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Abstract—Implementation attacks, including side-channel,
fault, and probing attacks, have received significant attention in
both research and commercial communities. Successful attacks
have been demonstrated against standard cryptographic algo-
rithms implemented on a wide variety of common platforms. In
order to protect against these attacks, designers must incorporate
complex countermeasures into the implementation of sensitive
operations. Validating the effectiveness of implementation attack
countermeasures requires specialized expertise and techniques
not commonly used in other types of security and functional
testing. We propose a modular testing environment for use in
verifying the implementation attack resistance of secure systems.
The proposed environment is an open-source solution that allows
implementation attack testing to be independent of the system
platform, implementation details, and type of attack under
evaluation. These key features make the environment suitable
for use with an implementation attack security standard in
which standard test procedures are published openly and used
to evaluate cryptographic systems. We use the proposed test
environment to demonstrate a successful side-channel attack on
AES, which illustrates the practical usefulness of our design
for analyzing implementation attack security. Our open-source
design is available at http://rijndael.ece.vt.edu/iameter,

Index Terms—Side-channel Analysis, Differential Power Anal-
ysis (DPA), Timing Analysis, Differential Fault Analysis (DFA),
Security Testing

I. INTRODUCTION

Implementation attacks are one of the most serious security
threats facing cryptographic systems. Unlike classical crypt-
analytic attacks, which target the underlying algorithm or pro-
tocol, these attacks exploit weaknesses in the implementation
of a cryptographic module that reveal information about the
internal state of the module. Invasiveness of implementation
attacks vary from noninvasive, which requires no physical
manipulation of the target device, to invasive, which requires
permanent modification of electronic circuits within the de-
vice. Attack cost and complexity is heavily influenced by the
invasiveness of the attack method.

Implementation attacks are classified based on the way
information is gathered from the target device. The most
common types of attacks are side-channel, fault, and probing.
Side-channel attacks are passive attacks in which the attacker
observes the device under normal operation and analyzes
characteristics such as execution time, power consumption,
and electromagnetic radiation to determine a secret value.

Fault attacks are active attacks that manipulate the device to
cause errors in its output that can be used to derive a secret
value. Probing attacks use probes placed within a chip to spy
on its internal values and derive, or in some cases directly read,
a secret value. Due to their low cost and noninvasiveness, side-
channel attacks are the most common implementation attacks,
although noninvasive fault attacks are growing in popularity.

Mitigating the risk of implementation attacks requires use
of countermeasures to ensure that sensitive information cannot
be observed by an attacker, operational faults cannot be
induced, and tampering cannot be done without destroying
the device. The specific countermeasures required to secure a
certain device depend on a variety of factors including the
level of access available to an attacker and the properties
of the implementation platform. Implementation attack vul-
nerability results from design decisions made when mapping
a cryptographic algorithm or protocol from its specification
to the desired device platform and countermeasures typically
require significant changes to the system architecture. This
suggests that implementation attack risk mitigation requires a
secure by design approach that includes these risks in system
requirements and ensures that countermeasures are included in
the initial design phase. All countermeasures must be properly
tested to ensure mitigation of implementation attack risks
without introducing additional risks.

We propose a modular testing environment that can be used
to evaluate the vulnerability of secure devices to implemen-
tation attacks. We focus our design on providing separation
between the device being tested and the test script, portability,
and openness. This results in a test environment that can evalu-
ate resistance against implementation attacks regardless of the
device platform or the type of attack performed. The proposed
test environment is suitable for use in standardized security
analysis and allows fair comparison of the implementation
attack resistance of different designs.

The remainder of this paper is structured as follows. In
the next section, we define the security problem of validating
implementation attack resistance, review the related work, and
present our solution. In Section III, we introduce our proposed
test environment and describe key features of its design. We
demonstrate the capabilities of the proposed test environment
to perform side-channel analysis in Section IV. We discuss
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Fig. 1. Modular Test Environment for Implementation Attacks: Block Diagram

application of the proposed test environment to additional
types of implementation attacks in Section V and conclude
the paper in Section VI.

