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Abstract—In this paper, we consider a non-regenerative MIMO
two-way relay system with imperfect channel state information
(CSI). We employ a stochastic approach to model the channel
uncertainties and address the robust joint source and relay
optimization problem based on the minimum mean squared error
(MMSE) criterion. With imperfect CSI, the self-interference
(SI) cannot be completely canceled at destination nodes. Hence,
both channel uncertainties and residual self-interference should
be considered. We develop an optimization framework that
unifies both frequency-division duplex (FDD) and time-division
duplex (TDD) systems despite their different channel statistical
properties. Two robust algorithms are proposed to minimize
the sum mean squared error (MSE) averaged over channel
uncertainties. The first algorithm adopts alternating optimization
to update the source precoders, relay precoder and destination
receivers iteratively with guaranteed convergence. In the second
algorithm, only the relay precoder with certain structure is
considered. Then the relay precoder design is reduced to the
simple power allocation problem. Simulation results show that
the proposed algorithms provide robustness against channel
uncertainties, especially when the signal-to-noise ratio is high.

Index Terms—Precoder, analog network coding (ANC), two-
way, multiple-input multiple-output (MIMO), relay, minimum
mean squared error (MMSE).

I. INTRODUCTION

RELAYS can be deployed in wireless networks to extend
coverage and improve throughput [1]. A wireless relay

retransmits the signal received from the source to the desti-
nation in either a regenerative fashion such as decode-and-
forward (DF) or a non-regenerative fashion such as amplify-
and-forward (AF) [2]. To further improve the spectral effi-
ciency of relay-assisted communications, two-way relaying
has recently been proposed by using network coding. Network
coding was first introduced in [3] as means to improve
network throughput, in which intermediate nodes mixes the
data received from different source nodes and retransmits
the mixed information to destination nodes. Based on the
principle of network coding, the authors in [4] proposed a non-
regenerative two-way relaying scheme with analog network
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coding (ANC), in which two source nodes simultaneously
transmit their information over the same radio resource to
the relay node during the first channel use, and the relay
node amplifies and forwards the superimposed signal to both
destination nodes during the second channel use. Note that
in two-way relay systems, both source nodes are also the
corresponding destination nodes of each other. Since the
transmitted information from each node is known by itself,
the destination nodes can cancel self-interference (SI) from
the received signal before detecting the required data if perfect
channel state information (CSI) is available. Hence, only two
orthogonal channel uses are needed in ANC-based two-way
relay systems for each round of information exchange.

Meanwhile, multiple-input multiple-output (MIMO) tech-
niques can be incorporated into relay systems by equipping
each node with multiple antennas to provide multiplexing and
diversity gains [5]. Transceiver designs for traditional one-
way MIMO relay systems were proposed in [6]–[10]. The
optimal two-way relay strategies were studied in [11] to max-
imize achievable sum-rate and to achieve optimal diversity-
multiplexing tradeoff. For an ANC-based MIMO two-way
relay system consisting of a multi-antenna relay node and two
single-antenna source nodes, the optimal relay beamforming
was studied in [12] to characterize the achievable capacity
region, and also in [13] to minimize the mean squared error.
In [14] and [15], the authors considered jointly optimizing the
source and relay precoders to maximize sum-rate for MIMO
two-way relay systems where all nodes are equipped with
multiple antennas. The joint optimization problem was also
investigated in [16] based on the minimum mean squared
error (MMSE) criterion, and an iterative algorithm as well
as a heuristic algorithm based on channel parallelization was
proposed therein. In [17] and [18], the authors addressed
joint source and relay optimization for multiple-relay systems.
Gradient descent algorithms were proposed in [17] to optimize
source and relay iteratively based on sum-rate and mean
squared error criteria, while in [18] an iterative algorithm
based on solving convex sub-problems was proposed to min-
imize sum mean squared error.

All of the aforementioned works assume perfect channel
state information (CSI) is available. In practice, channel state
information has to be estimated using pilot symbols, and
channel estimation errors are inevitable due to noise and the
time-varying nature of wireless channels. Hence, it is desirable
to provide robustness against channel uncertainties when de-
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signing transceivers, i.e., precoders and receivers, for MIMO
relay systems. Generally, there are two basic approaches for
dealing with channel uncertainties, the stochastic approach
and the worst-case approach. Depending on the system design
criterion adopted, the first one is suitable when the average
performance such as mean squared error is concerned, whereas
the second one is preferred when certain quality-of-service
requirement needs to be guaranteed. The robust designs for
conventional one-way MIMO relay systems were studied in
[19]–[21]. The worst-case approach was utilized in [19] to
minimize the consumed power at the relay node subject to
minimum signal-to-noise-plus-interference ratio (SINR) re-
quirements for each data stream, while in [20] and [21] the
stochastic approach was used to minimize the total MSE
averaged over channel uncertainties. Unfortunately, the results
therein cannot be generalized to two-way relay systems due
to the bidirectional channels and self-interference. The effect
of imperfect CSI was studied for MIMO two-way relay
systems in [22] and [23]. The authors in [22] investigated
the achievable rate region with imperfect CSI. In [23], the
authors considered joint optimization of source and relay
precoders with norm bounded CSI error model, and employed
a worst-case approach to minimize the sum mean squared
error. However, channel estimation errors are not necessarily
bounded, e.g., when channels are estimated using minimum
mean squared error (MMSE) method [26], the estimation
errors are Gaussian random variables. The solutions in [23]
cannot be applied in such scenarios.

