TapLogger: Inferring User Inputs On Smartphone
Touchscreens Using On-board Motion Sensors

Zhi Xu
Department of Computer
Science and Engineering

Pennsylvania State University
University Park, PA, USA

zux103@cse.psu.edu

ABSTRACT

Today’s smartphones are shipped with various embedded
motion sensors, such as the accelerometer, gyroscope, and
orientation sensors. These motion sensors are useful in sup-
porting the mobile Ul innovation and motion-based com-
mands. However, they also bring potential risks of leaking
user’s private information as they allow third party applica-
tions to monitor the motion changes of smartphones.

In this paper, we study the feasibility of inferring a user’s
tap inputs to a smartphone with its integrated motion sen-
sors. Specifically, we utilize an installed trojan application
to stealthily monitor the movement and gesture changes of
a smartphone using its on-board motion sensors. When the
user is interacting with the trojan application, it learns the
motion change patterns of tap events. Later, when the user
is performing sensitive inputs, such as entering passwords
on the touchscreen, the trojan application applies the learnt
pattern to infer the occurrence of tap events on the touch-
screen as well as the tapped positions on the touchscreen.

For demonstration, we present the design and implemen-
tation of TapLogger, a trojan application for the Android
platform, which stealthily logs the password of screen lock
and the numbers entered during a phone call (e.g., credit
card and PIN numbers). Statistical results are presented to
show the feasibility of such inferences and attacks.

Categories and Subject Descriptors

C.2.m [Computer-Communication Networks]: Miscel-
laneous; C.2.0 [General]: Security and protection

General Terms

Security, Design, Experimentation

Keywords

Smartphone, Trojan, Motion Sensor, Accelerometer Sensor,
Orientation Sensor, User Inputs Logger, Android

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

WiSec’12, April 16-18, 2012, Tucson, Arizona, USA.

Copyright 2012 ACM 978-1-4503-1265-3/12/04 ...$10.00.

Kun Bai
IBM T.J. Watson Research
Center
Hawthorne, NY, USA
kunbai@us.ibm.com

Sencun Zhu
Department of Computer
Science and Engineering

Pennsylvania State University
University Park, PA, USA

szhu@cse.psu.edu

1. INTRODUCTION

Today’s smartphones are equipped with various embed-
ded motion sensors, such as the accelerometer, gyroscope,
and orientation sensors [40]. These motion sensors are used
to gauge the smartphone’s status of motion, such as orien-
tation, acceleration, and direction. They are useful in sup-
porting the innovative mobile UI [2], context awareness [31,
19], and motion-based commands(e.g., shuffling songs [1]).
Probably due to the assumption that data collected by mo-
tion sensors is not sensitive, so far third party applications
are allowed to access the readings of embedded accelerome-
ter and orientation sensors without any security permission
requirements on all Android [9], iOS [23], and Blackberry [4].

As the use of motion sensors in mobile device has be-
come more widespread, serious concerns have been raised
about the potential risks of a user’s private information from
being leaked through an installed third party application
which explores these motion sensors. Recently, Marquardt
et al. [28] presented a spying application (sp)iPhone which
utilizes the vibrations sensed by a smartphone to infer the
user inputs on a nearby keyboard. Cai and Chen [5] pro-
posed a motion-based side channel for inferring keystrokes
on the smartphone touchscreen. Such security and privacy
exposures threaten to stifle the adoption and acceptance of
these applications and even the smartphone platforms [39].

In this paper, we explore the feasibility of inferring a user’s
inputs on the smartphone touchscreen using sensor data col-
lected from motion sensors. Our work is based on the ob-
served correlations between the tap events and the motion
change of smartphone. First, during a tap event, the ac-
celeration of smartphone will change caused by the force
from finger on the touchscreen. The change of acceleration
follows certain patterns that can help the installed trojan
application to detect the occurrences of tap events.

Second, tapping different positions on the touchscreen will
cause small, but discernable changes of guesture of smart-
phone by the sensors. For example, tapping on the left side
of touchscreen may cause the smartphone to turn left while
tapping on the right side may cause the smartphone to turn
right. By observing the gesture changes during a tap event,
the attacker may roughly infer the tapped position on the
touchscreen. The inferred position may not be precise. How-
ever, if the attacker knows the context of tap events and the
layout of current view on the touchscreen, he may be able
to infer the user’s inputs (e.g., the pressed number button)
with the inferred tap position.

We begin this paper by providing a technical background
on this developing threat, and then describe in detail the
key contributions of our work, where:

e We show the unique patterns of tap events in terms
of changes of acceleration of smartphone. With sta-
tistical approaches, such patterns may help the in-
stalled trojan application to detect the occurrence of
tap events.

e We show the correlation between the tap position and
the gesture change during one tap event. With knowl-
edge about the layout of view displayed on touchscreen,
we show the feasibility of inferring user inputs with ob-
served readings from the orientation sensor during tap
events.

e We present the design and implementation of TapLog-
ger, a trojan application that utilizes observed sen-
sor readings to stealthily log the user inputs on touch-
screen. For demonstration, we present two types of at-
tacks on Android: stealing the password of screen lock
and logging the PIN number entered during a phone
conversation.

2. TECHNICAL BACKGROUND

2.1 User Inputs on Touchscreen

The touchscreen is the primary user interface of a touch-
capable smartphone, and it presents a target of opportunity
for potential hackers and information thieves. When a user
taps on the touchscreen, the display and its supporting hard-
ware and firmware will report the coordinates of tap events
to the operating system of the smartphone. The coordinates
of a tap event together with knowledge of the application
view currently displayed on the touchscreen determine the
corresponding user input. For example, a tap event with
coordinates within the boundary of a button displayed on
the touchscreen stands for a tap action on this button. As
the layout of many views are public and uniform, such as the
layout of screen lock view shown in Figure 6, the coordinates
of tap events become extremely sensitive.

To protect user inputs from being eavesdropped, there
are rigorous restrictions on the receiver who is allowed to
receive the tap events and their coordinate information. For
example, on the Android platform, only the view that is
focused and currently being displayed on the touchscreen
will be allowed to receive the coordinate information [10].
Therefore, a third party application running in background
(e.g., a service) can never receive the coordinate informa-
tion when the user is tapping the touchscreen to unlock the
smartphone with passwords or dial a number during a call.

2.2 Motion Sensors

Motion sensors embedded in smartphones offer the hacker
a side channel into a user’s mobile device, from which he/she
may steal private data. Specifically, we refer to the on-
board accelerometer and orientation sensors, which are two
of the most commonly equipped motion sensors on commod-
ity smartphones. Up to the most recent version of major
platforms, e.g., i0S [23], Android [9], and Blackberry [4],
accessing these two sensors requires no security permissions,
and enables considerable accesses by a third party appli-
cation to the underlying resources in the mobile device. As
Android is the most popular and most exploited smartphone
platform, we adopt the specification and terminology defined
on the Android platform in this paper.

s _90° 40P
T A T ’ !
) Toushsereen a5
2 side .
opo
.

Noth oo’ 45° \\ sky vae sky

or
270° (. (/*.L_ 5 90° [90 x
N\ . -
1180° Touchscreen I+
side V277777772 ground [77] ground Touchscreen
Azimuth (x) Pitch (y) Roll (z)

(2) Accelerometer Reading
(x,y, and z)

(1) Orientation Reading
(Azimuth, Pitch, and Roll)

Figure 1: An introduction to accelerometer and ori-
entation readings on the Android platform

2.2.1 Accelerometer Sensor

The accelerometer sensor monitors the current accelera-
tion of a smartphone along three axes: left-right(i.e., lateral
or x-axis), forward-backward (i.e., longitudinal or y-axis),
and up-down (i.e., vertical or z-axis) [29, 9]. The returned
readings of the accelerometer sensor are the rates of change
of velocity with time along these three axes in m,/s?.

In Figure 1, we illustrate the mapping of axes in relation
to a smartphone that is placed horizontally. As described
in this figure, the reading of x-axis acceleration would be
positive if the smartphone is moving toward the right side;
the reading of y-axis acceleration would be positive if the
smartphone is moving in the direction of the top of smart-
phone; the reading of z-axis acceleration would be positive
if the smartphone is being lifted. For instance, when plac-
ing the smartphone statically and horizontally on a surface
as shown in Figure 1, the reading of x and y-axis will be
zero and the reading of z-axis will be the earth gravity (i.e.,
9.8m/s?) because the surface is supporting the smartphone.
When the smartphone is dropping freely, the readings of all
axes will be zero.

