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ABSTRACT
We study the problem of automatically assigning appropri-
ate music pieces to a picture or, in general, series of pictures.
This task, commonly referred to as soundtrack suggestion,
is non-trivial as it requires a lot of human attention and a
good deal of experience, with master pieces distinguished,
e.g., with the Academy Award for Best Original Score. We
put forward PICASSO to solve this task in a fully automated
way. PICASSO makes use of genuine samples obtained from
first-class contemporary movies. Hence, the training set can
be arbitrarily large and is also inexpensive to obtain but
still provides an excellent source of information. At query
time, PICASSO employs a three-level algorithm. First, it
selects for a given query image a ranking of the most similar
screenshots taken, and subsequently, selects for each screen-
shot the most similar songs to the music played in the movie
when the screenshot was taken. Last, it issues a top-K ag-
gregation algorithm to find the overall best suitable songs
available. We have created a large training set consisting
of over 40,000 image/soundtrack samples obtained from 28
movies and evaluated the suitability of PICASSO by means
of a user study.

Categories and Subject Descriptors
H.3.1 [Content Analysis and Indexing]: [abstracting
methods, indexing methods]; H.3.3 [Information Search
and Retrieval]: [search process, selection process]; H.5.5
[Sound and Music Computing]: [methodologies and tech-
niques]; I.4 [Image Processing and Computer Vision]:
Applications

∗The original quote “To draw you must close your eyes and
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1. INTRODUCTION
Presenting the most impressive pictures from the last va-

cation on a Greek island can be spiced up with a well chosen
background music that underpins the beauty and ease of life
enjoyed in the last summer. Being faced with these prob-
lems from time to time, unfortunately not often enough with
pictures of Greek islands, we experience that choosing the
right music is everything but trivial. A good solution to this
problem must have a big repository of music to choose from
to allow for a high level of diversity to avoid playing the
same old “born to be wild” song for all pictures somehow re-
lated to motorbikes, for instance. While the requirement of
having many songs is relatively easy to fulfill, and in fact is
fulfilled already with the amount of, and often also diverse,
songs on the personal mp3 players, the challenge of selecting
the right song, out of hundreds or even thousands of songs,
becomes difficult. To tackle the problem, we have devised
a fully automated approach, coined PICASSO, which is not
only the name of the famous painter, Pablo Picasso, but
also an acronym for PIcture CAtegorization for Suggesting
SOundtracks. PICASSO makes use of training data obtained
by sampling screenshot/soundtrack pairs from popular com-
mon movies, to learn an appropriate mapping from images
to music at first hand, given the expertise of professional
movie directors.

Sketch of the approach: Given a set of movies, we take
random samples of them. For a given sample point, we in-
vestigate if the corresponding sound surrounding the sample
by a couple of seconds resembles a piece of music. If so, we
take the screenshot and the music piece and consider it as
training data to our approach. We do this for very many
samples, for dozens of movies. The set of considered movies
should be large enough and also diverse such that the train-
ing base is big enough and also the resulting categorization
captures all (or almost all) situations appearing in pictures
people take.

At query time, we obtain an image, uploaded to our Web
application, and, roughly speaking, in a näıve approach,
find first the most similar screenshots taken (in the train-
ing phase) and then pick the most similar music piece in



our song database compared the soundtrack at the time the
screenshot was taken.

Admittedly, we tamper a bit with Pablo Picasso’s quote
“To draw you must close your eyes and sing.”, trying to
figure out if the inverse holds, too, namely, if we manage to
find music (singing) by looking at pictures (drawings).

1.1 Contribution and Outline
With this paper we make the following contributions:

(i) We present an algorithm for soundtrack recommen-
dation for an arbitrary wide range of user generated
images as input.

(ii) We show how a training dataset to achieve this goal
can easily be extracted out of popular common movies,
capturing the knowledge of experienced movie direc-
tors.

(iii) Two cases of soundtrack recommendation, for single
image and for multiple images, with grouping of mul-
tiple images, are described.

(iv) We report on the results of a user study evaluating the
suitability of our approach.

This paper is organized as follows. Section 2 gives an
overview of the related work. Section 3 presents our frame-
work and briefly recaps basic techniques and similarity mea-
sures used in our approach. Section 4 presents the core
concepts of PICASSO. Section 5 shows experiments results.
Section 6 concludes the paper and gives an outlook on on-
going work.

