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Abstract— Phishing is a significant security threat to users
of Internet services. Nowadays, phishing has become more
resilient to detection and trace-back with the invention of
Fast Flux (FF) service networks. We propose two approaches
to correlate evidence from multiple DNS servers and multi-
ple suspect FF domains. Real-world experiments show that
our correlation approaches speed-up FF domain detection,
based on an analytical model that we propose to quantify the
number of DNS queries needed to confirm a FF domain. We
also show how our correlation scheme can be implemented
on a large scale by using a decentralized publish-subscribe
correlation model called LarSID, which is more scalable
than a fully centralized architecture.

Index Terms— phishing, fast flux service networks, collabo-
rative intrusion detection, round-robin DNS

I. INTRODUCTION

Phishing is a form of social engineering attack, which
exploits human vulnerabilities rather than software vulner-
abilities. In order to initiate phishing scams, the phishers
(the operator of phishing sites) send out a large number of
fraudulent emails that include a link to the website under
their control. These emails normally spoof a reputable
company, and encourage a quick reply so that users’
information can be collected before the phishing site is
taken down [5]. The potential victim then connects to
a spoofed website by clicking on the link provided by
the spam email. An accurate imitation of the legitimate
organization’s website is presented to ensure that the
victim enters their personal details. The compromised
details can then be used by the phisher for financial gain.
Gartner has estimated the cost of identity theft increased
from $2bn to $3.2bn in 2007 in the USA alone [7], [8].

In order to address this security challenge, significant
resources have been invested in anti-phishing research.
A range of anti-phishing tools have been proposed [2],
[3], [6], as well as more fundamental research [5], [12],
[13], [17]. One of the most common approaches to the
problem has been phishing site take-down [18], i.e.,
removing a fraudulent website. A key part of any take-
down procedure is the problem of trace-back of hosting
systems for phishing websites, i.e., finding the underlying
computers that host the site. Traditional phishing hosts
can be traced back relatively quickly based on their public

An extended version of this paper can be found in our technical
report “Collaborative Detection of Fast Flux Phishing Domains,” by
C. V. Zhou, C. Leckie, S. Karunasekera, which can be located at
http://www.cs.mu.oz.au/∼cvzhou/pub/jnw full.pdf.

DNS name or directly by their IP address if it is embedded
within the original spam email. Further action can then
be taken against the identified phishing host.

In order to protect their criminal assets, the operators
of phishing sites invented a better architecture called Fast
Flux (FF) service networks to hide the hosting machine
of phishing websites from trace-back. In FF networks, a
large number of proxy hosts are used to relay requests
to the back-end server, called a mothership, that actively
hosts the phishing site (called the FF domain). Hundreds
or even thousands of compromised computers can be
used as the front-end proxies. The DNS infrastructure is
then used to map the phishing domain name to different
front-end proxies. This multi-layer architecture makes it
extremely difficult to trace-back the hosting machine,
which is hiding behind many front-end proxies.

Recent research has identified a method for detecting
possible FF domains by searching for domains that are
associated with many IP addresses and use short time-to-
live (TTL) values in their DNS query results [9], [28].
There are two potential limitations of this approach. (1)
We can expect FF domain operators to send fewer IP
addresses from a single query, so that the above detection
method can be evaded. (2) It may require multiple queries
to confirm whether a suspect domain is actually a FF
domain, which increases the time required for FF domain
detection. In order to address these limitations, our aim
in this paper is to reduce the time required to detect FF
domains by correlating evidence from multiple sources.

In this paper, we present several approaches to cor-
relating evidence about FF domains. We first begin by
characterising the behavior of FF domains based on evi-
dence collected from multiple points around the Internet
on real FF domains. Based on an analysis of the behavior
of the FF domains, we present an analytical model of the
number of DNS queries needed to confirm a FF domain,
and we use this analytical model to motivate our approach
to correlation. We then present two approaches to corre-
lating FF evidence to speed up detection: (1) correlate
IP addresses using queries from multiple DNS servers;
(2) correlate results of queries from multiple possible FF
domains. In both cases, we empirically demonstrate the
potential speed up in detection using these correlation
schemes. Finally, we consider the problem of how to
correlate evidence on a large scale across the Internet.

The rest of this paper is organized as follows. In
Section II, we describe the background of phishing
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Figure 1. Lifetime for phishing sites observed in 2007

domains, and highlight the detection challenges of FF
domains. We then propose a theoretical model to analyze
the problem of FF domain detection in Section III. We
propose two correlation schemes for FF domain detection
based on multiple DNS servers and multiple FF domains,
and present evaluation results based on a real-world
experiment in Section IV. In Section V, we introduce a
decentralized platform to support the proposed correlation
schemes. We review the related work in Section VI, and
conclude the paper in Section VII.

