
Defending Embedded Systems with Software

Symbiotes

Ang Cui and Salvatore J. Stolfo

Department of Computer Science
Columbia University

New York NY, 10027, USA
{ang,sal}@cs.columbia.edu

Abstract. A large number of embedded devices on the internet, such as
routers and VOIP phones, are typically ripe for exploitation. Little to no
defensive technology, such as AV scanners or IDS’s, are available to pro-
tect these devices. We propose a host-based defense mechanism, which we
call Symbiotic Embedded Machines (SEM), that is specifically designed
to inject intrusion detection functionality into the firmware of the device.
A SEM or simply the Symbiote, may be injected into deployed legacy
embedded systems with no disruption to the operation of the device. A
Symbiote is a code structure embedded in situ into the firmware of an
embedded system. The Symbiote can tightly co-exist with arbitrary host
executables in a mutually defensive arrangement, sharing computational
resources with its host while simultaneously protecting the host against
exploitation and unauthorized modification. The Symbiote is stealthily
embedded in a randomized fashion within an arbitrary body of firmware
to protect itself from removal. We demonstrate the operation of a generic
whitelist-based rootkit detector Symbiote injected in situ into Cisco IOS
with negligible performance penalty and without impacting the routers
functionality. We present the performance overhead of a Symbiote on
physical Cisco router hardware. A MIPS implementation of the Sym-
biote was ported to ARM and injected into a Linux 2.4 kernel, allowing
the Symbiote to operate within Android and other mobile computing
devices. The use of Symbiotes represents a practical and effective protec-
tion mechanism for a wide range of devices, especially widely deployed,
unprotected, legacy embedded devices.

Key Words: Symbiotic Embedded Machines, Embedded Device De-
fense, Cisco IOS Rootkit Detection

1 Introduction

A recent study demonstrates that there are a vast number of unsecured em-
bedded systems on the internet, primarily routers, that are trivially vulnerable
to exploitation with little to no effort. Several new exploits against Cisco IOS
demonstrate the vulnerability of a vast number of high end legacy routers to
easy exploitation. We propose a novel technique to detect and defend against



2

advanced malware threats against the internet routing infrastructure, as well as
a vast number of other types of embedded systems.

We present a host-based defense mechanism which we call “Symbiotic Em-
bedded Machines” (SEM). SEM, or simply the Symbiote, is an experimental
system that injects intrusion detection functionality within the firmware of a
(legacy) embedded system and that senses the unauthorized modification of the
device firmware. Symbiote injection may be randomized so that each instance
is distinct from all other injected systems in order to thwart attempts by an
adversary to disable the injected Symbiote. In general, we aim to create a sym-
biotic software construct which provides the following four fundamental security
properties once it is active within the firmware of an embedded system or a host
program:

1. The Symbiote has full visibility into the code and execution state of its host
program, and can either passively monitor or actively react to the observed
events at runtime.

2. The Symbiote executes along side the firmware or host program. In order
for the host to function as before, its injected SEMs must execute, and vice
versa.

3. The Symbiote’s code cannot be modied or disabled by unauthorized parties
through either online or offline attacks.

4. No two instantiations of the same Symbiote is the same. Each time a Sym-
biote is created, its code is randomized and mutated, rendering signature
based detection methods and attacks requiring predictable memory and code
structures within the Symbiote ineffective.

Symbiote Manager

Host Program

Symbiote Payload

= intercept point

Fig. 1. Logical overview of SEM injected into embedded device firmware. SEM main-
tains control of CPU by using large scale randomized control-flow interception. SEM
payload executes alongside original OS. Figure 6 shows a concrete example of how the
SEM payload can be injected into gaps within IOS firmware.

We aim to demonstrate the highest levels of protection we believe we can
achieve with this technology in a range of embedded system device types. An



3

immediate application of the system presented in this paper is the fortification
of existing vulnerable network routing devices. As Section 3 illustrates, the em-
bedded security threat is particularly difficult to solve, especially if the goal is to
improve the security of the existing software infrastructure. Network embedded
devices like routers and firewalls are vulnerable to the same attacks as general
purpose computers, but generally do not have the facility to execute third-party
host-based defenses like anti-virus. Using the Symbiote, we have successfully
injected a host-based root-kit detection mechanism into a closed-source propri-
etary operating system, Cisco IOS. We believe that the techniques discussed in
this paper can be used to fortify existing vulnerable devices within the critical
infrastructure, like smart power meters, machine to machine control systems, as
well as everyday embedded devices like VoIP phones, home routers and mobile
computers.

Figure 1 shows how a Symbiote is typically injected into a host program. A
large number of control-flow intercepts are distributed randomly throughout the
body of the host program, allowing the Symbiote Manager to periodically regain
control of the CPU. Once the Symbiote Manager is invoked, it then executes a
small portion of the its defensive payload before saving its execution context and
returning control back to the host program. This allows the Symbiote and host
program to execute in tandem, in a time-multiplexed manner without affecting
the functionality of the original host program. The Symbiote injection process
provides a probabilistic lower bound on the frequency in which the Symbiote will
be invoked at runtime as a adjustable parameter. The Symbiote, which resides
within the same execution environment as the host program has the ability to
passively monitor or proactively alter the host program’s behavior at runtime.
Since the Symbiote is deeply intwined with its protected host program, attempts
to corrupt or alter the Symbiote binary will either be detected by the Symbiote
or cause the host program to crash. (See Section 5)

As we see in Section 4, Symbiotes can defend any arbitrary executable, even
other Symbiotes. Unlike traditional anti-virus and host-based defense mecha-
nisms which install into and depend heavily on facilities provided by the vulner-
able systems they are meant to protect, the Symbiote treats its host program
as an external and untrusted entity. Symbiotes do not depend on functionality
provided by its host, giving it several critical advantages.

