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Supervised Graph-Based Processing for Sequential
Transient Interference Suppression
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Abstract—In this paper, we present a supervised graph-based
framework for sequential processing and employ it to the problem
of transient interference suppression. Transients typically consist
of an initial peak followed by decaying short-duration oscillations.
Such sounds, e.g., keyboard typing and door knocking, often
arise as an interference in everyday applications: hearing aids,
hands-free accessories, mobile phones, and conference-room de-
vices. We describe a graph construction using a noisy speech signal
and training recordings of typical transients. The main idea is to
capture the transient interference structure, which may emerge
from the construction of the graph. The graph parametrization is
then viewed as a data-driven model of the transients and utilized
to define a filter that extracts the transients from noisy speech
measurements. Unlike previous transient interference suppression
studies, in this work the graph is constructed in advance from
training recordings. Then, the graph is extended to newly acquired
measurements, providing a sequential filtering framework of noisy
speech.

Index Terms—Acoustic noise, graph filtering, speech enhance-
ment, speech processing, transient noise.

1. INTRODUCTION

RANSIENTS typically consist of an initial peak followed

by decaying short-duration oscillations of length ranging
from 10 ms to 50 ms. Such sounds, e.g., keyboard typing and
door knocking, often arise as an interference in everyday ap-
plications: hearing aids, hands-free accessories, mobile phones,
and conference-room devices. Unfortunately, the wide-spread
assumption of stationary noise poses a major limitation on tra-
ditional speech enhancement algorithms. In particular, it makes
them inadequate in transient interference environments, as tran-
sients are characterized by a sudden burst of sound.
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In [1] and [2] we proposed an algorithm that infers the
geometric structure of the transient interference using nonlocal
(NL) diffusion filtering [3]-[8]. The key idea was to exploit the
intrinsic transient structure, instead of relying on estimates of
noise statistics. We utilized the fact that a distinct pattern ap-
pears multiple times. Specifically, the locations of the repeating
pattern were implicitly identified, and the transient interference
was extracted by averaging over all these instances. In [9] and
[10] this work was improved and extended to support a wider
variety of transient interferences. A robust approach to distin-
guish between transients and speech was employed based on the
observation that speech components are slowly varying with re-
spect to transient interferences, just as pseudo-stationary noise
is slowly varying with respect to speech. Thus, by employing
common speech enhancement techniques, configured to track
rapid variations, the “abrupt” transients can be enhanced while
suppressing the slowly varying speech components. In addi-
tion, a manifold learning approach termed diffusion maps was
utilized to compute a robust intrinsic metric for comparison
[11]. It enabled to cluster different transient interference types,
and when incorporated into the NL filter, it provided a better
affinity metric for averaging over transient instances.

Recently, several supervised speech enhancement algorithms,
which rely on the prior knowledge of the typical interference
patterns, have been proposed [12]-[14]. In these algorithms,
nonnegative matrix factorization (NMF) is employed to com-
pute a basis for the interferences, which is then utilized to en-
hance the speech and suppress the noise. However, these al-
gorithms suffer from several limitations. They require training
recordings of both the interference and the speech, which, as
shown in [13], makes the algorithms speaker-dependent. In ad-
dition, the application of NMF is required for every new mea-
surement and its computational burden is high. Finally, when
applied to enhance speech and suppress noise, as in [14], a tem-
poral smoothing is applied which makes the algorithm inade-
quate for transient interferences.

In this paper, we present a supervised graph-based framework
for sequential processing and employ it to the problem of tran-
sient interference suppression. In [15], Haddad et al.. presented
anovel filtering framework based on a reference set. They intro-
duce a graph-based method that relies on local models and en-
ables to extract given patterns from images. Based on this work,
we describe a graph construction relative to a measured signal
and training recordings. The objective of the graph is to cap-
ture the underlying structure of the training data, which has to
represent all the variations of a certain signal of interest. The
graph parametrization is then viewed as a data-driven model
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of the signal of interest and utilized to define a filter that ex-
tracts this signal from the measurement. The construction of the
graph is based on an affinity kernel between the measurement
and the training recordings. As proposed in [15], we rely on a
specially-adapted metric based on local models of the signal of
interest obtained from the training data.

We show that the application of the proposed scheme to the
task of transient interference suppression provides accurate and
efficient speech enhancement. Common speech enhancement
algorithms fail to deal with transient interferences since their
noise estimation component is not designed to track the rapid
variations characterizing transients. Thus, similarly to [1] and
[9], the main component of the proposed algorithm is the es-
timation of the spectral variance of the transient interference.
Then, the optimally modified log-spectral amplitude (OM-LSA)
estimator [16], [17], which is a single-channel speech enhance-
ment algorithm, is employed to enhance the speech based on
the estimate of the transient signal spectral variance. In this set-
ting, the training recordings include typical transient interfer-
ences. Based on training recordings of the transient signal, the
graph enables to accurately capture the structure of the tran-
sients. Then, the graph-based filter extracts it from the noisy
speech and provides accurate spectral variance estimate. Pre-
vious studies, e.g., [1] and [9], infer the geometric structure
of the transients from the noisy signal and employ batch pro-
cessing. In this work, the graph is constructed in advance from
training recordings, and a special focus is given to extending
the graph to new measurements and to proposing a sequential
filtering framework of the noisy signal.

