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Introduction 

Digital tracking loops are nonlinear in nature and their complexity has increased 

with the advent of new Global Navigation Satellite Systems (GNSS) signals such 

as the Binary Offset Carrier (BOC) modulation. For these reasons, their analysis is 

often confined to Monte Carlo simulations that provide enough flexibility to fully 

characterize the system under analysis. This flexibility is, however, achieved at 

the expense of long simulation times or it can lead to the use of a limited number 

of simulation runs. In order to overcome these limitations, alternative solutions 

have been explored (Jeruchim et al. 2000, Tranter et al. 2004). In this respect, 

Semi-Analytic techniques (Tranter et al. 2004) exploit the knowledge of the 

system under analysis to reduce the computational load that full Monte Carlo 

simulations would require. In the Semi-Analytic approach, only nonlinear blocks 

are fully simulated whereas analytical results are used to account for the linear 

components of the system. This principle directly applies to GNSS digital tracking 

loops, where the most computationally demanding components are the Integrate 

and Dump (I&D) blocks used for despreading the incoming GNSS signals. These 

blocks are linear and accurate analytical models can be used for their 

characterizations. Thus, Semi-Analytic simulations, exploiting an analytical 

model for the I&D blocks, can be developed (Golshan 2006, Silva et al. 2007, 

Borio et al. 2010). 

The Semi-Analytic framework developed in Borio et al. (2010) has led to the 

development of the Matlab® Semi-Analytic Tracking Loop Simulations 

(SATLSim) toolbox.  This framework is briefly discussed and the Matlab® code 

for the fast simulation of GNSS digital tracking loops is presented. 
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SATLSim has been organized in a modular way where each fundamental block 

for the tracking loop simulation is implemented in separate functions. By 

modifying these functions it is possible to simulate different tracking loops, 

including delay, frequency and phase lock loops (DLL, FLL and PLL). The 

simulation scheme is flexible enough to allow the analysis of unambiguous BOC 

tracking algorithms (Borio et al. 2010) and the specific case of the Double 

Estimator (Hodgart and Blunt 2007) is considered. 

Semi-Analytic Simulation Scheme 

In a GNSS tracking loop, the incoming signal is correlated with several locally 

generated replicas and different correlator outputs are produced. This operation is 

performed by the I&D blocks and each correlator output is a function of the input 

signal and the parameters previously estimated by the tracking loop. The 

correlator outputs are passed to the nonlinear discriminator that produces a first 

estimate of the tracking error that the loop is trying to minimize. The tracking 

error is filtered and passed to the Numerically Controlled Oscillator (NCO) that is 

used for generating new local signal replicas. 

Efficient tracking loop simulations can be obtained by substituting the I&D blocks 

with their analytical model. More specifically, a correlator output can be modeled 

as: 
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where 

• C is the received signal power; 

• dfΔ  and φΔ are the residual frequency and phase errors; 

• dτΔ and sτΔ are the code and subcarrier delay errors. It is noted that, in a 

standard tracking loop architecture, local code and subcarrier are aligned 

and 0sτΔ = . sτΔ can be different from zero only when a Subcarrier Lock 

Loop (SLL) is used to correctly align the signal subcarrier (Hodgart and 

Blunt 2007); 

• cT is the coherent integration time; 

• ( ),l d sR τ τΔ Δ is the correlation function between incoming and locally 

generated code and is a function of both code and subcarrier delay errors. 
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When 0sτΔ = , ( ),l d sR τ τΔ Δ  degenerates to the standard code correlation 

function; 

• cη is a zero mean noise term whose variance depends on the input noise 

power, front-end filtering and the correlation process operated by the I&D 

blocks. More details on the properties of cη can be found in Borio et al. 

(2010). 

From (1), it is possible to reconstruct the correlator outputs given the estimation 

errors generated by the loop. Thus, the correlation process does not need to be 

simulated and only the estimation errors are determined using a Monte Carlo 

approach. Based on this principle, the simulation scheme shown in Figure 1 can 

be adopted for the fast simulation of digital tracking loops. 

 
Figure 1: Semi-Analytic scheme adopted for the simulation of GNSS tracking loops. The 

name associated to each functional block corresponds to the Matlab® function implemented 

in the SATLSim toolbox. 

 

The functional blocks in Figure 1 are numbered according to the execution order 

in the provided code and names associated to each block correspond to different 

Matlab® functions implemented in the SATLSim toolbox. By modifying these 

functional blocks, it is possible to simulate different tracking loops. 