The Symbiote:

Is agnostic to its operating environment. Since the Symbiote injects itself
into its host program, it does not need to conform to any executable format.
The Symbiote will execute as long as its host program is a valid executable,
regardless of operating system type or version.

Can reside within any arbitrary executable, regardless of its functional-
ity or position within the system stack. The unique injection mechanism
allows the same Symbiote to operate within userland applications, device
drivers, the kernel or even other Symbiotes. Furthermore, many instances
of the same Symbiote can simultaneously operate on multiple levels of the



4

system stack, enabling a new approach to systematically deploying defenses
in depth.

Can be easily and safely be injected into proprietary black box operating systems.

Since Symbiotes are agnostic to the inner workings of its host program and
execution environment, deploying Symbiotes on proprietary systems is as
easy as deploying them within well known ones.

Is self-sufficient, and does not depend on facilities provided by its host pro-
gram. The Symbiote threats its host program as an untrusted and foreign
entity. It does not leverage any external code to protect its host, and is
therefore not vulnerable to attacks on other parts of the system.

Is self-protecting and stealthy, and thus is difficult to detect and deactivate
by an adversary.

Is efficiently executed, utilizing the raw computational resource of the hard-
ware platform, bypassing layers of overhead produced by OSs, or VMs that
host an OS. One would prefer to use a SEM implementation of a security
payload, rather than a reference monitor, for example, because of this per-
formance advantage.

We demonstrate the advantages of Symbiotes by tackling a difficult, yet ubiq-
uitous problem for which no effective host-based defenses currently exist. Our
current implementation of a Symbiote, that we call Doppelgänger, is easily and
safely injected into proprietary operating systems to protect resource-constrained
embedded devices from a wide array of memory manipulation attacks. The
unique properties of the Symbiote allows us to systematically fortify many dif-
ferent Cisco routers with the same root-kit defense payloads in an automated
fashion. The Symbiotic approach is not specific to any particular device or op-
erating system, and can be used to effectively mitigate the embedded device
security problem.

This paper is organized as follows. Section 2 discusses existing defenses
against code modification attacks, with an emphasis on the current state of
host-based embedded system defense. Section 3 discusses the vulnerability of
embedded devices, defines the threat model and surveys related work. Section 4
describes the Symbiotic Embedded Machine architecture as well as the white-list
based rootkit detection payload in detail. Section 5 discusses an lower bound on
the computational complexity of a successful attack against software Symbiotes
in an online attack, as well as common attacks which can be levied against SEM.
Section 6 shows experimental results and discusses the theoretical and experi-
mental performance overhead of Doppelgänger, our implementation of SEM, for
IOS versions 12.2 and 12.3 on a Cisco 7121 router. We conclude in section 7
suggesting that proactive protection of network embedded devices using SEMs
with exploitation detection payloads is a viable strategy to mitigate large-scale
compromise of our global communication networks and critical infrastructures.
Appendix A contains performance evaluation data of the rootkit detection SEM
payload running on IOS 12.3 on a physical Cisco 7121 router under load.



5

2 Related Work

Numerous rootkit and malware detection and mitigation mechanisms have been
proposed in the past but largely target general purpose computers. Commercial
products from vendors like Symantec, Norton, Kapersky and Microsoft [1] all
advertise some form of protection against kernel level rootkits. Kernel integrity
validation and security posture assessment capability has been integrated into
several Network Admission Control (NAC) systems. These commercial products
largely depend on signature-based detection methods and can be subverted by
well known methods [16–18]. Sophisticated detection and prevention strategies
have been proposed by the research community. Virtualization-based strategies
using hypervisors, VMM’s and memory shadowing [15] have been applied to
kernel-level rootkit detection. Others have proposed detection strategies using
binary analysis [9], function hook monitoring [22] and hardware-assisted solu-
tions to kernel integrity validation [19].

Guards, originally proposed by Chang and Atallah [3], is a promising technol-
ogy which uses mechanisms of action similar to Symbiotes. Originally proposed
as an anti-tampering mechanism for x86 software, the guard mechanism have
been used in both security research [5] as well as commercial products1. A Guard
is a simple piece of security code which is injected into the protected software
using binary rewriting techniques similar to our Symbiote system. Once injected,
a guard will perform tamper-resistance functionality like self-checksumming and
software repair. To further improve the resilience of the protection scheme, a
large number of Guards can be deployed in intricate networks as a graph of
mutually defensive security units.

While promising, the Guard approach does have several draw backs and
limitations which Symbiotes overcome. For example, since the Guard has no
mechanism to pause and resume its computation, the entire guard routine must
complete execution each time it is invoked. This limits the amount of compu-
tation each Guard can realistically perform without affecting functionality, spe-
cially when Guards are used in time sensitive software and real-time embedded
devices. In contrast, the Symbiote Manager (See 4) allows its payload to be ar-
bitrarily complex. Instead of executing the entire payload each time a randomly
intercepted function invokes the Symbiote, the Symbiote Manager executes a
small portion of the payload before pausing it, saving its execution context and
returning control back to the intercepted function. This way, Symbiote payloads
can implement arbitrarily complex defensive mechanisms, even in time sensitive
software.

Lastly, the techniques used by Symbiotes, such as function interception, ran-
domized payload injection, have been undoubtably used by malware authors
in the past. Indeed, a Symbiote-like rootkit [4] has recently been disclosed for
Cisco IOS. The Symbiote structure incorporates such traditionally ”offensive”
techniques for defensive purposes in order to hide and harden itself against at-
tacks which aim to disrupt the Symbiote.