This paper is organized as follows. In Section II, we formulate
the problem. In Section III, we present the graph construction
and the corresponding processing framework. In this section,
we describe a batch processing of a finite observation interval.
In Section IV, we compute local models of the transients from
the training data and incorporate them into the construction of
the graph. In Section V, we present an efficient sequential im-
plementation which may be adapted to realtime speech commu-
nication systems. Finally, in Section VI, experimental results are
presented, demonstrating the improved performance of the pro-
posed algorithm.

II. PROBLEM FORMULATION

Let z(n) denote a clean speech signal picked up with a single
microphone. The observed signal y(n) is given by

y(n) = x(n) +t(n) + u(n) ey

where t(n) and u(n) are additive transient interference and sta-
tionary background noise, respectively, and 7 is the time index.
The transient component ¢(n) may consist of multiple types of
interferences.

Let Y(I, k) denote the short-time Fourier transform (STFT)
of the microphone signal y(n) in time-frame [ and fre-
quency-bin k. Let N denote the number of nonnegative
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frequency bins corresponding to analysis and synthesis win-
dows of length 2(N — 1), and let R denote the time frame shift.
Accordingly, (1) is represented in the STFT domain as

Y, k) = X(Lk)+ T, k) + U(l, k)

where X (I, k), T(l, k) and U(l, k) are the STFTs of z(n), t(n)
and u(n), respectively.

Define A\, (I, k) = E[|Y (I, k)|?] to be the short-time spectral
variance of the measured signal. Assuming the speech, the tran-
sient interference, and the stationary noise are mutually uncor-
related, the spectral variance of the measurement is given by

where A\, (I, k) = E[|X(I,k)|%], \e(I,k) = E[|T(I,k)|?], and
Au(l k) = E[[U(T E)[?).

In this work, our objective is to estimate the clean speech
signal z:(n) given the noisy measurements y(n ). The processing
of the measured signal is performed sequentially in the time-fre-
quency domain. In order to exploit the spectral structure of the
transients, we collect the spectral features from all the frequency
bins of each time frame into vectors. Let A, (1) be a vector of the
spectral variance values of the measured signal corresponding to
time frame [, defined by

A (D) =[N (0,0),..., A, (N =1)]" 3)

and let A;(!) be a vector of spectral variance values of the tran-
sient signal, defined similarly as

Ae(D) = [M(1,0), ... (LN = 1D]F . (4)

?

As described in the introduction, our focus is on estimating the
spectral variance of the transient interference. Given a new time
frame of measurements, our objective is to estimate A; () based
on A, (l). Then, the estimated spectrum is used for enhancing
the speech.

Suppose a training recording of a typical transient signal #(n)
is available in advance.! The recording comprises a collection of
transient instances representing the various possible types which
are assumed to be known a-priori. The training recording is pro-
cessed in the time-frequency domain using the STFT with the
same analysis and synthesis windows and the same time shift.
Let A(, k) be the spectral variance of the training recording,
and let M be the number of available training time frames. Sim-
ilarly to (3) and (4) we define

() = [M(,0), . (N = 1)) )

?

Each of the vectors can be viewed as an N-dimensional point.
Collecting all the vectors yields a set {A;({)}; of M training
points in an N-dimensional space.

Let N; be the number of transient types in the training
recording, and let T, be the set of training time frame in-
dices containing the sth type. We assume no more than a
single transient exists in one time frame which implies that
7N 7j = () for ¢ # 4. In addition, we assume the duration of

IFor simplicity, in the remainder of the paper we denote with a bar all the
terms associated with the training recording.
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each transient event is shorter than a single short-time frame.
Longer transient interferences are broken into separate sets and
considered as few transient types. In [9], the examination of a
wide variety of transient interferences led us to the observation
that each transient event consists of an abrupt sound followed
by decaying oscillations. Thus, in [9], a transient is modeled
as a composition of two parts—abrupt and decaying. In this
work, each part is treated independently as a different type of
transient. Let 7 = 7, U -+ U TNt denote the set of training
time frames indices containing any transient interference. The
remaining time frames of the training recording are silent.