II. BACKGROUND ON PHISHING DOMAINS

In this section, we first describe recent trends in phish-
ing attacks and their corresponding impact on Internet
security. We next explain the technical details of a new
technique, Fast Flux (FF) service networks, which are
used to host phishing domains (note that we refer to
domains that are hosted by FF networks as FF domains in
the rest of this paper). We then revisit several preliminary
efforts to detect FF domains in the literature, and finally
highlight the open research issues in FF domain detection
that motivate our work in the following sections.

A. Trends and Impact of Phishing

Since phishing made its debut in the mid 1990’s by
targeting America Online, it has become a major threat
to online services. According to the data collected by
the APWG (Anti-Phishing Work Group) [1] in 2007,
there were more than 20,000 unique phishing domains
reported every month in 2007 except February. With
increased efforts in anti-phishing, the average online time
for phishing domains has decreased from 4 days to 3 days,
as shown in Figure 1. However, the longest online time
has remained steady at 30 days, due to the evolution of
phishing techniques, such as FF service networks [23].

B. Fast Flux Service Networks

A Fast Flux (FF) service network is a term coined in the
anti-spam community to describe a decentralized botnet
(i.e., a network of compromised computer systems) with
constantly changing public DNS records, which enables
their controller (the attacker) to hide and sustain malicious
websites [23]. The method of changing IP addresses
dynamically is borrowed from a technique called round-
robin DNS, which is used by legitimate companies for

root DNS server

.tk DNS server ns1.ffdomain1.tk

user Z

1

HTTP

4

2 3

front-end proxies of 

www.ffdomain1.tk

5

mothership of  

www.ffdomain1.tk

Figure 2. A real-world example of a fast flux service network

load balancing. A round-robin DNS works on a rotating
basis so that in response to a DNS request, the least
recently used IP address is selected from a list. In a
FF network, compromised machines are used merely as
frontline proxies, so that the attackers are safely hidden
behind a veil of constantly shifting IP addresses.

From the attacker’s perspective, the FF architecture
with multiple proxies helps to protect their criminal assets.
Multiple proxies can be used for load balancing during the
phishing attack. Moreover, thousands of front-end proxies
can confuse any attempts to trace the phishing server, and
make it difficult to shut-down the front-end proxies.

In general, the computer systems in FF service net-
works can be divided into two layers based on their
functionality. The front-end proxies are a large pool of
compromised computer systems that serve as the first
layer of a FF network. They are normally used for blind
proxy redirection. At first, their IP addresses are assigned
to the same fully qualified domain name. These addresses
are swapped frequently in a round-robin manner by using
very short TTL values for each given DNS resource
record. Then the corresponding request and data to the
advertised domain name will be funelled to and from
the second layer - the mothership that actually delivers
content back to the misled user who requests it.

Figure 2 describes the layered architecture of a
real-world FF network that hosts the phishing domain
www.ffdomain1.tk (note that the phishing domain names
appearing in this paper have been anonymized to preserve
privacy), and also illustrates the DNS query process for
this FF domain. As shown in Figure 2, after user Z clicks
on the link of www.ffdomain1.tk that is embedded inside
a spam message and points to a domain owned by the
phisher, the DNS lookup process can be analyzed as
follows:

1) User Z queries the DNS root nameserver (usually
through their browser) for the top-level domain .tk
and receives an answer.

2) User Z asks the .tk nameserver for the domain
ffdomain1.tk, and is referred to a nameserver
ns1.ffdomain1.tk, which is a DNS server under the
control of the attacker or an illegal DNS server
from a country where the DNS servers are loosely
monitored. In this example, the IP address of the
nameserver keeps changing frequently, which is
a double-flux architecture based on the definition
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TABLE I.
A SAMPLE DNS ENTRY FOR FAST FLUX DOMAIN www.ffdomain1.tk

Domain Name TTL Class Types Type-specific-data

ffdomain1.tk. 600 IN A 006.49.240.42

ffdomain1.tk. 600 IN A 011.181.95.149

ffdomain1.tk. 600 IN A 015.125.239.184

ffdomain1.tk. 600 IN A 019.128.83.145

ffdomain1.tk. 600 IN A 027.88.94.3

ffdomain1.tk. 6462 IN NS ns1.ffdomain1.tk.

ns1.ffdomain1.tk. 583 IN A 007.157.114.207

ns1.ffdomain1.tk. 583 IN A 016.65.34.228

ns1.ffdomain1.tk. 583 IN A 019.234.199.93

ns1.ffdomain1.tk. 583 IN A 020.234.127.147

ns1.ffdomain1.tk. 583 IN A 023.138.52.7

in [23]. If it is a single-flux architecture, the IP
address for the nameserver remains unchanged for a
comparatively longer time period, such as 24 hours.