To facilitate our discussion, we represent the current accel-
eration A of a smartphone by a vector A=< Az, Ay, Az >
=A.x+A,y+A.2, where X,y, and Z are the unit vectors in
the directions of positive x, y, and z axes, respectively.

2.2.2 Orientation Sensor

The orientation sensor tracks the changes of orientation
and gesture of smartphone along three dimensions: Azimuth
(x-axis), Pitch (y-axis), and Roll (z-axis) [29, 9]. The re-
turned readings of the orientation sensor are the current
gesture of the smartphone in these three dimensions. Each
reading is measured by degrees. As illustrated in Figure 1,
the reading of x-axis is 0° when the smartphone is facing
north and the reading changes between 0° and 360°; the
reading of y-axis is 0° when the touchscreen side faces to the
sky and the reading changes to —/ + 180° when facedown;
the reading of z-axis represents the sideways tilt between
—90° and +90°.

2.2.3 Hardware Specifications

Hardware specifications, such as the sensor sample rate,
are important to sensing applications. Different smartphone
platforms have different hardware specifications. The brief
specifications of three selected smartphone platforms are
listed in Table 1. As the orientation sample rate of Motorola
Atrix is too low, in this paper, we presents experimental re-
sults on HTC Aria and Google Nexus (One).

2.3 Tap-To-Open/Active Interactive Pattern
Many interactive patterns exist for using touchscreens.

In this paper, our threat model is based on the “Tap To

Open/Active” pattern [34] which is almost the simplest but

Table 1: Specifications of selected smartphones

Model | Touch Screen | Acc. Sam- | Ori. Sam- | Android
Size (pixels) ple Rate ple Rate

Aria | W(320)x H (480) | ~ 50Hz ~50Hz v23

Nexus | W (480) x H(800) | ~ 25Hz ~25Hz V2.3

Atrix | W(540)x H(960) | ~ 95Hz ~ 8Hz v2.3

most used interactive pattern. With this pattern, a user taps
in a specific position of the touchscreen to trigger a feature or
to respond, similar to clicking with a mouse. With advanced
hardware supports, some latest smartphones may support
multi-touch touchscreen and more complex patterns, such
as “Drag To Move” and “Slide To Scroll”. However, in this
work, our focus is the “Tap To Open/Active” pattern because
of its extreme popularity as well as simplicity.

The typical scenario we consider here is that a user holds
the smartphone with her left hand and taps the touchscreen
using the forefinger of her right hand. Consider a tap event
on the touchscreen that is face up. The motions of smart-
phone during one tap event can be briefly described as the

three consecutive phases: Action_Down— Hold— Action_Up:

when the user presses down on the touchscreen (i.e., in the
Action_Down phase), the smartphone will be forced to move
downward. When the Action_Down is over; the smartphone
will stop (i.e., be in the Hold phase); Then, the user lifts his
finger and the hand holding the smartphone will respond by
lifting the smartphone back to its original position (i.e., in
the Action_Up phase). The whole tapping action is usually
performed in a short time period. According to our mea-
surements, a swift tap event is about 50 ~ 70 ms and an
ordinary tap event is about 180 ~ 220 ms.

In our discussion, we name the time duration of a tap
event as a SigWin, representing the time duration when
the finger is in touch with the touchscreen (i.e., between
Action_Down and Action_Up).

3. ATTACK OVERVIEW

3.1 Assumptions

On the Android platform, a third party application must
explicitly and statically declare the permissions for sensitive
resources needed, such as networking and audio recording
permissions. As motion sensors are considered as insensi-
tive resource, TapLogger does not require any security per-
mission to access the accelerometer and orientation sensors.
However, T'apLogging requires the networking permission
to send inferred user inputs to a remote attacker, and the
Phone Status permission for context awareness. Both the
networking and Phone Status permission are very common
ones, which are also required by most of popular apps, such
as Angry Bird [26], Facebook [14], and Kindle [25]. There-
fore, TapLogger would have very little chance to draw at-
tention with respect to security permissions.

3.2 Attack Goals

The target in our work is the meaningful user inputs, e.g.,
the button that is pressed during a tap event, instead of
the precise coordinate of a tap event. Inferring the precise
coordinate is practically infeasible due to interference fac-
tors, such as background noise. However, a button usually
covers a zone in the screen and all user’s tap events within
this zone corresponding to the same user input. Thus, with
knowledge about the layout of a target view, e.g., the one
in Figure 6, the attacker can infer the user inputs (e.g., the

button that is pressed) instead the precise coordinate of a
tap event.

3.3 Attack Workflow

TapLogger works in two modes: Training Mode and Log-

ging Mode. It switches to the training mode when the user
is interacting with the HostApp, and switches to the logging
mode when the user is performing sensitive inputs. The con-
text related information can be retrieved from the Android
operating system. Briefly, we explain the workflow as shown
in Figure 2:
Training Mode: In the training mode, when the user is
interacting with the HostApp, TapLogger can legally receive
the coordinates of tap events on the touchscreen, and ap-
ply the coordinates with the readings of accelerometer and
orientation sensors collected during tap events to generate a
user’s interaction pattern.

Thus, for one tap event detected in the training mode, the

HostApp records related information including (1) the coor-
dinate (on the screen); (2) the timestamps when it starts and
when it ends; and (3) the accelerometer and orientation sen-
sor readings between the start and the end time. The time
duration between the start and the end consists a SigWin.
The number of collected readings in the SigWin depends on
the time duration of tap events as well as the sensor sample
rate. In addition, we also collect several readings before and
after SigWin, denoted as PreWin and AfterWin, respec-
tively.
Logging Mode: In the logging mode, the SensorListener
runs in background and keeps stealthily monitoring the read-
ings of accelerometer and orientation sensors. When the user
is performing sensitive inputs, the acquired pattern can be
applied to infer the tapped area (i.e., zone) on the touch-
screen based on sensor readings collected by the SensorLis-
tener service. Then, with the knowledge about the layout of
a targeted view, TapLogger can then infer the correspond-
ing user inputs. To reduce battery consumption and false
positives, the Sensor Listener service only works in certain
sensitive contexts.

3.4 Challenges

To make the proposed attack feasible, several challenges
exist, which will be addressed one by one in the following
sections.

e How to detect the tap events in the logging mode?
An approach is needed for SensorListener to identify
the tap events in the logging mode by observing the
readings of accelerometer and orientation sensors only
in the background.

e How to infer the user inputs on the touchscreen based
on observed sensor readings? A tap position classifier
is needed to help the attacker to infer the tap positions
and their implicated user inputs.

e How to design and implement TapLogger that is able to
perform the proposed attack stealthily and efficiently?
The trojan application should require as few permis-
sions and workload as possible to launch the attack.

4. TAP EVENT DETECTION

In this section, we first introduce the unique change pat-
tern of acceleration readings during tap events, and then
show how to build the user’s pattern in the training mode
and how to apply the pattern in the logging mode.

§ One Training Tap Event Detected by HostApp

Training Mode
i Tap coordinate (40, 100)
s —, |
' et :
iA 5 o i
§> | Readings {=--=+==-""1x Readings !
3 et

‘When the user is

interacting with
=+ the HostApp
«gk &

C
TapLogger includes Logging Mode Acceleration Pattern leamnt for
a HostApp and Tap Event Detection Fxtracted

a SensorListener @ Features

ﬁ >
TapLogger sends emote

inferreduser Attack Server

4

7

ok
Inferred inputs to the

ofo|al|n

service

T 2
Accelerometer {1
Readings 1

‘When the user enters
passwords by taping the
touchscreen

§> One Testing Tap Event detected by ListenerService

Orientation
ferceseeenset® ol 1 Readings

tap position on attacker
the target
¥ layout

puvssusnsesarEs LI

Figure 2: The attack overview

4.1 Observed Pattern of Tap Events

Accelerometers on smartphones have been widely exploited
by context-aware applications to infer the current contexts
of smartphones, such as transportation mode inference (i.e.,
inferring if the user is walking or taking vehicles [32, 38])
and activity recognition (i.e., inferring if the user is walking,
sitting, or running [36, 37]).

Differently, in our application, our goal is not in context
inference but in detecting the occurrences of tap events.
These tap events are comparatively small fragments in the
sequence of collected readings, thus existing context infer-
ence approaches do not work in our case.