2. RELATED WORK
Although the problem of soundtrack suggestion has been

addressed in a couple of recent publications, it received rela-
tively low attention. This is surprising given the vast amount
of potential users, in particular with the increasing number
of digital cameras and the big success of portals like Youtube
[30] and Flickr [9].

Approaches based on language models, built for both the
image and the soundtrack (song), are proposed in [29, 3].
By design, these approaches are only applicable to the songs
with known lyrics, hence, ignore a huge area of classical mu-
sic and all other instrumental music pieces. In addition,
these approaches are limited in the way the language mod-
els are created, as the initial dataset of image annotations is
very sparse. While the approach in [3] is able to recommend
only images obtained from web, using publicly available im-
age search engines, the approach in [29] is able to infer im-
age annotations to personal images using an image similarity
measure based on low level features. However, none of these
approaches address the problem of recommending the sound-
track to a given image(s), instead, they start with the given
soundtrack and then find the set of images to accompany
the soundtrack.

The problem of recommending a soundtrack for a set of
images and combining them into a slide show is addressed in
[15]. This work focuses on impressionism paintings, match-
ing the emotions in soundtracks with the emotions in a given
painting, hence, does not address a general set of images
(e.g., photographs). Emotions are discovered using a trained
classifier on low level features for both the paintings and the
music.

The approach in [5] considers the problem of suggesting
music, generated from midi files, to car drivers, given a video
of the scenery, taken by a camera installed in the car. The
correlation, learned from a set of documentary movies, be-
tween a limited number of features (three for videos and
three for music pieces) using only three quantization levels
for each of the features, were explored and used later on for
the recommendation. In contrast to their work, we aim at
supporting a larger variety of images and aim at providing
music suggestions based on arbitrary music collections, such
as the users’ personal mp3 collection.

Research on automatic video generation systems has been
presented in [12, 13, 28]. The main focus of these works is on
aligning the video transitions with the transitions in a given
music piece. Although the ultimate aim of the proposed
work is different to ours, the similarity with our work comes
from a fact that both video (image) and audio content are
explored for purpose of alignment (recommendation). Our
approach could serve as a way to generate input to this au-
tomatic video generation, as recommended soundtracks can
be feed into these systems for alignment and video genera-
tion.

We base our approach on low level features for both image-
to-image and song-to-song similarity measures. The best
proven low level features for image similarity used in object
recognition are SIFT local image features [16]. However,
the extraction of these features result in a large number of
feature vectors per image and their comparison for image
similarity is computationally more demanding than methods
based on global image features (e.g., MPEG-7). Concerning
this and the fact that we wanted to capture the “global”
feeling of the image rather than individual localized features,
we use standardized MPEG-7 [18, 4] color and texture low
level features for computing the image-to-image similarity.

For the song-to-song similarity measure, we use both the
spectral shape and temporal low level features. The spectral
decomposition representation based on mel scale of human
auditory system, named MFCC, has been used extensively
in speech recognition [20], music genre classification [26],
artist identification [17], etc. Beside MFCC, we use Chroma
features [7], which represent the song’s spectrum in intensity
measures of each of twelve semitones of the musical scale.
We also used spectral centroid, spectral rolloff, spectral flux,
and time domain zero crossings music features described in
[26]. All music low level features are extracted using the
open source software framework Marsyas [27].

3. FRAMEWORK
PICASSO is based on the expertise of movie directors to

select appropriate songs for specific scenes in their movies.
This knowledge is made public, naturally, when movies are
presented in cinemas, TV, or DVD, generating a huge knowl-
edge base that perfectly fits our goal. We extract samples of
screenshot/soundtrack pairs from a certain amount of these
movies and feed them to our framework.

As a final training dataset we aim at having, for each of
the screenshots taken, a list of songs (for instance, the user’s
private mp3 collection), which are available for recommen-
dation, in decreasing order of likelihood to be recommended
for a specific screenshot. Building this dataset is done in the
following steps:
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Figure 1: Splitting of the long scene

(i) the soundtrack of the movie is extracted

(ii) music/speech classification is done on the soundtrack

(ii) speech parts are discarded

(iv) screenshots, during the musical part, are taken

(v) parts of the same scene are detected

(vi) soundtrack is split according to the scenes

(vii) for each soundtrack part the distance to all songs is
calculated

(viii) the song lists are sorted in increasing order of distance,
resulting in our training set