In the proposed simulation scheme, a new estimate of the tracking parameters 

(Doppler frequency, carrier phase and code and subcarrier delays) is generated by 

an NCO model. This model accounts for the integration process performed by a 

real NCO and different update equations can be used (Stephens and Thomas 
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1995). A commonly used model is the rate-only feedback NCO (Stephens and 

Thomas 1995), characterized by the following update equation: 
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where ˆkϕ denotes the k-th estimate of the tracking parameter under consideration 

and ˆkδϕ is its estimated rate of change. ˆkδϕ  is generally provided by the loop 

filter. It is noted that when several parameters are considered, equation (2) is used 

to update each term independently. The new parameter estimate is compared 

against the true value and a new estimation error is computed. This error is then 

used for the generation of the signal component at the output of the I&D block 

using equation (1). The noise term, generated separately, is then added to the 

signal component. When several correlators are required, the correlation among 

the different noise components has to be accounted for. This is simulated using 

the approach described in Borio et al. (2010).  

The operations required to convert the correlator outputs into a new estimate of 

the parameter rate, kδϕ , are fully simulated and correspond to the functional 

blocks that can be found in a real tracking loop. For instance, the correlator 

outputs can be used to update the nonlinear discriminator and the loop filter. It is 

noted that a similar simulation scheme can be used for analyzing Kalman filter 

based tracking. In this case, the correlator outputs are fed to a Kalman filter that is 

used to produce new estimates of the tracking parameters. 

Code Structure 

The structure of the code for the Semi-Analytic simulation scheme is provided in 

Figure 2. In this case, the code is used to estimate the tracking jitter of the loop as 

a function of different parameters, such as the Early-minus-Late spacing and the 

input Carrier-to-Noise density power ratio ( ). 0/C N

The parameters required for initializing the simulation procedure are accessible 

through the function InitSettings. These parameters include the sampling 

frequency, the loop bandwidth and the coherent integration time that are used to 

design the loop filters through the function FilterDesign. In the provided 

code, standard formulae from Kaplan and Hegarty (2006) are used. However, 

FilterDesign can be modified in order to adopt a different approach, such as 
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the controlled-root formulation proposed by Stephens and Thomas (1995). During 

the initialization phase, the true input parameters are also generated.  
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0/ N

The simulation core consists of three nested loops, on the Early-minus-Late 

spacing, for different C values and for the number of simulation runs.  

  

 
Figure 2: Code structure and different functional blocks. 

 

It is noted that the loop on Early-minus-Late spacing can be absent if, for 

example, only a PLL is considered. For each Early-minus-Late spacing and for a 

fixed , a noise vector containing the noise components of the correlator 

outputs is generated. The vector length is equal to the number of simulation runs 

and all the noise components are generated at once for efficiency reasons. 

0/C N

After generating the noise components, the inner loop on the simulation runs 

starts. In this loop, the operations described in the previous section are performed. 

Each functional block is implemented by a different Matlab® function, as 

indicated in Figure 2.  

All intermediate results, such as the discriminator and loop filter outputs, are 

stored in auxiliary vectors and are used at the end of the loop on the simulation 

runs to evaluate quantities of interest such as the tracking jitter.  



In the provided code, theoretical formulae for the computation of the tracking 

jitter are also implemented and used as a comparison term for the simulation 

results.  

Standard PLL (PLL.m) 

The simulation of a standard PLL requires the generation of the Prompt correlator 

alone (GenerateSignalCorrelation). The Prompt correlator is the output 

of I&D block computed with respect to the best delay estimate provided by the 

loop (Kaplan and Hegarty 2006). For this reason, the noise generation 

(GenerateNoiseVector) simply consists of simulating a one dimensional 

complex Gaussian white sequence with independent and identically distributed 

real and imaginary parts with variance (Borio et al. 2010) 
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 When simulating a standard PLL alone, perfect code synchronization is assumed 

and (1) simplifies to 
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where dfΔ is obtained by comparing the true Doppler frequency against the loop 

filter output. φΔ is the phase error obtained as the difference between the true 

phase and the phase estimate produced by the NCO.  

In the provided code, the function UpdateDiscriminator implements a 

standard Costas discriminator. Different phase discriminators, as indicated in 

Kaplan and Hegarty (2006), can be easily implemented by changing this function.   

Double Estimator (DoubleEstimator.m) 

In the Double Estimator case, the function GenerateNoiseVector, 

responsible for the generation of the correlator noise, produces a matrix, 

where is the number of simulation runs. The five rows of this matrix 

correspond to the five correlators required by the Double Estimator that are 

characterized by the following correlation matrix 
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 where sd and scd are the code and subcarrier Early-minus-Late spacing. 

