
1

SATLSim: A Semi-Analytic Framework for
Fast GNSS Tracking Loop Simulations

Daniele Borio, Pratibha B. Anantharamu and Gérard Lachapelle

PLAN Group, Department of Geomatics Engineering, University of Calgary
Phone: +1 403 220 9797
E-mail addresses:

daniele.borio@ieee.org, pbananth@ucalgary.ca, lachapel@ucalgary.ca

Introduction

Digital tracking loops are nonlinear in nature and their complexity has increased

with the advent of new Global Navigation Satellite Systems (GNSS) signals such

as the Binary Offset Carrier (BOC) modulation. For these reasons, their analysis is

often confined to Monte Carlo simulations that provide enough flexibility to fully

characterize the system under analysis. This flexibility is, however, achieved at

the expense of long simulation times or it can lead to the use of a limited number

of simulation runs. In order to overcome these limitations, alternative solutions

have been explored (Jeruchim et al. 2000, Tranter et al. 2004). In this respect,

Semi-Analytic techniques (Tranter et al. 2004) exploit the knowledge of the

system under analysis to reduce the computational load that full Monte Carlo

simulations would require. In the Semi-Analytic approach, only nonlinear blocks

are fully simulated whereas analytical results are used to account for the linear

components of the system. This principle directly applies to GNSS digital tracking

loops, where the most computationally demanding components are the Integrate

and Dump (I&D) blocks used for despreading the incoming GNSS signals. These

blocks are linear and accurate analytical models can be used for their

characterizations. Thus, Semi-Analytic simulations, exploiting an analytical

model for the I&D blocks, can be developed (Golshan 2006, Silva et al. 2007,

Borio et al. 2010).

The Semi-Analytic framework developed in Borio et al. (2010) has led to the

development of the Matlab® Semi-Analytic Tracking Loop Simulations

(SATLSim) toolbox. This framework is briefly discussed and the Matlab® code

for the fast simulation of GNSS digital tracking loops is presented.

mailto:daniele.borio@ieee.org
mailto:pbananth@ucalgary.ca
mailto:lachapel@ucalgary.ca
daniele
Text Box
Accepted for publication in GPS Tool Box, GPS Solutions, 13 Apr 2011

SATLSim has been organized in a modular way where each fundamental block

for the tracking loop simulation is implemented in separate functions. By

modifying these functions it is possible to simulate different tracking loops,

including delay, frequency and phase lock loops (DLL, FLL and PLL). The

simulation scheme is flexible enough to allow the analysis of unambiguous BOC

tracking algorithms (Borio et al. 2010) and the specific case of the Double

Estimator (Hodgart and Blunt 2007) is considered.

Semi-Analytic Simulation Scheme

In a GNSS tracking loop, the incoming signal is correlated with several locally

generated replicas and different correlator outputs are produced. This operation is

performed by the I&D blocks and each correlator output is a function of the input

signal and the parameters previously estimated by the tracking loop. The

correlator outputs are passed to the nonlinear discriminator that produces a first

estimate of the tracking error that the loop is trying to minimize. The tracking

error is filtered and passed to the Numerically Controlled Oscillator (NCO) that is

used for generating new local signal replicas.

Efficient tracking loop simulations can be obtained by substituting the I&D blocks

with their analytical model. More specifically, a correlator output can be modeled

as:

 () () { }sin
, exp

2
d c

l d s
d c

f TC R j
f T
π

cτ τ φ
π

Δ
ηΔ Δ Δ

Δ
+ (1)

where

• C is the received signal power;

• dfΔ and φΔ are the residual frequency and phase errors;

• dτΔ and sτΔ are the code and subcarrier delay errors. It is noted that, in a

standard tracking loop architecture, local code and subcarrier are aligned

and 0sτΔ = . sτΔ can be different from zero only when a Subcarrier Lock

Loop (SLL) is used to correctly align the signal subcarrier (Hodgart and

Blunt 2007);

• cT is the coherent integration time;

• (),l d sR τ τΔ Δ is the correlation function between incoming and locally

generated code and is a function of both code and subcarrier delay errors.
2

When 0sτΔ = , (),l d sR τ τΔ Δ degenerates to the standard code correlation

function;

• cη is a zero mean noise term whose variance depends on the input noise

power, front-end filtering and the correlation process operated by the I&D

blocks. More details on the properties of cη can be found in Borio et al.