Soundtrack and image extraction, from the movies, are
easily achievable using one of many available tools and will
not be covered here in greater depth. However, music/speech
classification is not straight forward. For this task, we use
the Naive Bayes [22] classifier, trained using the labeled
dataset available at [19]. This training dataset for mu-
sic/speech classification contains 64 speech samples, in dif-
ferent languages, and also 64 music samples of different gen-
res. The already mentioned low level features (i.e., MFCC,
Chroma, spectral centroid, spectral rolloff, spectral flux and
time domain zero crossing) are used to train the classifier
and for the later classification task. The Marsyas [27] tool is
used for both the features extraction and the classification.
The output of the classifier for a given soundtrack is a label
(i.e., “music” or “speech” ) for each second of the soundtrack
together with a confidence value. To be sure to use only the
musical parts of the soundtrack, all parts that are classified
as a music with the confidence value less than 95% and all
speech parts are discarded. Musical parts of the soundtrack
with length shorter than five seconds are also discarded, as
they do not contain enough information to make the simi-
larity measurement with the songs appropriate.

Screenshots are taken from the movies at each second of
the remaining musical parts and, to obtain a more logical
grouping, we divide these musical parts further into scenes.
The scene detection is implemented by splitting the sequence
of screenshots on positions where the image-to-image dis-
tance, measured as described in Section 3.1, is larger than a
given threshold. The sequence of the screenshots from one
split to the second one is considered a scene. This approach
may not lead to exact movie scenes but, as we are only
interested in image-to-image similarities for the further pro-
cessing, it provides a reasonable grouping of similar images.
To eliminate abrupt scene changes, for the same reason, we
have eliminated short musical parts, i.e., we filter out and
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Figure 2: Training dataset building process

discard detected scenes whose length is shorter than 5 sec-
onds.

Additionally, very long musical themes can cause prob-
lems as a too large amount of information can render them
too specific and, hence, would not match to any parts of the
available songs. This is why scenes, that are longer than
10 seconds, are split in multiple parts. Splitting these long
scenes in multiple parts also improves the locality connec-
tion between the soundtrack part and the taken screenshot.
To split the long scenes into smaller parts and to make mu-
sical parts of approximately the same length, we split the
long scenes so that screenshots sequences are disjunctive,
but with the possibility of having overlap between the music
parts as illustrated in Figure 1. Screenshots together with
links to theirs corresponding music parts are then saved for
further processing.

After the musical parts are cut, first based on the mu-
sic/speech classification and then based on scene detection,
the distances between each of the musical parts of the sound-
track and all of the songs are calculated. The distance mea-
sure between the musical parts and the songs is described
in Section 3.2. Songs are then ordered in increasing order of
distance for each of the musical parts.

These ordered lists of songs together with the links from
the taken screenshots represent our training dataset, which
is later used for soundtrack recommendation, c.f., Figure
3 for an illustration. Each screenshot taken from the movie
has a link to the part of the accompanying soundtrack which
has a list of songs ordered by their distance to the sound-
track. The complete process of building the training dataset,
from soundtrack extraction to song distance calculation, is
illustrated in Figure 2.

3.1 Image Similarity Measure
For the image-to-image similarity measurement we use the

following MPEG-7 feature vectors extracted from the im-
ages: scalable color, color structure, color layout, and edge
histogram.

Scalable color describes all the colors found in the image
by aggregating them in a color histogram. Each bin of the
histogram represent one level of the color quantization. To
lower the memory space needed for the histogram, the Haar
transform [11, 25] is used for encoding. The standard de-
fines three possible values for the number of Haar coefficients
used: 128, 64, and 32.

The color structure descriptor is represented also by
a histogram, where each bin represents the quantization of
the color space and the value of the bin is a counter for the
structuring elements, of 8 × 8 size, in which the respective



color appears. Counting of color appearances is done while
sliding the structural element over the whole image. The
number of color quantization levels is a parameter for this
descriptor and can by 184, 120, 64, and 32 as defined by the
standard.

The color layout descriptor tries to summarize the distri-
bution of colors in a given image, using YCbCr color space.
First, the image is divided into 64 (8× 8) equal sized parts
and, in a second step, the average color for each of the parts
is calculated. Discrete cosine transform (DCT) is performed
on these 64 parts and only low frequency coefficients, for
each component, are used.

The edge histogram descriptor is used for the spatial
representation of the edges in the image. The image is di-
vided into 16 (4 × 4) equal sized parts and the local edge
histogram for each part is calculated. Each histogram has 5
bins representing 4 orientation directions and one used for
non orientation specific edges. Concatenation of the local
histograms with the histogram levels quantization produces
the final descriptor.