1 www.arxan.com



6

3 Threat Model

We assume the attacker is technically sophisticated and has access to both zero-
day vulnerabilities as well as compatible exploits allowing reliable execution of
arbitrary code. We further assume that the attacker executes the attacks in an
online fashion. In other words, the attacker must carry out the attack remotely
against a running device without interfering with its function or causing it to
crash or reboot. Attacks involving configuration changes or replacement of the
entire firmware image (which requires a reboot) are excluded from our model
because they can be detected by conventional methods. We also assume that the
attacker has access to the original host program image, before any Symbiotes
are injected into it.

Online attacks against the protected host program can be separated into two
categories; those that attempts to disable or evade the Symbiotes protecting the
host program, and attacks that do not. We first address existing attacks which
target the host program and show how Symbiotes can prevent such attacks.
Section 5 discusses multi-stage attacks which attempts to disable Symbiotes
prior to executing their malicious payloads.

With respect to Cisco routers, we focus on rootkit techniques which make
persistent changes to the IOS operating system. The SEM mechanism intro-
duced in this paper is used to detect injected code that changes portions of the
device that are otherwise static during the life time of the device. The Sym-
biote payload presented in this paper is designed only to detect unauthorized
code modification. However, the SEM approach can also be used to detect ex-
ploitation in dynamic areas of the target embedded device like the stack and
heap. Symbiote control-flow interception methods and payloads which defend
against return-to-libc, return oriented and heap related attacks are currently
under research.

The Symbiote implementation presented in this paper focusses on fortifying
legacy network embedded devices. The next section discusses the embedded se-
curity problem and shows how Symbiotes can be used to defend network routers
against code modification attacks.

3.1 Solving the Embedded Problem with Symbiotes

Network embedded devices are ubiquitous within the modern home, office and
global communication infrastructures. Enterprise networking equipment are spe-
cialized embedded devices which power the world’s communication backbones.
Consumer network devices like wireless access points, web cams, networked print-
ers and smart phones litter our homes, streets, offices and pockets and provide
functionality on which we have come to depend. While network embedded de-
vices like Cisco routers and firewalls constitute a large portion of our commercial,
residential, enterprise and military communication infrastructures, little research
has been devoted to understanding and mitigating the vulnerabilities of these
black box devices. Similarly, since network embedded devices often are closed
systems which use proprietary hardware and software, security mechanisms like



7

anti-virus and host-based anomaly detectors found on general purpose computers
do not exist for embedded devices. Consequently, there exists a large population
of unprotected vulnerable embedded devices in the world. A recent study esti-
mates that a hypothetical zero-day smart meter worm could propagate to 15,000
nodes in approximately 24 hours [12]. Large scale exploitation of routers have al-
ready been observed in the wild [2]. Furthermore, the detection of compromised
embedded devices poses significant challenges due to the proprietary and limited
nature of such devices. Therefore, a proactive, preventative defense strategy is
not only the most desirable approach, but is also likely the only practical one.

The proof of concept defensive Symbiote payload we inject detects attempts
and prevents all rootkits from working. Engineering such a generic defensive
mechanism into black box devices is not easy. The challenge is at least twofold.
First, embedded devices often use undocumented proprietary operating systems.
These devices almost never provide an interface for installing new software on
top of the existing firmware. Second, embedded device hardware and software is
very diverse. If one were able to develop a working defense for a popular device,
that defense will most likely not work across even minor software revisions for
the same device, and will certainly not work for different devices from different
hardware vendors

We demonstrate how Symbiotes overcome both obstacles by targeting two
versions of Cisco IOS running on MIPS. The Cisco router IOS rootkit detection
Symbiote, we call Doppelgänger, requires no modification of IOS, and is auto-
matically loaded into firmware images of two major versions, 12.2 and 12.3. The
SEM injection process requires a handful of parameters specific to the target
firmware, including a list of randomly chosen control-flow intercept points and
locations of usable memory. All such parameters are computed automatically
by a simple single pass analysis of the target binary. Doppelgänger utilizes well-
known code injection methods in a novel way by randomly diverting a very large
set of control-flow intercept points. Doppelgänger uses these hooks to support
the execution of arbitrary payloads which are both invisible to the original OS
and highly resilient against unauthorized deactivation and removal. The Sym-
biote’s control-flow intercepts are randomly distributed through out regions of
the host program which are executed with high probability under normal op-
erating conditions. This ”live” code detection approach allows us to provide a
probabilistic lower bound on the frequency in which the Symbiote will regain
control of the CPU while the host program is in execution. (See Section 5).

We inject payloads with functionality that permits code to operate alongside
the original device OS; not within it as a process, nor under it as a hypervisor
would do. Such payloads allow us to monitor and control the original device’s OS
internals without being restricted by it. The accomplishment of this symbiotic
feat also provides stealth as a by-product.

Several real-world considerations make the use of SEM for security purposes
effective and practical. First, SEM is a deployment vehicle which largely ab-
stracts away hardware and software diversity. This allows sophisticated security
mechanisms to be written once and deployed across many different embedded



8

devices. Second, the application of white-list based protection mechanisms is
ideal for embedded devices which tend to have monolithic firmwares. Mecha-
nisms, like code integrity verification, can be implemented efficiently and can
detect any change to the code of the device (i.e. function hooking). For example,
the rootkit detection payload presented in this paper is only 336 bytes (See
Section 6). Furthermore, while many “end of life” embedded devices are still in
use today, vendors have little incentive to invest resources in maintaining and
updating firmware for such devices. Thus, using SEM to retrofit these legacy de-
vices with up-to-date end point defense mechanisms is an attractive and viable
alternative.

