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Overview

I Motivation: MILS Security

I Recap of Intransitive noninterference theory

I Extended theory for architectural specifications

I Using architecture to reason about information flow
properties

I Connections to Access Control
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Introduction: Rushby view of MILS

A two level design process comprised of

I Policy Level: an architectural design identifying
components and their connections/permitted causal
relationships.

I Resource Sharing Level: components implemented so
as to share resources (processors, memory, network) with
enforcement of architectural causality constraints using a
variety of mechanisms (e.g., separation kernels, periods
processing, crypto)
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Further Objectives for MILS

I isolation of safety/security critical functionality in (small,
formally verifiable) trusted components

I (formal) compositional derivation of global properties
from architecture + local properties of the trusted
components

I These global properties preserved by the resource sharing
implementation
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Overview of this talk

Questions concerning this vision:

(& our answers, in this talk)

I What is the formal syntax and semantics of architectural
designs?

I Abstract syntax based on an extension of intransitive
noninterference policies

I A new semantics based on a knowledge-based approach
to intransitive noninterference of van der Meyden
(ESORICS 2007)

I Is it really possible to prove interesting security properties
in this architecture + trusted component, local to global,
pattern?

I Examples indicating the answer is ‘Yes’.

I How does the theory ground out in concrete resource
sharing mechanisms?

I Sufficient condition for architectural compliance in
access control systems.
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Noninterference policies

(Goguen and Meseguer 1982)

Let D be a set of security domains/components/agents.

A noninterference policy is a reflexive relation �⊆ D × D

u � v means

“actions of u are permitted to interfere with v”, or

“actions of u are permitted to have effects observable to
v”, or

“information is permitted to flow from u to v”
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Hinke-Schaeffer Architecture

One of the proposed architectures for multi-level secure
databases, as an intransitive noninterference policy:

Huser Luser

HDBMS LDBMS

HF LF

(Strictly speaking, Hinke-Schaeffer = this policy level
architecture, enforced at resource sharing level by the
operating system.)
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Deterministic System Model

Machines have the form M = 〈S , s0,Actions,D, dom, step,O〉
where

I S is a set of states,

I s0 ∈ S is the initial state,

I Actions is a set of actions,

I D is a set of domains

I dom : Actions → D associates each action to a domain in
D,

I step : S × Actions → S is a deterministic transition
function, and

I Ou : S → Obs — the observation of/output to domain
u ∈ D at a state
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Haigh and Young’s Intransitive Purge Function

A B D E

C

a     b     a     c     a     d     a     c     b

E

ipurge E

a   b   c   d
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Haigh and Young’s definition: IP-security

A system M is IP-secure with respect to a (possibly
intransitive) policy � if for all u ∈ D and all sequences
α, α′ ∈ A∗ with ipurgeu(α) = ipurgeu(α′), we have
Ou(s0 · α) = Ou(s0 · α′).
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Alternate definition: van der Meyden -

ESORICS’07

Given a policy �, define, for each domain u ∈ D, the function
tau, with domain Actions∗, inductively by tau(ε) = ε, and, for
α ∈ Actions∗ and a ∈ Actions,

tau(αa) =

{
tau(α) if dom(a) 6� u
(tau(α), tadom(a)(α), a) if dom(a) � u

Define a system M to be TA-secure with respect to a policy
� if for all domains u ∈ D, and all α, α′ ∈ Actions∗ such that
tau(α) = tau(α′), we have Ou(s0 · α) = Ou(s0 · α′).
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Reasons to believe this definition is better

Results from ESORICS-07:

I It does not admit a disturbing example from ESORICS-07

I TA-security ⇒ IP-security

I TA-security ≡ IP-security for transitive policies

I Rushby unwinding conditions for IP-security ⇒
TA-security

I A system bisimilar to M satisfies Rushby unwinding
conditions ⇒ M is TA-secure

I (A similar equivalence for a variant of Rushby’s access
control results.)

