DWT, Hadamard,
etc.) and/or different parameters (such as the block sizes and
decomposition levers, etc.), it is expected that the quantization
artifacts will become obvious only at the corresponding coef-
ficients that have been quantized previously, which indicates
the original source encoder as well as its encoder parameters
of the image. For instance, the quantization artifacts found in
DCT ac components reveal the image was compressed using
a JPEG scheme (see Section II), while the artifacts occurring
at the wavelet coefficients shows that the image may have
been originally compressed using a JPEG2000 scheme, and
so on. By checking the quantization artifacts for all possible
coefficients using our proposed 2-D features, it is possible to
determine the original encoder of the given image. Therefore,
the proposed method is given as follows.

Assume that the questionable image is , and the total number
of the possible source encoders (the combination of transforms
and parameters) is . As illustrated in Fig. 5, for each candidate
encoder, we first follow the compression procedure and stop be-
fore the quantization operation. We then extract the 2-D features
from the histograms of the corresponding transform coefficients
as illustrated in Section II, and finally combine these features as
a feature vector (2 dimensions). The feature vector is then fed
to a support vector machine (SVM) to train a classifier.

IV. EXPERIMENTAL RESULTS

In the experiments, we randomly chose 1000 images from
the UCID [15] and NRCS datasets [16], respectively. Besides
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TABLE I
CONFUSION MATRIX FOR TRANSFORMS IDENTIFICATION. THE ASTERISK (*) DENOTES THE VALUES LESS THAN 1%.

(AVERAGE ACCURACY: 99.4%)

that, we took 3000 images which were originally stored in raw
or TIFF format using six different digital cameras (Nikon D40,
D50, and D300, Panasonic DMC-FZ30, Minolta A2 and D5D).
In all, there are 5000 uncompressed natural images with various
scenes and lighting conditions. All the color images are first
converted to gray-scale images and reduced to different sizes
ranging from 384 512 to 768 512. In the following, only
1/5 of the images are randomly selected in the training stage,
and the remaining 4000 images are used for the testing. The
LibSVM tool [17] (using the “easy.py” command in the tool
written with Python, Version # 2.9) has been employed to train
an SVM classifier.

A. Identifying JPEG Images

In this experiment, we try to determine whether a given image
has been JPEG compressed previously or not. Four commonly
used editing softwares have been used for JPEG compression,
including Matlab, GIMP, ACDSee with a random quality factor
ranging from 85 to 951 (see Fig. 4), and Photoshop with higher
quality levels from 6 to 11 (the highest quality level is 12). The
average PSNR of the JPEG images is 42.31 dB.

For each image, we first divide it into 8 8 nonoverlapping
blocks, and then extract the 2-D quantization features from all
the DCT ac components, as described in Section II. The testing
results show that our proposed method can distinguish the JPEG
images from the uncompressed ones very reliably with an av-
erage accuracy of 98.71%.

Note that the proposed method cannot identify JPEG images
with different softwares since they employ the same transform
and block size: this would be the subject of our further work.

B. Identifying the Transforms

In this experiment, we try to identify the type of transforms
during compression. Seven transforms have been evaluated.
The three block-based transforms, including DCT, Hadamard,
and Slant, use a block size of 8 8 and use the baseline JPEG
compression with a standard quantization table as it did in
[8]. Here, the quality factors are also randomly selected in
the range of . Other four wavelet-based trans-
forms, including bior4.4, Harr, db5, and sym7, use five-level
decomposition over the whole image. For each sub-band, we
assigned a random quantization step ranging from (note

1The smaller the quality factors we use, the larger the distances between the
uncompressed and JPEG compressed image we obtain in the feature space, and
thus it is easier to identify those JPEG images with smaller quality factors. In
the experiments, we just investigate the higher quality images after slight quan-
tization, e.g., QFs in 85–95 in this paper.

that for error-free compression, the quantization step is equal
to 1). The average PSNRs of the test images we obtained are
41.2, 39.3, 40.2, 37.3, 37.8, 37.2, and 37.1 dB, respectively.

As shown in Fig. 5, we can get a 14-D feature vector for
each test image. For the three block-based transforms, the 2-D
features are extracted from the corresponding frequency coeffi-
cients, while for the four wavelet-based transforms, the 2-D fea-
tures are extracted from the sub-band coefficients using
the corresponding wavelet basis, respectively. The feature vec-
tors of the training images are first used to train an SVM clas-
sifier, which is then applied to identify the source transforms
from a given test image. The confusion matrix evaluated on the
testing data is shown in Table I.

We can see that the proposed method can reliably differen-
tiate between the images using Slant transform and DCT, which
overcomes the limitations in the previous method [8]. What is
more, our average accuracy can achieve as high as 99.4% even
when the PSNR is larger than 37 dB.

C. Identifying the Block Sizes

In this experiment, we try to identify the block sizes during
image partition (for the first step in the transform coding system,
see Fig. 1). Similar to the existing works [7], [10], [11], for each
image in our image database, we first divide it into nonoverlap-
ping blocks with five different block sizes ranging from 4 4 to
64 64; we then simulate baseline JPEG compression on each
block with a corresponding quantization table scaled from the
8 8 standard one. Here, the quality factors of the standard ta-
bles are randomly selected in the range of , and
the average PSNRs of the test images we obtained are 41.0, 41.1,
41.0, 40.8, and 40.5 dB, respectively.