(2010).

From (1), it is possible to reconstruct the correlator outputs given the estimation

errors generated by the loop. Thus, the correlation process does not need to be

simulated and only the estimation errors are determined using a Monte Carlo

approach. Based on this principle, the simulation scheme shown in Figure 1 can

be adopted for the fast simulation of digital tracking loops.

Figure 1: Semi-Analytic scheme adopted for the simulation of GNSS tracking loops. The

name associated to each functional block corresponds to the Matlab® function implemented

in the SATLSim toolbox.

The functional blocks in Figure 1 are numbered according to the execution order

in the provided code and names associated to each block correspond to different

Matlab® functions implemented in the SATLSim toolbox. By modifying these

functional blocks, it is possible to simulate different tracking loops.

In the proposed simulation scheme, a new estimate of the tracking parameters

(Doppler frequency, carrier phase and code and subcarrier delays) is generated by

an NCO model. This model accounts for the integration process performed by a

real NCO and different update equations can be used (Stephens and Thomas

3

1995). A commonly used model is the rate-only feedback NCO (Stephens and

Thomas 1995), characterized by the following update equation:

 (1 1ˆ
2

ˆ ˆc
k k k k

Tϕ ϕ δϕ δϕ− −= + +)2ˆ − (2)

where ˆkϕ denotes the k-th estimate of the tracking parameter under consideration

and ˆkδϕ is its estimated rate of change. ˆkδϕ is generally provided by the loop

filter. It is noted that when several parameters are considered, equation (2) is used

to update each term independently. The new parameter estimate is compared

against the true value and a new estimation error is computed. This error is then

used for the generation of the signal component at the output of the I&D block

using equation (1). The noise term, generated separately, is then added to the

signal component. When several correlators are required, the correlation among

the different noise components has to be accounted for. This is simulated using

the approach described in Borio et al. (2010).

The operations required to convert the correlator outputs into a new estimate of

the parameter rate, kδϕ , are fully simulated and correspond to the functional

blocks that can be found in a real tracking loop. For instance, the correlator

outputs can be used to update the nonlinear discriminator and the loop filter. It is

noted that a similar simulation scheme can be used for analyzing Kalman filter

based tracking. In this case, the correlator outputs are fed to a Kalman filter that is

used to produce new estimates of the tracking parameters.

Code Structure

The structure of the code for the Semi-Analytic simulation scheme is provided in

Figure 2. In this case, the code is used to estimate the tracking jitter of the loop as

a function of different parameters, such as the Early-minus-Late spacing and the

input Carrier-to-Noise density power ratio (). 0/C N

The parameters required for initializing the simulation procedure are accessible

through the function InitSettings. These parameters include the sampling

frequency, the loop bandwidth and the coherent integration time that are used to

design the loop filters through the function FilterDesign. In the provided

code, standard formulae from Kaplan and Hegarty (2006) are used. However,

FilterDesign can be modified in order to adopt a different approach, such as

4

the controlled-root formulation proposed by Stephens and Thomas (1995). During

the initialization phase, the true input parameters are also generated.

5

0/ N

The simulation core consists of three nested loops, on the Early-minus-Late

spacing, for different C values and for the number of simulation runs.

Figure 2: Code structure and different functional blocks.

It is noted that the loop on Early-minus-Late spacing can be absent if, for

example, only a PLL is considered. For each Early-minus-Late spacing and for a

fixed , a noise vector containing the noise components of the correlator

outputs is generated. The vector length is equal to the number of simulation runs

and all the noise components are generated at once for efficiency reasons.

0/C N

After generating the noise components, the inner loop on the simulation runs

starts. In this loop, the operations described in the previous section are performed.

Each functional block is implemented by a different Matlab® function, as

indicated in Figure 2.

All intermediate results, such as the discriminator and loop filter outputs, are

stored in auxiliary vectors and are used at the end of the loop on the simulation

runs to evaluate quantities of interest such as the tracking jitter.

In the provided code, theoretical formulae for the computation of the tracking

jitter are also implemented and used as a comparison term for the simulation

results.

