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Abstract—We propose a fully-distributed approach to the on-
line estimation of vehicle traffic density. Our approach envisions
vehicles communicating within a VANET and cooperating to
collect density measurements through a uniform sampling ofthe
road sections of interest. The proposed scheme does not require
the presence of any network infrastructure, central controller or
devices triggered by the passage of vehicles, and it is suitable for
both highway and urban environments. Results derived through
ns-2 simulations in realistic mobility scenarios show thatour
solution is very effective, providing accurate, on-line estimates of
the traffic density with minimal protocol overhead.

I. I NTRODUCTION

The estimation and prediction of vehicle traffic over high-
ways and urban areas is deemed to play a major role in the
improvement of travel times and reduction of road conges-
tion in future transportation systems. Today’s solutions for
the measurement of traffic levels mainly involve mechanical
techniques, such as piezoelectric sensors or magnetic loop
detectors deployed under the road surface, roadside infra-red
or radar counters, surveillance cameras, or even manual counts.
However, these technologies suffer from limited coverage,low
reliability, high likeliness to be damaged (leading to short
life expectancy), as well as high deployment and maintenance
costs [1].

As more performing vehicular traffic monitoring solutions
are sought, the growing availability of user-generated data is
seen as an opportunity to improve the existing estimation tech-
niques. Novel approaches are emerging, which exploit Floating
Car Data (FCD), i.e., information about GPS localization or
cellular handoffs of users aboard vehicles, so as to improve
real-time traffic estimates [2]. However, even these top-notch
technologies require infrastructure-based communication and
centralized data processing, which imply high costs, signif-
icant computational complexity, and non-negligible latencies.
Moreover, the accuracy of FCD-based traffic estimation is still
improvable.

In such a context, vehicle-to-vehicle (V2V) communica-
tion has the potential to revolutionize the way information
about road traffic volumes is gathered, processed and dis-
seminated [3]. Indeed, direct data transfers among moving
vehicles would make it possible to determine traffic densities
in a distributed fashion, without the need for sensors, cameras
or roadside telecommunication infrastructures. This would
significantly reduce both costs and delays while increasingthe
precision of the estimate.

In this paper, we propose MobSampling, a lightweight,
fully- distributed, V2V-based technique for the real time
assessment of vehicular densities in localized areas of a road
topology, with a good accuracy. Such an information could be
used locally by the vehicles to, e.g., take driving decisions at
intersections, or by dynamic traffic lights or signs to adapt
maximum speed limits, green/red light periodicity and on-
ramp metering to the actual level of traffic. If the traffic density
information is instead propagated in the vehicular network
or conveyed to some central controller, it can be exploited
to derive better estimates of the overall road traffic, and
thus to inform drivers about the shortest route to destination.
Applications of MobSampling beyond transportation are also
foreseeable: e.g., the same data, coupled with informationon
the vehicle type, could be exploited to monitor CO2 emissions
in different areas of a metropolitan region.

The paper is organized as follows. After a discussion of
related works in Sec. II, we introduce the system model in
Sec. III. Then, in Sec. IV, we present the MobSampling
scheme and in Sec. V we show its good accuracy in different
road and traffic scenario. Sec. VI summarizes our findings and
points out future research directions.

II. RELATED WORK

Most of the existing intelligent transportation systems (ITS)
for traffic estimation require the use of dedicated infrastructure
indicating the presence or passage of vehicles (e.g., loop
detectors, roadside sensors and cameras). The high deployment
and maintenance costs involved in the use of such devices has
motivated several studies that aim at minimizing the number
of devices and optimizing their placement (see e.g., [1]).

Few, recent works exploit V2V and vehicle-to-infrastructure
(V2I) communications for vehicular traffic estimation. The
majority of them, however, present infrastructure-centric ap-
proaches and focus on information-fusion techniques, i.e., how
to combine measurements coming from different sources in
order to estimate some traffic parameters of interest. As an
example, the study in [4] presents a data fusion algorithm
that combines measurements from loop detectors and GPS-
equipped taxi cabs, and computes the vehicle density or
mean speed over a road section. The work in [5], instead,
resorts to cellular phones to transfer measurements to roadside
infrastructure and compute vehicles speed on a freeway, while
in [6] V2I communications are used to collect measurements
on speed, as well as speed and lane changes, and detect



anomalies in traffic conditions (e.g., queues or accidents).
Unlike the above studies, in our work we do not require, for
either data transfer or measurements collection, the availability
of any infrastructure node; rather, we fully exploit vehicle
cooperation for a distributed collection of the samples.