3) User Z queries the authoritative name server
ns1.ffdomain1.tk for the actual IP address of
www.ffdomain1.tk and receives an IP address from
the pool of FF front-end proxies, which is normally
the IP address of a compromised home computer.

4) User Z then initiates direct communication with the
IP address that is assigned to www.ffdomain1.tk,
e.g., 027.88.94.3 (note that the first eight bits of
any IP address appearing in this paper have been
anonymized to preserve privacy). This IP address
is usually frequently changed.

5) All the HTTP requests from user Z to the front-end
proxy (027.88.94.3) are actually redirected to the
mothership that will respond to the victim.

A snapshot of the corresponding DNS lookup results
are shown in Table I. This shows 5 DNS A records
that were returned by a DNS query for the domain
ffdomain1.tk. Note that the TTL field of these A records
is set to 600 seconds (10 minutes). This means that
the front-end proxies returned for this FF domain will
change every 10 minutes in a round-robin manner. In the
bottom of Table I, we see that multiple hosts are used as
the nameserver ns1.ffdomain1.tk, which change after 583
seconds.

In traditional phishing scams, the resolvable main IP
address of the phishing domain can normally be located,
hence the corresponding connection can be blocked. How-
ever, the distributed, constantly changing infrastructure of
a FF domain makes it impractical to trace-back the real
hosting machine (the FF mothership) and shut down its
operations. If we try to shut down the IP address that
the phishing domain is currently resolved to, there are
thousands of other candidate IP addresses to be resolved
in the phishing domain by the DNS server. In this double-
flux service network, even the IP addresses of the DNS
nameservers keep changing.

C. Previous Work on Fast Flux Domain Detection

In order to address the challenges of FF domain de-
tection, there are several approaches that have been pro-

posed [9], [28]. These approaches focus on detecting the
front-end proxies in FF networks, using distinct features,
such as short TTL values and multiple A records from the
DNS query results of a FF domain. In [28], we proposed a
multi-layer FF domain trace-back approach. A suspect FF
domain is tested using DNS queries based on the number
of unique A records returned, the TTL value, and the
similarity of the domain name to a well-known domain.

Holz et al. [9] proposed a similar approach to FF
network detection and measurement, during the same
period as our research in [28] was being conducted. In
order to distinguish between a FF domain and a legitimate
domain, a FF score is calculated based on the number
of unique A records, the number of NS records and the
number of unique autonomous systems (ASs) from the
results of DNS queries for the suspect domain.

D. Open Research Issues

Several open research problems are raised by this
existing research into the detection of FF domains. First,
as described in the previous subsection, both detection
approaches [28] and [9] are based on the principle that
the results of a DNS query to a FF domain will contain
many unique IP addresses. In order to evade this approach
to detection, we may expect attackers to become more
stealthy by limiting the number of FF front-end proxies
returned for a single DNS query. This raises the question
of how we detect a FF domain based if a smaller number
of IP addresses are returned with each query?

Second, it is important to detect FF domains as quickly
as possible in order to minimize the damage they can
cause. We have observed that the IP addresses returned
in response to a DNS query to a FF domain appear to be
drawn at random from a pool of available IP addresses.
If DNS queries from different networks return different
IP addresses, then by combining the list of IP addresses
observed from different locations in the Internet, is it
possible to confirm that a domain is a FF domain more
quickly? If so, can we quantify the benefit of combining
the results of DNS queries from multiple networks?

Third, another trend we have observed is that different
phishing domains are operating on the same FF network
infrastructure. Thus, several FF phishing domains can use
the same IP address as a proxy. Consequently, can we
correlate IP addresses across different suspect phishing
domains in order to speed-up detection?

III. ANALYTICAL MODEL FOR IDENTIFYING FAST

FLUX DOMAINS

In this section, we first propose a theoretical approach
to model the time required to confirm that a given domain
is actually a FF domain, by analyzing the relationship
between the number of DNS queries and the number
of unique IP addresses returned. We then extend this
analytical model to quantify the time that can be saved
by combining DNS queries from different networks.