In this work, we use common configurations of the MPEG-
7 image descriptor coefficients, with 64 Haar coefficients for
scalable color descriptor, 64 color quantization levels for
color structure descriptor and 6 coefficients for Y compo-
nent, 3 for Cr component and 3 for Cb component of the
color layout descriptor.

After the distance calculation, for each of the descriptors,
we need to combine them in one distance measurement for
further comparison. We do this by first calculating the stan-
dard score (z-score) for each of the descriptors and then sum-
ming up all of the standard scores into a single score. The
standard score is calculated by Formula 1, where µ is the ex-
pected value (mean) of the distances for the given descriptor
and σ is the standard deviation of the distances for the same
descriptor.

z =
x− µ
σ

(1)

The mean µ and the standard deviation σ for the de-
scriptors are approximated from the training dataset. The
distances between each pair of the images, for each of the
descriptors, are calculated, and then the mean and the stan-
dard deviation for the descriptor are approximated by the
estimated mean and standard deviation of this set of calcu-
lated distances.

3.2 Music Similarity Measure
For the music similarity measures, the following low level

musical descriptors are used: MFCC, Chroma, spectral cen-
troid, spectral rolloff, spectral flux, and time domain zero
crossing.

Most of the musical low level descriptors are based on
the spectral representation of a given musical signal. The
spectral representation is given by employing a short time
Fourier transform on the signal. Each descriptor uses differ-
ent characteristics of the spectral representations to empha-
size certain features of a musical signal.

The Mel Frequency Cepstral Coefficients (MFCC)
[20, 26, 17]descriptor is based on the mel scale, model of the
human auditory system, emphasizing the spectral distribu-
tion of a signal in the manner perceived by humans. First,
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Figure 3: Training dataset structure

the spectral representation of a musical signal is transformed
by the model and then the coefficients of the discrete cosine
transform (DCT) are used as features. The DCT coefficients
are used to lower the space requirement and save as much
of the uncorrelated information as possible.

As the western music is based on a musical scales contain-
ing a subset of twelve basic musical semitones, the Chroma
descriptor [7] represents the intensity of each of twelve
semitones in the analyzed music part. It is a very valuable
descriptor, used for musical similarity measurement, as it
highly emphasizes melodical and harmonical characteristics
of the analyzed musical piece.

The spectral centroid is defined as a center of gravity of
a musical signal’s spectral representation, while the spec-
tral rolloff represents the frequency under which 85% of the
signal’s magnitude is located. The local spectral change, in
the time domain, is represented by the spectral flux which
is calculated as a squared difference between two successive
spectral distributions. The time domain zero crossing,
describing the noisiness of the signal, is defined as a number
of times a musical signal crosses between positive and nega-
tive values in the time domain.

To calculate the similarity between two songs first the fea-
ture vectors of each of the descriptors are extracted for every
23.25 milliseconds of the song, resulting in 43 feature vectors
per second (the default configuration for the Marsyas tool).
Then, the pairwise similarity between the feature vectors is
calculated and combined. The combination of distances of
different descriptors into one distance measurement is done
also using the sum of standard scores for each descriptor, as
described in Section 3.1. The mean and the standard de-
viation for the standard scores are approximated using the
mean and the standard deviation of the pairwise distances
between the songs in the training dataset.

Calculating only pairwise distances between feature vec-
tors is not enough as music also has a time dimension. One
option to handle the time dimension is to calculate the sum
of successive pairwise distances. As this option results in
rigid comparison in time dimension, we use a more flexi-
ble option called Dynamic Time Warping [23]. Dynamic
Time Warping (DTW) enables sequence matching with
the variations in speed, making it possible to compare songs
that are similar in content but with different speed mea-
sures. As speed change can be beneficial for the flexibility it
also has to be limited such that the similarity between songs
with different speed measures is less than between the songs
with the same speed measure. This is also achievable using
DTW by specifying the slope constrained condition and by
specifying Weighting Coefficient for the case of speed change
(time warp) and the case of no speed change (no time warp).
In this work we use symetric variant of DTW with slope con-
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strained condition set to 1, and with the value of
√

2 for the
Weighting Coefficient in case of speed change and value 1
for the case of no speed change.

Beside giving us a distance, as a result, DWT also gives
us a part of the song that matches the best to the other
song. Because soundtrack samples are a lot shorter than the
songs in general, we use DWT to find three positions in the
song that are most similar to the soundtrack sample. The
sum of distances between the soundtrack sample and these
three positions in the song is used as the resulting distance
between the song and the soundtrack sample, as illustrated
in Figure 4.