In this paper, we address the robust joint source and relay
optimization for an ANC-based MIMO two-way relay system
to minimize the average sum MSE of detected signals at
both destination nodes by using a stochastic approach to
take channel uncertainties into account. Note that our earlier
work in [24] only considered relay precoder optimization.
Since self-interference (SI) cannot be completely canceled
due to the imperfect CSI, the residual SI is also consid-
ered in our design. We develop a robust design framework
that unifies both frequency-division duplex (FDD) and time-
division duplex (TDD) systems despite their different channel
statistical properties. An iterative algorithm is first proposed to
jointly optimize the source and relay precoders as well as the
destination receivers. Then to reduce complexity, a constrained
structure algorithm is proposed by only considering the relay
precoder with source precoders fixed and imposing a specific
structure on the relay precoder.

The paper is organized as follows. The system model is
described in Section II. The problem formulation for both
FDD and TDD systems are developed in Section III. In Section
IV and V, the iterative algorithm and the constrained structure
algorithm are proposed, respectively. Then in Section VI, we
provide simulation results to verify the effectiveness of the
proposed robust algorithms. Finally, conclusions are given in
Section VII.

Notations: Bold-face lower-case letters and bold-face upper-
case letters are used for vectors and matrices, respectively.
(·)T , (·)H , (·)−1, (·)∗, ‖ · ‖F , and Tr(·) denote transpose,
conjugate transpose, inverse, conjugate, Frobenius norm, and
trace of a matrix, respectively. E{·}, vec(·), Re{·}, and ⊗
denote expectation operator, vectorization operator, the real

... ... ...

Fig. 1. Illustration of a MIMO two-way relay system.

part, and the Kronecker product, respectively. A � 0 means
A is a positive semi-definite matrix, and A � B means A−B
is positive semi-definite. C

K×K denotes space of K × K
matrices with complex entries. IK stands for a K×K identity
matrix. diag{A} represents a diagonal matrix formed from
entries of the main diagonal of matrix A. λ1(A) denotes the
maximum eigenvalue of matrix A. A(k, l) represents the entry
on the kth row and lth column of matrix A.

II. SYSTEM MODEL

The MIMO two-way relay system is shown in Fig. 1.
We denote two source nodes as S1 and S2, respectively,
and denote the relay node as R. Both S1 and S2 have M
antennas, and R has N antennas. All nodes are subject to half-
duplex constraint. An analog network coding-based two-phase
protocol is employed for S1 and S2 to exchange information
via the aid of R. The direct path between source nodes are
not considered for FDD or TDD systems, because both source
nodes simultaneously transmit signals to the relay node over
the same channel. Each source node transmits M independent
data streams, and to support transmission of all data streams
the number of antennas at relay node should satisfy N ≥ M
[16]. All channels are assumed to be flat fading and remain
unchanged during the two phases.

A. FDD Mode

In the first phase, S1 and S2 simultaneously transmit data
to R over the same radio resource. When the precoder Pi ∈
C

M×M is used by Si, ∀i = 1, 2, the transmitted signal from
Si is described by xi = Pisi, where si ∈ CM×1 is the data
vector with covariance matrix Rsi = E{sisHi }. Denote Rxi =
E
{
xix

H
i

}
, and the transmit power constraint at Si can be

expressed as

Tr(Rxi) = Tr(PiRsiP
H
i ) ≤ Psi , (1)

where Psi is the maximum power which can be used by Si.
The superimposed received signal r ∈ CN×1 at R can be
written as

r = H1x1 +H2x2 + nr, (2)

where Hi ∈ CN×M is the backward channel from Si to R,
and nr ∈ C

N×1 is the additive Gaussian noise vector with
covariance matrix Rnr .

In the second phase, after multiplying the received signal r
with precoding matrix F ∈ CN×N , the relay node R forwards
the signal Fr to S1 and S2 subject to transmit power constraint
Pr at R, namely,

Tr
[
F
(
H1Rx1H

H
1 +H2Rx2H

H
2 +Rnr

)
FH
] ≤ Pr. (3)
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The observed signal at Si can be expressed as

yi = GiFHjxj +GiFHixi +GiFnr + ni, (4)

where j = 2 if i = 1 and j = 1 if i = 2, Gi ∈ CM×N is the
forward channel from R to Si, and ni ∈ CM×1 is the additive
Gaussian noise vector with covariance matrix Rni .

B. TDD Mode

When the system works in TDD mode, we assume the
uplink channel in the first phase and the downlink channel
in the second phase are reciprocal for each source node. The
transmission protocol for TDD systems is similar to FDD
systems. However, in order to formulate a unified framework
for both the FDD and TDD systems, we introduce a conjugate
operation applied to signals at the TDD relay node R in
the second phase. After receiving signal r, R forwards the
signal (Fr)∗ rather than Fr to S1 and S2. This conjugate
operation applied at R helps to reduce the impact of channel
uncertainties on the system as will be discussed later in
Sec. III-B. Considering channel reciprocity as assumed, the
received signal at Si is described by

y∗
i = HT

i (Fr)
∗ + ni. (5)

Si then applies conjugate operation to y∗
i and get

yi = HH
i FHjxj +HH

i FHixi +HH
i Fnr + n∗

i . (6)

Note that n∗
i has the same statistical properties as ni, and thus

is replaced with ni in the following for notational convenience.
To avoid redundant elaboration on TDD systems, we gen-

erally use the same notation Gi as in FDD systems to refer
to HH

i through out the paper. Unless specific otherwise, all
the following discussions and conclusions apply to both FDD
and TDD systems.