Standard PLL (PLL.m)

The simulation of a standard PLL requires the generation of the Prompt correlator

alone (GenerateSignalCorrelation). The Prompt correlator is the output

of I&D block computed with respect to the best delay estimate provided by the

loop (Kaplan and Hegarty 2006). For this reason, the noise generation

(GenerateNoiseVector) simply consists of simulating a one dimensional

complex Gaussian white sequence with independent and identically distributed

real and imaginary parts with variance (Borio et al. 2010)

6

 2

0

1
2 /n

cC N T
σ = . (3)

 When simulating a standard PLL alone, perfect code synchronization is assumed

and (1) simplifies to

 () { }sin
exp

2
d c

c
d c

f TC j
f T
π

φ η
π

Δ
Δ +

Δ
 (4)

where dfΔ is obtained by comparing the true Doppler frequency against the loop

filter output. φΔ is the phase error obtained as the difference between the true

phase and the phase estimate produced by the NCO.

In the provided code, the function UpdateDiscriminator implements a

standard Costas discriminator. Different phase discriminators, as indicated in

Kaplan and Hegarty (2006), can be easily implemented by changing this function.

Double Estimator (DoubleEstimator.m)

In the Double Estimator case, the function GenerateNoiseVector,

responsible for the generation of the correlator noise, produces a matrix,

where is the number of simulation runs. The five rows of this matrix

correspond to the five correlators required by the Double Estimator that are

characterized by the following correlation matrix

5 N×

N

()

()

()

1 , ,0 ,
2 2 2 2 2

, 1 0, 0, ,
2 2 2 2 2

,0 0, 1 0, ,0
2 2 2 2

, 0, 0,
2 2 2

s sc s s sc
l l l l s

s sc sc s sc
l l l sc

s sc sc
n l l l l

s sc sc
l l sc l

d d d d dR R R R d

d d d d dR R R d

d d d dC R R R R

d d dR R d R

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠
⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠
⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜
⎝ ⎠ ⎝ ⎠

,0

l

s

R

()

1 ,
2 2

,0 , ,0 , 1
2 2 2 2 2

s sc
l

s sc s s sc
l s l l l

d dR

d d d d dR d R R R

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎛ ⎞⎢ ⎥⎟ ⎜

⎝ ⎠⎢ ⎥
⎢ ⎥⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦

⎟

 (5)

 where sd and scd are the code and subcarrier Early-minus-Late spacing.

The NCO update (UpdateNCO) is performed on both code and subcarrier loops

and the estimated errors, dτΔ and sτΔ , are used to compute new correlator signal

components (GenerateSignalCorrelation). Two nonlinear

discriminators (UpdateDiscriminator) and loop filters (UpdateFilter)

are run in parallel to determine the rate of change of both code and subcarrier

delay.

The Double Estimator provides an example of how several tracking loops

operating in parallel can be easily coupled in order to provide more realistic

simulations accounting for the interaction of different tracking algorithms (Borio

et al. 2010).

Installation

The SATLSim toolbox can be found on the GPS Toolbox web site at

http://www.ngs.noaa.gov/gps-toolbox/. The latest version can also be obtained

from the Position Location And Navigation (PLAN) website under the section

Publications (http://plan.geomatics.ucalgary.ca/publications.php). To install the

toolbox, download the SATLSim.zip file and unzip it. Ensure the SATLSim

directory location is specified in the Matlab search path.

To evaluate the performance of the Double Estimator, follow the instructions

provided in the SATLSim\DoubleEstimator\README.txt file. To evaluate the

performance of the standard PLL, follow the instructions provided in the

SATLSim\PLL\README.txt file.

7

http://www.ngs.noaa.gov/gps-toolbox/

The toolbox has been designed as a stand-alone application and no additional

packages are required other than the functions already available in a standard

Matlab® installation.

Sample Results

Sample results, obtained using the proposed Semi-Analytic framework (PLL.m),

are shown in Figure 3, where the tracking jitter for a second order PLL is

provided. The loop filter has been designed using the approach described in

Kaplan and Hegarty (2006) that is based on the bilinear transform and on results

derived from analog PLL theory. When the product between loop bandwidth and

coherent integration time is significantly greater than zero, this method fails in

providing a PLL matching the design parameters.

Figure 3: Tracking jitter for a second order PLL as a function of the C/N0. Coherent

integration time equal to 10 ms.

This fact is highlighted in Figure 3, where both design and actual bandwidths are

indicated. When the product between loop bandwidth and integration time is equal

to 0.05, it is already possible to observe a divergence between design and actual

8

9

loop bandwidths. The actual bandwidth is computed by the function

ComputeEquivBW.