III. GRAPH-BASED PROCESSING

A. Graph Construction

Following [18]-[20], we define a “one-sided” kernel con-
sisting of an affinity measure between the observed data points
and the training points. Let M be the number of available ob-
servation time frames. In Section V we extend the following
derivation to support sequential processing where the observa-
tions are not available in advance. Let W be an M x M kernel
matrix defined using a Gaussian as

log (As(
g ( t "7“ } 6)

log (Ay(1)) —
Wl,f = exp {_ || - 252

where o2 is the variance and 7 is a constant vector. For sim-
plicity, log(x) denotes a pointwise logarithm operation on the
coordinates of the vector x. We operate in the logarithmic do-
main because empirical experiments show better results than the
linear domain. As in many speech processing applications in the
logarithmic domain, small values are clipped. For simplicity, the
clipping is omitted from the derivation. The presence of the un-
usual constant 7 becomes apparent in Section III-B, where we
discuss its role and describe how to determine its value.

The one-sided kernel defines a bipartite graph [21], where
{A:(D)}; and {Ay(1)}, are the two disjoint sets of nodes, and
W, 7 determines the weight of the edge connecting A, (/) and
A:(1). We normalize the one-sided kernel to create a transition
matrix of a Markov process on the graph, i.e., A = D™'W
with D a diagonal matrix defined by D;; = ij\i 1 W7 Ac-
cordingly, A, ; is the transition probability in a single step from
node A, (1) to node (7).

Let K be a “two- s1ded” kernel of size M x M defined on the
training nodes by K = 2 ATA. According to the definition, each
component of the two-sided kernel is given by

Thus, Kl 7 can be interpreted as an affinity metric between a

training node () and a training node A, (I") via any observable
node A, (1).
Similarly, K is a “two sided” kernel of size M x M defined

on the observed points by K 2 AAT e,
A

K= E AjA g
=1
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Then, K; ;; can be interpreted as an affinity metric between
an observed node A, (/) and an observed node A, (I’) via any
training node A4 (7). It further implies that two observations are
similar if they “see” the training points in the same way.

B. Probabilistic Interpretation

Suppose that the transient part in the observation at time
frame [ equals to one of the training points, i.e., A¢(l) = A¢(1).
By (2) we have for every frequency bin &

log()\y(l,k))—1og()\t(l,k)):10g<1 . A”(l’k)JFA“(M)>>o

(LK)

Our experiments show that the empirical probability density
function of the right hand term has a single peak. We observe
that the peak (mean) is located remotely from zero, and the em-
pirical probability density function is almost symmetric. Thus,
we approximate the probability density function by a normal
distribution with p mean and o? variance, such that the negative
tail is negligible. The values of the mean and variance can then
be determined according to the empirical mean and variance of
the set {log(A, (1)) — log(A:(1))}. Accordingly,

Pr (log (Ay (D) (1) = Ai(D))
e

We further assume that the transient signal in the observation
and the training transient signal have similar distributions. In ad-
dition, we assume that the spectral feature vector of the transient
signal in each time frame can uniformly take one of a finite set of
spectral feature vectors of cardinality -y (as each transient type
has a distinct characteristic structure), i.e., Pr(A:(1) = A:(1)) =
1/~. By the law of total probability we obtain
/\t(l)) .

Z Pr log
(®)

We assume statistically independent frames neglecting potential
frame overlap. This assumption is not respected in practice, es-
pecially since we use 75% overlapping frames. However, it en-
ables us to provide a probabilistic interpretation of the kernel.
The conditional joint probability of frames with the same tran-
sient component can be expressed similarly

Pr (log (A (D) [Aell) =

Pr(log(Ay (1)), log(Ay (1) A (D) = A (1))

=12Pr(log(Ay<l ) Jog(Ay (1) [Ae(D) =X (1) = As(1))
=—ZPr log(Ay (1)) Ae(D) =X (D))
><Pr(10g( o) () =2e(0)) - )

A significant benefit from this particular kernel is expressed
by the following proposition.
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Proposition 1 (Probabilistic Interpretation): Under the prob-
abilistic assumptions (7), (8), and (9), the elements of the kernel
satisfy

Ko =Pr(A(l) = M(l)[Ay (1), Ay (1)

Proof: See Appendix 1. [ |
Proposition 1 implies that the affinity metric defined by the
kernel is the probability of comparing a pair of observable vec-
tors with the same transient pattern. Accordingly, this kernel en-
tails a comparison between the underlying spectral features of
the transients “neutralizing” the speech and background noise.
This way, the constructed graph may convey the desired tran-
sient interference spectral structure.

C. Graph-Based Filter
Let {p,% j}j be the eigenvalue decomposition of K, which
satisfies

K = DADT (10)

with

U= ["/’0 o '¢J\I—1]

and A is a diagonal matrix consisting of the eigenvalues in a de-
scending order pg > p1 > ... > 0. Each eigenvector 1/:j is
of length M and its Ith coordinate parameterizes the [th time
frame. By the orthogonality of the eigenvectors, the set {"/)j}j
forms a complete basis for any function f : I' — R with
I' = {Ay(1)},- In particular, let 7, : I' — R be a function that
retrieves the kth frequency bin from the spectral vector A, (1),
ie., ix(Ay (1)) = Ay(, k). It implies that each spectral compo-
nent can be expanded according to the set of eigenvectors as

M-—1

Ay(l k) = ik (Ay (1) = Z 5 i % )%5(1)

where the inner product is defined as (i, %;) 2 /\i(k)'a/)] with
(k) = (L, k), ... A (M, E)].