Consider the case of a FF domain containing H front-
end proxies, where we need to observe a minimum of h
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unique IP addresses belonging to a domain before it is
considered to be a FF domain. Each DNS query samples
the set of hosts, and returns an IP address that is drawn
at random from the set of H possible hosts. Assuming
that samples are independent, in some cases a query will
return a new IP address, while in other cases it will return
an IP address that we have already seen. Let X

h,H
be a

random variable that denotes the number of queries issued
before we observe the minimum number h of unique IP
addresses (out of a possible set of all H IP addresses that
belong to the domain) required to consider the domain to
be a FF domain. The aim of our analysis is to determine
the expected number of queries E(X

h,H
) in order to

observe h unique hosts from a set of H hosts.
Based on our real-time monitoring of several FF do-

mains, we can divide the process of identifying the IP
addresses that belong to a FF domain into two phases. In
the discovery phase, we are sampling from a large, static
pool of IP addresses used in FF networks, while in the
stable phase new front-end proxies are gradually being
added to the initial pool of IP addresses. For example, Fig-
ure 3 plots the number of unique IP addresses identified
by 480 DNS queries for the FF domain www.ffdomain1.tk
in August 2008. The DNS lookup was conducted every
10 minutes, and there were 14 IP addresses returned
by the FF domain www.ffdomain1.tk for each query. As
shown in Figure 3, the results from the first 20 queries
form the discovery phase, where there were 14 out of
approximately 115 unique IP addresses returned each time
in a random manner, as the front-end proxies for the FF
domain www.ffdomain1.tk. The remaining lookup results
form the stable phase, where new IP addresses are added
gradually to the FF network, i.e., 14 IP addresses are
selected from an increasing number of IP addresses each
time. Given that in the discovery phase we can identify
a set of h hosts with the fewest queries, we model the
discovery phase as a random sampling problem.

We model the discovery phase as an example of the
coupon collector problem [16], which finds the expected
number of samples needed (with replacement) from a
population of H objects in order to sample each object
at least once. It can be shown [16] that if Y

i,H
denotes

the number of samples made in order to go from having
seen i − 1 objects to i objects, then

E(Y
i,H

) =
H

H − i + 1
, and

E(X
H,H

) = E(Y1,H
) + E(Y2,H

) + · · · + E(Y
H,H

)

= H

H∑
i=1

1
i

.

In our case, we wish to observe h out of H hosts, so

E(X
h,H

) = E(Y1,H
) + E(Y2,H

) + · · · + E(Y
h,H

)
∼= H[lnH − ln(H − h)]

= O(Hln

H

H − h

).
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Figure 3. Number of DNS queries needed to find a given number of
unique IP addresses for FF domain www.ffdomain1.tk
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detection

If the observation is based on a single DNS server, e.g.,
local DNS queries are generated for a suspect domain
at an average rate of ρ queries per unit time, then the
expected time to detect a sufficient number of unique IP
addresses to consider the domain a FF domain is

T = O(
H

ρ

ln

H

H − h

).

To validate this analytical model, we have shown in
Figure 4 our proposed model against the actual number
of queries required for three different FF domains. We
observed that our model (H

ρ

ln

H

H−h

, where ρ = 14 and
H = 115) provides an upper bound on the number of
queries required. As shown in Figure 4, the queries needed
for these real life FF domains falls between a linear
model and our analytical model, which indicates that the
discovery phase is a mix of round-robin (linear model)
and random sampling.

As proposed in [28], we have the potential to reduce
the time required to detect at least h unique IP addresses
by combining query results from different DNS servers.
Namely, if we have m DNS servers, and each are queried
at an average rate ρ, then by correlating their results, the
expected time T required for detection becomes

T = O(
H

ρm

ln

H

H − h

),

i.e., the theoretical speed-up in detection time is propor-
tional to the number of DNS servers that participate in
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monitoring the suspect domain. In the following sections
we consider different approaches for correlating evidence
from multiple sources about FF domains.

IV. CORRELATING EVIDENCE OF FAST FLUX

PHISHING DOMAINS

The speed of FF domain detection is limited by the
frequency with which a single site will see new IP
addresses being mapped to the suspect domain.

In order to address the limitations of using a single
point of detection, we propose two correlation approaches
for FF domains detection, in terms of correlating results
(1) from different DNS servers; (2) from different sus-
pect FF domains. In each case, we consider empirical
evidence from actual FF phishing domains to validate our
approaches.

A. Correlating Evidence from Multiple DNS Servers

The motivations for this approach are as follows:

• If different DNS servers see different results for the
same DNS query, then there is a benefit in combining
evidence from multiple DNS servers.

• As described in Section III, there is potentially a lin-
ear speed-up in detection time when we increase the
number of DNS servers that participate in monitoring
the suspect domain, based on our analytical model.
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land

Figure 5. DNS queries of FF domain www.ffdomain3.eu

We focus our study on the discovery phase of the FF
front-end proxy deployment.

Figure 5 plots sample DNS query results of a FF do-
main www.ffdomain3.eu that we collected simultaneously
from two different DNS servers: one in Brazil and another

in Switzerland. Query results from both DNS servers have
a similar trend in the number of unique IP addresses
identified in the discovery phase. As shown in Figure 5(a)
the DNS server in Brazil reported that 14 unique IP
addresses were assigned to FF domain www.ffdomain3.eu
in the first query, and 117 unique IP addresses after 20
queries. Similar behavior can be observed from the DNS
server in Switzerland.

