
Efficient and Side-Channel-Secure Block Cipher
Implementation with Custom Instructions on FPGA

Suvarna Mane
Department

Virginia Tech
Blacksburg, USA
suvarnam@vt.edu

Mostafa Taha
ECE Department

Virginia Tech
Blacksburg, USA

mtaha@vt.edu

Patrick Schaumont
ECE Department

Virginia Tech
Blacksburg, USA
schaum@vt.edu

Abstract—The security threat of side-channel analysis (SCA)
attacks has created a need for SCA countermeasures. While many
countermeasures have been proposed, a key challenge remains
to design a countermeasure that is effective, that is easy to
integrate in existing cryptographic implementations, and that
has low overhead in area and performance. We present our
solution in the context of an embedded design flow for FPGA. We
integrate an SCA-resistant custom instruction set on a soft-core
CPU. The SCA resistance is based on dual-rail precharge logic. A
balanced-interleaved data format, combined with a novel memory
organization, ensures that we can support both logic operations
as well as lookup tables. The resulting countermeasure applies
to a broad class of block ciphers. We demonstrate our results on
an Altera Cyclone-II FPGA with Nios-II/s processor for a 128-
bit Advanced Encryption Standard (AES) T-box implementation.
We show SCA improvement of more than 400X for a system-
wide electro-magnetic attack that covers both the FPGA and off-
chip memory (SSRAM). This comes at an overhead of 2.7x in
performance and 1.15X in area. Using comparisons with related
work, we demonstrate that this represents an excellent trade-
off between SCA resistance, (software and hardware) design
complexity, performance, and circuit area cost.

Index Terms—Side Channel Analysis; Custom Instructions;
Softcore CPU; FPGA; Cryptography.

I. INTRODUCTION

Since their introduction over a decade a ago, side-channel
analysis (SCA) techniques have been successfully used to ex-
tract secret keys from cryptographic algorithms by exploiting
side-channel information such as execution time, power con-
sumption, or electromagnetic emissions. The field of SCA has
been intensively researched for attacks and countermeasures.
Several recent results highlight the risk of SCA to commercial,
deployed systems with a trustworthiness requirement. This
includes the use of SCA to extract keys from Virtex-II FPGA
[15] and Virtex-4/5 FPGA [16] bitstream encryption, from the
Mifare DESFire contactless card [13], from the Keeloq keyless
entry system [8], and from the Atmel Cryptomemory non-
volatile memory [2]. It’s reasonable to assume that most of
these devices were not designed with SCA in mind. Indeed,
if SCA attacks are considered part of the threat model of
a design, one can introduce suitable SCA countermeasures
to hamper these attacks. Modern smart-cards, for example,
have built-in countermeasures against SCA attacks, as well as
against active (fault-based) attacks.

C

CPU

C

sca-
resistant

C

CPU CPU

sca-
resistant

Performance
Circuit Area

SCA Resistance
C Complexity

=

C

CPU
Custom Ins +
Memory Org

Performance
Circuit Area

SCA Resistance
C Complexity

Performance
Circuit Area

SCA Resistance
C Complexity

~ ~

= ~

(a) (b) (c)

Figure 1. SCA resistant design by (a) C source code transformation, (b)
Dedicated circuit styles and (c) Customized CPU

Nevertheless, the design and implementation of a side-
channel countermeasure is a complex and error-prone process:
literature shows a long string of attacks against countermea-
sures [17]. Our work is motivated by the need for an easy-
to-use countermeasure, applicable to a wide range of designs
and usable within a standard FPGA design flow. We consider
protection of a general class of block ciphers that use logic
operations and lookup tables. This includes AES, DES, and
many others. We propose our methodology in the context
of embedded designs with a CPU, and we develop side-
channel resistance for cryptographic software executing on the
processor.

The design of side-channel countermeasures is complex
because side-channel leakage is a byproduct of the implemen-
tation of a cryptographic algorithm. Predicting the amount of
side-channel leakage from, say, cryptographic software in C
is difficult. Our objective is to systematically remove side-
channel leakage while keeping a reasonable cost in circuit
area and performance degradation. Figure 1 illustrates three
approaches applicable to the context of embedded processors.
The first, Figure 1a, transforms the crypto-software into an
implementation without exploitable leakage, for example by
using masking [4]. This countermeasure is usually algorithm-
specific, and requires in-depth understanding of cryptographic
operations. Moreover, masking becomes very complex under
advanced SCA techniques [7]. The second approach, Figure
1b, is to implement the CPU in a SCA-resistant circuit
style. Past research has shown that these techniques are very

expensive in hardware - costing 3 to 15 times the original
circuit area [17] - and thus not applicable to a complete CPU.
Our approach, Figure 1c, is to use a customized CPU, with a
custom instruction-set and an optimized memory organization.
This design configuration is supported by soft-core CPU in
mainstream FPGA families.

