
Using Architecture to Reason about

Information Security

Ron van der Meyden

(University of New South Wales
Sydney, Australia)

Joint work with
Stephen Chong

(Harvard)

December 3, 2012

R. van der Meyden Using Architecture to Reason about Information Security

Overview

I Motivation: MILS Security

I Recap of Intransitive noninterference theory

I Extended theory for architectural specifications

I Using architecture to reason about information flow
properties

I Connections to Access Control

R. van der Meyden Using Architecture to Reason about Information Security

Introduction: Rushby view of MILS

A two level design process comprised of

I Policy Level: an architectural design identifying
components and their connections/permitted causal
relationships.

I Resource Sharing Level: components implemented so
as to share resources (processors, memory, network) with
enforcement of architectural causality constraints using a
variety of mechanisms (e.g., separation kernels, periods
processing, crypto)

R. van der Meyden Using Architecture to Reason about Information Security

Policy Level:

Red

Bypass

Black

Crypto

header

body

Resource Sharing Level:

Red Bypass Black

Crypto
Coprocessor

Separation Kernel

R. van der Meyden Using Architecture to Reason about Information Security

Further Objectives for MILS

I isolation of safety/security critical functionality in (small,
formally verifiable) trusted components

I (formal) compositional derivation of global properties
from architecture + local properties of the trusted
components

I These global properties preserved by the resource sharing
implementation

R. van der Meyden Using Architecture to Reason about Information Security

Overview of this talk

Questions concerning this vision:

(& our answers, in this talk)

I What is the formal syntax and semantics of architectural
designs?

I Abstract syntax based on an extension of intransitive
noninterference policies

I A new semantics based on a knowledge-based approach
to intransitive noninterference of van der Meyden
(ESORICS 2007)

I Is it really possible to prove interesting security properties
in this architecture + trusted component, local to global,
pattern?

I Examples indicating the answer is ‘Yes’.

I How does the theory ground out in concrete resource
sharing mechanisms?

I Sufficient condition for architectural compliance in
access control systems.

R. van der Meyden Using Architecture to Reason about Information Security

Overview of this talk

Questions concerning this vision: (& our answers, in this talk)
I What is the formal syntax and semantics of architectural

designs?
I Abstract syntax based on an extension of intransitive

noninterference policies
I A new semantics based on a knowledge-based approach

to intransitive noninterference of van der Meyden
(ESORICS 2007)

I Is it really possible to prove interesting security properties
in this architecture + trusted component, local to global,
pattern?

I Examples indicating the answer is ‘Yes’.

I How does the theory ground out in concrete resource
sharing mechanisms?

I Sufficient condition for architectural compliance in
access control systems.

R. van der Meyden Using Architecture to Reason about Information Security

Overview of this talk

Questions concerning this vision: (& our answers, in this talk)
I What is the formal syntax and semantics of architectural

designs?
I Abstract syntax based on an extension of intransitive

noninterference policies
I A new semantics based on a knowledge-based approach

to intransitive noninterference of van der Meyden
(ESORICS 2007)

I Is it really possible to prove interesting security properties
in this architecture + trusted component, local to global,
pattern?

I Examples indicating the answer is ‘Yes’.
I How does the theory ground out in concrete resource

sharing mechanisms?

I Sufficient condition for architectural compliance in
access control systems.

R. van der Meyden Using Architecture to Reason about Information Security

Overview of this talk

Questions concerning this vision: (& our answers, in this talk)
I What is the formal syntax and semantics of architectural

designs?
I Abstract syntax based on an extension of intransitive

noninterference policies
I A new semantics based on a knowledge-based approach

to intransitive noninterference of van der Meyden
(ESORICS 2007)

I Is it really possible to prove interesting security properties
in this architecture + trusted component, local to global,
pattern?

I Examples indicating the answer is ‘Yes’.
I How does the theory ground out in concrete resource

sharing mechanisms?
I Sufficient condition for architectural compliance in

access control systems.
R. van der Meyden Using Architecture to Reason about Information Security

Noninterference policies

(Goguen and Meseguer 1982)

Let D be a set of security domains/components/agents.