C. Imperfect Channel State Information

Since mounting multiple antennas closely on one node
introduces channel correlation, the Kronecker model [25] is
used to describe Hi and Gi as

Hi = R
1
2

hiHwiT
1
2

hi, Gi = R
1
2

giGwiT
1
2

gi, (7)

where Rhi ∈ CN×N and Rgi ∈ CM×M are the row
correlation matrices, and Thi ∈ CM×M and Tgi ∈ CN×N

are the column correlation matrices, all being positive semi-
definite. We assume all correlation matrices are perfectly
known, and the entries of Hwi and Gwi are independent and
identically distributed (i.i.d.) zero-mean circularly symmetric
complex Gaussian (ZMCSCG) random variables with unit
variance. Note that the uncorrelated channel case is included
by assigning identity matrices to all correlation matrices in
(7).
Hwi and Gwi are estimated using minimum mean squared

error (MMSE) method [26], with estimation error given by

Ehwi = Hwi − Ĥwi , Egwi = Gwi − Ĝwi , (8)

where Ĥwi and Ĝwi are the estimated channels. According
to the MMSE estimation property, estimated channels are
uncorrelated with estimation errors. The entries of Ehwi and

Egwi are i.i.d. ZMCSCG with variance σ2
ei . We can rewrite

Hi and Gi as

Hi = R
1
2

hiĤwiT
1
2

hi︸ ︷︷ ︸
Ĥi

+R
1
2

hiEhwiT
1
2

hi︸ ︷︷ ︸
Ehi

, (9)

Gi = R
1
2
giĜwiT

1
2
gi︸ ︷︷ ︸

Ĝi

+R
1
2
giEgwiT

1
2
gi︸ ︷︷ ︸

Egi

. (10)

D. Data Detection

Before detecting the needed data, Si first cancels self-
interference (SI) with estimated CSI and gets

ŷi = yi − ĜiFĤixi

= GiFHjxj +GiFnr + zi + ni, (11)

where zi � (GiFHi − ĜiFĤi)xi is the residual SI with
covariance matrix Rzi = E

{
ziz

H
i

}
. Then a linear receiver

Wi is employed by Si to detect data sj , and the mean squared
error (MSE) can be expressed as

Ji(Pi,Pj ,F,Wi) = E
{‖Wiŷi − sj‖2F

}
, (12)

where E{·} is performed with respect to s1, s2, ni, and nr.

III. PROBLEM FORMULATION

We consider the joint design of source precoders Pi,
∀i = 1, 2, and the relay precoder F as well as destination
receivers Wi, ∀i = 1, 2, to minimize the average sum MSE
of the detected data at S1 and S2 with imperfect CSI. To take
into account channel estimation errors, we take expectation of
Ji(Pi,Pj ,F,Wi) with respect to Eh1, Eh2, Eg1 and Eg2 as
follows

Ĵi(Pi,Pj ,F,Wi) = E{Ji(Pi,Pj ,F,Wi)}
= EEgi,Ehj

{
Tr
[
WiGiFHjRxj (WiGiFHj)

H
]}

+ EEgi

{
Tr
[
WiGiFRnrF

HGH
i WH

i

]}
− EEgi,Ehj

{
2Re

{
Tr
[
WiGiFHjPjRsj

]}}
+ EEhi,Egi

{
Tr
[
WiRziW

H
i

]}
+ Tr(Rsj ) + Tr(WiRniW

H
i ). (13)

Note that Gi and Hi are generally independent for FDD sys-
tems. However, in TDD systems, due to channel reciprocity,
i.e., Gi = HH

i , the backward and forward channels are not
independent. Therefore, the results of (13) for FDD and TDD
systems should be expected to be different. However, we make
some efforts to formulate the problems for both FDD and
TDD systems into a unified framework under the assumption
that the error variance σ2

ei is much smaller than one. With
this assumption, we can approximate the mean squared error
with some more tractable expressions. Otherwise, the problem
would be more complicated. The accuracy of this approxima-
tion is examined through simulation in Sec. VI-A.

A. FDD Mode

We first deal with the term involving Rzi ,

EEhi,Egi

{
Tr
[
WiRziW

H
i

]}
=

Tr
[
WiEEhi,Egi {Rzi}WH

i

]
. (14)
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Since Hi and Gi are estimated independently, Ehi and Egi

are independent. Hence, we have

EEhi,Egi{Rzi} = EEhi,Egi{ĜiFEhiRxiE
H
hiF

HĜH
i }

+ EEhi,Egi{2Re{ĜiFEhiRxiĤ
H
i FHEH

gi}}︸ ︷︷ ︸
0

+ EEhi,Egi{2Re{ĜiFEhiRxiE
H
hiF

HEH
gi}}︸ ︷︷ ︸

0

+ EEhi,Egi{EgiFĤiRxiĤ
H
i FHEH

gi}
+ EEhi,Egi{2Re{EgiFĤiRxiE

H
hiF

HEH
gi}}︸ ︷︷ ︸

0

+ EEhi,Egi{EgiFEhiRxiE
H
hiF

HEH
gi}. (15)

The last term in (15) is a second order term of the estimation
error variance σ2

ei , and thus can be ignored as σ2
ei is assumed

to be much smaller than one. Hence, we have

EEhi,Egi{Rzi}
≈ ĜiFR

1
2

hiEEhi

{
EhwiT

1
2

hiRxiT
1
2

hiE
H
hwi

}
R

1
2

hiF
HĜH

i

+R
1
2

giEEgi

{
EgwiT

1
2

giFĤiRxiĤ
H
i FHT

1
2

giE
H
gwi

}
R

1
2

gi

= ĜiFTr(RxiT̂hi)RhiF
HĜH

i

+ Tr(FĤiRxiĤ
H
i FHT̂gi)Rgi, (16)

where for notational convenience, we have denoted T̂hi �
σ2
eiThi and T̂gi � σ2

eiTgi.