Our work is not the first to suggest a customized CPU
for side-channel resistant implementations; previous proposals
have included masking-based [3], [21] and hiding-based [5],
[18] designs. However, we will demonstrate that our solution
offers several advantages over these proposals. The remainder
of this paper is organized as follows. In the next section we
discuss a few preliminaries, including a brief review of Dual-
rail Precharge (used by our countermeasure), and a review
of the building blocks of modern block ciphers. After that,
we present the components of our solution, and show how we
can efficiently map SCA-resistant block ciphers into FPGA. In
Section IV, we implement a full block cipher (AES) with our
technique, and we analyze circuit cost, performance, and SCA
resistance. Section V elaborates on these results, discusses the
limitations of our approach as well as related work. Finally we
conclude the paper.

II. PRELIMINARIES

In this section, we briefly review two important preliminar-
ies of our proposed solution: Dual-rail Precharge Logic, and
the overall structure of modern block ciphers.

A. Principle of Dual-rail Precharge Logic (DPL)

The cause of side-channel leakage is data-dependent pro-
cessing. In CMOS logic, such processing gives data-dependent
signal transitions, which in turn results in data-dependent
power consumption or radiation. The idea of Dual-rail
Precharge Logic (DPL) is to eliminate side-channel leakage
at the level of the implementation.

DPL can be achieved as follows. First, every data bit in
the circuit is stored and processed in complementary form.
For example, for every logic operation a and b, there is
a matching complementary operation not(a) or not(b)
which is simultaneously executed. Second, every complemen-
tary data pair (a, not(a)) is pre-charged to (0,0) before
every evaluation. When combined, these two properties result
in constant power consumption: every evaluation has an active
0 → 1 transition, either on the true net, or else on the
complementary net.

DPL has been applied in many different forms since it was
first proposed, including ASIC, FPGA, and software [5], [9],
[11], [22]. Authors have also identified sources of residual
leakage, including early evaluation and imbalance between
complementary pairs [10]. However, DPL has demonstrated
substantial reduction of side-channel leakage in prototypes.
For this reason, we have selected it in our countermeasure.

B. Modern Block Ciphers

In this paper, we focus our efforts on protecting a broad
class of symmetric-key algorithms known as block ciphers.

Table I
BLOCK CIPHER OPERATIONS (ENCRYPTION W/O KEY SCHEDULE)

Cipher Structure SBOX Operations
(in x out)

AES SPN 8x32 XOR
Blowfish Feistel 8x32 XOR, ADD32
Camellia Feistel 8x8 XOR
CAST-256 SPN 8x32 XOR
Clefia Feistel 8x8 XOR
DES Feistel 6x4 XOR
GOST Feistel 4x4 XOR, ADD32, ROT
KASUMI Feistel 7x7+9x9 XOR, ROT
PRESENT SPN 4x4 XOR
Serpent SPN 4x4 XOR, ROT

b0b0b1b1b15 b15

b31..b16 b15..b0

b16b16b17b17b31 b31

Unbalanced
Full Word

Balanced-Interleaved
Lower Half Word

Balanced-Interleaved
Upper Half Word

Figure 2. Balanced Interleaved data format

Block ciphers encrypt a block of plaintext into ciphertext
through successive round transformations. As illustrated in
Table I, and earlier observed by Kaps [12], the majority of
modern block ciphers are constructed from a limited set of op-
erations, including substitutions with lookup-tables (SBOXes),
and operations such as Xor, modular addition, rotations, and
shift. Furthermore, round transformations have a common
structure, and use either a substitution-permutation network
(SPN), or a Feistel network. Of course, within this framework,
there are important differences among block ciphers as well,
such as the number and size of lookup tables used, and the
detailed configuration of the operations.