TABLE II.
SAMPLE DNS QUERY RESULTS

FROM A DNS SERVER IN

BRAZIL

;; ANSWER SECTION:
ffdomain3.eu. 600 IN A 001.181.31.106
ffdomain3.eu. 600 IN A 002.8.35.209
ffdomain3.eu. 600 IN A 003.184.35.240
ffdomain3.eu. 600 IN A 004.94.99.152
ffdomain3.eu. 600 IN A 007.137.128.99
ffdomain3.eu. 600 IN A 010.178.217.58
ffdomain3.eu. 600 IN A 012.69.170.118
ffdomain3.eu. 600 IN A 012.98.71.156
ffdomain3.eu. 600 IN A 013.147.2.253
ffdomain3.eu. 600 IN A 017.102.47.94
ffdomain3.eu. 600 IN A 018.100.69.190
ffdomain3.eu. 600 IN A 020.130.9.214
ffdomain3.eu. 600 IN A 024.46.80.193
ffdomain3.eu. 600 IN A 025.131.109.236

TABLE III.
SAMPLE DNS QUERY RESULTS

FROM A DNS SERVER IN

SWITZERLAND

;; ANSWER SECTION:
ffdomain3.eu. 600 IN A 001.181.31.106
ffdomain3.eu. 600 IN A 001.208.14.142
ffdomain3.eu. 600 IN A 001.210.33.238
ffdomain3.eu. 600 IN A 001.76.83.55
ffdomain3.eu. 600 IN A 002.158.225.101
ffdomain3.eu. 600 IN A 003.184.35.240
ffdomain3.eu. 600 IN A 010.178.217.58
ffdomain3.eu. 600 IN A 011.191.248.113
ffdomain3.eu. 600 IN A 012.183.220.208
ffdomain3.eu. 600 IN A 012.69.170.118
ffdomain3.eu. 600 IN A 012.98.71.156
ffdomain3.eu. 600 IN A 015.109.227.159
ffdomain3.eu. 600 IN A 017.102.47.94
ffdomain3.eu. 600 IN A 028.183.196.29

Figure 5 shows a scenario where each DNS server
works independently to detect the FF domain. If we can
combine the results from both DNS servers, intuitively we
could gather more evidence of the FF domain, and hence
potentially speed up detection. However, the reduction in
the detection time depends on the extent to which queries
from different servers are independent or uncorrelated.
Tables II and III show the results of a sample DNS
query for the FF domain www.ffdomain3.eu generated
simultaneously on two different sites. In this example,
6 IP addresses were reported by both sites.

Motivated by this example, we formalize the correlation
scheme as follows. We consider a set of DNS servers
D = {d

i
|i = 1, 2, . . . , m} which come from different

network domains or different ISPs. Each DNS server
d

i
issues queries at an average rate ρ for a suspect FF

domain f , and correlates their results to gather evidence
of potentially suspicious FF domains. The DNS servers
collaborate to share the evidence they have collected.

The evidence that is shared can potentially take many
forms. We propose a correlation scheme based on the
DNS A records (i.e., a set of suspicious IP addresses that
are potentially being compromised) that are associated
with the FF domain f . We refer to the set of suspicious
IP addresses that have been observed by DNS server d

i

as domain f ’s proxy list (PL), i.e.,

PL

i
= {s

ij
∈ IP |j = 1, 2, . . . , n

i
},

where s

ij
is the j

th IP address that has been associated
with domain f as seen by DNS server d

i
.

Consider the case where all participating DNS servers
correlate their proxy lists for domain f after each query.
We denote the resulting proxy list of domain f after t

queries (or being correlated t times) as the combined
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proxy list (CPL), i.e.,

CPL

t
= CPL

t−1 ∪ PL1 ∪ PL2 ∪ . . . ∪ PL

m
.

Hence, the number of unique IP addresses identified after
t queries is h

t
= |CPL

t
|.

In order to evaluate the effect of correlating evi-
dence from multiple DNS servers, we continuously mon-
itored several actual FF domains, which used the Dan-
mec/Asprox SQL injection attack tool [22] for two weeks
in August 2008, from seven different sites on Planet-
Lab [20] across three continents. In particular, we gen-
erated DNS queries every 10 minutes for monitored FF
domains on seven DNS servers simultaneously. The DNS
servers were selected to provide geographical diversity,
and are from Brazil, United States, Russia, Singapore,
Australia, Switzerland and Netherlands.

