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Abstract—We propose a fully-distributed approach to the on- In this paper, we propose MobSampling, a lightweight,

line estimation of vehicle traffic density. Our approach envsions  fylly- distributed, V2V-based technique for the real time
vehicles communicating within a VANET and cooperating 10 5g5essment of vehicular densities in localized areas o ro

collect density measurements through a uniform sampling ofhe ¢ | ith d Such inf i 1d b
road sections of interest. The proposed scheme does not rarpl 0Opology, with @ good accuracy. such an information cou €

the presence of any network infrastructure, central contrdler or ~ Used locally by the vehicles to, e.g., take driving decisian
devices triggered by the passage of vehicles, and it is suile for  intersections, or by dynamic traffic lights or signs to adapt
both highway and urban environments. Results derived throgh  maximum speed limits, green/red light periodicity and on-
ns-2 simulations in realistic mobility scenarios show thatour 5 mpy metering to the actual level of traffic. If the traffic gip
solution is very effective, providing accurate, on-line eimates of . . L2 . .
the traffic density with minimal protocol overhead. information is instead propagated in the_ vehicular network
or conveyed to some central controller, it can be exploited

to derive better estimates of the overall road traffic, and
thus to inform drivers about the shortest route to destnati

The estimation and prediction of vehicle traffic over highApplications of MobSampling beyond transportation are als
ways and urban areas is deemed to play a major role in ageseeable: e.g., the same data, coupled with information
improvement of travel times and reduction of road congeshe vehicle type, could be exploited to monitor £@missions
tion in future transportation systems. Today's solutions fin different areas of a metropolitan region.
the measurement of traffic levels mainly involve mechanical The paper is organized as follows. After a discussion of
techniques, such as piezoelectric sensors or magnetic leefted works in Sec. Il, we introduce the system model in
detectors deployed under the road surface, roadside riefta-Sec. 1ll. Then, in Sec. IV, we present the MobSampling
or radar counters, surveillance cameras, or even manuatxouscheme and in Sec. V we show its good accuracy in different
However, these technologies suffer from limited coveréme, road and traffic scenario. Sec. VI summarizes our findings and
reliability, high likeliness to be damaged (leading to $hopoints out future research directions.
life expectancy), as well as high deployment and maintemanc
costs [1]. Il. RELATED WORK

As more performing vehicular traffic monitoring solutions Most of the existing intelligent transportation systemgS))
are sought, the growing availability of user-generatecgdst for traffic estimation require the use of dedicated infractinre
seen as an opportunity to improve the existing estimatioh-te indicating the presence or passage of vehicles (e.g., loop
niques. Novel approaches are emerging, which exploit IFigat detectors, roadside sensors and cameras). The high degioym
Car Data (FCD), i.e., information about GPS localization aind maintenance costs involved in the use of such devices has
cellular handoffs of users aboard vehicles, so as to improwmtivated several studies that aim at minimizing the number
real-time traffic estimates [2]. However, even these tofmimo of devices and optimizing their placement (see e.g., [1]).
technologies require infrastructure-based communiaadiod Few, recent works exploit V2V and vehicle-to-infrastruetu
centralized data processing, which imply high costs, §igniV2l) communications for vehicular traffic estimation. The
icant computational complexity, and non-negligible laies. majority of them, however, present infrastructure-cengp-
Moreover, the accuracy of FCD-based traffic estimationills Stproaches and focus on information-fusion techniques hiav
improvable. to combine measurements coming from different sources in

In such a context, vehicle-to-vehicle (V2V) communicaerder to estimate some traffic parameters of interest. As an
tion has the potential to revolutionize the way informatioexample, the study in [4] presents a data fusion algorithm
about road traffic volumes is gathered, processed and disat combines measurements from loop detectors and GPS-
seminated [3]. Indeed, direct data transfers among moviaguipped taxi cabs, and computes the vehicle density or
vehicles would make it possible to determine traffic deesitimean speed over a road section. The work in [5], instead,
in a distributed fashion, without the need for sensors, cameresorts to cellular phones to transfer measurements tsid=d
or roadside telecommunication infrastructures. This woulnfrastructure and compute vehicles speed on a freewaye whi
significantly reduce both costs and delays while increatirg in [6] V2] communications are used to collect measurements
precision of the estimate. on speed, as well as speed and lane changes, and detect