A noninterference policy is a reflexive relation �⊆ D × D

u � v means

“actions of u are permitted to interfere with v”, or

“actions of u are permitted to have effects observable to
v”, or

“information is permitted to flow from u to v”

R. van der Meyden Using Architecture to Reason about Information Security

Hinke-Schaeffer Architecture

One of the proposed architectures for multi-level secure
databases, as an intransitive noninterference policy:

Huser Luser

HDBMS LDBMS

HF LF

(Strictly speaking, Hinke-Schaeffer = this policy level
architecture, enforced at resource sharing level by the
operating system.)

R. van der Meyden Using Architecture to Reason about Information Security

Deterministic System Model

Machines have the form M = 〈S , s0,Actions,D, dom, step,O〉
where

I S is a set of states,

I s0 ∈ S is the initial state,

I Actions is a set of actions,

I D is a set of domains

I dom : Actions → D associates each action to a domain in
D,

I step : S × Actions → S is a deterministic transition
function, and

I Ou : S → Obs — the observation of/output to domain
u ∈ D at a state

R. van der Meyden Using Architecture to Reason about Information Security

Deterministic System Model

Machines have the form M = 〈S , s0,Actions,D, dom, step,O〉
where

I S is a set of states,

I s0 ∈ S is the initial state,

I Actions is a set of actions,

I D is a set of domains

I dom : Actions → D associates each action to a domain in
D,

I step : S × Actions → S is a deterministic transition
function, and

I Ou : S → Obs — the observation of/output to domain
u ∈ D at a state

R. van der Meyden Using Architecture to Reason about Information Security

Deterministic System Model

Machines have the form M = 〈S , s0,Actions,D, dom, step,O〉
where

I S is a set of states,

I s0 ∈ S is the initial state,

I Actions is a set of actions,

I D is a set of domains

I dom : Actions → D associates each action to a domain in
D,

I step : S × Actions → S is a deterministic transition
function, and

I Ou : S → Obs — the observation of/output to domain
u ∈ D at a state

R. van der Meyden Using Architecture to Reason about Information Security

Deterministic System Model

Machines have the form M = 〈S , s0,Actions,D, dom, step,O〉
where

I S is a set of states,

I s0 ∈ S is the initial state,

I Actions is a set of actions,

I D is a set of domains

I dom : Actions → D associates each action to a domain in
D,

I step : S × Actions → S is a deterministic transition
function, and

I Ou : S → Obs — the observation of/output to domain
u ∈ D at a state

R. van der Meyden Using Architecture to Reason about Information Security

Deterministic System Model

Machines have the form M = 〈S , s0,Actions,D, dom, step,O〉
where

I S is a set of states,

I s0 ∈ S is the initial state,

I Actions is a set of actions,

I D is a set of domains

I dom : Actions → D associates each action to a domain in
D,

I step : S × Actions → S is a deterministic transition
function, and

I Ou : S → Obs — the observation of/output to domain
u ∈ D at a state

R. van der Meyden Using Architecture to Reason about Information Security

Deterministic System Model

Machines have the form M = 〈S , s0,Actions,D, dom, step,O〉
where

I S is a set of states,

I s0 ∈ S is the initial state,

I Actions is a set of actions,

I D is a set of domains

I dom : Actions → D associates each action to a domain in
D,

I step : S × Actions → S is a deterministic transition
function, and

I Ou : S → Obs — the observation of/output to domain
u ∈ D at a state

R. van der Meyden Using Architecture to Reason about Information Security

Deterministic System Model

Machines have the form M = 〈S , s0,Actions,D, dom, step,O〉
where

I S is a set of states,

I s0 ∈ S is the initial state,

I Actions is a set of actions,

I D is a set of domains

I dom : Actions → D associates each action to a domain in
D,

I step : S × Actions → S is a deterministic transition
function, and

I Ou : S → Obs — the observation of/output to domain
u ∈ D at a state

R. van der Meyden Using Architecture to Reason about Information Security

Haigh and Young’s Intransitive Purge Function

A B D E

C

a b a c a d a c b

E

ipurge E

a b c d

R. van der Meyden Using Architecture to Reason about Information Security

Haigh and Young’s definition: IP-security

A system M is IP-secure with respect to a (possibly
intransitive) policy � if for all u ∈ D and all sequences
α, α′ ∈ A∗ with ipurgeu(α) = ipurgeu(α′), we have
Ou(s0 · α) = Ou(s0 · α′).