AND: It leads to the generalization of the present paper ...
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Reasoning about Knowledge

Given a system M , define the view of domain u of a sequence
α ∈ Actions∗ to be the sequence viewu(α) of all actions and
observations of that domain, with stuttering of observations
eliminated (to model asynchrony).

E.g. if α = hhlh generates (Low observations only):

O1hO1hO1lO2hO2

then viewLow(α) = O1lO2
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Propositions

A proposition φ is a fact about sequences of actions.

Formally φ ⊆ Actions∗, and we say φ holds at α ∈ Actions∗ if
α ∈ φ.

φ is non-trivial if it is not ∅ or Actions∗.

φ is G -local, for G ⊆ D, if it depends only on actions of the
domains G

Formally, α|G = β|G implies α ∈ φ iff β ∈ φ.
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Reasoning about Knowledge

Say domain u knows a proposition φ after a sequence
α ∈ Actions∗ in a system M if φ holds at β for all sequences
β ∈ Actions∗ such that viewu(α) = viewu(β).

Notation: M , α |= Knowsu(φ)
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Huser Luser

HDBMS LDBMS

HF LF

Theorem: Suppose that M is TA-secure with respect to the
Hinke-Schaeffer policy. Then for all {Huser ,HDBMS ,HF}-local
propositions φ, and α ∈ Actions∗

M , α |= ¬KnowsLuser (φ)
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Extended Architectures

(To model restrictions on the behaviour of trusted
components)

An extended architecture is a pair (D,�) where
�⊆ D × D × L, where

I D is a set of domains

I L is a set of function names, including the special name >
I (u, v , f ) ∈� means “information is permitted to flow

from u to v , but must be filtered through the function
denoted by f ”.

I > means ”no constraints on information flow across this
edge”
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Example: Starlight Interactive Link

(Anderson et al. – A switch that allows a user to alternate
their keyboard between High and Low level windows.)

H S

L

sf
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Architectural Interpretations

An interpretation of an extended architecture consists of

I A set of actions Actions

I A domain assignment dom : Actions → D

I An interpretation function I, such that for each
f ∈ L \ {>}, I(f ) is a function with domain Actions∗

Intuitively, if (u, v , f ) ∈� and α ∈ Actions∗ and a ∈ Actions
with dom(a) = u, then I(f )(αa) is “the information permitted
to flow from u to v when u does a after α.”
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Semantics

Given an extended architecture A = (D,�) and an
architectural interpretation I = (Actions, dom, I), we can
define for each u ∈ D the function tffu with domain Actions∗

by tffu(ε) = ε and

tffu(αa) =


tffu(α) if dom(a)6�u

tffu(α) (tffdom(a)(α), a) if dom(a)
>
�u

tffu(α) I(f )(αa) if dom(a)
f

�u

M complies with the interpreted architecture (A, I) if for all
u ∈ D and α, β ∈ Actions∗, if tffu(α) = tffu(β) then
Ou(s0 · α) = Ou(s0 · β).
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Architectural Specifications

An architectural specification consists of

I An extended architecture A
I A set C of interpretations for this architecture

This captures architecture + constraints on the behaviour of
trusted components.

M complies with an architectural specification (A, C) if it
complies with (A, I) for some I ∈ C.
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Example: Starlight Interactive Link

H S

L

sf

+ C = all interpretations such that

I Actions contains a toggle action t with dom(t) = S

I I(sf )(αa) = a if a = t or dom(a) = S and α contains an
odd number of t’s,
otherwise I(sf )(αa) = ε (no information flow)
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Reasoning based on Architectural Specifications

Say that a proposition φ is toggle-High dependent if it
depends only on the subsequence of α consisting of

I all actions a with dom(a) = H

I all occurrences of actions a with dom(a) = S that occur
between an even numbered occurrence of t and any
subsequent occurrence of t.