To detect the tap events, we utilize the unique change pat-
tern of external force on the smartphone during tap events.
To measure the change of the external force F', we use the
term SqSum to denote the 2-norm of acceleration vector,
ie., SgSum=|A]? = A2 + Ai + A2, Obviously, SqSum rep-
resents the force on the smartphone and is directly propor-
tional to |F'|?. When the smartphone is held statically in one
hand, the value of SqSum is equal to the square of gravity,
ie., G* ~ 9.82. When the smartphone is dropping freely,
the value of SqgSum is 0.

In Figure 3, we show the measured SqSum readings when
the user is performing different activities. As shown in this
comparison, when the user is tapping buttons shown in the
touchscreen, the fluctuation of wave is much smaller. This
is reasonable because the user will subconsciously stabilize
the smartphone when he taps buttons on the touchscreen.

mmmmmmmmmmmmmmm
(c) entering passwords by
tapping while sitting

(b) walking slowly
(Smartphone in the pocket)

(
(Smartphone in the pocket)

Figure 3: Acceleration readings in different contexts

Admittedly, the tap event detection will be difficult when
the background noise is great. Some background noise may
also generate acceleration patterns similar to tap event pat-
terns. To lower the interference caused by background noise,
TapLogger collects data for both training and logging at-
tacks only when the background noise is small. A simple
approach to measure the background noise is to calculate the
standard deviation of the latest SqSum readings. TapLogger
collects data when the standard deviation is small. Other
activity recognition approaches [36] can also be applied to
prevent collecting data in noisy environments. Further, Ta-

pLogger only starts the ListenerService when in sensitive
contexts, e.g., during a phone conversation. In this way, we
greatly avoid false triggering.

4.2 Proposed Statistic Approach

Based on the observed pattern of tap events, we propose
a statistic approach for tap event detection by monitoring
the change of force on the smartphone. Specifically, we de-
scribe the pattern of tap events by a set of statistic features
in terms of SqSum readings. For each feature, TapLogger
learns its pattern interval through the training data collected
by the HostApp in the training mode. These learnt pattern
intervals are user specific representing a user’s pattern of
tap events. When TapLogger is in the logging mode, the
Sensor Listener service monitors the acceleration of smart-
phone by keeping a monitoring window for a sequence of
the latest SgSum readings. If the features extracted from
the readings of the monitoring window fall in the learnt pat-
tern intervals, the SensorListener will consider a tap event
having been detected. The SigWin of a detected tap event
is within the monitoring window.

4.2.1 Pattern Learning in Training Mode

The unique \, " pattern of SgSum in the Action_Down
phase is the key to tap event detection in our case. As
shown in the enlarged figure of a tap event in Figure 4(a),
the SqSum readings will first go down and then jump up
dramatically corresponding to the first Action_Down phase
in the Tap-To-Open/Active interactive pattern. The rest
part of tap events represents the motion of smartphone when
the user lifts up his finger from touchscreen. The jitter rep-
resents the case when the hand holding the smartphone is
trying to stabilize the smartphone after the tap event.

To catch the unique patten of tap events, we first iden-
tify the start and the end of SigWin by the timestamps
of received events Motion. Event. ACTION_DOWN and Mo-
tion. Bvent. ACTION_UP, respectively. Then, we extract five
features from the readings of SgSum within the identified
SigWin:

e Pi: The peak reading of \, " at the end of Action_Down
minus the base, i.e., SgSumpear, — base;

e P»: The trough reading of \ " of Action_Down minus
the base, i.e., SgSumirougn — base;

e Ps: Difference between the peak and the trough read-
ings, i.e., SgSUMpeak-SGSUMLrough;

e P4: Time gap between peak and trough, i.e., Timepeak-
Timetrough;

e Ps: The standard deviation of the entire SigWin, i.e.,
Std(SigWin);

Motion.Event. ACTION_DOWN
is received |

Motion.Event ACTION_UP
is received

150 150
—+— obserned sensoreadigs | heckpoi T
checkpoint
§14U’ base valie=9.8% P | 40 P (’J\
s | 2
kel &
£]
ol e————- > .
- &
g ol PiPrPr | Pr I i
P,=time ga |
4 4 gap | |l | § Identified
§ nor | : | 8§ 100 start of SigWin end of SigWin
8
§ 100 v [N § o
o b
8 ool I v l §
g I g %
g 1\ | g
5 % | P, | 5 w0
% | < . | "
& ok e — — _Henties_ |] sol Firstirougn /(1) Identified
Sighin — 3] 3
60 N T N 60 A, L Gize=s1s) L
o 2 4 6 8 10 12 14 16 18 20 22 2425 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

1 *
40 .
| | 204 3
|&= b — Sighin - — — 3| 3

1404

120

100+

80

SqSum

hdex ofsensormadings

Tdex of sensor: eadings

A(Atria) A(Nexus) B(Aria) B(Nexus) C(Aria) C(Nexus)

(a) Extracting features from a tap (b) Evaluating a tap event in the (c) The distribution of Ps of different user on

event in the training mode logging mode

different smartphones

Figure 4: The proposed statistic approach for tap event detection

We briefly explain these measures as follows: base = G2
denotes the SqSum value when the smartphone is placed
statically with no external force on it, P; measures the mag-
nitude of force when pressing down, P> measures the mag-
nitude of force from the hand holding the smartphone when
reacting to the tap event, P3 and P, measure the change
rate, and Ps measures the fluctuation. Each tap event is
described by these five features in the tap event detection.

With all tap events detected in the training mode, Ta-
pLogger learns the distributions of these features for the
current user on the current smartphone. According to our
measurements in experiments, the distributions of these five
measures form bell-shaped curves that are close to normal
distributions. Thus, with the measurements in our training
dataset, we take the range between the Lower Ezxtreme and
the Upper Extreme [33] of each measurement, represented by
[L, U], to describe the pattern interval of this measurement.
Specifically, L = Q1 — 1.5 X IQR and U = Q3+ 1.5 X IQR,
where @1 is the lower quartile, Q3 is the upper quartile, and
IQR = Q3 — Q1 is the interquartile range.

In this way, the pattern for tap event detection can be pre-

sented by five sets of boundary values, i.e., Ps={I1,I2,13,14,I5},

where I; = {L;,U;}. Different people have different tapping
patterns.

4.2.2 Tap Event Detection in Logging Mode

When TapLogger is in the logging mode, the SensorLis-
tener service detects tap events by observing the readings
of accelerometer. Services running in background (e.g., Sen-
sorListner) are not allowed to receive touch event informa-
tion from the touchscreen. Specifically, in the logging mode,
the SensorListner service keeps a Monitor Win, which con-
tains the last K observed SqSum values of acceleration. In
our experiments, TapLogger calculates the average size of
SigWin in the training dataset, and sets K twice the av-
erage size. The SqSum readings in the Monitor Win are or-
dered by their generation times. We present an example of
MonitorWin in Figure 4(b).

Whenever a new SqgSum reading is generated, the Sen-
sorListner service will first update the Monitor Win by adding
the new SqgSum reading, and then check the SqgSum reading
at a fixed index position named checkpoint, e.g., the 10th
reading in the Monitor Win shown in Figure 4(b). The pur-
pose is to check whether the current SqSum reading at the
checkpoint is the peak point of the first " of a tap event.

Basically, assume that the current checkpoint is the peak
point of a tap event. The SensorListner will try to identify
the corresponding trough point in the Monitor Win, extract

Table 2: Experimental results of tap event detection

User Model Precision| Recall F-Measure
User A | Aria 93.6% 91.8% 92.74%
User B | Aria 76.3% 90.0% 82.6%
User C Aria 70.4% 97.4% 81.7%
User A | Nezus 99.3% 96.3% 97.8%
User B | Nezus 74.67% | 95% 83.61%
User C | Nezus 83.97% | 88.37% | 86.12%

features Pi...Ps, and check if the extracted features are
within the intervals described in the learnt tap event pat-
tern. The checking scheme is illustrated in Figure 4(b). The
detailed checking algorithm is presented in Appendix A.

4.3 Evaluations

In the evaluation, the tester students were first asked to
play the icon-matching game for 30 rounds, collecting a
training dataset of more than 400 tap events. With the
collected training dataset, TapLogger extracts the proposed
five features (i.e., Pi...Ps) from each tap event, and gen-
erates a statistic pattern for each dataset. These statistic
patterns (i.e., boundaries of parameters) are user specific as
well as device specific.

For example, in Figure 4(c), we present the distribution
of the Ps; feature collected from training data of different
users (i.e. user A, B, and C) on different smartphones. As
shown in this comparison, first of all, most of measured Ps
feature falls in the range between the lower extreme and
the upper extreme. Secondly, different users have different
patterns. The more convergent the distribution of extracted
features, the more consistent the pattern. Thirdly, the tap
event patterns of the same user are different on different
smartphones due to the difference in the hardware, such as
the sensor sample rate and weight.