4 Symbiotic Embedded Machines

The Symbiote is a self-contained entity and is not installed onto the host pro-
gram in the traditional sense. It is injected into its host program’s code in a
randomized fashion. Current legacy anti-virus and host-based defenses must be
installed onto or into a legacy operating system, which places a heavy depen-
dence on the features and integrity of the operating system. In general, this
arrangement requires a strong trust relationship with the very software (often of
unknown integrity) it tries to protect. In contrast, the Symbiote treats its entire
host program as an external and untrusted entity, and therefore eliminates the
unsound trust on traditional legacy systems.

4.1 The Symbiote-Host Relationship

The Defensive Mutualistic relationship between the Symbiote and host program
can be broadly described as follows:

1. Both the Symbiote and the protected software host are functionally au-
tonomous. Specifically, the Symbiote is not a standard piece of software that
depends on and operate within the software system it is protecting. Instead,
the Symbiote can be thought of as a fortied and self-contained execution
environment that is infused into the host software.

2. The Symbiote resides within the host software, extracting computational
resources (CPU cycles) to execute its own SEM payloads. In return, the
SEM payloads will constantly monitor the execution and integrity of the
host software, fortifying the entire system against exploitation. The Sym-
biote payload may execute repair operations on the host, or carry out any
arbitrarily defined policy enforcement.

3. SEMs are injected into the host software rather then installed in the tra-
ditional sense. Once injected, the code of the SEM is pseudorandomly dis-
persed across the body of the host. Special mechanisms provided by the
SEM injection process will assure that the SEM is executed along-side its
host software.



9

4. The Symbiote and host program must operate correctly in tandem. The
Symbiote monitors the behavior of the protected host program, and can
alert on and react to exploitation and incorrect behavior. The Symbiote is
also self-fortied with anti-tampering mechanisms. If an unauthorized party
attempts to disable, interfere with or modify the Symbiote, the protected
host program will become inoperable if the attempt is successful.

5. A Symbiote may be injected recursively into another Symbiote to provide
the same protection to a Symbiote in cases requiring extreme fault tolerance
and security.

6. No two instantiations of the same Symbiote are ever the same. Each time a
Symbiote is created and prepared for injection into a host program, its code is
randomized and mutated using polymorphic engine technology, resulting in
a dissimilar variant of itself. When observed at the macro level, the collective
Symbiote population is highly diverse.

Symbiotically Protected Host Program

Symbiote Injection Engine

Live Code Analysis,

Randomized 

Injection Site 

Selection

Usable SEM 

Memory 

Identification

Binary Rewrite

Randomization & Mutation Engine

Host Program Randomization Symbiote Randomization

Host 

Program

Symbiote

Symbiote 

Manager

Symbiote 

Payload

User Defined 

Policy Engine

Fig. 2. Generic end-to-end process of fortifying an arbitrary host program with a Sym-
biote. Our proof of concept Symbiote, Doppelgänger, is completely implemented in soft-
ware and can execute on existing commodity systems without any need for specialized
hardware.

Each instantiation of a Symbiote is polymorphically mutated and random-
ized during the injection process. Therefore, studying and reverse engineering
one instance of a particular Symbiote provides the attacker with little to no
useful information about the specifics of any other instantiation of the same
Symbiote. The Symbiotic Embedded Machine structure creates an indepen-

dent execution context from the native operating system at runtime. SEM uses
the newly created context to execute arbitrary payloads. These payloads can



10

be written in any high level language (typically C). We may view SEM as a
structure which moves the entire IOS environment into one logical context and
creates another for the SEM payload. Once done, the SEM acts as an impro-
vised Virtual Machine Manager and executes both logical contexts in a time
multiplexed manner.

It is important to note that SEM does not use traditional virtualization
techniques. Due to the fact that most network embedded devices do not have
hardware hypervisor or virtualization support, the methods we use to achieve
execution context separation use only standard CPU instructions. Techniques
such as control-flow interception and inline hooking have also been used in soft-
ware debuggers and reverse engineering frameworks. In this sense, SEM can be
thought of as a sophisticated dynamic debugger rather than a virtualization
mechanism.

4.2 Doppelgänger: A Symbiote Protecting Cisco IOS

Figure 1 shows the three logical components of Symbiotic Embedded Machines:
Control-Flow Interceptors, Symbiotic Embedded Machine Manager (SEMM)
and the SEM Payload. Together, all three components are injected in situ into
the target embedded device firmware. The injection process can be carried out
offline (i.e. creates new fortified firmware) or dynamically (i.e. during exploita-
tion, as a part of a multi-stage shellcode). In practice, the injection process can
be accomplished with minimal invasiveness. Since SEM is injected in situ, the
size of the resulting firmware image is unchanged. For example, our current im-
plementation of Doppelgänger, along with the rootkit detection payload requires
only 1384 bytes to be injected into IOS. Figure 5 illustrates typical “gaps” within
IOS firmware which can safely be used to embed the SEM payload.

For generality, SEM does not rely on firmware specific code features like
system calls or variants of libc. The Control-Flow Interceptor component uses
inline hooks to intercept a large number of functions within the target firmware.
Upon invocation of an intercepted function, control of the CPU is redirected
to the Symbiotic Embedded Machine Manager (SEMM), which executes a small
portion of the SEM payload. For concreteness, the SEMMmanages the execution
of injected SEM payload as follows:

1. Store the execution context of the native OS (i.e. IOS).

2. Load the context of the SEM payload.

3. Compute how long the SEM payload can run, based on current native OS
system utilization.

4. Execute the SEM payload for that amount of time.

5. Store the execution context of the suspended SEM payload.

6. Load the execution context of the native OS at the time the SEMM assumed
control.

7. Restore CPU control to the invoked function.



11

4.3 Live Code Interception with Inline Hooks

Host Program

= Live Code = Intercept Point

Host Program

Host Program

= Symbiote Binary

Original Unmodified Host Program Binary

Live Code Found Through Static Analysis or Profiling

Symbiote Binary Injected into Host Program. Live Code is Randomly Intercepted

1

2

3

Fig. 3. Symbiote Injection Process.