I. INTRODUCTION



anomalies in traffic conditions (e.g., queues or accidents) target area
Unlike the above studies, in our work we do not require, for boundary
either data transfer or measurements collection, theadibil/
of any infrastructure node; rather, we fully exploit vekicl target area
cooperation for a distributed collection of the samples.
Cooperation among vehicles is exploited in [7], [8], which
are the most relevant works to ours. In particular, [7] psgs

a distributed vehicle density estimation scheme: a road seg - :C—l—J—r—rér—;—t————
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ment is divided into multiple fixed-size cells and, withincea 'Sampler
cell, a probe vehicle, called group leader, computes thebeum
of vehicles. The leader then exchanges such a measurement

with other group leaders so as to obtain the average density
on the road. The scheme in [8] is still based on a neighbor
density estimation, but it does not require a fixed cell size.
There, the authors compute the local density as the ratio fure 1. Example of the new Sampler selection when the radigimity
the number of vehicles in the range of the probe vehicféthe old Sampler is not fully contained in the target arelae Shaded area
to the transmission range. They found that, if inter_vemicrepresents the intersection of target area and annulusdbh wi

spacing is exponentially distributed, then the local dignsan

b_e considered to be a good estima’ge OT the global densly'another, more suitable vehicle, as detailed below.

Like [8], our approach does not require fixed-sized cells and

lets the probe vehicle take samples of the density anywhere IV. MOBSAMPLING

within the area of interest. However, while the method in [8] The Samp|er is in Charge of the fo”owing two taskste

exhibits low accuracy in sparse networks as well in presefcegpitchi ng and density estimation. The role switching is the
inhomogeneous density conditions, the approach we prop@sgcedure by which the sampling kit is handed over to another
effectively exploits V2V communications to uniformly satep vehicle, selected among those which, given their position
a target area, proving to be extremely accurate in sevegdld movement pattern, are better suited as new Samplers.
different conditions. The density estimation refers to the process of initiating a

. SYSTEM MODEL colle_ctmg messages from nearby vehicles, used to estilmate
traffic density.

We envision a Vehicular Ad hoc NETwork (VANET) com- o
posed of vehicles, each equipped with a IEEE 802.11-like The role-switching procedure
interface with nominal transmission rand&-, identical for Role switching is triggered when the current Sampler is
all nodes, and a global positioning system device, such asout to exit the target area. Upon such an event, the Sampler
a GPS receiver. For ease of description, in the next sectioroadcasts amDVERT message that carries the position and
we consider that all vehicles in the target area particifrate range of the target area. Vehicles receivingamveRT will
the VANET!. We define as target area the geographical regioeply with a unicast message called, if they detect their
where we are interested in estimating the vehicle traffisign location as being inside the target area.B® includes the
during a period of time calledstimation period, 7". Without identity and position of the message sender, and its tramsmi
loss of generality, we assume that such an area is a circlesan time is randomized to avoid flooding the receiver.
radiusR4 centered at a target location. Based on the receivediDs, the current Sampler selects
The task of sampling the vehicular density in the targeis the next Sampler the vehicle (i) that is inside an annulus
area is started by a (fixed or mobile) source node, possibly faiformly extracted in the area in its radio proximity and of
away from the target location. Such a procedure is initiatécked width a < R¢, and (ii) that is as close as possible to
when the source node generates a “sampling kit”, in the forsmrandom anglev uniformly extracted in[0, 27). Note that
of a data packet including the target location and the radiiighe Sampler’s radio proximity is not fully contained wiith
R 4, the map of the road topology inside the target area, atitk target area, the above random values are extractechwithi
the different parameters driving the sampling process. Thw®e intersection between the two regions. If no vehicletexis
sampling kit is then transferred to the target area by meanihin the annulus, the one closest to it is selected, rdgssd
of a geocasting routing protocol [9]. The first vehicle in thef its angular position. An example of the the new Sampler
target area receiving the sampling kit becomes the Sampleselection is depicted in Fig. 1.
When the Sampler is about to leave the target area, itWe stress that the selection procedure has a significant
hands over the sampling kit (hence the role of the Samplémpact on the performance of the sampling process. Indéed, i
a simple approach (such as one based on gossip algorithms)
in Sec. V, we show through simulation that, given a penetnagistimate of \yare adopted, the Sampler would end up being selected
the technology (i.e., a percentage of vehicles with comeaiiun capabilities . .
and implementing the application), an accurate estimatheo¥ehicle density randomly among all the vehicles that seretia. However, this
is obtained even when such an assumption is dropped. procedure would confine the information in areas with higher