In the testing phase, the tester students were asked to en-
ter a sequence of about 150 numbers in a testbed with Ul
the same as the number pad layout as shown in Figure 5.
During the testing phase, TapLogger stealthily monitors the
accelerometer readings in the background and used the cor-
responding statistic patterns to detect the tap events on the
touch screen. The experimental results in Table 2 show that
the proposed tap event detection approach can achieve high
accuracies in identifying the tap events on the touchscreen.

S. TAP POSITION INFERENCE

The goal of tap position inference is to identify the tapped
area on the touchscreen. In this section, we first show the

Action_Down Phase ———> /l*\

L S S S O S

L

s

Thdex ofeadings fiom orentatbn sensor
(1. a) when tapping the top left (1.b) corresponding orientation sensor
area of touchscreen readings during the tap event

r /
Action_Down Phase ‘t——=>| o

—*—Roll

I\\\
I
|
|
|

\“/‘ N

| —— Origalpositon

0 5 10 15
index of eadings fiom orientation sensor

(2. a) when tapping the top right (2.b) corresponding orientation sensor
area of touchscreen readings during the tap event

Figure 5: Examples of gesture changes when tapping
different areas of the touchscreen

correlation between the position of a tap event and its corre-
sponding gesture changes, measured by the orientation sen-
sor. Then, we present a way of dividing the touchscreen into
zones (i.e., tapped area) based on layout of the target view.
Finally, with real tap events data collected in our experi-
ments, we show the feasibility of distinguishing tap events
in different zones. Limitations and reasons are also pre-
sented in the end to show the capacity of inferencing using
this correlation.

5.1 Gesture Change Analysis

When a user taps on the touchscreen using his finger, the
gesture of smartphone will change caused by the external
forces from the finger and the hand holding the smartphone.
The way that the gesture changes is related to the position
on the touchscreen that has been tapped. Intuitively, when
the user taps on the top of touchscreen, the head of smart-
phone will go down; while the user taps on the right side of
touchscreen, the body of smartphone will lean right as well.

TapLogger senses the gesture changes through two types of
readings from the orientation sensor: the readings of Pitch,
measuring turning left or right of smartphone; and the read-
ings of Roll, measuring the going down of head or bottom.
As shown in Figure 5, when the user taps on the top left
of touchscreen, the smartphone will turn left and its head
will goes down. Correspondingly, the Pitch value goes up
because the head goes down, and the Roll value goes up
because the face of touchscreen turns left. When the tap
event is done, the gesture of smartphone will go back to
the approximate of its original gesture. For the compari-
son, we show the gesture change when tapping on top right
in Figure 5(2.a). As shown in its corresponding orientation
readings, the Pitch value goes up because the head goes
down, but the Roll value now goes down because the face of
touchscreen turns right.

Clearly, it would be ideal if one can infer the exact coordi-
nates of tap events based on the observed gesture change of
smartphone. However, due to noise and limitation on sen-
sor sample rate, such exact inference is not possible. Instead

of inferencing the exact coordinates, TapLogger divides the
screen into meaningful zones and infers a zone on the screen
that contains the exact coordinates.

5.2 Screen Division

We name the view on which the user is performing sensi-
tive inputs as the Target View. In a target view, zones stand
for meaningful objects, such as buttons. Therefore, if the at-
tacker can correctly identify the pressed zones, he can get
the user inputs on the touchscreen with knowledge about the
layout of the target view. In Figure 6, we present the layout
of two target views: one is the layout of screen lock view on
which the user enters the password by tapping buttons; the
other is the layout of number pad view on which the user
enters his PIN or credit card number when making calls. As
we can see in Figure 6, the layout can easily be divided into
meaningful zones by individual buttons. The zones we are
interested in are buttons used to enter the password or PIN.

To disguise its purpose, the attacker may also carefully
design the user interface of HostApp. For example, in Fig-
ure 6(1), we present the screen layout of a icon-matching
game (i.e., the HostApp). When playing the icon-matching
game, the user may not realize that he is contributing train-
ing data for the target view in Figure 6(2) .

Enter password to unlock

g @
v ¥ ¥

(1) An example of screen
layout of HostApp targeting at
the screen lock layout

(in Training Mode)

Figure 6: An example of HostApp’s screen layout
and target screen layouts

(2) The target layout:
the screen lock layout
(to unlock the screen)

(3) Another target layout:
the number pad layout
(to enter PIN or credit card num)

5.3 Proposed Inference Approach

With the screen division, we convert the tap position in-
ference problem to a classification problem, in which, each
class is a labeled zone in the target view. In the training
mode, TapLogger uses the collected training data to create
a tap position classifier following the user’s tapping pattern.
While in the logging mode, TapLogger uses this trained clas-
sifier to infer the corresponding class (i.e., the zone or but-
ton). For each detected tap event, the output of classifica-
tion in the logging mode is an estimated zone that contains
its real coordinates.

5.3.1 Classifier Generation in Training Mode

Similar to the proposed tap event detection approach,
TapLogger keeps monitoring the readings of the embedded
orientation sensor. When a tap event is observed by the
HostApp, TapLogger first determines the start and end of
SigWin by events Motion. Event. ACTION_DOWN and Mo-
tion. Event. ACTION_UP, and then, generates the training
data for the classifier from the sequence of orientation sen-
sor readings during this Sig Win.

The training data of an observed tap event consists of
a vector {L,Fo}, where L is the label of zone contain-
ing its associated coordinates, and Fo are the set of fea-
tures extracted from the orientation sensor readings during
its SigWin. These extracted features measure the gesture
changes, and are generated by changes of the orientation

sensor readings in Roll and Pitch during the Action_Down
phase. Briefly, we list the extracted features as follows:

e Fi: the change of Roll in the first monotonic section;

e F5: the change of Roll in the second monotonic section;
if Roll in the Action_Down phase is monotonic as a
whole, F5 is assigned 0.

e [3: the change of Roll from the start to the end of
Action_Down phase;

e F4: the change of Pitch in the first monotonic section;

e [5: the change of Pitch in the second monotonic sec-
tion; if Pitch the Action_Down phase is monotonic as
a whole, F5 is assigned 0;

e [%: the change of Pitch from the start to the end of
Action_Down phase;

To explain, Features Fi, F> and F3 help to determine if
a tap event is on the left side of touchscreen or on the right
side; Fy, F5, and Fg help determine if a tap event is on the
top of touchscreen or on the bottom.

Note that, as shown in Figure 5, the changes of both Roll
and Pitch may not be monotonic in the Action_Down phase.
According to our observation in experiments, the reason is
that, when the finger first contacts the touchscreen, two
types of movements of the smartphone take place in par-
allel. One type of movement is that smartphone may move
down as a whole, and the other type is the gesture change of
smartphone. Thus, we separate the change of readings into
two consecutive sections in which the change of readings is
monotonic.

5.3.2 Inference in Logging Mode

In the logging mode, TapLogger also keeps a OriMonitor-
Win for the latest orientation sensor readings. When a tap
event is detected by the observed SqSum readings, its Sig-
Win will also be determined. With the start and the end
of determined SigWin, TapLogger retrieves the sequence of
orientation readings within the SigWin from the OriMoni-
tor Win, and extracts features Fo from the retrieved orienta-
tion sensor readings. These extracted features are supplied
to the classifier so as to infer the label of zone that contains
the coordinates of this detected tap event.

5.4 Evaluation

The classifier for tap position inference is both user spe-
cific and device specific. To show the effectiveness of our
selected features in classification, in Figure 7, we show three
experimental results of distinguishing tap events at differ-
ent positions based on extracted features. Specifically, Fig-
ure 7(1) and Figure 7(2) compare the experimental results
of the same user on different smartphones, i.e., Aria and
Nexus; Figure 7(2) and Figure 7(3) compare the experimen-
tal results of different users on the same smartphone. In
both experiments, we collect about 60 tap events on each of
12 buttons on the number pad layout.

The experimental results in Figure 7 show that the pro-

posed features { F1, F», F3} (i.e., features measuring the change

of Roll) can help to distinguish tap events on the left side of
the touchscreen from those on the right side. Other features
{F4, F5, Fs} (i.e., features measuring the change of Pitch)
can help to distinguish tap events on the top of the touch-
screen from those on the bottom.