In the following sections, we implement DPL countermea-
sures for software implementations of block ciphers on soft-
cores. We develop specific techniques to handle lookup tables,
and logic operations. Our benchmarks and experiments have
focused on AES-128 executing on a Nios/II core configured
in a Cyclone-II FPGA; but our results apply to other block
ciphers as well.

III. OUR SOLUTION

We implement a side-channel resistant block cipher by
creating DPL versions of both the lookup tables as well as the
logic operations in hardware. These modules are efficiently
integrated into the soft-core processor using the custom-
instruction set interface. This way, SCA-resistant block ciphers
can be executed as a sequence of custom instructions. Non-
crypto software, on the other hand, is written using the
regular instruction set without performance hit. The custom-
instruction hardware for lookup tables is built from on-chip
RAM macro’s. Research has demonstrated that such dedicated
structures increase side-channel resistance [19], and we further
improve this technique. We next discuss the three components

Balanced
Address

address address

Balanced
Data (H,L)

16 bit

32 bit

TBOX_H
256x32

TBOX_L
256x32

0x00
0x01

0xFF

0xFF
0xFE

0x00

Figure 3. Balanced-Interleaved T-box Organization

of our solution: the organization of data, the memory organi-
zation for lookup tables, and the system integration of SCA-
resistant block cipher hardware into software.

A. SCA-resistant Data organization

We need a data format that is compatible with the require-
ments of DPL and uses the word-level organization of an
embedded system. Figure 2 shows our data arrangement. Each
32-bit word is split into two balanced half-words, and each
bit from the original word is interleaved with an associated
complementary bit. We call this representation a balanced-
interleaved (BI) format. The logical and physical proximity
of complementary bits improves symmetry between the bits
(e.g. similar electrical loads), and in turn, this improves SCA
resistance. Indeed, at the logical level, adjacent bits will share
adjacent storage locations. In embedded architectures, storage
organization may use a wordlength which is different from
the processor wordlength; a 32-bit memory may be organized,
for example, as two half-word banks. Keeping complementary
bits adjacent ensures that they will share the same physical
storage bank. Furthermore, at the physical level, adjacent bits
will have closely related routing patterns on the FPGA and
PCB, improving symmetry.

A consequence of using a balanced-interleaved format is
that each 32-bit operation from the original, unprotected block
cipher, requires expansion into two balanced operations, each
processing a balanced half-word.

B. Memory Organization for Lookup Tables

Because lookup tables are so common in block ciphers, we
use a dedicated approach to implement side-channel resistant
lookup tables using the RAM macro’s of the FPGA fabric. We
use the AES T-box implementation as a case study. The T-box
is a lookup table with 8 input bits and 32 output bits. The T-
box is defined by grouping several steps of the AES round
transformation; for the purpose of explaining our method, we
treat the T-box simply as an 8x32 lookup table. The complete
AES algorithm requires five different T-box tables.

The secure T-box design shown in Figure 3 uses a balanced-
interleaved data organization. An 8x32 T-box thus needs two

Table II
SCA-RESISTANT INSTRUCTION SET FOR AES

Instruction Return Value
CONV_INV(a) 0, 0, .., a[2], a[0]

CONV_BIL(a) a[15], a[15], .., a[0], a[0]

CONV_BIH(a) a[31], a[31], .., a[16], a[16]
B_XOR(a,b) balanced-interleaved xor(a, b)
B_TBx_L(a) balanced-interleaved lookup-table (lower)
B_TBx_H(a) balanced-interleaved lookup-table (upper)
Each AES T-box has its own B_TBx_H(a) and B_TBx_L(a); x=0,1,2,3,4

8x32 balanced-interleaved tables, each storing a half-word of
the original T-box with its complementary bits. Each balanced-
interleaved table is stored in a separate RAM macro. In order
to achieve balancing in the address decoding logic, we follow
the storage order suggested in [19], namely that comple-
mentary RAM macro’s require complementary addresses. The
difference with our design, however, is that the complementary
RAMs do not store complementary data: the data within
each RAM is already balanced. Summarizing, our proposed
memory organization for lookup tables achieves side-channel
resistance by combining three elements. First, the use of RAM
cells reduces side-channel leakage because the increased logic
density they offer. Second, the use of balanced-interleaved
addressing for the overall lookup table. Third, the use of
balanced-interleaved data storage for lookup table content.