Similarly, we can calculate the other terms in (13) and
obtain the following results

EEgi,Ehj

{
Tr
[
WiGiFHjRxj(WiGiFHj)

H
]}

= Tr
[
Wi(Tr(FΦjF

HT̂hi)Rhi + ĜH
i FΦjF

HĜH
i )WH

i

]
(17)

EEgi

{
Tr
[
WiGiFRnrF

HGH
i WH

i

]}
= Tr

[
Wi(Tr(FRnrF

HT̂gi)Rgi + ĜiFRnrF
HĜH

i )WH
i

]
(18)

EEhj ,Egi

{
2Re

{
Tr(WiGiFHjPjRsj )

}}
= 2Re

{
Tr(WiĜiFĤjPjRsj )

}
(19)

where

Φj � EEhj

{
HjRxjH

H
j

}
Tr(RxjT̂hj)Rhj + ĤjRxjĤ

H
j .
(20)

Substituting the above equations into (13), we finally have

Ĵi(Pi,Pj ,F,Wi) = Tr
[
Wi

(
ĜiFΨiF

HĜH
i +Ωi

)
WH

i

]
− 2Re

{
Tr(WiĜiFĤjPjRsj )

}
+ Tr(Rsj ), (21)

where Ψi � Φj + Tr(RxiT̂hi)Rhi +Rnr and

Ωi � Tr[F(Φj+Rnr+ĤiRxiĤ
H
i )FHT̂gi]Rgi+Rni. (22)

The problem of robust joint design of Pi, F, and Wi, ∀i =
1, 2, to minimize the average sum MSE of S1 and S2 can be

formulated as

min
F,Pi,Wi,∀i=1,2

Ĵ =
∑2

i=1 Ĵi(Pi,Pj ,F,Wi) (23a)

s.t. Tr(PiRsiP
H
i ) ≤ Psi , ∀i = 1, 2 (23b)

Tr(FRrF
H) ≤ Pr, (23c)

where

Rr � EEh1,Eh2

{
E
{
rrH

}}
= Φ1 +Φ2 +Rnr . (24)

Note that since only estimated CSI is available, the average
transmit power constraint at R is considered here.

B. TDD Mode

According to channel reciprocity, Gi = HH
i , correspond-

ingly Ĝi = ĤH
i and Egi = EH

hi. The residual self-
interference becomes zi = (HH

i FHi − ĤH
i FĤi)xi. A close

examination on (13) reveals that after replacing Gi with
HH

i only the forth term, EEhi,Egi

{
Tr
[
WiRziW

H
i

]}
=

EEhi

{
Tr
[
WiRziW

H
i

]}
, needs to be recalculated. The other

terms are essentially the same as FDD systems since H1 and
H2 are still independent, and their results can be easily derived
from (17) to (19) with the following substitution

Ĝi = ĤH
i ,Rgi = T̂hi, T̂gi = Rhi. (25)

We next calculate EEhi
{Rzi} to compute the forth term

in (13). Estimation error variance σ2
ei is assumed to be much

smaller than one, and thus the terms with order of Ehi higher
than two are negligible, i.e.,

EEhi
{Rzi} ≈ EEhi

{
ĤH

i FEhiRxiE
H
hiF

HĤi

}
+ EEhi

{
2Re

{
ĤH

i FEhiRxiĤiF
HEhi

}}
+ EEhi

{
EH

hiFĤiRxiĤ
H
i FHEhi

}
. (26)

For any ZMCSCG entry e = a+jb of Ehwi , we have E
{
e2
}
=

E
{
a2
}− E

{
b2
}
+ 2jE {ab} = 0 [27]. It follows that

EEhi

{
ĤH

i FEhiRxiĤiF
HEhi

}
=

ĤH
i FR

1
2

hiEEhi

{
EhwiT

1
2

hiRxiĤ
H
i FHR

1
2

hiEhwi

}
T

1
2

hi = 0.

Hence, the second term in (26) is zero. Note that the result
holds here because we have applied the conjugate operation
at relay node R as described in Sec. II-B. If no conjugate
operation is applied there, Gi = HT

i and the second term in
(26) should be changed as

EEhi

{
2Re

{
ĤH

i FEhiRxiĤiF
HEhi

}}
→

EEhi

{
2Re

{
ĤT

i FEhiRxiĤiF
HE∗

hi

}}
,

which would not be zero and thus increases the power level
of residual self-interference zi. From (26), we now have

EEhi
{Rzi} ≈ ĤH

i FTr(RxiT̂hi)RhiF
HĤi

+ Tr(FĤiRxiH
H
i FHRhi)T̂hi. (27)

Comparing (27) with (16), we find that (27) can be obtained
from (16) using the same substitution as in (25).

Therefore, we have shown that the objective function (23a)
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can be generalized to TDD systems following (25) when a
conjugate operation is applied to signals at the relay node.
Furthermore, the power constraints for TDD systems are the
same as FDD systems, and can be exactly represented by (23b)
and (23c). Hence, the problem formulation in (23) serves as a
unified framework. In the following, we solve (23) and derive
solutions that can be applied to both FDD and TDD systems.

IV. ITERATIVE JOINT OPTIMIZATION ALGORITHM

The problem in (23) is a nonconvex problem, and thus
is difficult to solve. To make the problem tractable, we first
decouple the original problem into three sub-problems where
we only solve for part of the variables with others fixed.
Since each sub-problem is convex, the optimal solution can
be efficiently obtained by using optimization tool package or
the derived closed-form solutions. After solving those sub-
problems, we propose an iterative algorithm to jointly optimize
Pi, F, and Wi, ∀i = 1, 2. A brief convergence analysis for
the iterative algorithm is also provided.

A. Optimization of Pi

The sub-problem regarding Pi for fixed F and Wi, ∀i =
1, 2, is given as

min
Pi,∀i=1,2

Ĵ =
∑2

i=1 Ĵi(P1,P2)

s.t. Tr(PiRsiP
H
i ) ≤ Psi , ∀i = 1, 2,

Tr(FRrF
H) ≤ Pr.