4. APPROACH
Once the training dataset is extracted we can use it for

soundtrack recommendation. We consider two types of rec-
ommendations, single image recommendation and multiple
images recommendation.

- In the single image recommendation, one image is sub-
mitted as a query and a list of songs is returned, in de-
creasing order of their suitability to the query image.

- In case of multiple images, we consider the images as
the input for the slide show generation and try to rec-
ommend a grouping of the images together with the
songs recommended for each of the groups. We base
the grouping of the images on the similarity between
the lists of recommended songs for each of the image.

They key idea of finding the most suitable song for a
query image is to employ two phases of K-nearest neighbor
searches, first, in the image domain, and second, between
musical pieces. Selecting the K-Nearest Neighbors (KNN)
means that in a multi-dimensional feature space, for a given
feature vector the K nearest feature vectors are selected (cf.,
[24] for an overview).

Phase 1: When the query image is submitted, its dis-
tance to each of the images in training dataset is calculated.
The images in the training dataset are then ordered in in-
creasing order of distances to the query image and only the
top-K images (i.e., the K-nearest neighbors) are used for
the further recommendation process. We focus only on the
effectiveness in this task and omit any optimizations or ap-
proximations of the K-Nearest Neighbors search to speed
up the overall runtime. However, once runtime becomes an
issue, we can benefit from the rich literature on the KNN
problem, which has been extensively studied (cf., e.g., [2,
10, 1, 6]).

Phase 2: After the top-K images are found, the list of the
songs together with their score for each image is retrieved.
First, the name of the soundtrack sample for each image is
retrieved and then the list of songs, ordered in increasing
order of distance to the soundtrack sample, is retrieved for
that soundtrack sample. As a result, each image, retrieved
from the training set, has a list of songs in decreasing score
order to that image. To avoid a negative impact of outliers
to the recommendation process, smoothing is applied on the
top-K retrieved songs for each of the top-K retrieved images.

For smoothing purposes, we first assign the score to each
of the top-K retrieved images based on the similarity. The
score is normalized to the [0.1, 1] interval by Formula 2,
where d is the distance of the image to the query image,
m is the distance to the most similar image (i.e., the small-
est distance), and M is the distance to the least similar
image (i.e., the largest distance). Each of the image scores
is then further assigned to the top-K songs in the list of cor-
responding images. An average score for each song is then
calculated and used to reorder the songs. The ordered list
of songs, by their new calculated score, is returned as the
final list of recommendations.

z = 1− 0.9 ∗ d−m
M −m (2)

For each of the K images we get K songs, leading to a final
number of songs between K (in case of heavy redundancy)
and K2 (in case of no redundancy), which, after duplicate
elimination and a final ranking, assembles the final result
list. In our experimental evaluation, we use K = 10.

While a fully automated process requires only one sugges-
tion, in a semi automated approach we could easily return
many results to let users do the final assignment. To show
that the ranking is meaningful, i.e., the rank 1 is preferred
over lower ranks, we also evaluate the performance at rank
K.

4.1 The Case of Multiple Images
When multiple images are given as input, we group these

images using a clustering algorithm and recommend a sound-
track for each of the groups. To achieve this, we first perform
the recommendation for each of the images. This results
in the list of recommended soundtracks for each input im-
age. The similarity between these recommendation lists is
then used as the grouping criteria and is computed using a
slightly modified Spearman’s footrule distance measure [8],
as follows.

First, we find the length of the shortest list as the length of
the list depends on the number of unique songs in the top-K
songs for each of the top-K similar images from the dataset.
The lists are cut at the length of the shortest list to make
the pairwise similarity measure comparable. The similarity
between two lists l1 and l2 is calculated by Formula 3, where
L is the length of the lists, and pos1 and pos2 are positions
where the song s is located in each of the lists. If a song
is found in only one of the lists, score is left unchanged, as
specified by the formula.