vehicular densities (e.g., around a traffic light), sangpbome receiver, allowing their position information to be updhte
regions inside the target area with very low probability. Tevery second.

avoid such an effect, in our algorithm we prefer to randomize The vehicular mobility was generated with VanetMobiSim,
the distance between the old and the new Sampler rather tlaamell-known, validated, microscopic-level simulator airc
their relative angular position. traffic [11]. In particular, we employed the IDM-LC car-

After selecting a new Sampler, the old one hands it the safotowing model, which accounts for car-to-car interaoto
pling kit, enriched with records of density estimates cotedu overtakings and road signaling. We study two street layouts
up to that moment. Note that, in case the Sampler gets too fapresenting a highway environment and a urban crossroad,
out with respect to the target area, i.e., its radio rangethed respectively. The former is a straight 2 km-long road sectio
target area become disjoint, it gives up the sampling rote awith two lanes in each direction, where drivers travel aesize
resorts to geocasting in order to return the sampling kitlans from 70 to 130 km/h, according to their attitude as well as
the area. to traffic conditions. The latter is an intersection with fou
incoming roads and traffic lights regulating the car flows,
where drivers’ speed ranges between 35 and 50 km/h.

We now focus on the estimation aCtiVity of the current Sam- As far as the MobSamp“ng Conﬁguration is Concerned, we
pler, which samples the vehicle density at random inteyvalietr = 10 s, « = 40 m, while we chose the transmission jitter
whose duration is uniformly distributed with mean equaito for rRepLY andBID messages as a value uniformly distributed
seconds. between 0 and 0.1 s. These settings were identified as the

At each sampling instant, the Sampler broadcaseDBL pest configuration after extensive sampling of the paramete
message, including the center position and the radius of #)gace through simulation. In each simulation, the sampling
target area. Any vehicle that receives theLL and is within kit is generated by a source randomly located over the road
the target area will respond to the sender withRBPLY topology, and it is given an estimation periddequal to either
message; the&EPLY transmission time is again randomize® or 15 minutes. The geocasting technique we use to route the
to avoid flooding the receiver. sampling kit toward the target area is the scheme in [9]. Also

For every issue@oLL i, the Sampler uses the numbeof e set the target area radius &y = 200 m.
returnedrEPLYS and its own pOSition at theoLL broadcast The combination of m0b|||ty environment and position of
time t;, to Compute the instantaneous vehicle lane denSity e target area heralds three evaluation scenarios:

5(ts) = r+1 (1) « highway: the target area is c_entered at t_he middle point
! Ls-1° of the road segment of the highway environment;