TABLE IV.
SAMPLE DNS QUERY RESULTS

OF FF DOMAIN www.ffdomain1.tk

;; ANSWER SECTION:
ffdomain1.tk. 600 IN A 002.57.70.209
ffdomain1.tk. 600 IN A 004.209.243.172
ffdomain1.tk. 600 IN A 005.209.75.40
ffdomain1.tk. 600 IN A 007.223.178.4
ffdomain1.tk. 600 IN A 009.80.11.108
ffdomain1.tk. 600 IN A 011.181.105.112
ffdomain1.tk. 600 IN A 012.183.220.208
ffdomain1.tk. 600 IN A 012.251.254.179
ffdomain1.tk. 600 IN A 012.69.170.118
ffdomain1.tk. 600 IN A 015.108.209.42
ffdomain1.tk. 600 IN A 015.109.227.159
ffdomain1.tk. 600 IN A 017.102.44.173
ffdomain1.tk. 600 IN A 019.235.222.87
ffdomain1.tk. 600 IN A 026.255.101.5

TABLE V.
SAMPLE DNS QUERY RESULTS

OF FF DOMAIN

www.ffdomain2.eu

;; ANSWER SECTION:
ffdomain2.eu. 600 IN A 002.57.70.209
ffdomain2.eu. 600 IN A 003.184.35.240
ffdomain2.eu. 600 IN A 004.209.243.172
ffdomain2.eu. 600 IN A 005.209.75.40
ffdomain2.eu. 600 IN A 007.223.178.4
ffdomain2.eu. 600 IN A 008.240.173.146
ffdomain2.eu. 600 IN A 009.80.11.108
ffdomain2.eu. 600 IN A 011.8.98.176
ffdomain2.eu. 600 IN A 012.251.254.179
ffdomain2.eu. 600 IN A 015.108.209.42
ffdomain2.eu. 600 IN A 015.109.227.159
ffdomain2.eu. 600 IN A 017.102.44.173
ffdomain2.eu. 600 IN A 019.235.222.87
ffdomain2.eu. 600 IN A 026.255.101.5

Figure 6 shows the correlation results in the discov-
ery phase of a FF domain across seven different DNS
servers. Figure 6 plots both the individual results PL

i

and the correlation results CPL for the FF domain
www.ffdomain2.eu in terms of the number of unique
IP addresses that can be identified for a given number
of queries. As shown in Figure 6, the individual DNS
servers require a similar number of DNS queries in order
to detect a given number of unique IP addresses from
the FF domain. In comparison, the correlated results are
consistently able to identify a given number of unique IP
addresses using fewer DNS queries, e.g., we can detect
100 unique IP addresses using only 9 queries based on
the correlated results, compared with up to 17 queries in
the worst case for the individual servers. Similar results
were achieved for other FF domains in both individual
and correlation cases. Note that the speed-up in detection
is sub-linear, rather than linear as discussed in Section III
for the ideal case, since the query results from each DNS
server are not fully independent.

B. Correlating Evidence from Multiple FF Domains

During our large-scale monitoring of FF domains, we
made an interesting observation about the use of FF
service networks. We observed that multiple FF domains
use the same pool of IP addresses in their FF service
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Figure 6. Effect of DNS query correlation from seven DNS servers

network. As shown in Figure 7, two different FF domains
observed from a single DNS server have almost identical
behavior in terms of the number of unique IP addresses
identified during 480 queries. Further testing highlighted
that there was a significant overlap in the IP addresses
used. As shown in Tables IV and V, 11 out of 14
IP addresses for a single query are identical between
these two domains. The example shows that both FF
domains are using the same group of IP addresses as
their FF proxies. This indicates that either both domains
are controlled by the same attacker, or the same FF
service network is being “rented out” to host multiple
FF domains. To the best of our knowledge, this use of
a common FF service network for multiple domains has
not been reported in the literature.
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Figure 7. DNS queries of two different FF domains from a single DNS
server

We found that this characteristic of the same IP ad-
dresses being used in multiple FF domains can also be
observed in data that was collected in June 2008 by the
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University Mannheim, Germany [10].
Motivated by these observations, we propose a model

of FF domain detection using a single DNS server as
follows. If we see a potentially suspicious domain, but
we lack sufficient evidence for confirmation, then if some
of the IP addresses have already appeared in other FF
domain names, we can speed up the confirmation process.

We formalize our correlation scheme as follows. We
consider a set of FF domains F = {f

i
|i = 1, 2, . . . , m}

are monitored by a single DNS server. Each FF domain f

i

is queried at an average rate ρ, and we correlate their re-
sults, in order to gather evidence of potentially suspicious
FF proxies. In this case, we propose a correlation scheme
based on the DNS A records (i.e., a set of suspicious IP
addresses that are potentially being compromised) that are
associated with the FF domain f . We refer to the set of
suspicious IP addresses that have been observed by the
DNS server d

i
as domain f

i
’s proxy list (PL), i.e.,

PL

i
= {s

ij
∈ IP |j = 1, 2, . . . , n

i
},

where s

ij
is the j

th IP address that has been associated
with domain f

i
.