II. PROBLEM STATEMENT

Any cryptographic device that can be physically possessed
or observed by an attacker is potentially vulnerable to imple-
mentation attacks, regardless of the security of the underlying
algorithm or protocol employed by the device. Embedded
systems are particularly vulnerable to implementation attacks
because they often operate in such conditions, but servers and
desktop computers can also be at risk. Despite the use of
cryptography to protect sensitive data, devices are vulnerable
to implementation attacks and successful attacks have been
demonstrated for standard security algorithms including AES
and RSA. Furthermore, results in [5] show that an unknown
cryptographic algorithm is not a significant barrier to imple-
mentation attacks. This creates a significant security risk for
these devices. In addition, the sophistication of implementation
attack techniques continues to increase rapidly, meaning that
systems thought to be secure may soon become vulnerable.

Due to the growing threat of implementation attacks, secure
devices must implement countermeasures to protect sensitive
data. Effective countermeasures require precise modifications
to system design and can be difficult to implement properly.
In addition, there is a large knowledge gap between sys-
tem designers, who are not typically knowledgeable about
implementation attacks and countermeasures, and attackers,
who possess significant expertise. This can lead designers
to underestimate a system’s vulnerability to implementation
attacks and put sensitive data at risk.

Implementation attack vulnerability testing is fundamentally
different from other forms of security testing. A system’s vul-
nerability to implementation attacks is heavily influenced by
system design and architecture, as well as the characteristics
of the device platform. The exact impact of these factors is
difficult to predict outside of an attack scenario, which makes

it impossible to evaluate implementation attack risk using
common white-box testing techniques such as static source
code analysis and data-flow analysis. Instead, implementation
attack resistance testing requires a dynamic approach that
tests the complete system implementation together with the
platform.

At present, there is no standard technique or open source
platform for evaluation of vulnerability to implementation
attacks. This creates a significant disadvantage for both de-
signers and users in terms of validating correct application
of countermeasures and establishing a minimum acceptable
level of implementation attack resistance. In response to this
concern, the United States National Institute of Standards and
Technology (NIST) has decided to establish standards for
implementation attack resistance in its forthcoming FIPS 140-
3 computer security standard [[12]. The FIPS 140-3 standard is
currently undergoing a public comment period in which NIST
has specifically requested comments on the appropriate role
of implementation attack resistance in security level certifi-
cation [10]. NIST has also sought input on development of
standard techniques and tools for noninvasive implementation
attack resistance validation through the Non-Invasive Attack
Testing Workshop held in 2011. A standardized test environ-
ment and procedure is necessary to provide the quality and
repeatability of implementation attack resistance evaluation
required by the FIPS 140 standard.

Implementation attack techniques and countermeasures are
an active area of academic research. However, differences
between device platforms, measurement equipment, and test
setup make it difficult to compare results. Within the research
community, there is great interest in performing implemen-
tation attacks in a way that allows fair comparison against
one another. Comparison is useful for evaluating the relative
strength of different attack methods, as well as determining the
relative security level of different devices and implementation
attack countermeasures. The DPA Contest [16] provides a
framework for comparison of differential power analysis side-



channel attacks. The most popular iteration of the DPA contest
provides a fixed number of power traces collected from an
FPGA implementation of AES and requires entrants to submit
attack scripts that can derive the secret key of the device.
Since all attacks target the same implementation and rely on
the same measurements, fair comparison is straightforward.
However, the applicability of the DPA contest is limited due
to its reliance on a trusted third party to provide the side-
channel measurements needed to mount an attack.

A. Related Work

There are commercial systems available that can be used
to assess vulnerability to implementation attacks. The DPA
Workstation [6] developed by Cryptography Research Inc is
a specialty tool that allows to perform side-channel analysis,
specifically differential power or electromagnetic analysis,
on embedded systems. The DPA Workstation includes an
environment for collection of data from the device under
attack and proprietary software that can perform side-channel
analysis on all major standard ciphers. A similar system is
Inspector [14] from Riscure, which supports both side-channel
analysis and fault analysis. The Inspector platform includes
custom measurement and fault injection hardware along with
proprietary software to perform complete side-channel and
fault attacks on standard ciphers. Brightsight also offers an
implementation attack toolset that includes platforms for side-
channel and fault analysis [4].

Side Channel Analysis Resistant Framework (SCARF) [9]]
is an academic tool developed by the Electronics and Telecom-
munications Research Institute and intended for use in research
on countermeasures for side-channel and fault attacks. SCARF
includes a number of custom evaluation boards that can be
used to test attack resistance in devices such as smartcards,
microprocessors, and FPGAs. However, SCARF only supports
testing of the specific device models included in its custom
evaluation boards. The Flexible Open-source Board for Side-
channel analysis (FOBOS) [17] developed at George Mason
University is an academic platform under development for
implementation attack resistance testing. FOBOS aims to
provide an open-source platform that can be used to evaluate
effectiveness of side-channel analysis countermeasures on a
variety of different FPGA platforms.