The constructed graph captures the structure of the transients,
characterized by a distinct spectral structure, by connecting sim-
ilar spectral observations. Specifically, as implied by Proposi-
tion 1, strong connections represent a high probability that the
same transient pattern exits in the connected time frames. Con-
sequently, there exists a subset of £ eigenvectors which repre-
sents the transient interference. For simplicity, we assume this
subset consists of the dominant eigenvectors, i.e., {1/)J}f;(1) In
practice, we may determine the appropriate eigenvectors by ob-
serving their spectral structure.

We define the following graph-based filter that approximates
the transient spectral component by projecting the spectral vari-
ance of the observation onto the eigenvectors spanning the tran-
sient interference subspace

-1
ML k) =Y pjlin, ;)95 (D). (11)
7=0
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Let A, be an M x N matrix where its ([, k)th element is defined
as A\y((, k). Then (11) can be re-written in a matrix form as

—1
(D) = A7) i (D (12)
j=0

In practice, few speech “leftovers” may appear in the esti-
mated spectral variance. Human speech consists of both har-
monic and nonharmonic sounds and it can span across a wide
range of frequencies. Thus, many speech phonemes can be rep-
resented (at least partially) by the transients “building blocks”.
Existence of such residuals in the spectral variance estimate of
the transient signal degrades the quality of the speech when in-
corporated into an enhancement algorithm. Since the leftovers
usually exist in periods where the transient signal is absent, we
are able to easily distinct them by their low magnitude compared
to the magnitude of the transients. Thus, we remove potential
leftovers by employing a hard threshold.

D. Speech Enhancement

To enhance the speech, we employ the OM-LSA with a mod-
ified noise estimate. Let G(I, k) denote the spectral gain of the
OM-LSA estimator given the noisy measurement Y (1, k). Thus,
the speech estimate is obtained by

A

X(1.k) = G E)Y (I, k).

In [16], the optimal spectral gain with respect to the minimum
log spectral amplitude (LSA) error criterion is controlled by the
speech presence probability. Since it is unknown, the speech
presence probability is estimated based on the time-frequency
distribution of the a-priori signal-to-noise ratio (SNR), where
the noise variance is estimated using the improved minima con-
trolled recursive averaging (IMCRA) [22]. Unfortunately, short
and abrupt bursts of transient interferences are falsely detected
as speech components. Hence, the transient interference is not
a part of the noise PSD estimate obtained by the IMCRA ap-
proach, and as a result, is not attenuated. In this work, we set
the optimal spectral gain to correspond to the sum of the spec-
tral variance estimate of the transient interference j\t(l ,k) and
the stationary noise 5\“(1, k). The former estimate is obtained
by the graph-based filter (11) following the hard thresholding,
and the latter estimate is obtained by the IMCRA. The IMCRA
and the OM-LSA parameters used in this stage are similar to the
set of parameters used to enhance speech and reduce stationary
background noise as described in [16].

Since the optimal spectral gain is controlled by the transient
interference spectrum, the suppression of transients is now at-
tainable. For more details regarding the optimal gain derivation
and estimation of the speech presence probability and the noise
spectrum, we refer the reader to [16] and references therein. A
Matlab code of the OM-LSA is available at [23].

IV. TRANSIENT LOCAL MODELS AND AN AFFINITY FUNCTION

The estimation of the spectral variance of the transient inter-
ference is employed by the graph-based filter defined in (11).
Thus, the estimation accuracy heavily depends on the ability of
the graph to extract the structure of the spectral variance of the
transients. As discussed in Section III and implied by Proposi-
tion 1, the graph connects nodes with the same transient type.
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In order to enhance this property, we define a local data-driven
model for each transient interference type based on the training
recording. We assume the labeling of the transient recording
{T; }f\il is available. Let {\;(7) }ie7, be the setof training spec-
tral vectors corresponding to the ¢th transient type. We assume it
consists of several transient events which define the variability
of the transient type. Let #); be the empirical mean vector of the
set, i.e.,

where |7 ;| is the cardinality of the set 7 ;. The pair (n,, C;) may
be used as the learned model of the «th transient type. This im-
plicit Gaussian representation is set for simplicity and was pre-
viously used in [13] and [24]. This assumption is supported by
the fact that the logarithm has support for both negative and posi-
tive values. By employing principal component analysis (PCA),
the large eigenvectors of C;, which correspond to the principal
“parameters”, capture most of the information disclosed in the
data. Hence, the dimensionality is significantly reduced by con-
sidering only the subspace spanned by a few principal eigenvec-
tors. Let {¥; ; }le be the set of L such principal eigenvectors. A
well-known limitation of PCA is that it is linear and able to cap-
ture only the global structure of the training data. The training
set of transient instances admits a complicated global structure
(often referred to as a non-linear manifold). Thus, a low-dimen-
sional linear subspace may not faithfully describe the data in our
setting. However, a PCA-based approach may perform rather
well when applied locally, i.e., on a data set sufficiently con-
densed in a small neighborhood. In our setting, this corresponds
to defining a model for each transient interference type. Then,
incorporating these local models in the graph provides integra-
tion of all the acquired models together.