We correlate the proxy lists of all potential FF domains
after each query. We denote the resulting proxy list of all
monitored suspect domains F after t queries (or being
correlated t times) as the combined proxy list (CPL), i.e.,

CPL

t
= CPL

t−1 ∪ PL1 ∪ PL2 ∪ . . . ∪ PL

m
.

Hence, the number of unique IP addresses identified after
t queries is h

t
= |CPL

t
|.

The key difference between this FF domain based
correlation scheme and the DNS based correlation scheme
is that this scheme correlates the IP address for multiple
different FF domains from a single DNS server, while the
DNS based correlation scheme correlates the IP address
for a single FF domain from multiple DNS servers.

In order to evaluate the effect of correlating evidence
from multiple FF domains, we plot the correlation results
of DNS queries of three actual FF domains collected on
PlanetLab in Figure 8(a), and the correlation results of
DNS queries of seventeen FF domains collected by [10]
in Figure 8(b). Both figures only plot the first 20 queries,
i.e., the discovery phase of the FF proxy deployment.

Figure 8(a) plots both the individual results and cor-
relation results for three different FF domains in terms
of the number of queries required to identify a given
number of unique IP addresses. As shown in Figure 8(a),
the individual FF domains have similar detection perfor-
mance. In contrast, the results from the correlation scheme
consistently outperform the results from the individual FF
domains, with approximately 30% fewer queries needed
to identify the same number of hosts. Figure 8(b) plots the
correlation results of seventeen different FF domains. In
this case, the results from the correlated scheme can detect
far more unique IP addresses than any single domain in
isolation. Furthermore, any new domain that uses an IP
address from the correlation results can immediately be
treated as suspicious.
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Figure 8. Effect of DNS query correlation from different FF domains

V. SCALABLE PLATFORM FOR CORRELATION OF

EVIDENCE

Having proposed two correlation approaches to detect
FF domains, we now consider how these approaches can
be implemented in practice. Intuitively, an easy approach
to collaborative detection is to use a centralized server
to correlate all information. In this approach, each IDS
monitors queries from its local DNS, then the query
results are reported to a central server, which correlates
all the reported query results. However, this centralized
approach can introduce a central point of failure and poor
scalability.

Therefore, rather than relying on a centralized correla-
tion platform, we need to support distributed correlation
in a scalable manner with little management overhead.
Previously, we have developed a general platform for col-
laborative correlation, called LarSID [27]. In this section,
we describe how the correlation problems in Section IV
can be mapped onto the LarSID architecture.

A. Correlation Problems

We are addressing two correlation problems in this
paper: (1) correlation from multiple DNSs, and (2) cor-
relation from multiple suspect FF domains.

In the first correlation problem, each participating IDS
queries its local DNS for suspect FF domains F =
{f

k
|k = 1, 2, . . . , r} simultaneously. After each query,
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are two separate processes in the participating IDS)

each participant shares their query results in the form of
〈f

k
, PL

i
〉, where PL

i
is a list of IP addresses that are

associated with f

k
detected by participant IDS d

i
, i.e.,

PL

i
= {s

ij
∈ IP |j = 1, 2, . . . , n

i
}.

The suspect FF domain name f

k
is used as a key for

correlation. All corresponding reported lists of IP ad-
dresses are aggregated to produce a global set of evidence
statistics for the suspect domain.

In the second correlation problem, the source of data
is the same as in the first correlation problem, i.e., all the
DNS query results reported by the participating IDSs. In
this case, these results are shared in the form of 〈s

k
, FL

i
〉,

where s

k
is a suspicious IP address, i.e.,

S = {s
k
∈ IP |i = 1, 2, . . . , r},

and FL

i
is a list of suspect FF domains that are associated

with s

k
detected by participant IDS d

i
, i.e.,

FL

i
= {f

ij
|j = 1, 2, . . . , n

i
}.

The suspicious IP address s

k
is used as a key for corre-

lation. All corresponding reported lists of FF domains are
aggregated to produce global evidence for s

k
.

B. Distributed Correlation Algorithms

In order to support the distributed correlation, we use
LarSID, a collaborative intrusion detection architecture
proposed in our previous work [27], as shown in Figure 9.
In LarSID, each participant IDS has two functional units,
a detection unit that is responsible for collecting alerts
locally; and a correlation unit that is a part of the
distributed correlate-and-filter scheme. LarSID comprises
a set of IDSs D = {d

i
|i = 1, 2, . . . , m}. Each detection

system d

i
queries its local DNS for suspect FF domains

F , in order to gather evidence of potentially suspicious
activities. All of these intrusion detection systems are
connected by the LarSID architecture and share informa-
tion with each other. Periodically, each detection system
shares evidence about either the suspect FF domains
(first correlation problem) or the suspicious IP addresses
(second correlation problem) seen on its local DNS.