B. Proposed Solution

We propose a modular testing environment to relieve the
current problems in implementation attack vulnerability anal-
ysis and standardization. A key feature of our design is the
separation between the design under test (DUT) and the test
script used to perform vulnerability analysis. This approach
allows a clear separation between the tasks of system design
and security testing, each of which requires separate expertise.
We have designed the test environment to ensure that test
scripts can be written without specific knowledge of the im-
plementation details of the DUT or the platform on which the
DUT is implemented. Due to the lack of dependency between
the DUT and the test script, the proposed test environment

allows a single test script to be used to evaluate multiple DUTs
and provides a fair security comparison of each DUT.

A block diagram of the proposed test environment is shown
in Figure [Tl The unshaded blocks are implemented as part
of the test environment itself, while the shaded blocks are
user-designed modules. As shown, the user designs the test
script and design under test. The attack equipment is also
provided by the user and is used to observe or manipulate
device behavior as required to perform the desired implemen-
tation attack. The test environment defines an interface for
each user-designed module, which permits interaction within
the test environment, while allowing each module to remain
independent. The interface modules are designed to maximize
portability and can be used to support virtually any DUT
platform or attack equipment.

Advantages of the proposed test environment include porta-
bility and openness. Implementation attacks are complex and
require specialized knowledge. Our test environment allows
test scripts to be designed independently of the DUT, which
accommodates integration of implementation attack expertise
into test scripts. This approach makes it possible for imple-
mentation attack experts with no knowledge of the DUT to
create highly effective test scripts. The portability inherent in
our design enhances this feature by ensuring that test scripts, as
well as the test environment itself, are independent of the plat-
form on which the DUT is implemented. While hardware and
software DUTs may have completely different implementation
characteristics, both can be tested in the proposed environment
using the same test script. In addition, the test environment is
independent of the attack equipment used, as well as the type
of implementation attack tested.

An additional feature of the proposed test environment is
its openness; our design is fully open-source. The open source
design has a number of practical advantages including extensi-
bility and low-cost, however, the primary benefits are more far-
reaching. The proposed test environment provides a uniform
open platform that can be used in both industry and academic
research and can facilitate cooperation and collaboration. For
the past decade, the trend in security and cryptography has
been to embrace openness, rather than obscurity, in the design
and analysis of algorithms and protocols. The open selection
process used by NIST to decide the AES [13]] and SHA-3 [11]
standard algorithms exemplifies this trend. The proposed test
environment can be used to increase openness by allowing
establishment of open standards for implementation attack
resistance and security validation. For example, a standard
test script to determine the implementation attack security
of an algorithm or protocol could be established and openly
distributed.

III. MODULAR TESTING ENVIRONMENT

Our test environment is implemented using a modular
approach. Each module of the proposed test environment
has been carefully designed to achieve the overall goals
of separation between DUT and test script, portability, and
openness. In addition to these modules, the test environment



includes a user-defined DUT and test script. The user-defined
components are differentiated from test environment modules
in Figure [T using gray shading. In this section, we explain the
design of the test environment modules and their interaction
with user-defined components. Additional details on the design
and functionality of the proposed test environment can be
found at http://rijndael.ece.vt.edu/iameter.

A. Usage Model

The proposed modular test environment is intended to be
used for evaluation of the implementation attack resistance
of a design. Due to the broad scope of implementation
attacks, we propose that implementation attack resistance be
integrated into the system design process as follows. The initial
system requirements document should define both functional
and security requirements for the design. Implementation
attack security goals should be included through specification
of relevant types of attacks and required resistance levels.
The system designer then constructs the DUT to incorporate
countermeasures intended to reduce the risk of the specified
implementation attacks to acceptable levels. Meanwhile, the
test script designer, ideally an implementation attack expert
or security standards body, independently creates a test script
based on the requirements document to determine whether
the DUT satisfies the defined implementation attack security
requirements.