Figure 3 illustrates the three step Symbiote injection process. First, analysis
is performed on the original host program in order to determine areas of live
code, or code that will be run with high probability at runtime. Second, random
intercept points are chosen out of the live code regions found. Lastly, each Sym-
biote Manager, Symbiote payload and a large number of control-flow intercepts
are injected into the host program binary, yielding a Symbiote protected host
program.

Control-flow intercepts are distributed in a randomized fashion through out
the host program’s binaries in order to ensure that the Symbiote regains control
of the CPU periodically. We would like to ensure that these randomly chosen
intercept points are located within regions of code which will be frequently ex-
ecuted at runtime. This problem is difficult to solve with high accuracy in the
general case. However, our purposes do not require the classification mechanism
to be absolutely accurate. In reality, implementing a sufficient solution for real-
world host programs is not too difficult. Section 4.4 discusses the methods used
in our experiments for live code classification.

Once regions of code within the host program are chosen for control-flow
interception, the Symbiote injection process imbeds interceptors as well as the
Symbiote binary into the host program. The Symbiote implementation presented
in this paper uses a Detour [21] style inline function hooking mechanism for
control-flow interception. Note that while we injected our intercepts within the
function preamble in the current Symbiote implementation, this is not a require-
ment. Control-flow intercepts can be embedded in arbitrary positions within the
host program using existing binary instrumentation techniques.

Detour [21] style inline hooking is a well known technique for function in-
terception. However, SEM uses function interception in a very different way.
Instead of targeting specific functions for interception which requires precise a



12

priori knowledge of the code layout of the target device, SEM randomly in-
tercepts a large number of functions as a means to re-divert periodically and
consistently a small portion of the device’s CPU cycles to execute the SEM pay-
load. This approach allows SEM to remain agnostic to operating system specifics
while executing its payload alongside the original OS. The SEM payload has
full access to the internals of the original OS but is not constrained by it. This al-
lows the SEM payload to carry out powerful functionality which are not possible
under the original OS. For example, the IOS rootkit detection payload presented
in Section 4.5 bypasses the process watchdog timer constraint, which terminates
any IOS process running for more than several seconds, because the detector
operates outside the control of the OS.

Stealth is a powerful byproduct of the SEM structure. In the case of IOS,
no diagnostic tool available within the OS (short of a full memory dump) can
detect the presence of the SEM payload because it manipulates no OS specific
structure and is effectively invisible to the OS. The impact of the SEM payload
is further hidden by the fact that CPU utilization of the payload is not reported
within any single process under IOS and is distributed randomly across a large
number of unrelated processes.

4.4 Automatically Locating Control-Flow Intercept Points

Control-flow intercept points are chosen randomly out of candidate live code
regions within the host program. The way code regions are classified as live,
as well as the number of intercepts chosen from each region directly affects the
frequency in which the Symbiote will gain control of the CPU, which in turn
directly affects the performance and overhead of the Symbiote.

Both dynamic and static methods of live code classification are considered for
our experiments. First, the host program is executed under a profiler in order to
observe live code, or code coverage, under normal operating conditions2. Using
code coverage analysis to classify live code is advantageous because it can not
produce false positives, i.e. dead code can not be classified as live code. However,
this dynamic approach can not classify regions of code which are reachable only
through rare or malformed program input. Therefore, we augment our code
coverage based live code classifier with static analysis of the control-flow graph
of the host program. Figure 4 shows the live code regions of a typical IOS router
firmware image after our initial analysis. Control-flow intercept points will be
chosen randomly out of these code regions (shown in white) to periodically divert
CPU control to the injected Symbiote. Note that intercept points can, and should
also be placed in the binary outside of the detected live code regions.

4.5 Rootkit Detection Payload

To detect IOS malcode and rootkits described in the previous section, we imple-
ment a white-list strategy. Known rootkits operate by hooking into and altering

2 In the case of IOS, we profiled the router image using Dynamips under various
workloads.



13

Fig. 4. Live Code Regions (White) Within IOS 12.4 Firmware (Black). Code Range:
0x80008000-0x82a20000

key functions within IOS. To do this, specific binary patches must be made to
executable code. Therefore, a continuous integrity check on all static areas of
Cisco IOS will detect all function hooking and patching attempts made by rootk-
its and malware. The rootkit detection payload described below is not specific
to IOS, and can be used on other embedded operating systems as well. For the
white-list strategy to be effective, the protected kernel code must either remain
static during legitimate operation, or only be allowed to change in predictable

ways. For example, while some embedded operating systems support legitimate
mechanisms to dynamically update the kernel, the contents of those updates are
and static and known a priori. Therefore, the checksums of approved updates
can be calculated and distributed to SEM a head of time.

Formally, let
Hc = Fhash(Sc)

where B is a binary firmware (eg. IOS), and {Sc} is a set of contiguous code
segments within B we wish to monitor. If Hc outputs a cryptographically secure
hash function over all monitored code segments, a change in Hc, then, indicates
a change within at least one code segment in {Sc}.

Hc = {x|x ∈ Sc, Fhash(x)}

Furthermore, we can compute and monitor multiple hash values {Hci} over any
arbitrary subset of {Sc}. By doing so, it will give arbitrary resolution on the
location of code modification at cost of increased memory and computational
overhead.