In Figure 3, three curves are present. The first one, indicated by “Theoretical”, is

obtained using the theoretical expression from Kaplan and Hegarty (2006) and the

actual loop bandwidth. The second one is obtained by estimating the standard

deviation of the phase tracking error that is computed during the second step of

the proposed Semi-Analytic methodology. In the last curve, the tracking jitter is

derived by opportunely propagating the standard deviation of the loop filter

output. More specifically, in the PLL linear approximation, the tracking error and

the loop filter output are related by a linear relationship. Thus, the standard

deviation of the loop filter output and the tracking jitter are related by a constant

factor. This propagation factor is evaluated in the provided code by the function

NoisePropagation. The vertical trend in the curve computed from the actual

tracking error indicates that the loop has lost lock. This phenomenon is not

predicted by the theoretical jitter model based on a linear approximation of the

loop.

The results shown in Figure 3 were obtained using the PLL.m function in the

SATLSim toolbox. Similar results are obtained in the case of the Double

Estimator (Borio et al. 2010) using the DoubleEstimator.m function.

Conclusions

A Semi-Analytic framework for the fast simulation of digital tracking loops has

been presented. Although the code provided has been specifically designed for

evaluating the tracking jitter, the proposed framework can be used for quantifying

other figures of merit including tracking threshold and mean time to lose lock.

The proposed framework is general and can be used for the simulation of new

algorithms such as unambiguous BOC tracking (Borio et al. 2010) and the

analysis of collaborative code tracking techniques (Borio et al. 2009).

References

Borio D., Anantharamu P. B. and Lachapelle G. (2010) “Semi-Analytic Simulations: An

Extension to Unambiguous BOC Tracking,” in Proceedings of ION International Technical

Meeting (ITM), San Diego, 14 pages, January.

10

Borio D., Mongrédien C. and Lachapelle G. (2009) “Collaborative Code Tracking of Composite

GNSS Signals”, IEEE Journal of Selected Topics in Signal Processing, Vol. 3, No. 4, pp. 613-626,

July.

Golshan A. R.(2006) “Post-Correlator Modeling for Fast Simulation and joint Performance

Analysis of GNSS Code and Carrier Tracking Loops,” in Proc. of the ION National Technical

Meeting (NTM), Monterey, CA, pp. 312 –318, January.

Hodgart M.S. and Blunt P. D. (2007) “A Dual Estimate Receiver of Binary Offset Carrier (BOC)

Modulated Signals Global Navigation Satellite Systems,” Electronics Letters, Vol. 43, No. 16, pp.

877-878, August.

Jeruchim M. C., Balaban P. and Shanmugan K. S. (2000) “Simulation of Communication

Systems,” 2nd ed. Springer, October.

Kaplan E. D. and Hegarty C. J. (2006), Understanding GPS: Principles and Applications, 2nd ed.

Norwood, MA, USA: Artech House Publishers

Silva J. S., Silva P. F., Fernández A., Diez J.and Lorga J. F. M. (2007) “Factored Correlator

Model: a Solution for Fast, Flexible, and realistic GNSS Receiver Simulations,” in Proceedings of

ION/GNSS, Forth Worth, TX, US, pp. 2676 – 2686, September.

Stephens S. A. and Thomas J. B. (1995) “Controlled-Root Formulation for Digital Phase-Locked

Loops,” IEEE Transactions on Aerospace and Electronic Systems, Vol. 13, No. 1, pp. 78-95,

January.

Tranter W. H., Shanmugan K. S., Rappaport T. S. and Kosbar K.L. (2004), “Principles of

Communication Systems Simulation with Wireless Applications”, Prentice Hall, Communications

Engineering and Emerging Technologies Series, January.

11

GPS Tool Box

The GPS Tool Box is a column dedicated to highlighting algorithms and source

code utilized by GPS engineers and scientists. If you have an interesting program

or software package you would like to share with our readers, please pass it along;

e-mail it to us at gps-toolbox@ngs.noaa.gov. To comment on any of the source

code discussed here, or to download source code, visit our website at

http://www.ngs.noaa.gov/gps-toolbox. This column is edited by Stephen Hilla,

National Geodetic Survey, NOAA, Silver Spring, Maryland, and Mike Craymer,

Geodetic Survey Division, Natural Resources Canada, Ottawa, Ontario, Canada