(28)

From (21), we can rewrite the objective function as follows

Ĵ =

2∑
i=1

Ĵi(P1,P2)

=

2∑
i=1

{
Tr(WiĜiFRhjF

HĜH
i WH

i )Tr(PjRsjP
H
j T̂hj)

+ Tr(WiĜiFRhiF
HĜH

i WH
i )Tr(PiRsiP

H
i T̂hi)

+ Tr(PjRsjP
H
j ĤH

j FHĜH
i WH

i WiĜiFĤj)

+ Tr(FRhjF
HT̂gi)Tr(WiRgiW

H
i )Tr(PjRsjP

H
j T̂hj)

+ Tr(WiRgiW
H
i )Tr(PiRsiP

H
i ĤH

i FHT̂gi)

+ Tr(WiRgiW
H
i )Tr(PjRsjP

H
j ĤH

j FHT̂gi)

− 2Re
{

Tr(WiĜiFĤjPjRsj )
}

+ Tr(WiĜiFRnrF
HĜH

i WH
i ) + Tr(FRnrF

HT̂gi)

+ Tr(WiRniW
H
i ) + Tr(Rsj )

}
(29)

We also rewrite the power constraint at relay as

Tr(FRrF
H) =

2∑
i=1

{
Tr(FRhiF

H)Tr(PiRsiP
H
i T̂hi)

+ Tr(PiRsiP
H
i ĤH

i FHFĤi)
}

+ Tr(FRnrF
H) ≤ Pr. (30)

It is easy to verify that both (29) and (30) are jointly convex
in P1 and P2. Indeed, the sub-problem (28) can be trans-
formed into a quadratically constrained quadratic program-
ming (QCQP) problem [28]. Hence, the convex optimization
package CVX [29] can be used to solve (28).

B. Optimization of F

Given Pi and Wi, i = 1, 2, we formulate the sub-problem
for optimization of F as

min
F

Ĵ =
∑2

i=1 Ĵi(F) s.t. Tr(FRrF
H) ≤ Pr . (31)

It can be verified that (31) is convex with respect to F.
The Lagrangian function of (31) is given as L(F, λ) =
Ĵ + λ(Tr(FRrF

H) − Pr), where λ ≥ 0 is the lagrangian
multiplier. Its derivative with respect to F∗ is

∂L

∂F∗ =

2∑
i=1

ĜH
i WH

i WiĜiFΨi −
2∑

i=1

ĜH
i WH

i RsjP
H
j ĤH

j

+

2∑
i=1

Tr(WiRgiW
H
i )T̂giFΠj + λFRr, (32)

where Πj � Φj + ĤiRxiĤ
H
i + Rnr . By setting ∂L

∂F∗ = 0,
we have

vec(F) = P−1vec(Q), (33)

where Q �
∑2

i=1 Ĝ
H
i WH

i RsjP
H
j ĤH

j and

P �
2∑

i=1

{
ΨT

i ⊗ (ĜH
i WH

i WiĜi)

+ΠT
j ⊗ (Tr(WiRgiW

H
i )T̂gi)

}
+ λRT

r ⊗ IN . (34)

The optimal λ should satisfy the following Karush-Kuhn-
Tucker (KKT) conditions [28],

λ(Tr(FRrF
H)− Pr) = 0, (35)

Tr(FRrF
H) ≤ Pr. (36)

In Appendix A, we show that the optimal λ can be bounded
as follows

0 ≤ λ ≤
√

λ1(Rr)λ1(vec(Q)vec(Q)H)

Pr
Tr((RT

r ⊗ IN )−1),

where λ1(A) denotes the maximum eigenvalue of matrix A.
Then we can conveniently search for the optimal λ using
bisection method within the bounds on λ.

C. Optimization of Wi

Observing that the objective function of (23) is convex with
respect to Wi, ∀i = 1, 2, and Wi is not involved in any
constraints, hence, by calculating the derivative of Ĵ with
respect to Wi and setting it to zero, i.e. ∂Ĵ

∂Wi
= 0, we can

easily obtain the optimal receiver Wi at Si as

Wi = RsjP
H
j ĤH

j FHĜH
i (ĜiFΨiF

HĜH
i +Ωi)

−1. (37)

D. Iterative Optimization

After characterizing and solving the above sub-problems,
we iteratively optimize Pi, F, and Wi, ∀i = 1, 2, as in the
algorithm below to get the final solutions.

Algorithm 1: Iterative Algorithm for Joint Optimization

• Initialization: The source precoders Pi, ∀i = 1, 2,
and relay precoder F are initialized as P

(0)
i =
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√
Psi/Tr(Rsi)IM and F(0) =

√
Pr/Tr(Rr)IN , respec-

tively. Compute W
(0)
i , ∀i = 1, 2, using (37). n = 1;

• Iteration:

(a) Solve for P(n)
i in sub-problem (28) with F = F(n−1)

and Wi = W
(n−1)
i , ∀i = 1, 2;

(b) Compute F(n) using (33) with Pi = P
(n)
i and Wi =

W
(n−1)
i , ∀i = 1, 2;

(c) Compute W
(n)
i using (37) with Pi = P

(n)
i and F =

F(n), ∀i = 1, 2;
(d) n = n+ 1;

• Termination: The algorithm terminates when
‖F(n)−F(n−1)‖2

F

‖F(n−1)‖2
F

≤ δ or n ≥ Nmax, where δ is a
predefined threshold and Nmax is the maximum number
of iterations allowed.

In the iteration process, each step updates the concerned
variable to a new optimal value by solving a convex sub-
problem. Note that all sub-problems have the same objective
function and the solution of each sub-problem does not violate
the power constraints of the other sub-problems. We conclude
that the sum MSE is decreased in each iteration. As the
sum MSE is lower bounded by zero, the proposed iterative
algorithm converges at least to some local minimum.

The performance of the iterative algorithm can be improved
by running the algorithm several times with different random
initialization matrices and then choosing the best result among
them. However, this would significantly increase the compu-
tational complexity. We have shown in Sec. VI-B that using
scaled identity initialization matrices provides better average
performance than random initialization.