C. System Integration

An important, but often overlooked, aspect of side-channel
countermeasures is the system integration. On an embedded
processor, SCA-resistant encryption is just one of the many
tasks handled by software. We have integrated our counter-
measures as custom instructions into a soft-core processor.
A custom-instruction interface offers the ability to introduce
custom-hardware modules in the execution stage of a RISC
pipeline.

Table II shows the side-channel resistant instruction set for
AES. These instructions are implemented in custom hard-
ware using DPL. CONV_INV(a) extracts the even bits from
a word, and thus converts balanced-interleaved format into
direct form. CONV_BIL(a) and CONV_BIH(a) generate
balanced-interleaved form from the lower resp. higher half-
word of the input argument a.

The round function for a T-box based AES only requires
a balanced XOR, which can be supported through a single
custom instruction B_XOR(a,b). Move, shift and rotate op-
erations are compatible with balanced-interleaved arguments,
so that no custom instruction is needed for those.

The AES T-box has 5 different T-box tables. There is a
B_TBx_L(a) and a B_TBx_H(a) to access the lower resp.
higher half of each T-box table. These instructions are specific
for the AES block cipher; a different block cipher would need
to use different lookup tables. However, it is perfectly feasible
to make the lookup tables fully reconfigurable, so that they
can be programmed with the Sbox content required for a
specific block cipher. The approach to implement lookup tables
in the processor is an important difference with earlier work

by Chen [5], and we will show how this brings considerable
performance gain.

The AES T-box algorithm can be written in C by making use
of custom instructions embedded as inline assembly macro’s.
The pre-charge operation can be supported from C as well, as
illustrated in the snippet below. Note the use of volatile to
prevent the removal of precharge by an optimizing compiler.

volatile int t1, t2, t3;
t1 = 0; // precharge
t1 = B_TB0_L(in); // T-box0 lower word
t2 = 0; // precharge
t2 = B_TB1_L(in); // T-box1 lower word
t3 = 0; // precharge
t3 = B_XOR(t1, t2); // XOR

A strong feature of this approach is that it is fully compatible
with the existing memory hierarchy of an embedded system.
Variables can be stored into RAM in balanced-interleaved
form, and they will maintain their low side-channel leakage
provided that pre-charge is properly implemented. Thus, our
approach is independent of the number of processor registers;
it will not run out of foreground storage (in contrast to e.g.
[20]).

Our design makes sure that all sensitive data variables
are always in balanced-interleaved format outside custom
hardware boundary. Thus, transactions of these data variables
to other storage elements such as, cache, external memories
etc, do not result in side-channel leakage. Storing balanced
interleaved format in background memory may still cause side-
channel leakage due to asymmetry in the physical layout of
background memory. We will analyze this in the next section
of the paper.

IV. EXPERIMENTAL SETUP AND RESULTS

To demonstrate that our solution improves the resistance
against SCA, this section presents the experimental results
based on real attacks.

A. Experimental setup

The designs are implemented on an Altera DE2-70 eval-
uation board, that has a Cyclone-II EP2C70F896C6 FPGA
device and NiosII softcore. Our system incorporates a 32-
bit NiosII/s (50MHz, pipelined) processor, an offchip mem-
ory (SDRAM or SSRAM) and communication peripherals
(UART, GPIOs). We use Quartus-II with SOPC-builder to inte-
grate the desired peripherals into the system. Electromagnetic
emissions are captured with an ETS-LINDGREN EM probe
(Model 7405-903) and are sampled on an Agilent Oscilloscope
DSO5032 (300MHz bandwidth, 2GSa/s sampling rate). A
Correlation Power Attack (CPA) [14] using the Hamming
weight model on the T-box output is used to analyze the
acquired EM traces. An oscilloscope is configured to average
out 32 consecutive traces so as to reduce the noise in the
acquired traces.

AES TBOX

XOR

8-bit Secret Key

8-bit Plaintext 32-bits Output

Figure 4. Single T-box Experiment

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 2 4 6 8 10 12 14 16 18

M
a

x
im

u
m

 C
o

rr
e

la
ti

o
n

 v
a

lu
e

Number of Balanced bits

UnsuccessfulSuccessful Attacks

Attacks

Figure 5. Security Improvement: Single Tbox test

Our experiment is divided into two parts, a proof-of-concept
experiment (Single T-box attack) and a real world implemen-
tation (128-bit AES T-box attack). The following subsections
give the details.