The test procedure used in the test script varies depending
on the cryptographic algorithm or protocol implemented by the
DUT, as well as the type of implementation attack performed.
However, we present a general test sequence as a guideline
of a test procedure that is appropriate in most cases. The
test script initialization routine should establish a connection
with the DUT and attack equipment using their respective
interfaces. If necessary, the initialization routine should also
configure the attack equipment with the desired settings. The
test script then enters a data collection loop where it sends a
message to the DUT to start operation, observes or manipulates
DUT operation using the attack equipment, and creates a
trace based on the DUT input, output, and the observations
or manipulations performed by attack equipment. The number
of loop iterations depends on the required security level of
the DUT, where a large number of iterations can be used to
verify a high security level. Analysis of the traces to determine
implementation attack vulnerability can either be performed in
real-time during data collection or in post-processing after all
traces have been collected. The primary advantage of real-time
analysis is that a test script can terminate early when the DUT
reaches a failure condition before trace collection is complete.

B. DUT Interface

We define the DUT interface as a module that interacts
directly with the DUT and manages data transfer between
the test script and the DUT. The primary goal of the DUT
interface is to create an abstraction layer over the DUT itself
that allows communication with the test script, regardless of
the data transfer protocol used by the DUT. To achieve this,

TABLE I
DUT INTERFACE API

Function Description

Establish a connection between the DUT
and the test script. Transfers size of each
message field, as defined in the DUT, to the
test script to ensure synchronization

init(addr_len, data_len)

Close the connection between DUT and test
script.

close()

read(addr, data) Reads a message from the DUT and returns
it to the test script. The address returned is
the address of the DUT port from which
the data was received. Returns immediately
with value of 0 if a complete message is not

available from DUT.

write(addr, data) Writes a message to the DUT. The parame-
ters addr and data correspond to the address

and data message fields respectively.

the DUT interface defines a message passing protocol that
must be supported by both the DUT and the test script. To
support the message passing protocol, the DUT must specify
its number of input/output ports as well as the size of each port.
The message passing protocol defines a message as containing
two fields: address and data. The size of the data field is
equal to the size of each DUT port and the address field
gives the specific port associated with the message data. The
DUT interface API is shown in Table [l The API allows the
DUT interface to be platform-independent by ensuring that
all aspects of data transfer between the DUT and test script
below the abstraction level of the message passing protocol are
confined to the implementation of the DUT interface itself. In
addition, the functions defined in the API are general enough
that they can apply to to any DUT and implementation attack
scenario.

The DUT interface can also be used to implement syn-
chronization between the DUT and attack equipment. This
is supported by an additional triggering output port in the
DUT interface that connects directly to the attack equipment.
Assertion of the triggering output can be used to notify the
attack equipment of the status of sensitive operations being
performed by the DUT. In many cases, the trigger from the
DUT asserts a start signal in the attack equipment to begin
data collection or manipulation.

C. Attack Equipment

Implementation attacks require specialized devices to ob-
serve or manipulate behavior of the DUT. We refer to these
devices as the attack equipment and require that the test envi-
ronment include at least one such device. The specific attack
equipment required varies based on the type of implementation
attack under evaluation. The test environment defines an attack
equipment interface in order to allow the test script to interact
with the attack equipment. The API of the attack equipment
interface is shown in Table [II} As shown, the attack equipment
interface allows the test script to access data measured from
the DUT, send a configuration string to fix the equipment
settings, and send or receive equipment-specific commands.
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TABLE II
ATTACK EQUIPMENT INTERFACE API

Function Description

Establish a connection between the test
script and the attack equipment over the
given IP address. Returns the name of
the attack equipment as dev_id and a
unique number specifying the link as
dev_link.

init(ip_addr, dev_id, dev_link)

Closes communication with the attack
equipment by terminating the connec-
tion over the specified IP address.

close(ip_address, dev_link)

set_parameters(dev_link,
device_id, config_str)

Configure the attack equipment with the
parameters given in config_str.

send_receive (dev_link, cmd) Send or receive a single command from

the attack equipment.

capture(dev_link, dev_id, buf) Retrieve the latest data captured from

the attack equipment.

save_capture(filename, buf,

buf_size)

Store data captured by the attack equip-
ment in a file.

save_settings(dev_link,
dev_id, filename, buf)

Retrieves current settings from attack
equipment and saves in a file.

recall_settings(dev_link,
dev_id, filename, buf)

Configure the attack equipment with the
parameters stored in a file.

Connection between the test script and the attack equipment
is established over IP, which has the benefit of compatibility
with a wide variety of instrumentation and support for remote
interaction.

D. Database

A unique feature of our proposed test environment is the
inclusion of a database to store data collected from the attack
equipment. We define a trace as a set of data collected by the
attack equipment during a single operation performed by the
DUT. Storage of traces in the database allows easy manage-
ment and retrieval of data collected over multiple iterations
of testing. In addition, use of the database allows physical
separation between trace collection and analysis. Once a set
of traces has been collected and stored in the database, test
scripts can access them via the database API and perform
attacks or analysis remotely.