V. CONSTRAINED STRUCTURE ALGORITHM

Since the iterative algorithm could take several iterations
to converge, its complexity is high. Hence, in the following
we develop a low complexity algorithm by only optimizing
the relay precoder with the source precoders Pi, ∀i = 1, 2,
fixed. Moreover, we propose a structure for the relay precoder
and derive a closed-form solution which can be efficiently
computed.

Substituting (37) into (21), we have

Ĵi(F,Wi)

= Tr(Rsj )− Tr
[
RsjP

H
j ĤH

j FHĜH
i

(ĜiFΨiF
HĜH

i +Ωi)
−1ĜiFĤjPjRsj

]
= Tr(Rsj )− Tr(RsjP

H
j ĤH

j Ψ−1
i ĤjPjRsj ) + J̃i(F),

(38)

where

J̃i(F) �Tr
[
RsjP

H
j ĤH

j Ψ
− 1

2

i (Ψ
1
2

i F
HĜH

i Ω−1
i ĜiF Ψ

1
2

i

+ IN )−1Ψ
− 1

2

i ĤjPjRsj

]
. (39)

Observing that only the term J̃i(F) in (38) is related to F, the
problem in (23) is equivalent to minimizing J̃1(F) + J̃2(F).
To further simplify the problem, we next consider minimizing
an upper bound on J̃1(F) + J̃2(F). In Appendix B, we show

that J̃i(F) ≤ J̃U
i (F), where

J̃U
i (F) �Tr

[
RsjP

H
j ĤH

j Ψ
− 1

2

i (Ψ
1
2

i F
HĜH

i Ω̄−1
i ĜiF Ψ

1
2

i

+ IN )−1Ψ
− 1

2
i ĤjPjRsj

]
, (40)

and Ω̄i � λ1(T̂gi)PrRgi + Rni . The relaxed problem is
described as

min
F

J̃U
1 (F) + J̃U

2 (F)

s.t. Tr(FRrF
H) ≤ Pr.

(41)

For one-way relay systems, it is shown in [8] and [20]
that the optimal relay precoder should diagonalize the MSE
matrix. However, in our problem, it is generally impossible to
find such an F which could diagonalize the MSE matrices of
both J̃U

1 (F) and J̃U
2 (F). We thus resort to some sub-optimal

solutions with tractable structures. J̃U
i (F) can be rewritten as

J̃U
i (F) = Tr

[
Ai(Ψ

1
2

i F
HΘiFΨ

1
2

i + IN )−1
]
, (42)

where Θi � ĜH
i Ω̄−1

i Ĝi and Ai � Ψ
− 1

2

i ĤjPjR
2
sjP

H
j

ĤH
j Ψ

− 1
2

i . Substituting the eigenvalue decomposition Ai =
UAiΛAiU

H
Ai

into (42) gives

J̃U
i (F) = Tr

[
ΛAi(B

H
i FHΘ

H
2
i Θ

1
2
i FBi + IN )−1

]
, (43)

where Bi � Ψ
1
2

i UAi . We propose the following structure for
the relay precoder

F = UΘΛFU
−1
B , (44)

where UΘ is a unitary matrix, UB is a non-singular matrix,
and ΛF is an N ×N diagonal matrix to be determined in the
following. UB is obtained by applying generalized singular
value decomposition to BH

1 and BH
2 as BH

i = VBiΛBiU
H
B ,

where VBi is a unitary matrix and ΛBi is a diagonal matrix.
UΘ is obtained from the following singular value decompo-
sition (SVD)(

Θ
1
2
1

Θ
1
2
2

)
=

(
VΘ1 ṼΘ1

VΘ2 ṼΘ2

)(
ΛΘ

0

)
UH

Θ , (45)

where VΘi and ṼΘi are N×N complex matrices, and ΛΘ is
a N×N diagonal matrix. Note that the similar relay precoder
structure has been used in [16] to parallelize the bidirectional
channels in two-way relay system under perfect CSI. From

(45), Θ
1
2

i = VΘiΛΘU
H
Θ . Substituting (44) into (43) gives

J̃U
i (F) = Tr

[
ΛAi(VBiΛ̃VH

Θi
VΘiΛ̃VH

Bi
+ IN )−1

]
= Tr

[
Ci(Λ̃VH

Θi
VΘiΛ̃+ IN )−1

]
(46)

where Λ̃ � ΛBiΛFΛΘ and Ci � VH
Bi
ΛAiVBi . In order to

achieve some simple solutions, we further relax the problem
by only considering the main diagonal of VH

Θi
VΘi in (46).

Finally, the problem in (41) is simplified to the following
problem

min
ΛF

∑2
i=1 Tr

[
Ci(DΘiΛ

2
Bi
Λ2

ΘΛ
2
F + IN )−1

]
s.t. Tr(DΛ2

F ) ≤ Pr

(47)
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where DΘi � diag{VH
Θi
VΘi} and D � U−1

B RrU
−H
B . The

optimization problem (47) can be rewritten in scalar form as

min
p1,...,pN

2∑
i=1

N∑
n=1

cin
1 + kinpn

s.t.
N∑

n=1

dnpn ≤ Pr, (48)

pn ≥ 0, ∀n = 1, . . . , N

where pn, kin, cin and dn, ∀n = 1, . . . , N , are the diagonal
entries of Λ2

F , (DΘiΛ
2
Bi
Λ2

Θ), Ci, and D, respectively. It is
easy to recognize that (48) is a convex optimization problem.
By using the KKT conditions we obtain its optimal solution
as poptn � max(0, rn), where rn is the maximum real root of
the equation

α
(n)
4 x4 + α

(n)
3 x3 + α

(n)
2 x2 + α

(n)
1 x+ α

(n)
0 = 0 (49)

with variable x and coefficients

α
(n)
4 = μdnk

2
1nk

2
2n,

α
(n)
3 = 2μdn(k1nk

2
2n + k21nk2n),

α
(n)
2 = μdn(k

2
1n + k22n + 4k1nk2n)

−c1nk1nk
2
2n − c2nk

2
1nk2n,

α
(n)
1 = 2μdn(k1n + k2n)− 2(c1n + c2n)k1nk2n,

α
(n)
0 = μdn − c1nk1n − c2nk2n,

where μ > 0 and should be chosen such that
∑N

n=1 dnp
opt
n =

Pr. In Appendix C, we show that the optimal μ is upper
bounded as

μ ≤ max
{c1nk1n + c2nk2n

dn
, ∀n = 1, . . . , N

}
. (50)

Hence, we can again use the bisection method to find the
optimal μ. After obtaining ΛF , we compute F and Wi, ∀i =
1, 2, using (44) and (37).