We define P; to be a linear projection operator of each spectral
feature vector onto the local model of the +th transient type as

L
P (Ay (1)) =m; + Z (log (Ay(1)) =13, ¥i ) vi ;. (13)
=1

where the inner product is defined as (log(Ay (1)) — 0;, Vi ;) 2
(log(A, (1)) — 1;)" v, ;. The linear projection (13) can be used
as a stand-alone estimator for the spectral variance of the tran-
sients. In practice it does not yield satisfactory results. How-
ever, it provides essential information which may be incorpo-
rated into the graph construction. The graph provides integration
of all transient instances and their local models together. Cap-
italizing the connections between the entire set of data, rather
than using a single local model, attains significantly improved
results.

Based on the projection, we define a pairwise metric between
spectral feature vectors for each transient type

di Ay (D), Ay (1)) = 1P: (Ay (1)) = P (A, (D). (14)
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The definition of the local metric (14) enables to adjust the
kernel computation in (6). We now define the affinity kernel as

JJlog (A (1)) = log (Au(D) — nHz}

202

, o
X exp {——d’i ('\”QQ;'\t(”) } . (15)

Wi =exp {

for I € T; with scale 5% corresponding to the values of d;. The
first term ensures that the kernel is defined locally by comparing
the spectral features of the vectors. The second term conveys the
affinity of the observable vector to the training vector in terms
of the ith transient interference type. Consequently, two vec-
tors are similar if their underlying transient is similar and the
observable speech component does not distort the transient sig-
nificantly. The remainder of the graph construction, namely, the
computation of the transition matrix A and the kernels K and
K, remains unaltered. Compared to the kernel defined in (6),
the new kernel enhances the connection between time frames
that consist of transient events. Consequently, the spectral rep-
resentation of the constructed graph better captures the transient
structure, and the estimation of the transient spectral variance
in (11) becomes more accurate. Experimental results show im-
proved transient extraction and speech enhancement using the
adjusted local kernel (15) compared with (6).

V. IMPLEMENTATION

We start by drawing the algebraic connection between the
eigen-decomposition of the kernels K and K.

Proposition 2: The kernels K and K share the same eigen-
values p;. The eigenvector 4, of K corresponding to nonzero
eigenvalues p1; > 0 satisfies

1
= _Ap.
¥, A

where ¢; is the eigenvector of K corresponding to eigenvalue
pj. In addition, the eigenvector sets {(pj}j and {9 j}j are
orthogonal.
Proof: See Appendix II. ]

The main property emerged from Proposition 2 is the nat-
ural extension of the eigenvalue decomposition. Given a training
recording and an initial observation interval, the matrix A and
the kernel K can be constructed. Next, the singular value de-
composition (SVD) of A is computed, which allows us to de-
fine the graph-based filter (11) used to estimate the spectral vari-
ance of a transient in the initial observation interval. Proposition
2 can then be applied to extend the spectral representation of
the kernel matrix K, which defines the filter, to a new observa-
tion. The extension implied by Proposition 2 is efficiently com-
puted and can be implemented in a sequential manner based on
the spectral representation of K (which is computed in advance
using the training data).

For each spectral feature vector A, ({") corresponding to a new
time frame observation I’, we have by Proposition 2 that

1
1/)]'([,) = —_3177<Pj

16
NG (10
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where ay is a vector of length M with elements given by

L1 {__|uog<xy(r))-—log(At<n> —)? }

ay(l) = 2, P

v 20’2
2 N Y (T
mm{ngﬁm}<m
and where
M § , N T 2
dy = Z exp {— Hlog (A, (1)) _2125 ()‘t(l )) — 7’“ }
=1
2 (N (I 7t 77
Xexp{_d,L (,\y(Zl;;,\ ) }

Then, the corresponding graph-based estimator based on the ex-
tended eigenvector is given by (12), i.e.,

-1
() = Ay > it (). (18)
7=0

Algorithm 1 Graph-based Processing Algorithm

Training stage:
1) Obtain a training recording of typical transients and
- 3 M . .

compute a training set {A;({)};_; of M spectral variance
feature vectors.

2) Obtain an initial measurement and compute a set
{A (1 )}f\zl1 of M spectral variance feature vectors.

3) Compute the “one-sided” kernel matrix W of size
M x M according to (15).

4) Construct the transition matrix A of size M x M.

5) Obtain the eigenvalue decomposition {;, <pj}j and
{1, ¥ j}j of K and K, respectively, by computing the
SVD of A.