5 Computational Lower Bound of Successful

Software-Only Symbiote Bypass

This section discusses multi-stage attack strategies which attempt to disable the
Symbiote prior to executing their malicious payload. We provide an intuitive
lower bound of the computational cost of a successful attack against software-
only Symbiotes. We also discuss ways of detecting and defending against such
multi-stage attacks.

Naturally, the software-only Symbiote is not invulnerable to attack, and can
not guarantee absolute protection when deployed as the only security mecha-
nism. Instead, software-only Symbiotes should be deployed in tandem with tra-
ditional network and host-based mechanisms in a defense in depth arrangement.



14

Generally, software-only Symbiotes can be successfully bypassed in two ways:

Attack 1: Remove control-flow intercepts. If the attacker can remove all
control-flow intercepts within all live code regions before the Symbiote’s detec-
tion latency, the attacker can prevent the Symbiote from ever regaining control
of the CPU.

Attack 2: Deactivate the SEMM or Payload. If the attacker can lo-
cate and patch the Symbiote’s manager or payload code, the Symbiote can be
completely disabled.

Before we analyze the two attacks mentioned above, consider the set of bi-
naries that constitutes a typical host program. Regions of binaries within the
host program can be classified as live code, reachable code or dead code. Clearly,
dead code is not reachable via any possible execution path. Conversely, reachable
code can be executed under some set of inputs. More importantly, live code, a
subset of reachable code, is frequently executed under typical inputs of the host
program. In other words, live code represents the regions of the host program
active under the normal behavior model of the specific host program in a specific
environment.

The Symbiote control-flow intercepts are randomly distributed within the
live code regions, while the Symbiote Manager and Payloads are distributed
randomly through out the entire host program3.

Both attacks reduce to a common general problem of identifying all P out of
N bytes, P being the bytes belonging to the Symbiote component under attack,
N being the bytes of the host program in which P can exist. In the case of
attack 1, the attacker must identify and remove all control-flow intercepts, P
injected into all live code regions, N (assuming that this is known). Since the
Symbiote binary is polymorphically mutated at injection time, the attacker can
not search for a well-known Symbiote signature through the binary. Instead, the
attacker must compare an unmodified copy of the host program with the victim
host program during an online attack. This is essentially equivalent to at least
a linear operation over the size of all live code regions.

Similarly, since the Symbiote binary is distributed randomly throughout the
host program, an attacker must identify all code regions belonging to the Sym-
biote. There are many ways to do this. However, since no well-known signature
exists for the Symbiote code, the attacker must perform dynamic disassembly
in order to follow control-flow intercepts to a piece of Symbiote code. Alterna-
tively, the attacker can perform a linear comparison of the entire host program
to identify all injected Symbiote code. In the former case, the attacker’s problem
is reduced to attack 1, because unless all control-flow intercepts are removed,
the attacker can not be sure that all Symbiotes are removed. In the latter case,
the attacker must use a linear amount of CPU and network I/O, which again
reduces to the problem of identifying P bytes out of N.

3 While the Symbiote is distributed randomly through out the binary of the host pro-
gram, the injection process ensures that the Symbiote code can not be inadvertently
executed by the host program. In other words, the control-flow intercepts are the
only mechanism in which the Symbiote code will be invoked.



15

To put these attacks into perspective, the average size of the host programs
analyzed in our experiments is approximately 35 MB, the size of live code regions
considered for control-flow interception is approximately 10 MB. Each host pro-
gram contains approximately 75,000 functions, all of which can be intercepted.
(Note that control-flow interception need not take place only at the function
preamble, but can exist anywhere within the function body.) If the attacker
attempts to perform a linear comparison, at least portions of the unmodified
host program will have to be transferred over the network during the online
attack. The attacker can also attempt to dynamically disassemble the 10 MB of
live code. Both attack strategies require a very large amount of network I/O or
CPU which raises the bar quite high for the attacker to overcome without being
noticed.

6 Symbiote Performance and Computational Overhead

We randomly choose a set of control-flow intercept points within live regions of
the target host program. The method and parameters used to determine live re-
gions, as well as the number of intercept points chosen gives us fine grain control
of p(αi, δ, τq), and gives us a probabilistic bound on the frequency in which the
Symbiote will gain control of the CPU. Section 4.4 discusses the methods we
used to extract ”live” regions from the host program.

Consider the computational cost of an injected SEM during some time period
τq.

Let {α1...αn} be the set of all functions in binary firmware β.
Let g(αi, τq) be the cost of SEM per invocation at time period τq.
Let h(αi) be the binary function representing whether function αi is “inter-

cepted” by the SEM.
Let p(αi, δ, τq) be the number of times function αi will be invoked during

time period τq, given some probability distribution δ.

Note that the probability distribution δ is derived from the ”live” code anal-
ysis performed during the Symbiote injection process. Suppose a control-flow
intercept is inserted into a piece of ”live” code which is known to execute with
some probability, according to the normal execution model of the host program.
We can claim that the Symbiote control-flow intercept will also be invoked with
at least this probability. Thus, the ”live” code analysis gives us a probabilistic
lower bound on the frequency in which the Symbiote will regain control of the
CPU over any time period τq.

Let the SEM cost function g(αi, τq) be:

g(αi, τq) = OSEMM + Opayload(αi, τq) (1)

WhereOSEMM is the (constant) cost of invoking the SEMM andOpayload(αi, τq)
is the amount of the SEM payload to execute (variable), given function αi and



16

time period τq.

The Lower bound on SEM cost Cq, over time period τq can be ex-
pressed as:

Cq = ΣiOSEMM ∗ p(αi, δ, τq) (2)

= OSEMMΣip(αi, δ, τq) (3)

Intuitively, the lower bound on the SEM cost is simply the overhead of in-
voking the SEMM multiplied by the expected number of times that the SEMM
will be invoked over time period τq.