Each time an implementation attack is performed, hundreds
or thousands of measurement traces of DUT behavior must be
collected using the attack equipment. Implementation attacks
are defined not only by the traces collected from the DUT,
but also by the configuration settings of the test environment.
Each trace represents an execution of some operation by the
DUT and is characterized by the input and output data of the
DUT during collection by the trace. The database is organized
into two tables: the traces table, which stores measurement
traces collected by attack equipment, and the experiments
table, which stores data regarding test environment settings
during trace collection. The columns of each database table are
shown in Table | and Table [[V] respectively. The information
contained in these tables can be used to analyze a set of attack
traces or reproduce a set of traces by using an identical DUT,
platform, and test environment configuration. All columns

TABLE III
DATABASE TRACES TABLE

Column Description

TRACEID 32-bit number uniquely identifying the

trace.

ASSOCIATED 1024 character STRING. The string repre-
sents associated data for the trace, such as
the input/ output values of the cipher DUT

(plaintext, ciphertext, key).

CAMPAIGNID Reference (32-bit) number to the CAM-
PAIGN record that describes the overall

setup used to collect the trace.

DATA 20kb raw binary array. This represents the

trace data, in binary format.

TABLE IV
DATABASE EXPERIMENT TABLE

Column
CAMPAIGNID

Description

32-bit number uniquely identifying the ex-
periment.

64 kb STRING. This field contains the com-
plete attack equipment settings associated
with the setup in this experiment.

1024 character STRING. This represents a
URL to a repository that contains the full
DUT definition (source code, bit streams,
binaries).

EQUIPSETTINGS

DUTREPOURL

DUTREPOREV 32-bit integer. This represents the repository

version of the DUT for this campaign.

User-defined 1024 character string. This
field contains a brief description of the
experiment, the attack equipment used, the
DUT platform used, the DUT, etc. Note that
the DUT repository can provide additional
detailed documentation, if needed.

CAMPAIGNCOMMENT

SAMPLEBYTES 8-bit number that tells how many bytes per
sample the capture contains for the cam-

paign.

of each database table can be easily accessed within a test
script using the provided database API. For ease of the use,
the database API provides an additional function that allows
storage of multiple traces from one experiment with a single
function call.

E. Script Interface

Test scripts execute in a Python scripting environment
installed on a control PC and interact with the DUT, attack
equipment, and database. We define the test script interface
as the control PC software required to allow communication
from the Python scripting environment to the DUT and attack
equipment via their respective interfaces. The control PC
software is accessed directly from the scripting environment
via the test script and operates according to the specified
APIs for the DUT interface, attack equipment interface, and
database.

IV. CORRELATION POWER ANALYSIS EXAMPLE

In this section, we present an example of an application of
the proposed test environment to assess the vulnerability of an
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Fig. 2. Test Environment Setup for CPA Experiment: Block Diagram

embedded system to power analysis. In this example, we use
a software implementation of AES, without countermeasures
against implementation attacks, on a MicroBlaze soft-core
microprocessor configured on a Spartan-3 FPGA. We use
a Tektronix DPO3034 oscilloscope to collect power traces
from the device and each power trace represents the power
consumption during one AES encryption. Our analysis uses
the correlation power analysis (CPA) technique to determine
the secret key used for AES encryption.

A. Background

Correlation power analysis [3] relates variations in power
consumption measurements during a secure operation to a
leakage model defined based on the internal state of algorithm
under attack. Common leakage models include Hamming
weight of a state variable and Hamming distance between
a state variable and its prior value. CPA can attack any
operation that combines a fixed secret value with a known
variable. The output of the target operation is assumed to
be related to the power consumption of the device based on
the selected leakage model. To perform CPA, the statistical
correlation between the actual device power consumption and
estimated power consumption given by the leakage model is
compared for each possible value of the fixed secret. This
allows determination of the actual value of the fixed secret

because the correct value will show high correlation between
the actual and estimated power consumption. To reduce the
impact of noise on the results, actual power consumption
is replaced with an average of actual power consumption
over many traces before calculation of the correlation with
estimated power consumption.

We focus our CPA attack on the add round key and S-
box lookup operations in the first round of AES encryption.
During these operations, the plaintext is the known input to
the encryption and the internal state of the algorithm is given
by output of the S-box lookup for byte 7 as

state; = SBOX(key; XOR plaintext;).