Enhancement stage:

1) Obtain a new time frame of the observable signal and
compute the corresponding new feature vector A, (I’).

2) Compute the affinity of the new observation vector to the
training vectors according to (17).

3) By Proposition 2, extend the eigenvectors to the new
frame according to (16).

4) Construct the graph-based filter corresponding to the new
frame according to (18) using the extended vector. Obtain
an estimate of the spectral variance for the transient
interference A; ().

5) Compute the optimal gain of the OM-LSA based on
A:(!") and employ it on the new time frame to enhance
the speech.

6) Return to 1 in the Enhancement stage.

The sequential estimation of the spectral variance of the tran-
sient signal via the graph-based processing framework is sum-
marized in Algorithm 1. A particular attention should be given
to the efficiency and low computational complexity of the en-
hancement stage of each time frame. Following is a descrip-
tion of the naive computational cost (number of operations) for
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each step in the enhancement stage. Step 1 involves fast Fourier
transform which yields O(N log V) operations. Computing the
affinity between the new observation and the M training vec-
tors in Step 2 yields O(NN M) operations, treating the number
of principal local-model eigenvectors ¢ as a constant. Accord-
ingly, Step 3 costs O(M) operations. Finally, employing the
graph-based filter in Step 4 requires O(M M ). By assuming that
M, M > N, we have a total computational burden of O(M M ).
We note that this cost is mainly due to a matrix multiplication
which can be implemented very efficiently.

VI. EXPERIMENTAL RESULTS

A. Experimental Setup

We evaluate the performance of the proposed algorithm
on recorded speech and transient signals sampled at 16 KHz.
Speech signals are taken from the TIMIT database [25], and
recorded transient interferences are taken from an online free
corpus [26]. The time domain measurements are constructed
according to (1). We re-scale the speech and transient interfer-
ence to have equal maximal amplitude in the measured interval.
The additive stationary noise part is a computer generated
white Gaussian noise with SNR of 20 dB. Each measurement
is 20 seconds long and consists of several speech utterances of
5 different speakers and 30 transient events. For the time-fre-
quency representation, we use time frames of 512 samples
length which correspond to N = 257 positive frequency bins.
In addition, we use 75% overlap between successive frames.

We examine the suppression of three transient interference
signals. The first transient interference is keyboard typing. We
enhance a measurement interval containing 30 key strokes with
different amplitudes. The different key strokes are organized
into three clusters of similar spectral structures. Based on a
training recording of similar keyboard strokes, we train three
transient models corresponding to the three key stroke types
as described in Section I'V. The second interference consists of
three types of household knocks. One of the knocks has a rel-
atively long duration which exceeds a single time frame. Con-
sequently, we attach two models to this interference type (one
for the first abrupt part and one for the following decaying part)
and another two models corresponding to the other two types
of knocks, which results in four different models. The measure-
ment signal consists of several different instances of each type
with varying amplitudes. Finally, the third interference consists
of three types of door knocks. Accordingly, we train three cor-
responding models based on the training recordings. Similarly
to the other transient interferences, the measurement consists
of several different instances of these door knocks with varying
amplitudes. We note that each training recording consists of 10
instances of transients from each type. In addition, in order to
represent the transients and define the graph-based filter (11)
we use the principal £ = 20 eigenvectors of the graph. For each
transient interference we empirically set the parameters (kernel
scale) which yield maximal performance.

B. Performance Evaluations

In Fig. 1 we show an example for the transient spectral vari-
ance estimation. Fig. 1(a) presents the waveform and spectro-
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Fig. 1. Transient waveforms and spectrograms. (a) A clean transient (door knock) event. (b) The estimated transient.

gram of an instance of a door knock, and Fig. 1(b) presents the
waveform and spectrogram of the transient instance estimate by
the graph-based filter (11). We observe similar waveform and
spectral features. A particular attention should be given to the
accurate estimate of the spectral “pattern” of the abrupt first part
of the transient. Unfortunately, we also detect inaccurate esti-
mation of the high frequencies in the decaying second part of
the transient. The decaying part is noise-like and less structured
compared to the abrupt part. Thus, it is more difficult to capture
its characteristic geometry. On the other hand, it is usually of
low energy and thus in practice inaccurate estimation may not
have significant influence.

Fig. 2 depicts the waveforms and spectrograms of the mea-
surements and enhanced signals. Fig. 2(a), (c), and (e) show the
noisy signals with keyboard typing, household interferences,
and door knocks, respectively. Fig. 2(b), (d), and (f) show the
corresponding enhanced signals. We observe that the proposed
method attains significant transient interference reduction,
while imposing very low distortion. Merely few transient
residuals (e.g., near 1.3 s in Fig. 2(b)) appear in the enhanced
signal. Furthermore, the waveforms of the enhanced signals
suggest that the transient suppression does not leave “holes”
in the signal, but rather maintains the speech component.