The computational cost of SEM Cq, over time period τq is:

Cq = Σig(αi, τq) ∗ h(αi) ∗ p(αi, δ, τq) (4)

The Upper bound on SEM cost Cq over time period τq. is a function
of the number and distribution of functions intercepted in order to execute the
SEMM and the cost of the payload execution the SEMM manages. Let h(αi) = 1
for all functions α), then

Cq = Σig(αi, τq) ∗ p(αi, δ, τq) (5)

= Σi(OSEMm +Opayload(αi, τq)) ∗ p(αi, δ, τq) (6)

= OSEMmΣip(αi, δ, τq) +ΣiOpayload(αi, τq) ∗ p(αi, δ, τq) (7)

Observations

– The distribution δ, and therefore, p(αi, δ, τq) can not be changed (without
changing the host’s original functionality), and varies with respect to differ-
ent devices and firmware.

– The function h(αi) can be used to control SEM CPU utilization but is binary
and imprecise.

– The function g(αi, τq) can be used to control SEM CPU utilization4 pre-

cisely.

We can vary the number of control-flow interceptions (h(αi)) and the amount

of SEM payload that is executed at each invocation (g(αi, τq)) to control pre-
cisely the amount of CPU time used by the SEM. We can implement these two
mechanisms in the SEMM to divert more CPU cycles to the SEM during peri-
ods of low CPU utilization and divert less during periods of high CPU utilization.
Figure 6 shows actual CPU utilization when Doppelgänger and our rootkit de-
tection payload are installed on a physical Cisco 7120 router with g(αi, τq) set
to several fixed values. This parameter directly affects the portion of the CPU
that is diverted to executing the SEM payload. Figure 7 and Table 1 shows an

4 In practice, OSEMm is much smaller than Opayload(), therefore, the second summa-
tion in equation 7 dominates over the first (Section 6.1).



17

inverse relationship between g(αi, τq) and the amount of time required to detect
a modification of IOS, which we call the detection latency.

Clearly, the more CPU resources the Symbiote Manager diverts away from
the host program, the shorter the detection latency will be. However, this can
also impact the performance of the host program. Therefore, the Symbiote Man-
ager must perform the important task of regulating, or scheduling, the Symbiote
payload for execution in a way which optimizes both detection latency and over-
all host program performance. This can be reduced to scheduling algorithms
which control the frequency of Symbiote payload invocation h(αi), as well as the
duration of the payload’s execution at each invocation g(αi, τq).

Such scheduling algorithms are critical in regulating the resource consump-
tion of the Symbiote payload, and must be adaptive to the current resource
utilization of the host program. For example, an inverse adaptive algorithm can
throttle back the Symbiote payload’s execution rate when the host program is
highly utilized, thus preventing the Symbiote from disrupting the functionality
of the host program when resource utilization is nearing its limits. Similarly,
real-time and batch-like scheduling algorithms can also be implemented in the
Symbiote Manager. The development of such adaptive scheduling algorithms
within the Symbiote Manager is an area of ongoing research.

6.1 Experimental Results: Doppelgänger, IOS 12.2 and 12.3, Cisco

7121

Methodology Doppelgänger, our proof of concept SEM implementation is in-
jected into IOS 12.2(27c) and IOS 12.3(3i) on the a Cisco 7120 router. The
rootkit detection payload is implemented in C, and calculates a single hash
covering the .text memory range 0x60008000 to 0x61662000. As a proof of
concept, we implemented CRC-32 as the hashing function used by the rootkit
detection payload.

Two sets of experiments are done to demonstrate both performance char-
acteristics and accurate IOS code modification detection. First, to test CPU
utilization, the Cisco 7120 router is put through a standard workload script
with varying SEM payload execution burst rates. The workload script touches
a cross section of standard router attack surface by performing tasks like enable
/ disabling routing, generating system status dumps, reconfiguring routing pa-
rameters and advertised routes, etc. The CPU utilization is measured by SNMP
polling.

To demonstrate IOS code modification detection, we simulate the installation
of a rootkit by modifying a SEM protected IOS firmware with added function
hooks and code. We then boot the Cisco router with the altered image and
measure the time required for the SEM payload to detect the modification.
We configure the payload detector to halt the router once the modification is
detected. This is also done with varying SEM payload execution burst rates to
demonstrate the relationship between SEM payload execution rate and runtime
detection latency. Performance evaluation data are included in the Appendix.



18

SEM Payload Burst Rate

0xF 0x1F 0xFF 0x7FF

56s 43s 35s 0.3s
Table 1. Average Detection Latency at Different SEM Payload Burst Rates IOS 12.2
(Excluding Boot Time)

Experimental Results Figure 6 demonstrates CPU utilization of the 7120
router when the SEM payload execution burst rate, or g(αi, τq), is varied. Figure
7 shows the total elapsed time (from boot up to router halt) of detection with
various SEM payload execution burst rates. Table 1 is the average detection
latency excluding router boot time (approximately 11 seconds).

Experimental Findings

– The Cisco router continues to function with Doppelgänger running concur-
rently, even during periods of near maximum CPU utilization.

– SEM CPU utilization can be controlled by varying the payload execution
burst rate within the SEMM.

– Detection Latency is inversely proportional to SEM CPU utilization (and
SEM payload execution burst rate).

– IOS code modification detection rate is 100% with 0% false positive.