R. van der Meyden Using Architecture to Reason about Information Security

Alternate definition: van der Meyden -

ESORICS’07

Given a policy �, define, for each domain u ∈ D, the function
tau, with domain Actions∗, inductively by tau(ε) = ε, and, for
α ∈ Actions∗ and a ∈ Actions,

tau(αa) =

{
tau(α) if dom(a) 6� u
(tau(α), tadom(a)(α), a) if dom(a) � u

Define a system M to be TA-secure with respect to a policy
� if for all domains u ∈ D, and all α, α′ ∈ Actions∗ such that
tau(α) = tau(α′), we have Ou(s0 · α) = Ou(s0 · α′).

R. van der Meyden Using Architecture to Reason about Information Security

Alternate definition: van der Meyden -

ESORICS’07

Given a policy �, define, for each domain u ∈ D, the function
tau, with domain Actions∗, inductively by tau(ε) = ε, and, for
α ∈ Actions∗ and a ∈ Actions,

tau(αa) =

{
tau(α) if dom(a) 6� u
(tau(α), tadom(a)(α), a) if dom(a) � u

Define a system M to be TA-secure with respect to a policy
� if for all domains u ∈ D, and all α, α′ ∈ Actions∗ such that
tau(α) = tau(α′), we have Ou(s0 · α) = Ou(s0 · α′).

R. van der Meyden Using Architecture to Reason about Information Security

Reasons to believe this definition is better

Results from ESORICS-07:

I It does not admit a disturbing example from ESORICS-07

I TA-security ⇒ IP-security

I TA-security ≡ IP-security for transitive policies

I Rushby unwinding conditions for IP-security ⇒
TA-security

I A system bisimilar to M satisfies Rushby unwinding
conditions ⇒ M is TA-secure

I (A similar equivalence for a variant of Rushby’s access
control results.)

AND: It leads to the generalization of the present paper ...

R. van der Meyden Using Architecture to Reason about Information Security

Reasoning about Knowledge

Given a system M , define the view of domain u of a sequence
α ∈ Actions∗ to be the sequence viewu(α) of all actions and
observations of that domain, with stuttering of observations
eliminated (to model asynchrony).

E.g. if α = hhlh generates (Low observations only):

O1hO1hO1lO2hO2

then viewLow(α) = O1lO2

R. van der Meyden Using Architecture to Reason about Information Security

Propositions

A proposition φ is a fact about sequences of actions.

Formally φ ⊆ Actions∗, and we say φ holds at α ∈ Actions∗ if
α ∈ φ.

φ is non-trivial if it is not ∅ or Actions∗.

φ is G -local, for G ⊆ D, if it depends only on actions of the
domains G

Formally, α|G = β|G implies α ∈ φ iff β ∈ φ.

R. van der Meyden Using Architecture to Reason about Information Security

Reasoning about Knowledge

Say domain u knows a proposition φ after a sequence
α ∈ Actions∗ in a system M if φ holds at β for all sequences
β ∈ Actions∗ such that viewu(α) = viewu(β).

Notation: M , α |= Knowsu(φ)

R. van der Meyden Using Architecture to Reason about Information Security

Huser Luser

HDBMS LDBMS

HF LF

Theorem: Suppose that M is TA-secure with respect to the
Hinke-Schaeffer policy. Then for all {Huser ,HDBMS ,HF}-local
propositions φ, and α ∈ Actions∗

M , α |= ¬KnowsLuser (φ)

R. van der Meyden Using Architecture to Reason about Information Security

Extended Architectures

(To model restrictions on the behaviour of trusted
components)

An extended architecture is a pair (D,�) where
�⊆ D × D × L, where

I D is a set of domains

I L is a set of function names, including the special name >
I (u, v , f) ∈� means “information is permitted to flow

from u to v , but must be filtered through the function
denoted by f ”.