Cooperation among vehicles is exploited in [7], [8], which
are the most relevant works to ours. In particular, [7] proposes
a distributed vehicle density estimation scheme: a road seg-
ment is divided into multiple fixed-size cells and, within each
cell, a probe vehicle, called group leader, computes the number
of vehicles. The leader then exchanges such a measurement
with other group leaders so as to obtain the average density
on the road. The scheme in [8] is still based on a neighbor
density estimation, but it does not require a fixed cell size.
There, the authors compute the local density as the ratio of
the number of vehicles in the range of the probe vehicle
to the transmission range. They found that, if inter-vehicle
spacing is exponentially distributed, then the local density can
be considered to be a good estimate of the global density.
Like [8], our approach does not require fixed-sized cells and
lets the probe vehicle take samples of the density anywhere
within the area of interest. However, while the method in [8]
exhibits low accuracy in sparse networks as well in presenceof
inhomogeneous density conditions, the approach we propose
effectively exploits V2V communications to uniformly sample
a target area, proving to be extremely accurate in several
different conditions.

III. SYSTEM MODEL

We envision a Vehicular Ad hoc NETwork (VANET) com-
posed of vehicles, each equipped with a IEEE 802.11-like
interface with nominal transmission rangeRC , identical for
all nodes, and a global positioning system device, such as
a GPS receiver. For ease of description, in the next section
we consider that all vehicles in the target area participatein
the VANET1. We define as target area the geographical region
where we are interested in estimating the vehicle traffic density
during a period of time calledestimation period, T . Without
loss of generality, we assume that such an area is a circle of
radiusRA centered at a target location.

The task of sampling the vehicular density in the target
area is started by a (fixed or mobile) source node, possibly far
away from the target location. Such a procedure is initiated
when the source node generates a “sampling kit”, in the form
of a data packet including the target location and the radius
RA, the map of the road topology inside the target area, and
the different parameters driving the sampling process. The
sampling kit is then transferred to the target area by means
of a geocasting routing protocol [9]. The first vehicle in the
target area receiving the sampling kit becomes the Sampler.

When the Sampler is about to leave the target area, it
hands over the sampling kit (hence the role of the Sampler)

1In Sec. V, we show through simulation that, given a penetration estimate of
the technology (i.e., a percentage of vehicles with communication capabilities
and implementing the application), an accurate estimate ofthe vehicle density
is obtained even when such an assumption is dropped.
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Figure 1. Example of the new Sampler selection when the radioproximity
of the old Sampler is not fully contained in the target area. The shaded area
represents the intersection of target area and annulus of width a

to another, more suitable vehicle, as detailed below.

IV. M OBSAMPLING

The Sampler is in charge of the following two tasks:role
switching and density estimation. The role switching is the
procedure by which the sampling kit is handed over to another
vehicle, selected among those which, given their position
and movement pattern, are better suited as new Samplers.
The density estimation refers to the process of initiating and
collecting messages from nearby vehicles, used to estimatethe
traffic density.

A. The role-switching procedure

Role switching is triggered when the current Sampler is
about to exit the target area. Upon such an event, the Sampler
broadcasts anADVERT message that carries the position and
range of the target area. Vehicles receiving anADVERT will
reply with a unicast message calledBID, if they detect their
location as being inside the target area. ABID includes the
identity and position of the message sender, and its transmis-
sion time is randomized to avoid flooding the receiver.

Based on the receivedBIDs, the current Sampler selects
as the next Sampler the vehicle (i) that is inside an annulus
uniformly extracted in the area in its radio proximity and of
fixed width a < RC , and (ii) that is as close as possible to
a random angleα uniformly extracted in[0, 2π). Note that
if the Sampler’s radio proximity is not fully contained within
the target area, the above random values are extracted within
the intersection between the two regions. If no vehicle exists
within the annulus, the one closest to it is selected, regardless
of its angular position. An example of the the new Sampler
selection is depicted in Fig. 1.

We stress that the selection procedure has a significant
impact on the performance of the sampling process. Indeed, if
a simple approach (such as one based on gossip algorithms)
were adopted, the Sampler would end up being selected
randomly among all the vehicles that sent aBID. However, this
procedure would confine the information in areas with higher



vehicular densities (e.g., around a traffic light), sampling some
regions inside the target area with very low probability. To
avoid such an effect, in our algorithm we prefer to randomize
the distance between the old and the new Sampler rather than
their relative angular position.