B. Single T-box Experiment

In this experiment, we target an attack on single T-box
operation to evaluate security gain due to specialized mem-
ory organization and balanced-interleaved data format. As
illustrated in Figure 4, this test design incorporates essential
components of a block cipher (AES) i.e. logical XOR and T-
box lookup. SCA-resistant XOR and lookup table operations
are implemented in a custom hardware and are accessed
through custom instructions. We vary the number of balanced
bits in a BI dataword from 0 (unsecure) to 16 (fully secure)
and perform an SCA attack on the output of a lookup table to
evaluate its resistance against SCA attacks. For each of these
experimental steps, we reconfigure XOR operation and change
the format of T-box table contents to have required number of
balancing bits.

Figure 5 shows the results, where the maximum correlation
value for correct key guess is plotted against the number
of balanced bits present in a dataword. The correlation is
calculated for 2000 traces, at its best attack point. It can be
seen that the correlation of the correct key guess reduces with
increasing number of balanced bits. For completely secure
case, the correlation value reduces to 0.11 at 2000 traces.
We could not attack fully balanced design successfully with
170000 averaged traces. This shows that our countermeasure
achieves a significant security improvement.

C. 128-bit AES-Tbox Prototype

In the second part of our experiment, we implement an
SCA-resistant AES T-box (128-bit) prototype to evaluate its
efficiency in terms of security, performance and cost. We
use the same platform as that of single T-box experiment
with two different configurations of offchip memory (SDRAM
and SSRAM). The T-box lookup tables are implemented in

-2

0

2

4

6

8

10

12

14

16

0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

N
u

m
b

e
r
 o

f
r
e

v
e

a
le

d
 k

e
y

 b
y

te
s

Number of Traces

Unsecured

Secured

Figure 6. AES-TBOX implementation: NiosII/s + SDRAM

onchip RAM macros and offchip memory is used for program
execution and stack. The software uses custom instructions
for secure operations and includes hardcoded secret key in
a balanced-interleaved format. All intermediate variables are
precharged to 0 before they are used for next operation. We
attack first round of AES and conduct CPA analysis to evaluate
its SCA-resistance.

We perform SCA attacks on unsecure and secure imple-
mentations for SDRAM and SSRAM configurations. We have
used several different secret keys and Table III lists the
average security gain for the set keys. An unsecure AES
implementation on NiosII/s with SDRAM offchip memory
reveals 12 key bytes at around 1600 traces whereas, the secure
implementation needs 40000 traces to reveal 12 key bytes. This
results in an overall security gain of 25x at 75% success rate.
Figure 6 plots the number of key bytes revealed as a function
of number of traces for SDRAM configuration. In case of
SSRAM configuration, an unsecure implementation achieves
75% success rate at an average of 633 traces, whereas we could
not attack secure implementation for 300000 traces. Figure 7
shows the correlation trace of correct key byte for 300000
samples. This results in security gain of at least 474, which
significantly differs from that of an SDRAM configuration.
We investigate the possible reasons for this difference in the
next section.

Table III
AES IMPLEMENTATION: SECURITY

Configuration MTD (# revealed keys) Security gain
Unsecure Secure

NiosII/S + SDRAM 1600 (12) 40000 (12) 25
NiosII/S + SSRAM 633 (12) 300000 (0) >474

This security improvement comes at the cost of performance
and area overhead. A secure implementation occupies extra
logic for customized hardware and needs to split every 32-bit
sensitive dataword into two 32-bit balanced words. Addition-
ally, all variables need to be precharged before they can be
reused. This overhead of the additional instructions causes a
small performance degradation. Our secure implementation is
2.7 times slower than unsecure implementation and takes 15%
more area. Table IV enlists these results.

Table IV
AES IMPLEMENTATION: AREA AND PERFORMANCE

Configuration Area (LEs, M9K) Cycle count
Unsecure Secure Unsecure Secure

NiosII/S + SDRAM 3452, 143 3889, 161 13839 36977
NiosII/S + SSRAM 2814, 31 3252, 49 7375 19980
Area of a system with CPU, memory controller and custom hardware.

0 100 200 300 400 500 600 700 800 900 1000
−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

Time Samples

C
or

re
la

tio
n

Figure 7. Attack results on secure implementation: NiosII/s + SRAM. Trace
of correct key guess (here, first key byte) is plotted in black, while all other
key guesses are in yellow(gray). The buried trace means unsuccessful attack.