The algorithm can be deployed at the relay node to compute
F and Wi, ∀i = 1, 2, and the relay then feed forward Wi

to Si. The estimated channels and their correlation matrices
should be known at relay. In practice, the estimated backward
channel Ĥi and its correlation matrices Rhi and Thi can be
locally obtained at the relay, whereas for the forward channel
Ĝi and its correlation matrices Rgi and Tgi, if the system
works in TDD mode, they can be easily obtained through
channel reciprocity, otherwise source Si should feedback such
knowledge to the relay.

VI. SIMULATION RESULTS AND DISCUSSIONS

In this section, we provide simulation results to evaluate
the performance of the proposed algorithms. FDD mode is
assumed in our simulation. The channel correlation matrices
of Hi and Gi, ∀i = 1, 2, are generated using the exponential
model [30]. The entries of Rhi and Thi are given respectively
by Rhi(k, l) = β|k−l| and Thi(p, q) = α|p−q|, ∀1 ≤ k, l ≤ N
and 1 ≤ p, q ≤ M , where β and α are the row and column
correlation coefficients, respectively. Rgi and Tgi are obtained
similarly, and the same channel correlation coefficients are
assumed for Gi with Rgi(p, q) = β|p−q| and Tgi(k, l) =
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Fig. 2. Approximation of MSE. N = M = 2, α = β = 0.5.

α|k−l|. The channel estimation error variances are given by
σ2
e1 = σ2

e2 = σ2
e .

The transmit data from both source nodes are normalized as
Rs1 = Rs2 = IM . The receive noises at all nodes are complex
white Gaussian with Rnr = σ2

rIN and Rn1 = Rn2 = σ2
dIM .

The transmit power budgets at both source nodes are assumed
to be equal, i.e., Ps1 = Ps2 = Ps. The average signal-to-noise
ratio (SNR) for the first phase and the second phase of the two-
way communication protocol are defined as SNR1 � Ps

Mσ2
r

and

SNR2 � Pr

Nσ2
d

, respectively. All results are averaged over 2000
independent random channel realizations, and 1000 BPSK
symbols are transmitted for each data stream per realization.

A. Accuracy of MSE Approximation

The MSE of the system is approximated with (23a). We now
examine the accuracy of the approximation in Fig. 2, when
N = M = 2 and α = β = 0.5. Pi, F, and Wi, ∀i = 1, 2
are computed using the proposed iterative algorithm. It can
be seen that the approximation results fit very well with the
simulation results even for σ2

e as large as 0.1.

B. Proposed Iterative Algorithm

The convergence behavior of the proposed iterative algo-
rithm is shown in Fig. 3, where N = M = 2, α = β = 0.5,
and σ2

e = 0.005. It can be seen that identity initialization
exhibits better convergence performance than random initial-
ization.

We compare the robust joint MMSE (JMMSE) precoding
in terms of bit error rate (BER) with the non-robust joint
MMSE precoding scheme in [16] which does not take channel
estimation errors into account. We also simulate the dual
channel matching scheme in [11] as well as the conventional
AF relay where the simple scaled identity matrix is used at
relay to amplify the received signal. To illustrate the advantage
of joint precoding, we also show the results of the robust relay
MMSE precoding scheme, in which only the relay precoder F
and destination receiver Wi, ∀i = 1, 2, are optimized by using
Algorithm 1 and skipping Step (a) in the iteration process,
and the source precoders are fixed as Pi =

√
Psi/MIM ,
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Fig. 3. Convergence behavior of the iterative algorithm. N = M = 2,
α = β = 0.5, σ2

e = 0.005.
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Fig. 5. BER performance comparison with different σ2
e . N = M = 2,

α = β = 0.5.

∀i = 1, 2. The non-robust relay MMSE precoding scheme is
similarly derived from [16].

When the channels are uncorrelated, i.e., α = β = 0, the
BER performance is shown in Fig. 4 with N = M = 2
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Fig. 6. BER performance comparison with different N . M = 2, σ2
e =

0.005, α = β = 0.5.

and σ2
e = 0.005. The robust schemes show better robustness

against channel errors than the non-robust schemes especially
in median and high SNR regions. In Fig. 5, we take channel
correlation into account by setting α = β = 0.5, and show
the results for σ2

e = 0.001 and 0.01. The superiority of the
robust schemes becomes more significant when σ2

e increases.
We can also see that the BER of the non-robust schemes
increases with SNR in the high SNR region when the error
variance is large. This is because part of transmit power
contributes to noise due to channel mismatch and residual self-
interference resulted from channel estimation errors, which
is ignored in the non-robust schemes. Meanwhile, the robust
joint precoding scheme always outperforms the robust relay
precoding scheme. However, this performance gain is achieved
at the extra cost of solving a QCQP problem with 2M2

complex variables in each iteration of Algorithm 1.
In Fig. 6, we further investigate the BER performance when

the antenna number N at R changes from 2 to 4 with M = 2,
σ2
e = 0.005, and α = β = 0.5. It can be observed that the

system performance significantly improves when N is greater
than 2. This is because extra diversity gain can be exploited
to enhance the reliability of data transmission. Moreover, the
robust joint MMSE precoding scheme consistently overcomes
the error floor problem occurrs in the non-robust precoding
scheme, and the performance gap widens as N increases from
2 to 4.