I > means ”no constraints on information flow across this
edge”

R. van der Meyden Using Architecture to Reason about Information Security

Example: Starlight Interactive Link

(Anderson et al. – A switch that allows a user to alternate
their keyboard between High and Low level windows.)

H S

L

sf

R. van der Meyden Using Architecture to Reason about Information Security

Architectural Interpretations

An interpretation of an extended architecture consists of

I A set of actions Actions

I A domain assignment dom : Actions → D

I An interpretation function I, such that for each
f ∈ L \ {>}, I(f) is a function with domain Actions∗

Intuitively, if (u, v , f) ∈� and α ∈ Actions∗ and a ∈ Actions
with dom(a) = u, then I(f)(αa) is “the information permitted
to flow from u to v when u does a after α.”

R. van der Meyden Using Architecture to Reason about Information Security

Semantics

Given an extended architecture A = (D,�) and an
architectural interpretation I = (Actions, dom, I), we can
define for each u ∈ D the function tffu with domain Actions∗

by tffu(ε) = ε and

tffu(αa) =


tffu(α) if dom(a)6�u

tffu(α) (tffdom(a)(α), a) if dom(a)
>
�u

tffu(α) I(f)(αa) if dom(a)
f

�u

M complies with the interpreted architecture (A, I) if for all
u ∈ D and α, β ∈ Actions∗, if tffu(α) = tffu(β) then
Ou(s0 · α) = Ou(s0 · β).

R. van der Meyden Using Architecture to Reason about Information Security

Semantics

Given an extended architecture A = (D,�) and an
architectural interpretation I = (Actions, dom, I), we can
define for each u ∈ D the function tffu with domain Actions∗

by tffu(ε) = ε and

tffu(αa) =


tffu(α) if dom(a)6�u

tffu(α) (tffdom(a)(α), a) if dom(a)
>
�u

tffu(α) I(f)(αa) if dom(a)
f

�u

M complies with the interpreted architecture (A, I) if for all
u ∈ D and α, β ∈ Actions∗, if tffu(α) = tffu(β) then
Ou(s0 · α) = Ou(s0 · β).

R. van der Meyden Using Architecture to Reason about Information Security

Architectural Specifications

An architectural specification consists of

I An extended architecture A
I A set C of interpretations for this architecture

This captures architecture + constraints on the behaviour of
trusted components.

M complies with an architectural specification (A, C) if it
complies with (A, I) for some I ∈ C.

R. van der Meyden Using Architecture to Reason about Information Security

Example: Starlight Interactive Link

H S

L

sf

+ C = all interpretations such that

I Actions contains a toggle action t with dom(t) = S

I I(sf)(αa) = a if a = t or dom(a) = S and α contains an
odd number of t’s,
otherwise I(sf)(αa) = ε (no information flow)

R. van der Meyden Using Architecture to Reason about Information Security

Reasoning based on Architectural Specifications

Say that a proposition φ is toggle-High dependent if it
depends only on the subsequence of α consisting of

I all actions a with dom(a) = H

I all occurrences of actions a with dom(a) = S that occur
between an even numbered occurrence of t and any
subsequent occurrence of t.

Theorem: Suppose that M complies with the Starlight
architectural specification. Let φ be toggle-High dependent
and non-trivial. Then

M , α |= ¬KnowsL(φ)

R. van der Meyden Using Architecture to Reason about Information Security

Electronic Election

ElecAuth

v1 v2 vn...
resultsresultsresults

Specification:

I Actions consists of actions of ElecAuth plus actions av

for v a voter and a ∈ VoterActions; with dom(av) = v .

I For a permutation P of {v1, . . . , vn} and α ∈ Actions∗,
let P(α) be the result of replacing each av in α by aP(v).

I For all α, results(α) = results(P(α)).

(Examples:
results(α) = number of votes cast for each candidate
results(α) = the candidate(s) with the most votes.)

R. van der Meyden Using Architecture to Reason about Information Security

Electronic Election

ElecAuth

v1 v2 vn...
resultsresultsresults

Specification:

I Actions consists of actions of ElecAuth plus actions av

for v a voter and a ∈ VoterActions; with dom(av) = v .