As we can see, this kind of similarity measure takes into
account not only the overlap between the lists but also an
ordering of songs in the lists, imposing that the lists with
the same ordering will be more similar than the ones with
the same overlap but different ordering. As the Spearman’s



footrule distance is defined over full (i.e., complete) rankings,
we adjust it to be used also for our partial rankings (top-K
lists) (cf., [8]) by ignoring the songs not present in one of the
lists. Also, the list length L is added to the formula with
subtracted L1 distance, turning the measure into a similarity
measure.

sim(l1, l2) =
∑

s∈l1∧s∈l2

L− |pos1 − pos2| (3)

The similarity matrix, containing all pairwise similarities
between the lists, is calculated and used for a bottom-up hi-
erarchical clustering which produces a grouping of images as
a result. We use a hierarchical clustering with the explicit
number of clusters and the maximum cluster size specified.
The process of clustering begins with creating a cluster for
each image instance (i.e., list) and then iteratively merging
the clusters until the required number of clusters is achieved.
In each step, all pairs of clusters, except those whose cumula-
tive size becomes larger than the specified cluster size limit,
are considered for merging. Two clusters whose pairwise
similarity is smallest, compared to other cluster pairs, are
merged. The pairwise similarity between clusters is defined
as the average pairwise similarity between their instances as
shown in Formula 4, where c1 and c2 are clusters, i1 and i2
are their instances respectively. Cluster sizes, represented
by |c1| and |c2|, are defined as the number of instances in
each of the clusters.

sim(c1, c2) =
1

|c1| · |c2|
∑

i1∈c1∧i2∈c2

sim(i1, i2) (4)

In our experiments, we use the floor of the number of in-
put images divided by 5 for the number of clusters, aiming
at the clusters with average size of 5 images, and we use 7
as the specified cluster size maximum.

After the grouping of the images is finished a soundtrack
needs to be recommended for each of the groups. We use
two approaches for group recommendation, average position
and least misery. First, we find all the songs that are present
in all of the lists for a specific group. If there are no songs
present in all of the lists, we find all of the songs present in
n − 1 lists, where n is the number of the lists. If there are
no songs present in n− 1 lists, we find the songs present in
n− 2 lists, and so on.

- For the average position approach, we calculate the
average position for each song found in the previous
step. Songs are then reordered based on their aver-
age position in increasing order and the song with the
smallest average position (best average ranking) is rec-
ommended for that group. The average ranking can
sometimes be misleading for a group recommendation,
as some group members can be highly disappointed
by the recommendation but the average satisfaction
is still high because of the high satisfaction of other
group members.

- The least misery approach is used in group recom-
mendation with intention to circumvent this problem.
In least misery approach group recommendation is val-
ued as a value gained by the group member who likes
the recommendation the least. In our case, we find

the maximum position (lowest rank) for each of the
songs found in previous step and use this position as a
score for recommendation. Like for the average rank-
ing approach, songs are reordered on their new score in
increasing order, and the song with the smallest score
is recommended for that group.

5. EXPERIMENTAL EVALUATION
The training dataset used for the experiments is distilled,

as described in Section 3, out of 28 movies of different gen-
res. The movies were selected to have a high variance in
content, with the intention to provide a high coverage of
the training dataset, without having to process very many
(random) movies. Processing these 28 movies resulted in
46, 594 screenshots taken, with approximately 13 hours of
accompanying soundtrack music.

We use 275 songs as potential soundtrack recommenda-
tions. As these songs are played to the users during the
performed user study, we had to make sure to use only copy-
right free material. We obtained this dataset by download-
ing songs from the music2ten site [21], a site which contains
only music given away by its creators for free use, as stated
on the site: “All the music selections at music2ten.com are
MP3s that are given away free with the artists’ blessings.”.
As our songs dataset contains fairly unknown material, i.e.,
artists are not promoted by the big labels, it assures that
there is no bias in users’ assessments towards more popular
songs.

5.1 Evaluation Set Up
To obtain a meaningful evaluation in absence of a publicly

available benchmark, we conducted a user study for both
cases of recommendation, the single image recommendation
and the recommendation for the case of multiple images.
We have asked users from our university environment to
grade the suitability (aka., relevance, appropriateness) of a
suggested soundtrack w.r.t. a given image or to the given
slide show, in case of multiple images. Users were provided
with the following options: “fits very good”, “fits good”, “fits
ok”, “does not fit” and “total miss”. We assign grades from 5
to 1 for each of the option for the further numerical analysis
of the results. Grade 5 is assigned to “fits very good”, 4 to
“fits good”, and so on, having grade 1 for “total miss”.

We include a random recommendation to the user study
to help us interpreting the results. Additionally, to be able
to see how much the ranking of the recommended sound-
tracks make sense, we include also the recommended sound-
track at rank 10 in the evaluation of the single image case.
That means, during the evaluation, users were asked to
grade the first ranked, the tenth ranked, and a randomly
recommended soundtrack for each query image. To get con-
sistent results for the random recommendation, a song was
randomly chosen for every query image and then used con-
sistently throughout the whole study (i.e., for all users).