For each test image, we extract the 2-D features from the DCT
ac components with the corresponding five blocking sizes, inde-
pendently. In all, there are 10-D features for each image. Sim-
ilarly, the SVM technology is used in the training and testing
stages, and the confusion matrix for the testing data is shown in
Table II.

It is observed that the average accuracy can achieve over
99.9%, even when the PSNR of the test image is higher than
40 dB for all the block sizes, which is a significant improve-
ment on the existing works [7], [10], [11] based on the blocking
artifacts detection. For instance, the average accuracy is around
90% for our previous method [11] and around 75% for the
methods in [7] and [10] when the block size is 8 8, and the
accuracy usually drops with increasing block sizes for the
existing approaches. See [11] for more details.



814 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 5, NO. 4, DECEMBER 2010

TABLE II
CONFUSION MATRIX FOR BLOCK SIZE ESTIMATION. (AVERAGE ACCURACY: 99.9%)

TABLE III
CONFUSION MATRIX FOR DECOMPOSITION LEVELS IDENTIFICATION USING THE SCALAR QUANTIZATION.

(AVERAGE ACCURACY: 86.0%)

TABLE IV
CONFUSION MATRIX FOR DECOMPOSITION LEVELS IDENTIFICATION WITH THE SPIHT APPROACH.

(AVERAGE ACCURACY: 98.5%)

D. Identifying the Decomposition Levels

In this experiment, we try to identify the levels during the
wavelet decomposition. We first decompose original images
with wavelet bior4.4 basis, and then obtain five test images
using different levels ranging from 1-level to 5-level. Two
quantization methods have been employed. The first is the
conventional scalar quantization as used in Subsection IV-B
(the PSNRs of the resulting images are around 37 dB in such
cases). The other is the set partitioning in hierarchical trees
(SPIHT) approach with a bit rate of 1 bpp. We obtain the test
images with average PSNRs of 24.8, 35.7, 37.4, 37.7, and
37.8 dB, respectively.

In order to obtain the feature vector of the test image, we
repeat the decomposition process 5 times using the same basis,
and then extract the 2-D features as described in Section II
for each sub-bands, where . Therefore,
there are 10-D features for each image. It is expected that if
a given image has been -levels decomposed and quantized,
then the corresponding sub-bands will
present the quantization artifacts as shown in Fig. 3, while for
the sub-bands without being quantized,
those quantization artifacts will not become obvious. These
patterns can be easily reflected in the proposed 10-D features.
The confusion matrices evaluated on the testing data using the
two quantization approaches are shown in Tables III and IV,
respectively.

From Table III, it is observed that the average accuracy
usually decreases with increasing decomposition levels. For
instance, the accuracy is around 95.6% for identifying the
images with 1-level multiresolution decomposition, while it
drops to 74.5% when the level becomes 5. One of the reasons
is that the sizes of the will exponentially
decrease. Taking an image of 512 512 for example, the size
of the sub-band will reduce to 16 16 after 5-levels
decomposition. Therefore, the average accuracy will decrease
due to an insufficient number of effective data samples for
extracting the feature vector.

Unlike the scalar quantization in our simulation experiment,
which assigns the quantization steps without considering the
relationships between the sub-bands of an image, the SPIHT
approach can fully exploit the inherent similarities among the
sub-bands in a wavelet decomposition of an image (e.g., the
sub-bands of ) and assigns the quantiza-
tion steps adaptively. In such cases, more detectable artifacts
will be introduced into the resulting images. First of all, the
quantization artifacts will be presented at each separate sub-
band. Second, there must exist some inherent relationships be-
tween the sub-bands of of an image after

-level decomposition. It is expected that the proposed 10-D
feature vector contains much information that contributes to the
classification, and thus it is easier to identify the images using
the SPIHT approach than by those using the random quantiza-
tion. As shown in Table IV, we can achieve an average accuracy
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as high as 98.5%, which is much better than the performances
shown in Table III with an average accuracy of 86.0%.

V. CONCLUDING REMARKS

Quantization is one of the necessary steps in most lossy image
compression schemes, and it will introduce some inherent ar-
tifacts into the corresponding coefficients of resulting images.
Similar to other forensics algorithms, e.g., [4] and [6], an effec-
tive way for detecting or measuring the quantization artifacts is
one of the main contributions of this paper. Moreover, we con-
vert the forensic problem of source encoder identification into
quantization artifacts detection, and propose an effective feature
vector to identify the source encoder as well as some parame-
ters from a decompressed image, by detecting the quantization
artifacts on the possible transform coefficients using all candi-
date source encoders. The extensive experimental results show
the effectiveness of the proposed method.

For some source encoders, such as some prediction coding
employed in image/video compression, we cannot follow the
same compression procedure and obtain the corresponding
coefficients before the quantization operation from a decom-
pressed image due to the lack of prediction parameters. In
such cases, we need to combine with other approaches such
as [7] to first estimate the residues (i.e., the coefficients before
quantization), and then apply our method to extract the 2-D
features from the histogram of the residues.

As the first step for image source encoders identification, as in
all the existing works [7]–[11], we assume that the given bitmap
images have not been altered by any postimage processing in
this paper. How to resist the commonly used processing, such
as adding noise and recompression, will be carefully considered
in our further works.

We hope that the proposed scheme can be combined with
previous methods and/or future works to make image source
encoder identification more reliable.
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