In (1), L, denotes the sampled lane length, wHildenotes ~ * .urban.road: the_target area is centgred at one of the
the number of lanes. Indeed, recall that the Sampler knows th ~ INcoming roads in the crossroad environment, and does
map of the road topology inside the target area, thus, based MOt include the intersection; . _
on its own position, it is capable of computing the number * intersection: the target area is centered at the intersection
and the length of the lanes that are in the intersection stwe N the crossroad environment.
its radio range and the target area, uponrioeL broadcast. In all these scenarios, results are obtained by averagirg ov
Also, the number oREPLYs is incremented by one in orderfive runs, each simulating 15 minutes of traffic.
to take into account that, apart from the vehicles that sent Ve first evaluate the performance of MobSampling over
REPLY, the Sampler itself is inside the sampled area. periods of 15 minutes, i.e., by averaging results over the

Given the estimation period,¢ + 7)) over which one duration of a whole simulation run. We consider the three
is interested in computing the lane density estimation, ti§éfferent evaluation scenarios, in Fig. 2(a), Fig. 2(b)dan
resulting value is obtained as the temporal average of thi®. 2(c), respectively: in each scenario, we vary the per-

B. The density estimation

estimates in (1), i.e., road vehicular inflow, i.e., the volume of vehicles enterihg
5 5(t:) (tise — 1) area under_ study from_ gach roa_d. As increasing inflows induce
5 = i€l TV T (2) higher vehicular densities, varying such a parameter allosv
T to control the density of car traffic in the regfon
The valued can then be returned to the source node via From Fig. 2, we can note that MobSampling provides a very
geocasting, or distributed to vehicles in the VANET. accurate estimate of the actual average value of the veinicul

lane density, under all combinations of evaluation scesari

and inflow volumes. As expected, both actual and estimated
We implemented our algorithm as well as the commungtensities grow along with the vehicular inflow. However, we

cation protocol in thens-2 simulator. We consider that eachcan notice that such a growth is steeper in the intersection

vehicle is equipped with a 802.11 interface, whose dataisatescenario: there, the presence of two crossing roads in thetta
forced to the basic rate so as to ensure maximum reliability o

transmissions. The nominal radio range is set to 100 m, ava|u Note that per-road inflows in the urban environment are apprately
hat i istent with recent experimental results on VZSglved with respect to those in the highway environmens gkiting is chosen
that Is consistent wi Xperi u as to have comparable densities in the two environmeltiteugh the car

communication [10]. Vehicles are also equipped with a GRPBeed is much higher in the latter than in the former.

V. PERFORMANCEEVALUATION
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Figure 2. Actual and estimated vehicular density: averayes 15 minutes versus the traffic inflow volume, in preserfcdifterent evaluation scenarios

area, jointly with the fact that traffic becomes slower at thedio range varies from 50 to 200 m. The results refer to the
bottleneck represented by their junction, results in loreged Intersection scenario, which, as already discussed, imthet
longer queues as the inflow volume is reinforced. challenging from the point of view of the estimation prearsi

In a second set of tests, we increase the granularity of obserom the plot, it is clear that increasing the transmissarge
vations, by requesting estimation periodsiof= 3 minutes. yields a better performance, since the set of sampled \e=hicl
In Fig. 3 we observe that MobSampling is still capable ajrows accordingly. Nonetheless, even with a small radigean
providing estimates that are fairly accurate with respet¢he of 50 m, which covers at be$y/ 16 of the target area, estimates
actual vehicular densities measured during the 3-minutg loare accurate at low inflows and have acceptable errors (15 to
intervals. Again, such a consideration holds throughoet tl20% of the actual value) at high inflow volumes. The fact that
different evaluation scenarios and inflow volumes. MobSampling only overestimates the actual density is dwe to

We then further increase the granularity level, bringinit slight bias in the spatial sampling toward more crowdedsarea

the maximum allowed, i.e., the sampling interval. In thisesa Finally, we comment on the effect of the market penetration
estimates do not represent an average, rather, the outcome;@ of the V2V communication technology and/or of the
single instances of the protocol. In Fig. 4 we detail the ltesu MobSampling application. Fig. 5(c) shows the actual and
for different inflows, in presence of the Intersection sc&na estimated vehicular density as 30 to 100% of the vehicles are
only, due to space limitations. The choice of this scenasio jhyolved in the estimation process, and assuming that such
motivated by the fact that the actual vehicular density $et0d 5 penetration rate is known. The considered scenario is the
vary more rapidly and significantly at crossroads than alonghan road, but similar results were obtained in the othsesa
roads, making the Intersection scenario the most chabengiomitted due to space limitations). It is quite clear thas th
for the instantaneous tracking of the traffic density. quality of the estimation is not affected by the percentafye o