After selecting a new Sampler, the old one hands it the sam-
pling kit, enriched with records of density estimates computed
up to that moment. Note that, in case the Sampler gets too far
out with respect to the target area, i.e., its radio range andthe
target area become disjoint, it gives up the sampling role and
resorts to geocasting in order to return the sampling kit inside
the area.

B. The density estimation

We now focus on the estimation activity of the current Sam-
pler, which samples the vehicle density at random intervals,
whose duration is uniformly distributed with mean equal toτ
seconds.

At each sampling instant, the Sampler broadcasts aPOLL

message, including the center position and the radius of the
target area. Any vehicle that receives thePOLL and is within
the target area will respond to the sender with aREPLY

message; theREPLY transmission time is again randomized
to avoid flooding the receiver.

For every issuedPOLL i, the Sampler uses the numberr of
returnedREPLYs and its own position at thePOLL broadcast
time ti, to compute the instantaneous vehicle lane density as:

δ(ti) =
r + 1

Ls · l
. (1)

In (1), Ls denotes the sampled lane length, whilel denotes
the number of lanes. Indeed, recall that the Sampler knows the
map of the road topology inside the target area, thus, based
on its own position, it is capable of computing the number
and the length of the lanes that are in the intersection between
its radio range and the target area, upon thePOLL broadcast.
Also, the number ofREPLYs is incremented by one in order
to take into account that, apart from the vehicles that sent a
REPLY, the Sampler itself is inside the sampled area.

Given the estimation period[t, t + T ) over which one
is interested in computing the lane density estimation, the
resulting value is obtained as the temporal average of the
estimates in (1), i.e.,

δ =

∑
ti∈[t,t+T ) δ(ti)(ti+1 − ti)

T
. (2)

The valueδ can then be returned to the source node via
geocasting, or distributed to vehicles in the VANET.

V. PERFORMANCEEVALUATION

We implemented our algorithm as well as the communi-
cation protocol in thens-2 simulator. We consider that each
vehicle is equipped with a 802.11 interface, whose data rateis
forced to the basic rate so as to ensure maximum reliability of
transmissions. The nominal radio range is set to 100 m, a value
that is consistent with recent experimental results on V2V
communication [10]. Vehicles are also equipped with a GPS

receiver, allowing their position information to be updated
every second.

The vehicular mobility was generated with VanetMobiSim,
a well-known, validated, microscopic-level simulator of car
traffic [11]. In particular, we employed the IDM-LC car-
following model, which accounts for car-to-car interactions,
overtakings and road signaling. We study two street layouts,
representing a highway environment and a urban crossroad,
respectively. The former is a straight 2 km-long road section
with two lanes in each direction, where drivers travel at speeds
from 70 to 130 km/h, according to their attitude as well as
to traffic conditions. The latter is an intersection with four
incoming roads and traffic lights regulating the car flows,
where drivers’ speed ranges between 35 and 50 km/h.

As far as the MobSampling configuration is concerned, we
setτ = 10 s,a = 40 m, while we chose the transmission jitter
for REPLY andBID messages as a value uniformly distributed
between 0 and 0.1 s. These settings were identified as the
best configuration after extensive sampling of the parameter
space through simulation. In each simulation, the sampling
kit is generated by a source randomly located over the road
topology, and it is given an estimation periodT equal to either
3 or 15 minutes. The geocasting technique we use to route the
sampling kit toward the target area is the scheme in [9]. Also,
we set the target area radius toRA = 200 m.

The combination of mobility environment and position of
the target area heralds three evaluation scenarios:

• highway: the target area is centered at the middle point
of the road segment of the highway environment;

• urban road: the target area is centered at one of the
incoming roads in the crossroad environment, and does
not include the intersection;

• intersection: the target area is centered at the intersection
in the crossroad environment.

In all these scenarios, results are obtained by averaging over
five runs, each simulating 15 minutes of traffic.

We first evaluate the performance of MobSampling over
periods of 15 minutes, i.e., by averaging results over the
duration of a whole simulation run. We consider the three
different evaluation scenarios, in Fig. 2(a), Fig. 2(b), and
Fig. 2(c), respectively: in each scenario, we vary the per-
road vehicular inflow, i.e., the volume of vehicles enteringthe
area under study from each road. As increasing inflows induce
higher vehicular densities, varying such a parameter allows us
to control the density of car traffic in the region2.