Therefore, it is possible to compute the resulting internal state
byte for each possible value of key byte ¢ and estimate the
power consumption of the operation as HW(state;) using the
Hamming weight model. The correct value of the key byte is
the one that shows highest correlation with the actual power
consumption.

B. DUT

The DUT in this experiment is a standard software im-
plementation of AES encryption. The DUT receives a key
and plaintext from the test environment and responds with
the encrypted ciphertext. We define the DUT with a total



of three input/output ports, one each for the key, plaintext,
and ciphertext, and set the size of each port as sixteen bytes.
This allows the complete key, plaintext, or ciphertext to be
transferred using a single message.

The DUT is implemented on a Xilinx Spartan 3 XC3S500E
FPGA platform configured with a MicroBlaze microproces-
sor [18]]. The MicroBlaze is programmed with a software
application that runs the AES encryption in an infinite loop.
The DUT is connected to the test script interface using RS-232
serial connection.

The DUT interface handles all RS-232 data transfer oper-
ations using a send/receive buffer to implement the message
passing protocol for the DUT and test script and ensure that all
communications are seen as complete messages by the DUT
and test script. The DUT interface also implements assertion
of the trigger signal to the attack equipment at the start of
each AES encryption. The trigger signal is used directly by
the oscilloscope to begin collecting a power trace from the
DUT. To reduce the impact of noise on power consumption
measurements, each encryption with a single key and plaintext
is repeated 32 times and DUT power consumption is averaged
over the 32 traces.

C. Test Script

Our complete test environment for this demonstration in-
cludes a control PC, DUT board, and oscilloscope. The control
PC executes the test script and includes the test script interface
for interaction with the other components. The DUT board is
a Xilinx Spartan 3 starter kit FPGA board configured with
the DUT, as well as the DUT interface. The oscilloscope is
used as the attack equipment and measures power consumption
of the DUT during AES encryption. A block diagram of the
complete test setup is shown in Figure [2] and a photo of the
physical setup is shown in Figure 3]

Captured Traces

|/
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Fig. 3. Test Environment Setup for CPA Experiment: Photograph

In this demonstration, we use the test environment to collect
traces from the DUT and store them in the database. After
completing trace collection, we read traces from the database

and attempt to extract the encryption key using CPA. This
requires two separate test scripts; one for data collection
and one for data analysis. The data collection test script
provides a straightforward example of the interaction between
all components of the test environment.

The data collection test script follows the general basic
test procedure described in Section III A. The test script
first initiates a connection with the DUT over USB and the
oscilloscope over IP. Then, the script sets the parameters of
the oscilloscope to capture traces in binary format averaging
over 32 points and using one byte per sample and one thousand
samples per trace. After this initialization process is complete,
the test script sends a random encryption key to the DUT.
This key remains constant for all encryptions used in this
experiment. The test script then enters the data collection loop,
where it performs a large number of iterations of the following
operations:

¢ Send random plaintext message to the DUT

« Read captured power trace from the oscilloscope

o Append captured trace data to a file containing all previ-
ously collected traces

o Read ciphertext from the DUT

o Append plaintext and ciphertext to a file containing all
previous messages

After completion of the data collection loop, the test script
stores the collected trace data, along with general information
about the experiment, in the SQL database. The traces are
stored using the database API function that accepts multiple
traces in a single buffer and separates them into a trace table
entry corresponding to each measurement. This allows the test
script to store all collected traces with a single call to the
API by providing the file containing all collected traces and
the file containing all plaintext and ciphertext pairs used. The
test script stores general data about the experiement and test
environment setup, such as oscilloscope setting read directly
from the scope and a link to the DUT source code, in the
database experiment table.

Python source code of the test script is shown in Listing [I]
As shown, the test script uses high-level functions to perform
the required operations and relies on the test script interface to
implement low-level communication with the DUT and attack
equipment interfaces.