The evaluation is performed using an online tool which we
have developed, shown in Figure 5. This tool enables users
to play three recommended songs for each query image, and
to choose how well each song fits to the query. The user
judgment on how well some soundtrack fits to the query may
be influenced by the previously heard recommended sound-
track. That is why the evaluation tool places the songs on
the web page in random order. The order of songs in which



Average position Least misery Random
Average 3.69 3.31 2.38
Std. Dev. 0.95 0.95 1.26
With aggrement 3.90 3.49 1.89

Table 1: Multiple images grades

they were placed on the web page is kept for the current
session so that users are not confused with the new ordering
when the web page is reloaded.

The evaluation for the single image recommendation is
done on the following 12 pictures, shown in Table 4: (1)
boats on the sea, (2) skeleton with a headache, (3) man
with two guns, (4) formula one pit stop, (5) queue of four
men, (6) red rock mountain, (7) satellite dish with stormy
weather, (8) futuristic city buildings, (9) monks in orange
dresses, (10) palm tree in front of the blue ocean, (11) stop
sign on a crossing, and (12) stars in a galaxy. These pictures
were selected to be very different in content, as we want
to evaluate how well the recommendation performs in the
general case, rather than in one or a few specific cases. We
had to limit the number of query images to 12, as each
user was asked to assess the suitability of 3 recommended
soundtracks, for each of the query images, resulting in a
tedious and time consuming task of listening to 36 different
songs.

For the case of multiple images, we also add a random rec-
ommendation to the evaluation, together with the evaluation
of the average position and the least misery approaches. We
use 36 images taken indoors and outdoors, on various loca-
tions all around the world, for the slide show creation. The
grouping of the images is done using hierarchical cluster-
ing, as described in Section 4.1. Three slide show videos are
made with the recommended soundtracks: by average posi-
tion approach, by least misery approach, and by the random
selection of the songs as a soundtrack. The slide show videos
are made with a light “dissolve” transitions between the im-
ages, inside the groups, and with the heavier “page fold”
transition between the images from different groups. Each
image is shown for five seconds, resulting in the total length
of three minutes for each of the slide shows. The transition
between the songs is done with the fade out effect on the end
of each song and with the fade in effect on the beginning of
each of the songs. The users are asked to rate how well the
soundtrack fits to the slide show, for each of the three cases.
This evaluation is also done with our online tool, where the
slide shows were played and graded by the users. The place-
ment of the slide shows on the web page is also in random
order, for the same reason as for the song placement in the
single image case.

5.2 Evaluation Results
A total of 13 users participated in the evaluation of the

generated slide shows, i.e., the multiple images case. The
aggregated results of the evaluation are shown in Table 1
where each option for the soundtrack’s suitability was as-
signed a grade, as already explained in the previous Section.
As we can see, the average grade for the average position
approach is lot higher than the random soundtrack recom-
mendation. The least misery approach has an average grade
a lot higher than random, but slightly lower than the aver-

First rec. Tenth rec. Random
Average 3.21 3.08 2.97
Std. Dev. 1.21 1.20 1.32
With aggrement 3.32 3.17 3.05

Table 2: Single image grades

age position approach, indicating that users tend to grade
the appropriateness of the soundtrack to a group of images
on average rather than on the minimum suitability.

Besides having just a good average grade for the recom-
mendation, it is also very important that people actually
agree on how well the soundtrack fits to the image (or the set
of images). The agreement between users is very important
as high average grades could still have users with high dis-
appointment, what we want to avoid. The agreement on the
suitability of the recommended soundtrack is represented in
Table 1 by the standard deviation of the results. The lower
the standard deviation the larger the level of agreement be-
tween users. We see from the standard deviation that users
agree more for the soundtracks recommended by our two
approaches compared to the random recommendation.

For an easier comparison, a score that takes into account
both the relevance measure and the agreement is constructed
as a ratio between the average grade (the mean) and the
standard deviation, aiming at giving higher grades to the
evaluation on which people agree, and a lower score to the
one on which people disagree. This combined score is pre-
sented in the last row of the Table 1. We see that the com-
bined score for both of our approaches is a lot higher than
the one for the randomly recommended songs.