V. ANALYSIS AND COMPARISON

In this section, we analyze the possible causes for residual
side-channel leakage in case of SDRAM-system and compare
our work with related published secure implementations.

A. Impact of PCB Layout

The location of peripheral chips on a PCB board has a
significant impact on the security of overall system. Figure 8
depicts the layout of DE2-70 board. We can see that, SSRAM
has more symmetric location with respect to the CycloneII
FPGA than that of SDRAM. A 32-bit SDRAM is configured
as two 16-bit memory banks, whereas SSRAM is a 32-bit
memory chip. With this layout, SDRAM does not always
offer adjacent data-pin locations for a complementary bit-pair.
This creates an imbalance between direct and complimentary
bitlines irrespective of their balanced format. On the other
hand,the SSRAM has a more symmetric data-pin pattern,
which routes complementary bit lines together and thus, re-
duces the residual side-channel leakage. Note that storing the
secret data in offchip memories makes the system susceptible
to a simple probing attack on its chip pins. In our work, we
assume that such attacks do not happen.

B. Related Implementations

In this section, we compare our solution with other secure
implementations. As shown in Table V, these implementations
target different technologies, different countermeasures and
different cryptographic algorithms. As the attack methods
are not standardized, it is not a straight-forward process to
compare them on the same scale. Therefore, the table should
be consulted while at the same time referring to the original
publications by Barte et. al. [3], Chen et.al. [5], Ambrose et.
al. [1], and Regazzoni et. al. [18].

SDRAM: Asymmetric

pin positions: Leakage

SSRAM: symmetric pin

positions: No Leakage

Byte0

Byte1

Byte2

Byte4

Byte0 Byte 1

Byte2 Byte 3

Figure 8. Impact of PCB Layout on Residual Leakage

Table V
RELATED WORK: COMPARISON

Work Technology,
Base processor

Implementation Security
gain/Area over-
head/Performance
degradation

[3] Spartan-3,
MicroBlaze

Masking, DES 2X / 1.34X1/ –

[20] Virtex-4, Leon3 Masking, AES 3.5X / – / 2X
[5] Spartan-3E,

Leon3
Hiding (VSC),
AES

20X / 3.3X / 6.5X

[18] ASIC 180nm,
OpenRISC1000

Hiding (MCML),
PRESENT

– / 2.65X / –

Our De-
sign

CycloneII,
NiosII/s

Hiding, AES-
Tbox

>474X / 1.15X2 /
2.7X

1 This number represents area overhead in terms of slice-count.
2 Area of a system with only processor and SRAM memory controller.

Compared to this earlier work, our design is very system-
atic, making the design phase simpler than above mentioned
implementations. We believe that, for FPGA implementations,
it exceeds above-mentioned solutions in terms of the trade-off
between security, performance, area and design flexibility.

VI. CONCLUSION

Security against side-channel attacks are an important con-
cern with increased use of embedded systems in security ap-
plications. This paper reports an efficient and secure embedded
system design on FPGA by using industrial design flow. We
use a novel memory organization technique and interleaved
data format in combination with a hiding countermeasure.
Though, we have demonstrated our results on an Altera FPGA
for AES-Tbox implementation, the methodology is portable to
other FPGA platforms for majority of the block ciphers. We
discuss how location of peripheral offchip components on PCB
board plays an important role in the overall security evaluation.
Our experimental results establish the feasibility of proposed
methodology to implement an embedded system to achieve
desired security at reasonable cost.

VII. ACKNOWLEDGMENTS

This research was supported in part by National Science
Foundation Grant no. 1115839.

REFERENCES

[1] J.A. Ambrose, S. Parameswaran, A. Ignjatovic. MUTE AES: A Mul-
tiprocessor Architecture to prevent Power Analysis based Side Channel
Attack of the AES Algorithm ICCAD 2008, pp. 678 -684.

[2] J. Balasch, B. Gierlichs, R. Verdult, L. Batina, and I. Verbauwhede.
Power Analysis of Atmel CryptoMemory - Recovering Keys from Secure
EEPROMs. In Topics in Cryptology - CT-RSA 2012, The Cryptographers’
Track at the RSA Conference, Lecture Notes in Computer Science 7178,
O. Dunkelman (ed.), Springer-Verlag, pp. 19-34, 2012.