We compare the performance of the proposed algorithm
to the algorithm proposed in [9]. The proposed algorithm
introduces two new aspects with respect to the previous work:
learning transient models from training recordings and online
processing, which are both incorporated into an integrated
processing framework. We note that the online processing is
obtained naturally given the trained models, since the em-
ployment of the models on the entire observation interval is
equivalent to the employment of the models frame-by-frame.
Thus, the comparison between the algorithms does not reflect
the additional training stage of the proposed algorithm nor the
advantage that the measurement is processed frame-by-frame.
The online processing makes the proposed algorithm more
adequate to communication applications. In addition, learning
transient models in advance circumvents the requirement of
the algorithm proposed in [9] to have several instances of
transients in order to properly capture the model from the
measurements. In the following experiment we expect better
results using the batch algorithm in case the observation
interval contains several instances of transients with similar

structure and amplitude. On the other hand, the graph-based
algorithm is advantageous in case of multiple transient types
and in case of high variability in the amplitudes of the tran-
sients.

We evaluate the output of the algorithms using two objective
measures [27]. The first is the common SNR, defined as

E {z*(n)}
E{(w(n) - 2(n))’}
E {.’172(7’1,)}
E{(a(n) - 2(n))*}

The second is the mean log spectral distance (LSD) between the
measured signal and the desired source, which is specifically
adapted to speech signals and defined as

SNRou+ =101log; (19)

W=

LSD;, 2E, H ]:z::: 1 (Aa(l, k) — £ (Ay (1L, k))|2] (20)
LSDyw 2E, [i S et k) £ (At ) ﬂ "o
N k=0
where
(N) = max{10log,, \, 8} (22)

and ¢ is a small value defined by 6=10 max(log;, Az ({, k)) — 50,
used to confine the dynamic range of the log-spectrum to 50 dB.
These measures are computed only in time periods where the es-
timate of the PSD of transients exists. This way we are able to
focus on the performance of the proposed algorithm and eval-
uate the speech enhancement and the artifacts introduced by the
algorithm simultaneously. In periods where the transient esti-
mate does not exit, only stationary noise suppression is attained,
and the performance of the algorithm equals to the performance
of the OM-LSA.

Table I summarizes the objective evaluation of the speech
enhancement algorithms. We observe improvement in all
tested cases. For keyboard typing the batch algorithm in-
deed demonstrates better SNR and LSD improvements since
it exploits the presence of similar key strokes with similar
amplitudes. For door knocks the proposed algorithm yields
better SNR improvement whereas the batch algorithm yields
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Fig. 2. A segment of the measurements and enhanced signals waveforms and spectrograms. (a) Noisy signal with 7 key strokes. (b) Enhanced speech with
the suppressed keyboard typing. (c) Noisy signal with 4 events of household interferences. (d) Enhanced speech with the suppressed household interferences.
(e) Noisy signal with a door knock. (f) Enhanced speech with the suppressed door knock.

TABLE 1
SPEECH ENHANCEMENT EVALUATION

Transient Type SNR Improvement [dB]

LSD Improvement [dB]?

Batch Algorithm | Online Graph-based | Batch Algorithm | Online Graph-based
Proposed in [9] Filtering Proposed in [9] Filtering
Keyboard Typing 9.47 7.78 2.71 2.12
Household Interferences 5.20 6.62 1.83 2.04
Door Knocks 8.17 9.79 2.96 2.39

2Since lower LSD is better, LSD improvement is defined as LSD;,, — LSD ;.

better LSD improvement. Thus, no obvious advantage to any
of the algorithms is reported; The repeating door knocks in
the observation interval have a similar structure which may be
better exploited by the batch algorithm, however, the knocks
have high amplitude variability which can be better handled
by the graph-based algorithm. For household interferences the
proposed online algorithm outperforms the batch algorithm.
In this case the noisy signal consists of multiple types of
interferences with various spectral structures and with both
short- and long-durations. Thus, it demonstrates the robustness
and flexibility of the proposed algorithm attained by training
several interference models.

Table II depicts the improvement of the perceptual evalua-
tion of speech quality (PESQ) scores [28] with respect to the
noisy signal. This measure cover a different aspect compared
to Table I. We note that even a small increase in the PESQ
score suggests noticeable improvement, as any sudden increase
of power (e.g., attenuated transients) is audible. We observe that
the speech quality is improved in all tested cases in comparison
with the noisy signal. In addition, the PESQ score improvement
is larger when using the proposed algorithm compared to the al-
gorithm in [9] in case of keyboard typing, whereas it is smaller
in household interferences and door knocks. This trend comple-
ments the reported results in Table 1. In general, we note that
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TABLE II
PERCEPTUAL EVALUATION OF SPEECH QUALITY (PESQ) SCORES

Transient Type Noisy Batch Algorithm Proposed in [9] | Online Graph-based Filtering

PESQ Scores PESQ Scores Improvement PESQ Scores Improvement
Keyboard Typing 2.165 0.601 0.749
Household Interferences 2.028 0.663 0.644
Door Knocks 1.933 0.593 0.536

TABLE III
SPEECH ENHANCEMENT EVALUATION IN MULTI-CONDITION CASE

Transient Type SNR Improvement [dB] | LSD Improvement [dB] | PESQ Score Improvement
Keyboard Typing 7.46 2.04 0.597
Household Interferences 4.72 1.69 0.418
Door Knocks 8.75 1.81 0.528

milder transient suppression (conveyed by lower SNR and LSD
improvements) usually leads to smaller speech distortion (con-
veyed by higher PESQ values).