This notwithstanding, the results in Fig. 4 show that Mohyepicles participating in the network, as long as the petietn
Sampling generates accurate estimates of the instant®nggq of the application among vehicles is accurate.
vehicular lane density in the target area, even on the basis

of a single observation. Indeed, the estimated traffic dgnsi
nicely follows the actual one in its fast variations overeim
The overhead of the MobSampling communication protocol
is presented in Fig. 5(a). The plot refers to the Urban road
scenario, but similar results were obtained in the two other!n this paper, we proposed a framework for sampling and
scenarios as well. The outcome is that MobSampling induc@gtimation of vehicle traffic density in highway and urban
minimal load in the network: even in presence of high inflow@nvironments, called MobSampling. Our approach exploits
(and thus high traffic densities), the overheadrePLY and vehicle mobility and V2V communication to uniformly sam-
POLL messages is in the order of a few tens of bytes/s. ~Ple areas of interest. MobSampling is a fully-distributed,
As far as the impact of the transmission range on tHightweight scheme, which does not require the presence of
performance of the protocol is concerned, we stress that f§&y infrastructure, nor a complete penetration ratio of the
default value of the radio range employed in the previous testechnology. Results derived through ns-2 simulation ifisge
i.e., 100 m, implies that the sampler vehicle receirepLy Mobility settings showed the excellent accuracy achieved b
messages only from a subset of the vehicles in the target afd solution as the vehicle density and the time granularity
whose range is 200 m. More precisely, theLL messages used to compute the estimate vary.
reach at most one fourth of the surface of the target areafuture work will evaluate the performance of MobSampling
when the Sampler coverage area is completely within thetarin larger, more complex road topologies, as well as with-real
area. The effect of such a sub-sampling is studied in Fig, 5(kfe mobility traces. Also, other techniques for computiage
which portrays the actual estimated lane densities when ftiensities and their average values will be investigated.

VI. CONCLUSION



80

8 vehicle/min
16 vehicle/min |4
32 vehicle/min
48 vehicle/min

30 30

actual n

I-| —— estimated ]
A

v

20

10 f 1

Vehicular density (vehicle/km)

Vehicular density (vehicle/km)

actual
—— estimated

3 vehicle/min 3 vehicle/min

n actual L

® 7 vehicle/min |4 70 | — estimated ® 7 vehicle/min

4 14 vehicle/min 4 14 vehicle/min
v 21 vehicle/min 60 [ v 21 vehicle/min |]

40t E
30
20

10 'f"\o/o\;'

Vehicular density (vehicle/km)

1 2 3 4 5 1 2
Estimation period number

(a) Highway

Figure 3. Actual and estimated vehicular lane density: ayes over 3 minutes, in presence of different

60 T T
actual
|| — estimated 4

40 B

60 T T
actual
|| — estimated 4

40 B

50

50

30 q

20 b

10

Vehicular density (vehicle/km)
Vehicular density (vehicle/km)

0 | I I 0 I I I I
0 3 6 9 12 15 0 3 6 9 12

Time (min) Time (min)

15

(a) 3 vehicle/min (b) 7 vehicle/min

Figure 4. Actual and estimated vehicular

3

Estimation period number

(b) Urban road

Vehicular density (vehicle/km)

4 5 1 2 3 4 5
Estimation period number

(c) Intersection

evaluationasaes and traffic inflow volumes

60 T T T T

60
B
< 50
<
Q
S 40
;)
2
2 3l ]
c
(7]
T 20t 1
k<
S
L2
10 - actual 1 g 07 actual 1
—— estimated > —— estimated
0 \ . 0 \ .
0 3 6 9 12 15 0 3 6 9 12 15