#SCRIPT PARAMETERS
TOTAL_TRACES = 2000

SAMPLES_PER_TRACE =
BYTES_PER_SAMPLE= 1

1000

#INIT

#Initialize connection to oscilloscope

IP = "192.168.0.98"

scope_id = " " x 45

scope_link = scope.init (IP, scope_id)

#Set scope parameters

scope.set_parameters (scope_link, scope_id,
num_avg=32, encdg=RPBINARY, recordlength=1000,
byt_nr=1, hor_scale=400.0000E-6, vert_scale=
.001)

#Initialize connection to DUT

DUT_name = "Digilent Spartan 3E"



DUT.init (DUT_name,
#Send key to DUT
key = gen_rand_bytes (16)
DUT.write (DUT_name, key_addr ,

addr_length, data_length)

key)

#DATA COLLECTION LOOP
for i in (TOTAL_TRACES) :
#Send plaintext to DUT
plaintext = gen_rand_bytes (16)
DUT.write (DUT_name, plain_addr , plaintext)
#Read captured trace from oscilloscope
bytes_returned = scope.capture (scope_link,
scope_id, capture_buf)
#Add trace to aggregated trace file
append_to_file("Trace.txt", bytes_returned,
capture_buf)
#Read ciphertext from DUT
DUT.read (DUT_name, cipher_addr, cipher_rx)
#Add plaintext and ciphertext to aggregated
message file
append_to_file("Campaign.txt",
plaintext, cipher_rx)

(1), key,

#DATA STORAGE

#Create experiment table entry in database

scope.save_settings (scope_link, scope_id,
"scopesettings.txt", scopeSettings)

expComment = open ('’ expcomment.txt’) .read/()

db.setCampaign (scopeSettings, DUT_URL, DUT_REV,
expComment, SAMPLES_PER_PT)

#Create traces table entries in database

db.storeTraces (traceFile, messageFile,
SAMPLES_PER_TRACE, TOTAL_TRACES)

#Close connection to DUT and oscilloscope
scope.close (IP, scope_link);
DUT.close (DUT_name) ;

Listing 1. Data Collection Test Script for CPA on AES

D. Results

We use a simple analysis script to retrieve the power traces
collected from the database and perform the CPA attack. The
attack targets each key byte separately and uses a Hamming
weight power model to compute the correlation between the
measured power traces and the Hamming weight of the first
round S-box output for each possible value of the key byte.
For each key byte, we choose the key value guess as the value
showing the highest correlation with the power traces. The
success of the attack is measured by the number of bytes for
which the key value guess matches the actual encryption key
used during data collection.

In this experiement, we were able to correctly guess all
key bytes after analyzing 2000 power traces from the DUT,
which indicates that the DUT is not secure against CPA side-
channel attacks. This result demonstrates that the proposed
test environment is well-suited for practical use in imple-
mentation attack resistance testing. An important feature of
this demonstration is that the analysis script is completely
independent of the data collection script and neither depends
on the implementation details of the DUT or its platform.

V. DISCUSSION

Implementation attack strategies vary widely and new at-
tacks are constantly being proposed. An important feature of

our proposed test environment is its flexibility to allow use
with any kind of implementation attack, secure device, and
cryptographic algorithm. In this section, we present examples
of well-known implementation attacks and describe how the
proposed test environment can be used to evaluate device
vulnerability to each attack.

A. Power and Electromagnetic Attack

Side-channel attacks using power consumption or elec-
tromagnetic radiation are the most common implementation
attacks against embedded systems. These attacks are based
on the observation that small fluctuations in device power
consumption or electromagnetic radiation during an encryption
can reveal information about the internal state of the algorithm
that can be used to derive the secret key. Vulnerability to power
and electromagnetic attacks can be evaluated in terms of the
number of measurement traces required to find the full key. In
the previous section, we demonstrated the use of the proposed
test environment to perform CPA. Test setup for other forms
of power and electromagnetic attacks is identical to the setup
used for CPA; the difference in attack strategy is manifested
in the analysis script, rather than the test setup.

B. Timing Attack

Timing attacks are a form of side-channel attacks that ex-
ploit variations in execution time of secure operations. Timing
variations occur due to data-dependent software branching, as
well as system architecture. During the AES selection process,
analysis by Daemen and Rijmen concluded that Rijndael, later
selected as AES, was not vulnerable to timing attacks [7].
However, Bernstein has since demonstrated a simple, yet
effective timing attack against a server using AES encryp-
tion [1]. Bernstein’s attack exploits the timing dependence
of table lookups, particularly the data cache used by general
purpose CPUs. Table lookups resulting in a cache miss will
take measurably longer than lookups resulting in a cache
hit. Therefore, detailed analysis of encryption timing and its
relationship with plaintext data values allows extraction of the
complete encryption key. With improvements to this attack by
Bonneau and Mironov, a server’s key can be found with 23
encryptions [2].