The NCO update (UpdateNCO) is performed on both code and subcarrier loops 

and the estimated errors, dτΔ and sτΔ , are used to compute new correlator signal 

components  (GenerateSignalCorrelation). Two nonlinear 

discriminators (UpdateDiscriminator) and loop filters (UpdateFilter) 

are run in parallel to determine the rate of change of both code and subcarrier 

delay. 

The Double Estimator provides an example of how several tracking loops 

operating in parallel can be easily coupled in order to provide more realistic 

simulations accounting for the interaction of different tracking algorithms (Borio 

et al. 2010). 

Installation 

The SATLSim toolbox can be found on the GPS Toolbox web site at 

http://www.ngs.noaa.gov/gps-toolbox/. The latest version can also be obtained 

from the Position Location And Navigation (PLAN) website under the section 

Publications (http://plan.geomatics.ucalgary.ca/publications.php). To install the 

toolbox, download the SATLSim.zip file and unzip it. Ensure the SATLSim 

directory location is specified in the Matlab search path. 

To evaluate the performance of the Double Estimator, follow the instructions 

provided in the SATLSim\DoubleEstimator\README.txt file. To evaluate the 

performance of the standard PLL, follow the instructions provided in the 

SATLSim\PLL\README.txt file. 
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The toolbox has been designed as a stand-alone application and no additional 

packages are required other than the functions already available in a standard 

Matlab® installation.  

Sample Results 

Sample results, obtained using the proposed Semi-Analytic framework (PLL.m), 

are shown in Figure 3, where the tracking jitter for a second order PLL is 

provided.  The loop filter has been designed using the approach described in 

Kaplan and Hegarty (2006) that is based on the bilinear transform and on results 

derived from analog PLL theory. When the product between loop bandwidth and 

coherent integration time is significantly greater than zero, this method fails in 

providing a PLL matching the design parameters.   

 
Figure 3: Tracking jitter for a second order PLL as a function of the C/N0. Coherent 

integration time equal to 10 ms. 

 

This fact is highlighted in Figure 3, where both design and actual bandwidths are 

indicated. When the product between loop bandwidth and integration time is equal 

to 0.05, it is already possible to observe a divergence between design and actual 
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loop bandwidths. The actual bandwidth is computed by the function 

ComputeEquivBW.  

In Figure 3, three curves are present. The first one, indicated by “Theoretical”, is 

obtained using the theoretical expression from Kaplan and Hegarty (2006) and the 

actual loop bandwidth. The second one is obtained by estimating the standard 

deviation of the phase tracking error that is computed during the second step of 

the proposed Semi-Analytic methodology.  In the last curve, the tracking jitter is 

derived by opportunely propagating the standard deviation of the loop filter 

output. More specifically, in the PLL linear approximation, the tracking error and 

the loop filter output are related by a linear relationship. Thus, the standard 

deviation of the loop filter output and the tracking jitter are related by a constant 

factor. This propagation factor is evaluated in the provided code by the function 

NoisePropagation. The vertical trend in the curve computed from the actual 

tracking error indicates that the loop has lost lock. This phenomenon is not 

predicted by the theoretical jitter model based on a linear approximation of the 

loop.  

The results shown in Figure 3 were obtained using the PLL.m function in the 

SATLSim toolbox. Similar results are obtained in the case of the Double 

Estimator (Borio et al. 2010) using the DoubleEstimator.m function. 

Conclusions 

A Semi-Analytic framework for the fast simulation of digital tracking loops has 

been presented. Although the code provided has been specifically designed for 

evaluating the tracking jitter, the proposed framework can be used for quantifying 

other figures of merit including tracking threshold and mean time to lose lock. 

The proposed framework is general and can be used for the simulation of new 

algorithms such as unambiguous BOC tracking (Borio et al. 2010) and the 

analysis of collaborative code tracking techniques (Borio et al. 2009). 
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GPS Tool Box 

The GPS Tool Box is a column dedicated to highlighting algorithms and source 

code utilized by GPS engineers and scientists. If you have an interesting program 

or software package you would like to share with our readers, please pass it along; 

e-mail it to us at gps-toolbox@ngs.noaa.gov. To comment on any of the source 

code discussed here, or to download source code, visit our website at 

http://www.ngs.noaa.gov/gps-toolbox. This column is edited by Stephen Hilla, 

National Geodetic Survey, NOAA, Silver Spring, Maryland, and Mike Craymer, 

Geodetic Survey Division, Natural Resources Canada, Ottawa, Ontario, Canada 
 

 