Table 2 summarizes the results of the single image eval-
uation. Again, 13 users participated in the evaluation, but
not all of them have evaluated the soundtracks for all of the
12 images. Each image is evaluated 10.83 times in average.
We can see that the average grade for the first recommended
song is higher than the random recommended song and that
the tenth recommended is graded in between the first recom-
mended and the random, showing that our ranking is indeed
in line with the users’ perceived ranking. As we can also ob-
serve, the difference in average score between the first recom-
mended and the random one is lot smaller than the difference
between the average position approach and the random one
in case of multiple images evaluation. This kind of result
is well expected as the slide show contains multiple images,
accumulating the users perceived soundtrack relevance over
all of the images.

For the case of single images the average agreement over
all 12 tests, in terms of standard deviation, is better for the
first recommended and tenth recommended song than for
the random one. This shows that not only the first ranked
and ten ranked recommended soundtrack have higher score
but that users also agree more on these scores compared
to randomly recommended song. The score, combining the
relevance with the agreement, averaged over all 12 tests is
shown in the last row of Table 2. We can see that the com-
bined score for all three cases is slightly increased, compared
to the average grade, but yields no significant impact.

Runtime & Scalability
Although we did not focus on the efficiency when designing
PICASSO, we measured the runtime of the query processing



Thread(s) 4 3 2 1
Runtime (sec.) 86.13 99.19 132.09 213.84
Queries/sec. 9.75 8.46 6.35 3.92

Table 3: Scalability measurements

task to show that this approach can be used in real-time
environments.

The average runtime for the 12 single image queries is
0.629 seconds per query image, with a standard deviation
of 0.728. As the K-nearest neighbor search was done com-
pletely in main memory, it is yielding a very low runtime.
Most of the running time was spent on extracting the image
features for the query images, as these were not precom-
puted. The recommendation for the multiple image case
was done in 14.933 seconds for our case of 36 input images.
Here, again, most of the runtime was spent on the features
extraction of each of the 36 images.

As all required indices, in total less than 500MB Java
VM memory (in our setup with 28 movies), are kept in
main memory, the runtime is CPU bound due to the fea-
ture extraction task. Given this small amount of required
memory that nowadays every simple commodity PC pro-
vides, the indices can be replicated over many such PCs for
scalability reasons. Additionally, the indices are read-only,
creating even on a single machine with multiple cores no
conflicts between memory accesses , rendering the approach
“embarrassingly scalable”, a common term for these kinds
of parallelization. To show the scalability of the approach
on a single machine, we measure the running times and the
throughput (i.e., images per second), varying the number
of threads used, for 840 query images, shown in Table 3.
The measurements were done on the single machine with
single four core processor. We did not measure the case of
parallelizing the tasks on several separate machine, as the
scale-up in throughput is obvious.

Once the memory consumption hits the limit of available
memory, we can partition the indices on a per-movie basis.
Then, for each machine, we obtain recommendations based
only on a subset of all movies. These “local” results can get,
however, easily merged by their similarity score in a final ag-
gregation step (i.e., a very simple list merging task). We did
not investigate this further. In a real world deployment one
would install the approach directly in the cloud to benefit
from the provided elasticity in terms of required computing
power.

5.3 Lessons Learned
The lessons learned from the evaluation presented above

can be put in the following statements. Naturally, in most
cases these are not hard facts being universally true, rather
reflecting the first insights obtained throughout developing
and evaluating our approach.

- Publicly available movies contain expert knowledge on
matching the soundtrack to the given images

- It is possible to extract that knowledge and use it for
soundtrack recommendation

- Fairly simple methods for recommendation, in con-
junction with the extracted training dataset, work quit
well

Figure 5: Screenshot of our evaluation tool

- Users find that the recommendation of the soundtracks,
for single image or set of images, works well

- Users agree on the ranking of the recommended sound-
tracks

- The approach is scalable

6. CONCLUSION
We have presented PICASSO, an automated approach to

recommend a soundtrack for a picture or a series of pic-
tures. The main focus of the approach is the extraction of
knowledge from popular, publicly available, common movies
and how these information can be used for our specific task.
We have shown how images and music can be matched to-
gether by identifying pairs of the most similar screenshots
of the movies and the surrounding soundtrack music. PI-
CASSO is based on the usage of low level features for sim-
ilarity comparison between images and between songs, ren-
dering it applicable for all cases of image/soundtrack match-
ing problems as these features are always available. We have
demonstrated the applicability of PICASSO by reporting on
the results of a study involving user generated feedback.

As part of our ongoing and future work, we plan to ad-
dress the problem of integrating user preferences, in terms
of music and movie taste, to our approach. We believe that
this can lead to an even higher level of user satisfaction. Po-
tentially, we can benefit from existing information in Web
portals, such as imdb [14] or youtube [30], to model user
preferences.
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