[3] L. Barthe, P. Benoit, L. Torres. Investigation of a Masking Countermea-
sure against Side-Channel Attacks for RISC-based Processor Architec-
tures. FPL 2010: 139-144.

[4] S. Chari, Charanjit S. Jutla, J. R. Rao, P. Rohatgi. Towards Sound
Approaches to Counteract Power-Analysis Attacks. CRYPTO 1999: 398-
412.

[5] Z. Chen, A. Sinha, P. Schaumont. Implementing virtual secure circuit
using a custom-instruction approach. CASES 2010: 57-66.

[6] Z. Chen, P. Schaumont. Virtual Secure Circuit: Porting Dual-Rail Pre-
charge Techniques into Software on Multicore IACR ePrint Archive
2010/270 (2010)

[7] J.S. Coron, E. Prouff, M. Rivain. Side Channel Cryptanalysis of a Higher
Order Masking Scheme. CHES 2007: 28-44.

[8] T. Eisenbarth, T. Kasper, A. Moradi, C. Paar, M. Salmasizadeh, M. T.
Manzuri-Shalmani. On the Power of Power Analysis in the Real World:
A Complete Break of the KeeLoqCode Hopping Scheme. CRYPTO
2008: 203-220.

[9] S. Guilley, L. Sauvage, P. Hoogvorst, R. Pacalet, G. Bertoni, and S.
Chaudhuri. Security Evaluation of WDDL and SecLib Countermeasures
against Power Attacks IEEE Transactions on Computers (2008) 57 (11):
1482-1497.

[10] S. Guilley, L. Sauvage, F. Flament, V. Vong, P. Hoogvorst, R. Pacalet.
Evaluation of Power Constant Dual-Rail Logics Countermeasures against
DPA with Design Time Security Metrics. IEEE Transactions on Com-
puters (2010 Jan 1) 59 (9): 1250-1263.

[11] P. Hoogvorst, G. Duc, J.L. Danger. Software Implementation of Dual-
Rail Representation. COSADE 2011.

[12] J. Kaps, G. Gaubatz, B. Sunar. Cryptography on a Speck of Dust IEEE
Computer Magazine, 40(2):38-44, 2007.

[13] T. Kasper, D. Oswald, C. Paar. Side-Channel Analysis of Cryptographic
RFIDs with Analog Demodulation. RFIDSec 2011: 61-77

[14] S. Mangard, E. Oswald, T. Popp, Differential Power Analysis in Power
Analysis Attacks: Revealing the Secrets of Smart Cards., Springer, 2007.

[15] A. Moradi, A. Barenghi, T. Kasper, C. Paar. On the vulnerability
of FPGA bitstream encryption against power analysis attacks: extracting
keys from xilinx Virtex-II FPGAs. ACM Conference on Computer and
Communications Security 2011: 111-124

[16] A. Moradi, M. Kasper, C. Paar. Black-Box Side-Channel Attacks
Highlight the Importance of Countermeasures - An Analysis of the Xilinx
Virtex-4 and Virtex-5 Bitstream Encryption Mechanism. CT-RSA 2012:
1-18

[17] A. Moradi, A. Poschmann. Lightweight Cryptography and DPA
Countermeasures: A Survey. Financial Cryptography Workshops 2010:
68-79.

[18] F. Regazzoni, A. Cevrero, F.X. Standaert, S. Badel, T. Kluter, P. Brisk,
Y. Leblebici, P. Ienne. A Design Flow and Evaluation Framework for
DPA-Resistant Instruction Set Extensions. CHES 2009: 205-219.

[19] S. Shah, R. Velegalati, J.P. Kaps, D. Hwang. Investigation of DPA
Resistance of Block RAMs in Cryptographic Implementation on FPGAs.
Reconfig 2010: 274 - 279.

[20] S. Tillich, M. Kirschbaum, A. Szekely. SCA-Resistant Embedded
Processors- The Next Generation. ACSAC 2010: .

[21] S. Tillich, M. Kirschbaum, A. Szekely. Implementation and Evaluation
of an SCA-Resistant Embedded Processor. CARDIS 2011: 151-165.

[22] K. Tiri, I. Verbauwhede. A digital design flow for secure integrated
circuits IEEE TCAD (2006 Jan 1) 25 (7): 1197-1208.