From Fig. 2, we can note that MobSampling provides a very
accurate estimate of the actual average value of the vehicular
lane density, under all combinations of evaluation scenarios
and inflow volumes. As expected, both actual and estimated
densities grow along with the vehicular inflow. However, we
can notice that such a growth is steeper in the intersection
scenario: there, the presence of two crossing roads in the target

2Note that per-road inflows in the urban environment are approximately
halved with respect to those in the highway environment: this setting is chosen
so as to have comparable densities in the two environments, although the car
speed is much higher in the latter than in the former.
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Figure 2. Actual and estimated vehicular density: averagesover 15 minutes versus the traffic inflow volume, in presence of different evaluation scenarios

area, jointly with the fact that traffic becomes slower at the
bottleneck represented by their junction, results in longer and
longer queues as the inflow volume is reinforced.

In a second set of tests, we increase the granularity of obser-
vations, by requesting estimation periods ofT = 3 minutes.
In Fig. 3 we observe that MobSampling is still capable of
providing estimates that are fairly accurate with respect to the
actual vehicular densities measured during the 3-minute long
intervals. Again, such a consideration holds throughout the
different evaluation scenarios and inflow volumes.

We then further increase the granularity level, bringing itto
the maximum allowed, i.e., the sampling interval. In this case,
estimates do not represent an average, rather, the outcome of
single instances of the protocol. In Fig. 4 we detail the results
for different inflows, in presence of the Intersection scenario
only, due to space limitations. The choice of this scenario is
motivated by the fact that the actual vehicular density tends to
vary more rapidly and significantly at crossroads than along
roads, making the Intersection scenario the most challenging
for the instantaneous tracking of the traffic density.

This notwithstanding, the results in Fig. 4 show that Mob-
Sampling generates accurate estimates of the instantaneous
vehicular lane density in the target area, even on the basis
of a single observation. Indeed, the estimated traffic density
nicely follows the actual one in its fast variations over time.

The overhead of the MobSampling communication protocol
is presented in Fig. 5(a). The plot refers to the Urban road
scenario, but similar results were obtained in the two other
scenarios as well. The outcome is that MobSampling induces
minimal load in the network: even in presence of high inflows
(and thus high traffic densities), the overhead ofREPLY and
POLL messages is in the order of a few tens of bytes/s.

As far as the impact of the transmission range on the
performance of the protocol is concerned, we stress that the
default value of the radio range employed in the previous tests,
i.e., 100 m, implies that the sampler vehicle receivesREPLY

messages only from a subset of the vehicles in the target area,
whose range is 200 m. More precisely, thePOLL messages
reach at most one fourth of the surface of the target area,
when the Sampler coverage area is completely within the target
area. The effect of such a sub-sampling is studied in Fig. 5(b),
which portrays the actual estimated lane densities when the

radio range varies from 50 to 200 m. The results refer to the
Intersection scenario, which, as already discussed, is themost
challenging from the point of view of the estimation precision.
From the plot, it is clear that increasing the transmission range
yields a better performance, since the set of sampled vehicles
grows accordingly. Nonetheless, even with a small radio range
of 50 m, which covers at best1/16 of the target area, estimates
are accurate at low inflows and have acceptable errors (15 to
20% of the actual value) at high inflow volumes. The fact that
MobSampling only overestimates the actual density is due toa
slight bias in the spatial sampling toward more crowded areas.

Finally, we comment on the effect of the market penetration
rate of the V2V communication technology and/or of the
MobSampling application. Fig. 5(c) shows the actual and
estimated vehicular density as 30 to 100% of the vehicles are
involved in the estimation process, and assuming that such
a penetration rate is known. The considered scenario is the
Urban road, but similar results were obtained in the other cases
(omitted due to space limitations). It is quite clear that the
quality of the estimation is not affected by the percentage of
vehicles participating in the network, as long as the penetration
ratio of the application among vehicles is accurate.

VI. CONCLUSION

In this paper, we proposed a framework for sampling and
estimation of vehicle traffic density in highway and urban
environments, called MobSampling. Our approach exploits
vehicle mobility and V2V communication to uniformly sam-
ple areas of interest. MobSampling is a fully-distributed,
lightweight scheme, which does not require the presence of
any infrastructure, nor a complete penetration ratio of the
technology. Results derived through ns-2 simulation in realistic
mobility settings showed the excellent accuracy achieved by
our solution as the vehicle density and the time granularity
used to compute the estimate vary.

Future work will evaluate the performance of MobSampling
in larger, more complex road topologies, as well as with real-
life mobility traces. Also, other techniques for computinglane
densities and their average values will be investigated.
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Figure 3. Actual and estimated vehicular lane density: averages over 3 minutes, in presence of different evaluation scenarios and traffic inflow volumes
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Figure 4. Actual and estimated vehicular lane density: instantaneous (frequency1/τ ) result in the Intersection scenario with different trafficinflow volumes
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