Theorem: Suppose that M complies with the Starlight
architectural specification. Let φ be toggle-High dependent
and non-trivial. Then

M , α |= ¬KnowsL(φ)
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Electronic Election

ElecAuth

v1 v2 vn...
resultsresultsresults

Specification:

I Actions consists of actions of ElecAuth plus actions av

for v a voter and a ∈ VoterActions; with dom(av ) = v .

I For a permutation P of {v1, . . . , vn} and α ∈ Actions∗,
let P(α) be the result of replacing each av in α by aP(v).

I For all α, results(α) = results(P(α)).

(Examples:
results(α) = number of votes cast for each candidate
results(α) = the candidate(s) with the most votes. )
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Theorem: If M complies with this specification, P is a
permutation of voters and v a particular voter such that
P(v) = v and φ is a proposition, if

M , α |= ¬Knowsv (¬φ)

then
M , α |= ¬Knowsv (¬P(φ))

Example: “if Alice considers it possible that
Bob voted for Obama and Charlie voted for McCain,

then Alice considers it possible that
Charlie voted for Obama and Bob voted for McCain.”
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Access Control

Following Rushby 92, a system with structured state is a
machine 〈S , s0,Actions, step,O, dom〉 together with

I a set N of names,

I a set V of values, and functions

I contents : S × N → V , with contents(s, n) interpreted
as the value of object n in state s,

I observe : D → P(N), with observe(u) interpreted as
the set of objects that domain u can observe, and

I alter : D → P(N), with alter(u) interpreted as the set
of objects whose values domain u is permitted to alter.
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Reference Monitor Conditions

Define a binary relation ∼oc
u of observable content equivalence

on S for each domain u ∈ D, by s ∼oc
u t if

contents(s, n) = contents(t, n) for all n ∈ observe(u).

RM1. If s ∼oc
u t then Ou(s) = Ou(t) .

RM2 ′ For all actions a states s, t and names
n ∈ alter(dom(a)), if s ∼oc

dom(a) t and

contents(s, n) = contents(t, n) we have
contents(s · a, n) = contents(t · a, n).

RM3. If contents(s · a, n) 6= contents(s, n) then
n ∈ alter(dom(a)).

(RM2 ′ a variant, from van der Meyden - ESORICS 2007, of
Rushby’s RM2)
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Consistency of access control with a noninterference policy:

AOI. If alter(u) ∩ observe(v) 6= ∅ then u � v .

Proposition
If M is a system with structured state satisfying RM1-RM3
and AOI with respect to noninterference policy � then M is
TA-secure (hence IP-secure) for �.
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Adapting the Conditions to Extended Architectures

AOI′. If alter(u) ∩ observe(v) 6= ∅ then u
f

�v for some f .

Extra conditions for filtered edges:

I1. If dom(a)
f

�u for f 6= > and I(f )(α, a) = ε and
x ∈ observe(u) ∩ alter(dom(a)) then
(s0 · αa)(x) = (s0 · α)(x).

I2. If dom(a)
f

�u with f 6= > and dom(b)
g

�u with f 6= > and
I(f )(α, a) = I(g)(β, b) 6= ε and
x ∈ observe(u)∩ (alter(dom(a))∪ alter(dom(b))) and
(s0 · α)(x) = (s0 · β)(x) then (s0 · αa)(x) = (s0 · βb)(x).
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Theorem
Let AI be an interpreted architecture. Suppose that M is a
system with structured state satisfying RM1-RM3, AOI ′ and
I1-I2. Then M is TFF-compliant with AI.
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Conclusion/Future Work

The examples demonstrate cases where it is feasible to formally
derive global properties from an abstract level of specification
of architecture + properties of trusted components
Many issues remain:

I Are there classes of specifications that can be
straightforwardly implemented?

I Connections to other implementation patterns: e.g.,
periods processing, network partitioning.

I Richer semantics of architectures, e.g., for timing,
probabilistic attacks.

I Syntax for architectural specifications, efficiently
automatable cases of verification.
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