7 Concluding Remarks

We presented a Symbiotic Embedded Machine (SEM), a new and novel software
mechanism that provides a means of embedding defensive software into existing
embedded devices. Using a specific SEM implementation we call Doppelgänger,
we were able to automatically inject a rootkit detection payload into a Cisco
7120 router running multiple firmware images across two major IOS versions,
12.2 and 12.3. By injecting under 1400 bytes of code into the IOS firmware,
Doppelgänger protects the router from all function hooking and interception
attempts. Our white-list based rootkit detection payload does not require a

priori knowledge of IOS internals, or signatures of known rootkits, and can
protect the router against any code modification attempts. As the SEM structure
operates alongside the native OS of the embedded device and not within it, it can
inject generic defensive payloads into the target device regardless of it’s original
hardware or software. Due to the unique nature of network embedded devices,
we posit that retrofitting these widely deployed vulnerable devices with defensive
SEM’s is the best hope of mitigating a significant emerging threat on our global
communication infrastructure. SEM is a generic defensive mechanism suitable for
general purpose host protection. Our ongoing research aims to demonstrate the
advantages of the Defensive Mutualistic paradigm and Symbiotes over traditional
AV solutions.



19

8 Acknowledgements

This material is based on research sponsored by Air Force Research labs under
agreement number FA8750-09-1-0075. The U.S. Government is authorized to
reproduce and distribute reprints for Governmental purposes notwithstanding
any copyright notation thereon. This material is also based on research sponsored
by DARPA contract: CRASH program, SPARCHS, FA8750-10-2-0253.

References

1. Microsoft Corporation, Kernel Patch Protection: Frequently Asked Questions.
http://tinyurl.com/y7pss5y, 2006.

2. Network Bluepill. Dronebl.org, 2008. http://www.dronebl.org/blog/8.
3. Hoi Chang and Mikhail J. Atallah. Protecting software code by guards. In Tomas

Sander, editor, Digital Rights Management Workshop, volume 2320 of Lecture

Notes in Computer Science, pages 160–175. Springer, 2001.
4. Ang Cui, Jatin Kataria, and Salvatore J. Stolfo. Killing the myth of cisco ios

diversity: Towards reliable, large-scale exploitation of cisco ios. USENIXWorkshop
on Offensive Technologies, August 2011.

5. Úlfar Erlingsson, Mart́ın Abadi, Michael Vrable, Mihai Budiu, and George C. Nec-
ula. Xfi: Software guards for system address spaces. InOSDI, pages 75–88. USENIX
Association, 2006.

6. Ligati et al. Enforcing security policies with run-time program monitors. Princeton
University, 2005.

7. Nick Harbour. Win at Reversing: API Tracing and Sandboxing Through Inline
Hooking, 2009. In BlackHat USA.

8. Fouad Kiamilev and Ryan Hoover. Defcon 16, 2008. Demonstration of Hardware
Trojans.

9. Christopher Krügel, William K. Robertson, and Giovanni Vigna. Detecting kernel-
level rootkits through binary analysis. In ACSAC, pages 91–100. IEEE Computer
Society, 2004.

10. Felix ”FX” Linder. Cisco IOS Router Exploitation. In In BlackHat USA, 2009.
11. Richard Lippmann, Engin Kirda, and Ari Trachtenberg, editors. Recent Advances

in Intrusion Detection, 11th International Symposium, RAID 2008, Cambridge,

MA, USA, September 15-17, 2008. Proceedings, volume 5230 of Lecture Notes in

Computer Science. Springer, 2008.
12. Stephen McLaughlin, Dmitry Podkuiko, Adam Delozier, Sergei Miadzvezhanka, ,

and Patrick McDaniel. Embedded firmware diversity for smart electric meters. In
HotSec 10, 2010.

13. Michael Lynn. Cisco IOS Shellcode, 2005. In BlackHat USA.
14. Sebastian Muniz. Killing the myth of Cisco IOS rootkits: DIK, 2008. In EU-

SecWest.
15. Ryan Riley, Xuxian Jiang, and Dongyan Xu. Guest-transparent prevention of

kernel rootkits with vmm-based memory shadowing. In Lippmann et al. [11],
pages 1–20.

16. Dror-John Roecher and Michael Thumann. NAC Attack. In In BlackHat USA,
2007.

17. Skywing. Subverting PatchGuard Version 2, 2008. Uninformed,Volume 6.



20

18. Yingbo Song, Pratap V. Prahbu, and Salvatore J. Stolfo. Smashing the stack with
hydra: The many heads of advanced shellcode polymorphism. In Defcon 17, 2009.

19. Vikas R. Vasisht and Hsien-Hsin S. Lee. Shark: Architectural support for auto-
nomic protection against stealth by rootkit exploits. In MICRO, pages 106–116.
IEEE Computer Society, 2008.

20. Martin Rinard Vijay Ganesh, Tim Leek. Taint-based directed whitebox fuzzing.
IEEE 31st International Conference on Software Engineering, 2009.

21. Redmond Wa, Galen Hunt, Galen Hunt, Doug Brubacher, and Doug Brubacher.
Detours: Binary interception of win32 functions. In In Proceedings of the 3rd

USENIX Windows NT Symposium, pages 135–143, 1998.
22. Zhi Wang, Xuxian Jiang, Weidong Cui, and Xinyuan Wang. Countering persistent

kernel rootkits through systematic hook discovery. In Lippmann et al. [11], pages
21–38.

[Performance Measurements of Root Detection SEM Payload on Physical
Cisco 7271 Router Running IOS 12.3]

Fig. 5. CPU Utilization on Cisco 7121 Router Using Different SEM Payload Execution
Bursts Rates (g(αi, τq)) for IOS 12.3. Note the Direct Relationship Between g(αi, τq),
SEM Payload Execution Time and Total CPU Utilization. Terms Low, Med, High, and
Really High Utilization Corresponds to Varying SEM Payload Burst Rates, g(αi, τq).