It is worthwhile noting that informal hearing tests confirm
the objective measures and demonstrate significant reduction
of the transient interference. In addition, we employed the pro-
posed algorithm on noisy speech corrupted by keyboard typing
recorded in a laptop. The obtained results are comparable to the
reported results on the simulated data. Audio samples of the pre-
sented results are available online in [29].

The comparison between the algorithms shows similar results
where neither of the algorithms demonstrates clear advantage
based on the objective measures. Thus, the preferred algorithm
mainly depends on the listener preferences. However, the pro-
posed algorithm results are achieved by online processing and
demanding lower computational burden. In addition, the pro-
posed algorithm does not introduce lag into the system. In prac-
tice, these properties make the proposed algorithm more suitable
for real-time communication systems.

In Tables I and II, the reported results correspond to a
matched-condition setup, where each testing sample contains a
certain type of transient, and the training data that is used for
applying the algorithm to the testing sample contains exactly
this type of transient. This scenario is suitable for applications
in which the typical transients are known in advance, e.g., key-
board typing in phone- and conference-call software. To further
illustrate the applicability of the proposed algorithm under
real-world conditions, we evaluate the proposed algorithm in a
multi-condition training scenario. In this experiment, transients
from all types are used for training a single model, which is then
used to suppress all the testing samples. For a fair comparison
we employed the testing stage on the same noisy recordings
as in the matched-condition experiment. Table III presents the
SNR and LSD improvements and the PESQ score obtained
under the multi-condition case. As expected in this challenging
scenario, we observe degradation in the transient suppression
and speech quality compared to the matched-condition case
in Tables I and II. However, the suppression of the transients
and the enhancement of the speech are significant and audible.
This illustrates the ability of the proposed algorithm to train a
generic single model consisting of a dictionary of a wide variety
of transients, which can then be suppressed from real-world
recording in various scenarios.

VII. CONCLUSIONS

We have presented a supervised graph-based processing
framework for sequential transient interference suppression.
Based on training recordings, we propose to construct a graph
that captures the intrinsic structure of the transients. Then, by
relying on the graph parametrization we define a filter that
extracts the transients from noisy speech measurements. The
application of the filter is shown to be efficient and adapted
to online processing, by sequentially extending the graph
parametrization to newly acquired observations. To capture
the underlying structure of the transients, a suitable metric
is defined based on local models computed from the training
recordings. Experimental results show significant transient
interference suppression and low speech distortion for various
transient interference types.

The ability to capture the underlying structure of training
recordings and then sequentially extracting it from noisy mea-
surements provides efficient, generic, and robust processing
framework. Given sufficient training recordings, this frame-
work may handle a wider variety of interferences, and might be
naturally extended to other problems and applications.

APPENDIX I
PROBABILISTIC INTERPRETATION
Proof: By definition we have

Wi Wi

KHI—AA L= A A/*_ ’ -
Z LEEH Z Zl’ lel ZI/ Wl’j'

_ E:zVijVij
Y Wi 2 Wep
Substituting the “one-sided” affinity function (6) into (23) yields
(24). Then, by the probability assumption (7) we have (25). (See

equation at the top of the next page.)
Substituting (8) and (9) into (25) yields

(23)

K, , — L Prlog (A, (1) log (A, (1)) (1) = A(1"))
U T Pr(log (8, (1)) Pr(log (A, (7)
_ Pr(log (Ay(1)),log (A, \

(1) A1) = Ae(1))
Pr(log (Ay(1)) ,log (Ay (1))
% Pr(A(l) = (1))
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Finally, by Bayes’ theorem we obtain

K =Pr(Ae(l) = Ae(l)IAy (1), Ay (1)) (26)

APPENDIX II
EIGEN-DECOMPOSITION CONNECTION

Proof: By the definition of the kernels, namely K = AAT
and K = AT A, we obtain (1) the left singular vectors of A are
the eigenvector 4; of K; (2) the right singular vectors of A are
the eigenvectors ¢, of K; (3) the nonzero singular values of A
are the square roots of the eigenvalues p; of either K or K.
According to the singular value decomposition, it implies that
K and K share the same eigenvalues and the sets { <pj}j and
{'wj}j are orthogonal. Moreover, we obtain

i = VI,
which yields
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