Further, by comparing the results of Figure 7(1) and Fig-
ure 7(2), we show the hardware factors affecting the accu-
racy of tap position inference. First of all, the data points
in Figure 7(1) are more convergent because the sample rate

of orientation sensor at Aria is about 50 Hz and is much
faster than the 25Hz of Nexus. Secondly, despite its lower
sample rate, the comparison between Figure 7(1.b) and Fig-
ure 7(2.b) shows that it is easier to distinguish buttons in
the same column on Nexus. One reason is because the size
of Nexus is bigger than the Aria, making the gesture changes
in Pitch axis more obvious during tap events. Based on the
comparison, we see that, besides the user pattern, the in-
ference will be easier on smartphones which are bigger and
more sensitive in sensing.

Moreover, Figure 7(2) and Figure 7(3) show the user fac-
tors affecting the accuracy of tap position inference. Specif-
ically, Figure 7(2.a) and Figure 7(3.a) show that, although
the patterns of different users are different, the tap events
by the same user on different side of touchscreen are still
distinguishable. However, the distinguishability is different
from user to user. Take user B in Figure 7(3) as an example.
Figure 7(3.a) shows that it is not difficult to distinguish the
tap events of user B in the Roll axis. But, in Figure 7(3.b),
distinguishing tap events by the Pitch axis is difficult. One
reason may be that the Arial is small and light, making the
gesture change not obvious. Another possible reason is that
the way user B holding and tapping the smartphone is dif-
ferent from that of user A.

From the perspective of classification, Figure 7 also shows
the difficulty of distinguishing tap events on neighboring
buttons. For example, in the target screen lock layout, many
tap events on button 9 may be falsely classified as its con-
tiguous buttons, such as button 12 (i.e., the “Del” button),
8, and 6. One reason of error is that the number of col-
lected sample readings is not enough to describe the gesture
changes because of the limited sample rate. The other rea-
son is that the actual tap position is very close to neigh-
boring nodes, making the inference difficult to distinguish
correctly. Therefore, in specific attacks, the attacker may
apply additional background knowledge to improve the ac-
curacy of inference. Indeed, in the two attacks shown later,
we will use different approaches to improve the inference
accuracy.

6. APPLICATIONS ON ANDROID

We have implemented TapLogger as an Android appli-
cation with the attack flow presented in Figure 2. In this
section, we show the detailed design of TapLogger on the
Android platform. Further, two types of attacks with eval-
uations are also presented to show the effectiveness of Ta-
pLogger in logging and inferring sensitive user inputs.

6.1 Implementation on Android

TapLogger implements the proposed attack flow presented
in Figure 2. The components of TapLogger on Android in-
clude: a HostApp activity, masquerading a benign applica-
tion (e.g., the icon-matching game); a SensorListener ser-
vice, collecting readings from sensors in the background; a

Contextldentifier service, starting/stoping the Sensor Listener

service based on the context of smartphone; and a Booter
Broadcast Receiver, starting the Contextldentifier for the
context awareness.

6.1.1 Training Mode

The HostApp activity starts the SensorListener service
when it is brought to the foreground. In the training mode,
HostApp logs coordinate information of tap events and the
Sensor Listener service logs the sensor readings during these
tap events. Both information are combined at Context/den-

\

\

Q.

o

5
10 40

(1.a) Left v.s. Right
(User A on Nexus)

F--r- ST TTCTTCTTC - N

5 -z
bo ¢ o [o Buton3 op o O Bution 3 (Top)
- p
! = OD} * Bution # Botom)|, ! h * Buton # @otiom)| "~ |
R R R O 6 0 to T = o
I i 19 I I I I \‘\‘ T, B 1
© | | o x | | | (IR i ! o o -
- | RN il I | | [! !
B X w wmgew 1 . !
R N k-t ek el Rl NV
| X xx I I o 'yl |
i X% %, Lx |) (BN
I % | I I i I 1 | T
4,_,L_’iLm"T,,i,,,\,,,\,,,\,,,:\?q ' :
x| o i
x| %, N !
* | 1
P K ! !
- |

/

40 45 0 5 o B np 15

(1.b) Top v.s. Bottom
(User A on Nexus)

5
(2.a) Leff v.s. Right
(User A grlAria)

o

- -
- O Bution 1 @eft) |, _
7| % Buton3 Right)| ! .

40 40

B
10 F
4

(2.b) Top v.s. Bottom
(User A on Aria)

(3.b) Top v.s. Bottom
(User B on Aria)

Figure 7: Examples of distinguishing tap events at different positions

tifier and then used as training data for pattern generation
in tap event detection and for building the classifier for tap
position inference.

6.1.2 Logging Mode

In the logging mode, the Booter will be automatically
started when receiving the system broadcast (i.e., an In-
tent) BOOT_-COM PLETED, indicting that the boot pro-
cess of smartphone is complete. Thus, even the user has
never started TapLogger after installation, TapLogger can
still launch itself when the smartphone is started. Once
started, the Booter launches the Contertldentifier service
which determines the current context of smartphone based
on the Intents broadcasted by the Android operating sys-
tem. By identifying the context, the ContextIdentifier ser-
vices starts the SensorListener service only in a sensitive
context.

In the end, only the results of inferencing, such as the
sequence of labels of pressed buttons, will be sent to a remote
attack server. Therefore, the data communication overhead
for TapLogger is very small.

6.2 Number Pad Logging Attack
6.2.1 Attack Overview

During phone conversations, a user is often asked to enter
valuable information on the number pad displayed on the
touchscreen. Such valuable information includes the PIN
numbers (e.g., requested by IP phone companies), social se-
curity numbers (e.g., requested by credit card companies or
credit card centers), date of birth (e.g., requested by insur-
ance companies).

In the number logging attack, we apply TapLogger to log
the user inputs on the number pad during the call. Specifi-
cally, in the training mode, the attacker first collects training
data by HostApp with the layout of number pad (shown in
Figure 6), and then builds a classifier for tap position in-
ference. In the logging mode, the SensorListener monitors
the readings of motion sensors and performs the task of tap
event detection and tap position inference. Specifically, the
SensorListener will be invoked when the phone conversation
starts (i.e., upon receiving CALL STATE OFFHOOK in-

tent) and will be stopped when the phone conversation ends
(i.e., upon receiving CALL STATE_IDLE intent).

Real Inputs: 4840 2134 9596 1217

1% Label[10[4J3 S[1[3]1 #8629 [1]2]4 4 |cverse (03125

Inferred 2" Label| 576 567 Pl2pp] 4511 | meuts | 0.625

labels: gra) 4pyq) [Je]1[o] 4294

3# 7477 1.0
4" Label| 20*9 84#2 03#0 285* D 1.0

Figure 8: An example of tap position inference in
the number pad logging attack

6.2.2 Tap Position Inference

In the number pad logging attack, we build the classifier
by applying k-means clustering to the training data belong-
ing to each label/button. Each label/button will be consid-
ered as one class. In the logging mode, given a tap event
detected by the SensorListener service, we first extract fea-
tures from the orientation sensor readings, and then measure
the distances from this detected tap event to the trained
clusters of all labels. Shorter distance means higher similar-
ity to the cluster.

As buttons are close to each other, solely taking the label
with shortest distance may cause high inaccuracy. There-
fore, in the number logging attack, TapLogger may output
several top ranked candidate labels for each detected tap
event. An example of inference is presented in Figure 8 for
demonstration. In this example, the real inputs are 16 num-
bers entered on the number pad layout shown in Figure 6.
For each tap event, TapLogger outputs the top 4 candidate
labels. The 1st label is the one with the closest distance
in the k-means clustering. For example, for the first input
“4” the inferred labels are “1, 5, 4, 2” ranked by measured
distances. The number pad layout shows that the mistak-
enly inferred labels “17, “4”, and “2” are neighboring buttons
around the real input “4”. If the attacker only take the top
one or top two labels, the true label “4” will not be cov-
ered. As shown in the example, for the whole sequence of
inputs, the coverage of true inputs with only the 1st label is
0.3125. The coverage will increase as more top ranked can-
didate labels are taken into consideration. In this example,

Coverage rate with Coverage rate with
Top 1 Top1&2
ranked label ranked labels
0.2759 | 0.4643 | 0.5185 0.7931 075 | 0.7037

0.4138 | 0.1200 | 0.3333 0.6897 | 0.4400 || 0.6061

Layout of
Number Pad| | #2069 | 01250 | 0.2500 | | 04485 | 02917 | 0.6250
: ; z 0.4348 | 0.3462 | 0.8750 | | 0.6087 | 0.4615 | 0.9583
78 [o . .
T o | # [of ge rate with Coverage rate with
Top1&2&3 Top1&2&3&4
ranked labels ranked labels

0.9310 | 0.8214 | 0.9259 0.9310 | 0.9286 | 0.9259

0.8621 || 0.7200 | 0.9091 0.9655 | 0.8400 | 0.9394

0.6897 | 0.5833 | 0.8333 0.8966 | 0.6250 1.0

0.6522 || 0.6154 | 0.9583 0.8261 | 0.7692 1.0

Figure 9: Evaluation of number pad logging attack

the coverage of true inputs will increase to 1.0 when all the
top 3 candidate labels are considered.