I For a permutation P of {v1, . . . , vn} and α ∈ Actions∗,
let P(α) be the result of replacing each av in α by aP(v).

I For all α, results(α) = results(P(α)). (Examples:
results(α) = number of votes cast for each candidate
results(α) = the candidate(s) with the most votes.)

R. van der Meyden Using Architecture to Reason about Information Security

Theorem: If M complies with this specification, P is a
permutation of voters and v a particular voter such that
P(v) = v and φ is a proposition, if

M , α |= ¬Knowsv (¬φ)

then
M , α |= ¬Knowsv (¬P(φ))

Example: “if Alice considers it possible that
Bob voted for Obama and Charlie voted for McCain,

then Alice considers it possible that
Charlie voted for Obama and Bob voted for McCain.”

R. van der Meyden Using Architecture to Reason about Information Security

Access Control

Following Rushby 92, a system with structured state is a
machine 〈S , s0,Actions, step,O, dom〉 together with

I a set N of names,

I a set V of values, and functions

I contents : S × N → V , with contents(s, n) interpreted
as the value of object n in state s,

I observe : D → P(N), with observe(u) interpreted as
the set of objects that domain u can observe, and

I alter : D → P(N), with alter(u) interpreted as the set
of objects whose values domain u is permitted to alter.

R. van der Meyden Using Architecture to Reason about Information Security

Reference Monitor Conditions

Define a binary relation ∼oc
u of observable content equivalence

on S for each domain u ∈ D, by s ∼oc
u t if

contents(s, n) = contents(t, n) for all n ∈ observe(u).

RM1. If s ∼oc
u t then Ou(s) = Ou(t) .

RM2 ′ For all actions a states s, t and names
n ∈ alter(dom(a)), if s ∼oc

dom(a) t and

contents(s, n) = contents(t, n) we have
contents(s · a, n) = contents(t · a, n).

RM3. If contents(s · a, n) 6= contents(s, n) then
n ∈ alter(dom(a)).

(RM2 ′ a variant, from van der Meyden - ESORICS 2007, of
Rushby’s RM2)

R. van der Meyden Using Architecture to Reason about Information Security

Consistency of access control with a noninterference policy:

AOI. If alter(u) ∩ observe(v) 6= ∅ then u � v .

Proposition
If M is a system with structured state satisfying RM1-RM3
and AOI with respect to noninterference policy � then M is
TA-secure (hence IP-secure) for �.

R. van der Meyden Using Architecture to Reason about Information Security

Adapting the Conditions to Extended Architectures

AOI′. If alter(u) ∩ observe(v) 6= ∅ then u
f

�v for some f .

Extra conditions for filtered edges:

I1. If dom(a)
f

�u for f 6= > and I(f)(α, a) = ε and
x ∈ observe(u) ∩ alter(dom(a)) then
(s0 · αa)(x) = (s0 · α)(x).

I2. If dom(a)
f

�u with f 6= > and dom(b)
g

�u with f 6= > and
I(f)(α, a) = I(g)(β, b) 6= ε and
x ∈ observe(u)∩ (alter(dom(a))∪ alter(dom(b))) and
(s0 · α)(x) = (s0 · β)(x) then (s0 · αa)(x) = (s0 · βb)(x).

R. van der Meyden Using Architecture to Reason about Information Security

Theorem
Let AI be an interpreted architecture. Suppose that M is a
system with structured state satisfying RM1-RM3, AOI ′ and
I1-I2. Then M is TFF-compliant with AI.

R. van der Meyden Using Architecture to Reason about Information Security

Conclusion/Future Work

The examples demonstrate cases where it is feasible to formally
derive global properties from an abstract level of specification
of architecture + properties of trusted components
Many issues remain:

I Are there classes of specifications that can be
straightforwardly implemented?

I Connections to other implementation patterns: e.g.,
periods processing, network partitioning.

I Richer semantics of architectures, e.g., for timing,
probabilistic attacks.

I Syntax for architectural specifications, efficiently
automatable cases of verification.

R. van der Meyden Using Architecture to Reason about Information Security