C. Proposed Constrained Structure Algorithm

In Fig. 7, we compare the BER performance of the proposed
constrained structure algorithm with the iterative algorithm for
robust relay MMSE precoding when M = N = 4, α = β =
0.5, and σ2

e = 0.001 or 0.01. In both algorithms, the source
precoders are fixed as Pi =

√
Psi/MIM , ∀i = 1, 2. We can

see that the constrained structure algorithm achieves very close
performance with the iterative algorithm under different σ2

e .
However, we would like to point out that due to the specific
structure imposed on the relay precoder, when M < N the
performance of the constrained structure algorithm degrades
severely, showing apparent diversity loss compared with the
iterative algorithm.
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D. Systems with Convolutional Codes

In practical wireless communication systems, the convo-
lutional code as a type of error correction code is usually
employed to improve communication reliability. We thus
would like to examine whether the robust schemes still have
evident advantages over the non-robust schemes when the
convolutional code is used. In the following results, the
convolutional code with code rate 1

2 and constrained length
3 is used. We show the BER results in Fig. 8 with the same
simulation settings as in Fig. 6. It can be seen that the robust
joint MMSE precoding scheme still shows its robustness at
high SNR.

VII. CONCLUSION

This paper addressed the robust joint optimization of source
and relay precoders for ANC-based MIMO two-way relay
systems with both channel uncertainties and residual SI at
destination nodes taken into account. Using a stochastic ap-
proach, we calculated the sum MSE averaged over channel
uncertainties, and it was shown that the joint optimization
problems for both FDD and TDD systems can be solved in

a unified framework. Due to the nonconvexity of the original
problem, we first proposed an iterative algorithm by alternately
solving three convex sub-problems. Then to further reduce
complexity, we proposed a constrained structure algorithm
in which the relay precoder has a specific structure and
the source precoders are fixed. Simulation results confirmed
the superior performance of the proposed robust schemes
compared to the non-robust schemes especially in median and
high SNR regions, and this advantage is also evident even
when the convolutional code is employed. With the source
precoders fixed, the constrained structure algorithm achieves
close performance with the proposed iterative algorithm when
the relay node has the same number of antennas as the source
nodes.

APPENDIX A
PROOF OF UPPER BOUND ON λ

Proof: If (36) is satisfied with λ = 0, then the optimal
relay precoder is easy to obtain by setting λ = 0 in (34).
Otherwise, λ > 0, by (35) we have

Pr = Tr(FRrF
H) = Tr(RrF

HF) ≤ λ1(Rr)Tr(FHF), (51)

where the inequality holds because for any A � 0 and B � 0,
Tr(AB) ≤ λ1(A)Tr(B). Using (33), we get

Tr(FHF) = Tr(vec(F)vec(F)H)

= Tr
[
P−1vec(Q)vec(Q)HP−H

]
≤ λ1(vec(Q)vec(Q)H)Tr(P−1P−H). (52)

Also, for any two matrices A � 0 and B � 0, A⊗B � 0.
From (34), we have P − λRT

r ⊗ IN � 0, and hence P �
λRT

r ⊗ IN . Moreover, if A � B, then A−1 � B−1 and
Tr(A) ≥ Tr(B). Thus, we have

Tr(P−1) ≤ Tr((λRT
r ⊗ IN )−1). (53)

Further, for any A � 0 and B � 0, Tr(AB) ≤ Tr(A)Tr(B).
It follows that

Tr(P−1P−H) ≤ Tr(P−1)Tr(P−H)

≤ (Tr((λRT
r ⊗ IN )−1))2

= λ−2(Tr((RT
r ⊗ IN )−1))2. (54)

Combining (51), (52) and (54), we can obtain the upper bound
on λ.

APPENDIX B
PROOF OF UPPER BOUND ON J̃i(F)

Proof: From (20) and (24), we have

Φj +Rnr + ĤiRxiĤ
H
i = Rr − Tr(RxiT̂hi)Rhi. (55)

Substituting (55) into (22) gives

Ωi = Tr[F(Rr − Tr(RxiT̂hi)Rhi)F
HT̂gi]Rgi +Rni

(a)
� Tr(FRrF

HT̂gi)Rgi +Rni

� λ1(T̂gi)Tr(FRrF
H)Rgi +Rni

� λ1(T̂gi)PrRgi +Rni , (56)
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hence Ω̄i � Ωi. Note that (a) should be tight when σ2
ei is

quite small. Using the result in [20],

BH(AHM−1A+ I)−1B � BH(AHN−1A+ I)−1B,

where A and B are arbitrary matrices and M � N � 0, we
have J̃U

i (F) ≥ J̃i(F).

APPENDIX C
PROOF OF UPPER BOUND ON μ

Proof: From (48), we construct the Lagrangian function

L(p, μ) =

2∑
i=1

N∑
n=1

cin
1 + kinpn

+ μ(

N∑
n=1

dnpn − Pr), (57)

where p � [p1, p2, . . . , pN ]. By setting ∂L(p,μ)
∂pn

= 0, we have

2∑
i=1

− cinkin
(1 + kinpn)2

+ μdn = 0. (58)

Since
∑N

n=1 dnp
opt
n = Pr, there exits at least one m ∈

{1, . . . , N} such that poptm > 0 . Hence, from (58) we have

μ =
2∑

i=1

cimkim

dm(1 + kimpoptm )2

≤
2∑

i=1

cimkim
dm

≤ max
{ 2∑

i=1

cinkin
dn

, ∀n = 1, . . . , N
}
. (59)

Thus the upper bound on μ is derived.
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