6.2.3 Evaluations

In the evaluation, we randomly generated 20 sequences of
tap inputs with length of 16. Before the testing, the user is
asked to play the HostApp for about 60 rounds to create the
training dataset. We measure the coverage on each button
in the number pad layout. The experiments results with
different number of top ranked labels are listed in Figure 9.

From the experimental results, several observations at-
tract our attentions. First of all, from the observed cover-
age, it is easier to distinguish the buttons close to the edge
(such as button “#”) than the inner buttons (such as button
“5” and “8”). Secondly, outputting more top ranked candi-
date labels can greatly increase the coverage of inference.
For example, the average coverage with only the top 1 la-
bel is about 0.364, and the average coverage with the top
1&28&:38&4 labels is about 0.887. Moreover, taking the top
four labels would achieve high coverage rates on all buttons.
This is reasonable because the mistakenly inferred labels are
mostly neighboring labels of the truly tapped button. Based
on these observations, the attacker may achieve a high cov-
erage of the true inputs by slightly increasing the search
space.

6.3 Password Stealing Attack
6.3.1 Attack Overview

Passwords (i.e., PINs) based screen lock is the most com-
mon way to protect the smartphone from being accessed by
unauthorized users. Briefly, when the screen of smartphone
is turned on, the user will be asked for entering a sequence
of passwords (i.e., PIN numbers) to unlock the screen. Such
a sequence of passwords usually consists of a sequence of
number from 0 to 9. The length of passwords is 4 on iOS
and 4 or more on Android platform. Stealing the password
of screen lock provides the attacker the access to the victim
smartphone as well as some private information carried by
the password itself. For example, people would like to use
the same passwords in different occasions.

Before the attack, TapLogger first uses the HostApp with
the layout shown in Figure 6 to collect the pattern of tap
events and build the classifier for tap position classifier in
the training mode.

To log the screen lock passwords, the Contextldentifier
starts the SensorListener service when the screen is turned
on (i.e., upon receiving ACTION_SCREEN_ON intent) and
stops the SensorListener after a certain period of time (e.g.,
10 seconds). Because the user will be asked to enter the
passwords whenever the screen is turned on. During this

period of time, if tap events are detected, the ContextIden-
tifier will use the built-in classifier to infer the tap position
and further the related button that has been pressed.

6.3.2 Tap Position Inference

To improve the accuracy of inference, we utilize one ob-
servation: suppose that the password of screen lock does not
change and the user always enters passwords correctly, the
user will always enter the same passwords in every round.
With this observation, TapLogger divides the passwords into
a sequence of individual inputs. Each input corresponds to
the tap event at a fixed position of this sequence. TapLogger
builds an Inference Distribution Table for each input in this
sequence. For example, in Figure 10, the user enters the
same passwords “5, 7, 6, 0” for 32 rounds. In each round,
the first input is always the same. Thus, for every tap event
detected as the first input, TapLogger will add one to its
inferred label in the table, meaning that the tap event in
this round is inferred as this label. In this way, the inference
distribution table counts the number of times that a certain
label (i.e., button) was inferred as a user input. The more
frequently a label is inferred, the more likely this label is the
real user input. Note that, if the sample size is small, the
true input may not be top ranked in the distribution. As
shown in Figure 10, the top ranked label with input # 4 is
button Del instead of button 0 (the real input).

Distribution of inferred labels after entering the passwords “57 6 0” for 32 rounds

Input #1: Input #2:
buttons 1o 1 pug. button 7
0 4 3 |Top-2Inf.: 1 0 0
Top-3 Inf.:
S Lock
O | 7] 3 |Butten{s} 0 | 9 llButtentz} Crf:;ou:’c
0 4 4 | Button {5 or 9} 13 0 1 || Button {7 or 4}
0 5 1 Button {5 or 9 or 8} 1 0 Button { 7 or 4 or 0K} 1 2 3
4 5 6
7]181]9
Input #3: Input #4: oK | 0 | Del
button 6 button 0
Top-11Inf.: Coverage: 75%
0 0 1 |[Top-2Inf.: 0 0 0 Coverage: 100%
0 0 12 |T op-3 Inf.: 0 0 2 Coverage: 100%
Button {6} Button { Dei}
0 | O | 4 [Button {6 ores 02 Button { Def or 0}
0 0 13 ||Button { 6 or Deior 9}|| 0 10 | 13 ||Button { peior 0 or 9}

Figure 10: Example of inference distribution table

Thus, TapLogger may output several top ranked labels
for each input instead of only the toppest one. We name
them Top-1 Inference, Top-2 Inference, and Top-8 Inference,
representing the number of top ranked label in the inference
distribution table. In Figure 10, we show these three types of
outputs on the right side. Correspondingly, the coverage of
an inference is defined as the number of inputs that appear
in the inferred labels. In the case of Figure 10, the Top-1
Coverage is 3/4 = 75%, while the Top-2 Coverage and Top-3
Coverage are both 100%.

Obviously, Top-8 Inference always generates better cov-
erage rate than Top-1 Inference. However, it also means a
greater search space for identifying the exact true input by
the attacker. With the Top-8 Inference of a password of
length 4, the search space for the attacker to try is 3% = 81,
but the search space of a Top-2 Inference is only 2* = 16.

6.3.3 Evaluations

Experiments have been done with randomly generated
passwords of length 4, 6, and 8. Five passwords are gen-
erated for each length. Before the attack, the user is asked
to play the HostApp for about 60 rounds to build the train-
ing dataset. To collect the testing dataset, the user is asked
to enter each password 30 rounds with TapLogger working

Table 3: The results of screen lock attack
Password Length 4 6 8

Average Top-1 Coverage | 0.4 0.266 0.45
Average Top-2 Coverage | 0.75 | 0.6002 | 0.925
Average Top-3 Coverage | 1.0 0.8 0.975

in the logging mode. For tap position inference, we build
the classifier using LibSVM [7].

The results of average coverage in our experiments is shown
in Table 3. According to the experimental results, with Ta-
pLogger, the attacker may only need to try the top 3 la-
bels for each input and receive a high probability of hitting
the actual password. Note that, in the Table 3, the av-
erage coverage with password length 8 is even better than
that of length 6. This is because some randomly generated
passwords of length 6 contain inner buttons, e.g., Button 5,
which causes a low coverage rate.

7. DISCUSSION

7.1 Security Permission Requirements

Note that, as motion sensors are considered as an insensi-
tive resource, TapLogger does not require any security per-
mission to access the accelerometer and orientation sensors.
In fact, accessing both sensors on other platforms, such as
iPhone and Blackberry, do not require security permission
either. Due to the space limit, we discuss the feasibility of
implementing TapLogger on other platforms in Appendix B.

Moreover, as the Contextldentifier service keeps running
in the background, the reader may wonder if a curious user
may find it suspicious when reviewing the list of running
services in Service Manager. First of all, we admit that the
Contextldentifier service will appear in the list. However,
as the smartphone platform and apps are becoming more
and more complex, there are usually tens of services, e.g.,
system’s or apps’, running in the background. According
to our experience on PC, the attacker can easily fool the
user by giving the Contextldentifier service a benign name
to avoid noticing.

7.2 Overhead Analysis

Computational Overhead: the computational overhead
of TapLogger on smartphone includes detecting tap events
with a MonitorWin of sensor readings and training a clas-
sifier for tap position inference. The workload of tap event
detection is low because the size of MonitorWin is fixed
and limited (e.g.,< 50 readings). Suppose a sensor reading
is represented by 4 Bytes. Only 200 Bytes are required in
the memory. Also, our tap event detection algorithm relies
on heuristic rules and is very lightweight.

For the classifier, both LibSVM and K-means approaches
are applied in our attacks. As only six features are applied
in the inference, the computational overhead is small. Dur-
ing the experiments, training a classifier with LibSVM with
about 800 tap events takes seconds to complete. Thus, the
computational overhead is not a problem for TapLogger.