The AES cache timing attack requires precision timing
measurements, a general purpose CPU with cached memory,
and knowledge of plaintext and ciphertext. The proposed
test environment can evaluate vulnerability to this attack as
follows. The DUT used by both Bernstein 1] and Bonneau and
Mironov [2] is a commercial CPU performing AES encryption
using the OpenSSL library. Required attack equipment is a
high-precision clock for measuring execution time of each
encryption performed by the DUT. The test script has the
DUT perform a number of encryptions and stores the plaintext,
ciphertext, and execution time for each. This information can
be used directly to perform analysis according to specific
techniques described in the literature [1] [2].



C. Cold Boot Attack

Cold boot attacks are a form of side-channel attack against
desktop computers introduced by Halderman et al [8]]. This at-
tack allows observation of sensitive data in RAM immediately
after shut down and reboot of a system. Due to the physical
properties of RAM hardware, data remnants are preserved for
a short time after power removal, which allows an attacker
to extract sensitive data after an incomplete shutdown. The
attack is successful because encryption keys are stored in
RAM during execution of sensitive operations. Results in [§]]
demonstrate that this attack can be used to defeat widely used
full disk encryption schemes and suggest that any sensitive
data in memory is vulnerable.

Test setup to perform a cold boot attack requires physical
access to desktop computer with RAM and software to dump
RAM contents to a file for analysis. In some cases, cooling
equipment may also be necessary to prevent RAM contents
from fading before they can be recorded by the attack soft-
ware. This attack can be incorporated into the proposed test
environment by treating the RAM as the DUT with the desktop
computer as the DUT platform. This attack requires multiple
pieces of attack equipment including attack software that
records RAM contents, power supply interrupter for the DUT,
and cooling equipment. All communication with each piece
of attack equipment is incorporated into the attack equipment
interface in the test environment. In this setup, a trace is a
file dump of all RAM contents at the time of power removal.
To implement the cold boot attack, the test script would use
the attack equipment to remove and quickly restore power
supply from the DUT, then the test script would direct the
attack equipment to execute the attack software and record
the contents of the RAM.

D. Optical Fault Attack

In general, fault attacks attempt to reveal secret values by
manipulating the behavior of the target device. Techniques
used to generate faults vary greatly and are typically classified
based on invasiveness. Optical fault induction is a semi-
invasive fault attack proposed by Skorobogatov and Ander-
son [[15]. This attack allows manipulation of any individual
SRAM bit using a laser. The practical significance of the attack
is that it can allow the attacker to change the control flow
of cryptographic operations. This technique can be used to
make significant changes to computations performed during
the cryptographic operation and allow recovery of the secret
key. Although it requires depackaging the chip, the semi-
invasive optical fault induction attack, unlike invasive attacks,
which are typically very expensive to implement, does not
require mechanical manipulation of the chip silicon and can
be performed with low-cost off-the-shelf components.

Test setup for an optical fault induction attack requires
a depackaged chip, laser, and knowledge of chip input and
output. The proposed test environment can accommodate this
attack by defining the depackaged chip as the DUT and the
laser as the attack equipment. The attack equipment interface
allows control of the exact chip location exposed to the laser

and the DUT interface allows transmission of input and output
data to and from the DUT. Without direct knowledge of the
device design, optical fault induction attacks require some
exploration to determine the impact of different SRAM cells
on the cryptographic module under attack. The proposed test
environment can also be used by incorporating a test script
that induces faults in different SRAM cells and analyzes the
impact on the final output of the device. Using this method, a
complete attack can be mounted once the attacker determines
the SRAM manipulations required to produce output that
reveals the secret key.

VI. CONCLUSION

Implementation attacks are a growing threat to secure
systems that cannot be ignored. Vulnerability arises from
interaction between the system design and its implementation
platform. This makes is impossible to test implementation
attack vulnerability using traditional testing approaches, such
as unit testing and source code analysis. We have proposed
an open-source implementation attack test environment that
can be used to determine vulnerability to these attacks. The
proposed test environment separates the DUT from the im-
plementation attack procedure to allow each to be designed
independently. In addition, our design is focused on preserving
portability and openness in the test environment, so we ensure
that the environment is applicable to any type of implemen-
tation attack, regardless of the DUT platform, implementation
details, or cryptographic algorithm used. We contend that the
proposed test environment is suitable for use in conjunction
with implementation attack security standards to allow security
validation that provides uniform, repeatable, and comparable
results.
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