Time (min) Time (min)

(c) 14 vehicle/min (d) 21 vehicle/min

lane densityaimstneous (frequencly/7) result in the Intersection scenario with different traffilow volumes

50 T 60 gl 25
== poll 5 5
reply < 50 o) =
40 - 1 ° A T 20 1
g o 40 []
g 30f 1 < 2 < 15 N
2 2 20 & 2 pr
O f=4 c
£ 20+ R g g 10
g 5 2 N
[¢] S actual = [cgF actual
10 4 o 10 —m— estimated, R, = 50 m| | ks 5 == —#— estimated, 100% p.r. |4
5 / —o— estimated, R; =100 m 5 —O— estimated, 50% p.r.
J . . > —a— estimated, R, =200 m > —A— estimated, 30% p.r.
0 [ | 0 i T T T 0 T T T
5 10 20 30 5 10 15 20 5 10 15 20

Vehicular inflow (vehicle/min)

(a) Overhead

Vehicular inflow (vehicle/min)

(b) Radio range

Vehicular inflow (vehicle/min)

(c) Penetration rate

Figure 5. Overhead of the MobSampling communication paltaad impact of transmission rate and market penetratiotherestimated vehicular density

ACKNOWLEDGMENT

This work was supported by Regione Piemonte through th[%

MASP project.

REFERENCES

[1] W. L. Leow, D. Ni, H. Pishro-Nik, “A sampling theorem apgach to
traffic sensor optimization,JEEE Trans. on Intell. Transp. Syst., vol. 9,
no. 2, pp.369-374, June 2008.

[2] R.-P. Schafer, “IQ routes and HD traffic: technology igigs about
TomTom’s time-dynamic navigation concepCM FSE, Aug. 2009.

[3] J. Rybicki, B. Scheuermann, W. Kiess, C. Lochert, P. &kl M.

Mauve, “Challenge: peers on wheels - A road to new trafficrimi@tion

systems”,ACM MobiCom, Sept. 2007.

Q. J. Kong, Z. Li, Y. Chen, Y. Liu, “An approach to urban ffia state

estimation by fusing multisource information,EEE Trans. on Intell.

Transp. Syst., vol. 10, no. 3, pp.499-511, Sept. 2009.

(4

(5]

(7]

(8]
El
[20]

[11]

K. Sohn, K. Hwang, “Space-based passing time estimaiioa freeway
using cell phones as traffic probe$ZEE Trans. on Intell. Transp. Syst.,
vol. 9, no. 3, pp.559-568, Sept. 2008.

] Y. Ma, M. Chowdhury, A. Sadek, M. Jeihani, “Real-time higay traffic

condition assessment framework using vehicle-infratiirecintegration
(VIl) with artificial intelligence (Al),” IEEE Trans. on Intell. Transp.
Syst.,, vol. 10, no. 4, pp.615-627, Dec. 2009.

M. Jerbi, S. Senouci, T. Rasheed, Y. Ghamri-Doudane,
infrastructure-free traffic information system for veHaunetworks,”
IEEE VTC, pp. 2086-—2090, Sept.2007.

S. Panichpapiboon, W. Pattara-atikom, “Evaluation afeaghbor-based
vehicle density estimation scheméTS Telecomm., Oct. 2008.

D. Borsetti, M. Fiore, C. Casetti, C.-F. Chiasserini, hWdh mobile
services go local,ACM MSWM, Oct. 2009.

F. Bai, D.D. Stancil, H. Krishnan, “Toward understamglicharacteristics
of Dedicated Short Range Communications (DSRC) from a petise
of vehicular network engineersACM MobiCom, Sept. 2010.

J. Harri, M. Fiore, F. Filali, C. Bonnet, “Vehicular rbdity simulation
with VanetMobiSim”, Trans. of Society for Modeling and Simulation,
Sept. 2009.

“An