Another concern is about the battery consumption caused
by continuous sensing with the accelerometer and orienta-
tion sensors. According to our measurements on Nexus, the
battery can only hold for less than 4 hours if we keep sensing
with accelerometer sensors as the highest sample rate. To
avoid draining the battery, our Contextldentifier identifies
the current context of smartphone and starts the sensing
when the touchscreen is on. Therefore, when the touch-
screen is off, the sensing will be stopped and TapLogger in-

curs no overhead at all. In this way, we avoid draining the
battery by continuous sensing.

Communication Overhead Analysis: TapLogger sends
inferred sensitive user inputs to a remote attack server with
labels of zones of a target view. Thus, the generated traffic is
very little. To avoid the user from noticing data uploading,
TapLogger stealthily uploads in two ways. One way is to
send the data when the user is interacting with the HostApp.
For example, TapLogger may upload the collected tap events
when the user is uploading his local scores to online game
center. The other way is to transmits data in background
after the touchscreen is turned off. This approach is more
timely and the amount of each data transmission will be
smaller. It is suggested uploading tap events collected in
the logging mode using this approach.

7.3 Countermeasures

The fundamental problem here is that sensing is unman-
aged on existing smartphone platforms. People are still un-
aware of potential risks of unmanaged sensors on smart-
phones. To prevent such types of attacks, we see an ur-
gent need for sensing management systems on the existing
commodity smartphone platforms. For example, we could
modify the privacy mode introduced in [43] to place secu-
rity restrictions on data access to onboard sensors. Sensors,
such as accelerometer and orientation sensors, should all be
considered as sensitive to user’s privacy and need gaining
security permissions to access.

Further, even with permission restrictions on the on-board
sensors, the attacker may still be able to gain access to sen-
sor readings indirectly, e.g., through the confused deputy
attack [17] or the permission re-delegation attacke [15]. In
this case, the defense approaches recently proposed in [15]
and [11] could be applied on smartphones.

Third, from the perspective of a user, several approaches
can all increase the difficulties of attacks launched by Ta-
pLogger, such as changing the password frequently, choosing
password with numbers difficult to infer, and increasing the
length of PIN numbers.

8. RELATED WORK
8.1 Logging Attacks on Smartphones

Several logging attacks have been proposed to get user
inputs on smartphones. Compromising the operating sys-
tem [41] or hijacking the touch event with fake user in-
terface [24] are straightforward, but they are complex and
easy to be detected. Luring the user to install malicious
input method applications is another approach. However,
the functionality of input method applications is restricted
and the user will be warned before installing such applica-
tions [12]. [3] studies the feasibility of identifying the pass-
word pattern of screen lock by examining the smudges left
on touchscreen after usage. Besides, [27] and [30] propose
shoulder surfing attacks which infer user inputs by observing
a user’s actions on the touchscreen with a camera.

In this work, we utilize the (relatively) insensitive motion
sensor readings to infer the sensitive coordinate information
of tap events. As shown in Section 6, no specific security
permission is required to launch the attack (except the Net-
working permission required to send the user inputs back to
attack server). Moreover, TapLogger is automatic in both
the training and logging phases. The attacker does not need
to be close to the victim user (as in the shoulder surfing at-
tacks) because TapLogger will stealthily perform the logging

attack and transfer the inferred inputs back to the remote
attack server.

8.2 Attacks Relying on Mobile Sensors

The privacy concerns on sensitive mobile sensor data have
been raised for some while [22, 8, 6]. Besides the location
tracking attacks [16, 18, 21], recent attacks show that the
video camera might be controlled by a malware to stealthily
record the surrounding when a user enters a building[42]
that requires security clearance, credit card and pin num-
bers can be stolen by a trojan malware which controls the
microphone in a smartphone when a user speaks his credit
card number to phone menu systems [35]. All these attacks
rely on well-known sensitive sensors, such as GPS, micro-
phone, and camera. Accessing these sensitive sensors re-
quires security permissions granted by users. Different to
existing works, our attack is based on motion sensors that
are usually considered insensitive and can be accessed by the
background services with no security permissions. Thus, the
proposed attack is stealthier and more difficult to detect.

With motion sensors, [20] presented a proof-of-concept of
location inference attack that infers the location changes of
a vehicle on a city map basing on the accelerometer sensor
measurements collected from the driver’s smartphone. [28]
introduced a spying application, named (sp)iPhone, which
utilizes the sensed accelerometer readings on a smartphone
to infer the user inputs on a nearby keyboard. The work
most similar to TapLogger are [5] and [13]. [5] observed the
correlation between tap event positions and motion changes
of smartphone, and validated the observation via a data col-
lection application. [13] divided the touchscreen into zones
and studied the feasibility of inferring tapped zones basing
on readings collected from accelerometer. However, the dif-
ferences between TapLogger and [5, 13] are significant. First
of all, TapLogger proposes a new approach for tap event
detection which is not discussed in [5, 13]. Secondly, com-
pared to that in [5], TapLogger applies different features ex-
tracted from orientation sensor readings in the tap position
inference. [13] extracted features from accelerometer sen-
sor readings only. Thirdly, we present the complete design
and implementation of a trojan which includes a stealthily
training phase as well as two practical attacks. Last but not
the least, we further showed how the user and device factors
impact on the accuracy of logging attacks.

9. CONCLUSION

While the applications relying on mobile sensing are boom-
ing, the security and privacy issues related to such applica-
tions are not well understood yet. In this paper, we study
the feasibility of inferring user inputs on smartphone touch-
screen by monitoring readings collected from on-board mo-
tion sensors. Specifically, we first present a tap event detec-
tion scheme to discover and utilize the user’s pattern with
statistical measurements on acceleration, and then present
an approach of inferring tap position with observed gesture
changes. Further, we propose the detailed design of TapLog-
ger, a trojan application implementing the proposed two ap-
proaches. We show two feasible attacks based on TapLogger
and use experimental results to show the feasibility of pro-
posed attacks.

9.1 Acknowledgments

We thank the reviewers for the valuable comments. This
work was supported in part by NSF CAREER 0643906. The
views and conclusions contained in this document are those

of the author(s) and should not be interpreted as represent-
ing the official policies, either expressed or implied, of NSF
or the U.S. Government.

(1)]. REFERENCES

Apple: shuffle songs on iphone,
http://www.apple.com/iphone/features/ipod.html

[2] Electronic Arts: Need for speed shift on iphone,
http://itunes.apple.com/us/app/
need-for-speed-shift/id3376412987mt=8

[3] Aviv, A.J., Gibson, K., Mossop, E., Blaze, M., Smith, J.M.:
Smudge attacks on smartphone touch screens. In:
Proceedings of the 4th USENIX conference on Offensive
technologies. pp. 1-7. WOOT’10 (2010)

[4] BlackBerry: Ui and navigation - development guide -
blackberry java sdk - 7.0 beta
[5] Cai, L., Chen, H.: Touchlogger: Inferring keystrokes on

touch screen from smartphone motion. In: Proc. of
HotSec’11 (2011)

[6] Cai, L., Machiraju, S., Chen, H.: Defending against

sensor-sniffing attacks on mobile phones. In: The First

ACM SIGCOMM Workshop on Networking, Systems,

Applications on Mobile Handhelds (MobiHeld) (2009)

Chang, C.C., Lin, C.J.: Libsvm: A library for support

vector machines. ACM Trans. Intell. Syst. Technol. 2,

27:1-27:27 (May 2011)

[8] Das, T., Mohan, P., Padmanabhan, V.N., Ramjee, R.,

Sharma, A.: PRISM: platform for remote sensing using

smartphones. In: Proceedings of the international conf. on

Mobile systems, applications, and services (2010)

Android Developers: SensorEvent specification,

http://developer.android.com/reference/android/

hardware/SensorEvent.html

[10] Developers, A.: Handling UT events, http://developer.
android.com/guide/topics/ui/ui-events.html

[11] Dietz, M., Shekhar, S., Pisetsky, Y., Shu, A., Wallach, D.S.:
Quire: Lightweight provenance for smart phone operating
systems. In: Proc. of Usenix Security’11

[12] Android Dveloper: InputMethodManager,
http://developer.android.com/reference/android/view/
inputmethod/InputMethodManager.html

[13] Emmanuel Owusu, Jun Han, S.D.A.P.J.Z.: ACCessory:
Keystroke Inference using Accelerometers on Smartphones.
In: Procceedings of Workshop on Mobile Computing
Systems and Applications (HotMobile) (2012)

[14] Facebook: Facebook on android, https://market.android.
com/details?id=com.facebook.katana&hl=en

[15] Felt, A.P., Wang, H.J., Moshchuk, A., Hanna, S., Chin, E.:
Permission re-delegation: Attacks and defenses. In: Proc. of
Usenix Security’11

[16] Golle, P., Partridge, K.: On the anonymity of home/work
location pairs. In: Proceedings of the 7th International
Conference on Pervasive Computing. pp. 390-397.
Pervasive ’09, Springer-Verlag, Berlin, Heidelberg (2009)

[17] Hardy, N.: The confused deputy: (or why capabilities
might have been invented). SIGOPS Oper. Syst. Rev. 22,
36-38 (October 1988)

[18] Hoh, B., Gruteser, M., Xiong, H., Alrabady, A.: Enhancing
security and privacy in traffic-monitoring systems. IEEE
Pervasive Computing 5, 38-46 (October 2006)

[19] FitnessKeeper Inc.: RunKeeper application, runkeeper.com

[20] Jun Han, Emmanuel Owusu, T.L.N.A.P.J.Z.: ACComplice:
Location Inference using Accelerometers on Smartphones.
In: Proceedings of COMSNETS’12 (2012)

[21] Krumm, J.: Inference attacks on location tracks. In:
Proceedings of the 5th international conference on
Pervasive computing. pp. 127-143. PERVASIVE’07,
Springer-Verlag, Berlin, Heidelberg (2007)

[22] Lane, N.D., Miluzzo, E., Lu, H., Peebles, D., Choudhury,
T., Campbell, A. T.: A survey of mobile phone sensing.
Comm. Mag. 48, 140-150 (September 2010)

(7

9

[23] Apple iOS Developer Library: Uiaccelerometer class
reference, http://developer.apple.com/library/ios/
#documentation/UIKit/Reference/UIAccelerometer_
Class/Reference/UIAccelerometer.html

[24] Lineberry, A.: Android touch-event hijacking (2010),
http://blog.mylookout.com/2010/12/
android-touch-event-hijacking/

[25] LLC, A.: Kindle on android, https://market.android.
com/details?id=com.amazon.kindle&hl=en

[26] Ltd., R.M.: Angry birds on android, https:
//market.android.com/details?id=com.rovio.angrybirds

[27] Maggi, F., Volpatto, A., Gasparini, S., Boracchi, G.,
Zanero, S.: Poster: Fast, automatic iphone shoulder
surfing. In: Proc. of the 18th Conference on Computer and
Communication Security (CCS) (2011)

[28] Marquardt, P., Verma, A., Carter, H., Traynor, P.:
(sp)iphone: decoding vibrations from nearby keyboards
using mobile phone accelerometers. In: Proceedings of the
18th ACM conference on Computer and communications
security. pp. 551-562. CCS ’11, ACM (2011)

[29] Meier, R.: Professional Android 2 Application
Development. Wiley Publishing, Inc. (2009)

[30] Raguram, R., White, A.M., Goswami, D., Monrose, F.,
Frahm, J.M.: ispy: automatic reconstruction of typed input
from compromising reflections. In: Proceedings of the 18th
ACM conference on Computer and communications
security. pp. 527-536. CCS ’11, ACM (2011)

[31] Ravindranath, L., Newport, C., Balakrishnan, H., Madden,
S.: Improving wireless network performance using sensor
hints. In: Proceedings of USENIX conference on Networked
systems design and implementation (2011)

[32] Reddy, S., Mun, M., Burke, J., Estrin, D., Hansen, M.,
Srivastava, M.: Using mobile phones to determine
transportation modes. ACM Trans. Sen. Netw. 6,
13:1-13:27 (March 2010)

[33] Ross, S.M.: Introduction to Probability and Statistics for
Engineers and Scientiests. Academic Press, 2nd edn. (1999)

[34] Saffer, D.: Designing Gestural Interfaces. O’Reilly (2008)

[35] Schlegel, R., Zhang, K., Zhou, X., Intwala, M., Kapadia,
A., Wang, X.: Soundminer: A stealthy and context-aware
sound trojan for smartphones. In: Proceedings of the 18th
Annual Network and Distributed System Security
Symposium (NDSS) (2011)

[36] Siewiorek, D., Smailagic, A., Furukawa, J., Krause, A.,
Moraveji, N., Reiger, K., Shaffer, J., Wong, F.L.: Sensay: A
context-aware mobile phone. In: Proceedings of the 7th
IEEE International Symposium on Wearable Computers.
pp. 248-. ISWC ’03, IEEE Computer Society (2003)

[37] Takeuchi, S., Tamura, S., Hayamizu, S.: Human action
recognition using acceleration information based on hidden
markov model. In: Proc of 2009 APSIAPA Annual Summit
and Conference (2009)

[38] Thiagarajan, A., Biagioni, J., Gerlich, T., Eriksson, J.:
Cooperative transit tracking using smart-phones. In:
Proceedings of the 8¢h ACM Conference on Embedded
Networked Sensor Systems. pp. 85-98. SenSys '10 (2010)

[39] USA Today: Hello, big brother: Digital sensors are
watching us, http://www.usatoday.com/tech/news/
2011-01-26-digitalsensors26_CV_N.htm

[40] wikipedia: Comparison of smartphones, http:
//en.wikipedia.org/wiki/Comparison_of_smartphones

[41] Wikipedia: ios jailbreaking,
http://en.wikipedia.org/wiki/I0S_jailbreaking

[42] Xu, N., Zhang, F., Luo, Y., Jia, W., Xuan, D., Teng, J.:
Stealthy video capturer: a new video-based spyware in 3g
smartphones. In: Proceedings of the second ACM
conference on Wireless network security (2009)

[43] Zhou, Y., Zhang, X., Jiang, X., Freeh, V.W.: Taming
information-stealing smartphoneapplications (on android).
In: Proc. of TRUST’11

APPENDIX
A. TAPEVENT DETECTION ALGORITHM

The detailed checking scheme for tap event detection is
described in the following Algorithm 1.

input : Ps = {I1, I2, I3, 14, Is }, the learnt pattern
of tap events, where I; = {L;, Ui };
MWy, the sequence of SqSum readings in
the current MonitorWin;

output: Indicator, that returns TRUFE if a tap
event is detected;
StartIndex and EndIndex, that returns
the estimated start and end of the detected
tap event in the MonitorWin, respectively.

base + G2,
if MWs(checkpoint) — base ¢ I, then
Indicator <+ FALSFE; Return Indicator;
end
StartIndex < the first reading that is close enough
to base starting from the checkpoint to 0
trough < the index of minimum reading between
StartIndexr and checkpoint in the MonitorWin;
7 if MWs(trough) — base ¢ I> then
8 Indicator <+ FALSE; Return Indicator;
9 end
10 if MWs(checkpoint) — MWs(trough) ¢ Is then
11 Indicator < FALSE; Return Indicator;
12 end
13 if checkpoint — trough ¢ I4 then
14 Indicator < FALSE; Return Indicator;
15 end
16 EndIndex < StartIndex + AveLength
17 if std(NWs[StartIndex, EndIndez)) ¢ Is then
18 Indicator < FALSE; Return Indicator;
19 end
20 Return Indicator, Startindex, EndIndex;

Algorithm 1: Tap event detection in logging mode

[SLEN NI VI

=

B. ATTACK ON OTHER PLATFORMS

Other smartphones, such as iPhone and BlackBerry, have
similar on-board sensors equipped on devices. There are
already thousands of iPhone and iPad apps that leverage
the accelerometer sensor in gaming, healthcare areas, etc.
Similar to the accelerometer usage defined on Android plat-
form, iOS also provides three axes readings: X axis reading
for moving left or right, Y axis reading for moving forward
or backward, and Z axis reading for moving up or down.
We can obtain them by implementing a class specifying
the UIAccelerometerDelegate protocol to listen to the ac-
celerometer events. Although iOS 4 does not support true
multitasking (except a few services, e.g., streaming etc.,),
which means our taplogger cannot reside in background run-
ning on i0S devices to keep tracking tap events, it is feasible
doing on jailbreaked iOS devices. We do not discuss Black-
Berry in this article because touchscreen based BlackBerry
devices are rare in the sense of both in BlackBerry family
and in smartphone market share. However, our approach
will be still valid with careful investigation of the working
mechanism of the on-board sensors on BlackBerry. We will
address it in our future work.