In order to achieve collaboration between the partici-
pant IDSs, LarSID uses a peer-to-peer publish-subscribe

mechanism for sharing evidence. Each participant d

i

shares the contents of its query results via a publish-
subscribe process, which takes place periodically after
each query with a time interval ∆. We explain how each
correlation problem (multiple DNS servers or suspected
FF domains) can be mapped onto LarSID as follows.

• In the first correlation problem, at the end of each
period ∆, each detection system d

i
∈ D subscribes

to information about suspect FF domain 〈f
k
, PL

i
〉

detected from the local DNS. If this suspect domain
f

k
is confirmed as a FF domain by LarSID after

correlating all related PLs, then d

i
is notified about

this domain f

k
, as well as related information such as

the number of unique IP addresses associated with it.
The detection system d

i
can then take further action

based on the information received about the globally
confirmed FF domain.

• In the second correlation problem, at the end of each
period ∆, each detection system d

i
∈ D subscribes

to information about suspicious IP address 〈s
k
, PL

i
〉

detected from the local DNS. If this suspicious IP
address s

k
is confirmed as a FF front-end proxy

by LarSID after correlating all related FLs, then
d

i
is notified about this IP address s

k
, as well

as related information such as the number of FF
domains associated with it. The detection system d

i

can then take further action.

C. Performance Evaluation

Note that decentralized systems introduce additional
communication overhead due to distributed message rout-
ing in comparison to a centralized approach. It is essential
to quantify whether this increase in communication over-
head outweighs any savings in computational load.

In order to measure the performance of the proposed
distributed correlation schemes in LarSID, we have pre-
viously implemented a simple correlation scheme on
LarSID [27]. In this implementation, we correlated sus-
picious evidence based on the source IP address only.
This is representative of the proposed correlation scheme.
We measured the time required for subscription and
information correlation in comparison to a centralized
collaborative intrusion detection system (CIDS), based on
a deployment of LarSID on PlanetLab.

We measured the performance of our decentralized
architecture in comparison to a centralized CIDS, which
uses the same detection mechanism as the decentralized
architecture. The experimental results of the performance
of LarSID with the source IP based correlation scheme
were reported in [27]. The traffic used was from a
different attack scenarios, i.e., the scanning behavior of
sources during worm outbreaks. However, the underlying
correlation task is the same as the proposed algorithm,
and the results are indicative of the performance that can
be expected for large-scale source address correlation.
To summarize the results from [27], we found that the
average subscription delay on the decentralized version of
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LarSID was 16 to 10,000 times faster than the correspond-
ing delay on the centralized LarSID, where the speed-
up increased as the number of participants in LarSID
increased. This is because when more participants join the
collaborative framework, the increase in queuing delay on
the centralized server is far higher than the increase in the
routing delay on the decentralized CIDS.

VI. RELATED WORK

Our study is related to two main areas of research:
anti-phishing and collaborative intrusion detection. In
this section, we provide a brief review of the relevant
approaches and techniques in the literature.

A. Anti-phishing Approaches

Miyamoto et al. [17] proposed a filtering algorithm to
defeat phishing attacks. They protect novice users from
web phishing attacks by removing part of the content
that traps users into entering their personal information.
This approach is client-based webpage filtering, while our
approach is phishing website trace-back.

Liu et al. [13] proposed an approach for server op-
erators to automatically detect phishing webpages based
on visual similarity. This approach focuses on detecting
fraudulent sites by comparing the webpages, while our
approach is to identify the phishing website hosts by
correlating suspicious traffic patterns.

Due to their limited lifetime, phishing websites attempt
to gain the trust of their users and convince them to
act quickly. Drake et al. [5] discussed numerous tricks
employed by phishing email scammers, in order to under-
stand the psychological processes behind phishing attacks.
There are a variety of anti-phishing tools that have been
proposed to prevent users from disclosing their personal
information, such as Cloudmark Anti-Fraud Toolbar [3],
eBay Toolbar [6] and SpoofGuard [2]. However, based
on a recent study conducted by Zhang et al. [26], the
best tool among 10 popular anti-phishing tools tested can
achieve more than 90% detection rate, but with 42% false
positives. Furthermore, many users tend to ignore any
warnings provided by anti-phishing tools [21], [24].

McGrath et al. [15] examined the operational aspects
of phishing. ICANN [11] published an advisory which
indicated FF is increasingly used to host phishing attacks.
Moore et al. [18] examined the impact of phishing website
take-down, and found the average life time of phishing
domains was extended by using FF hosting. Holz et al. [9]
proposed a similar work on FF network detection and
measurement. They developed a metric for detecting FF
domains based on three parameters that are similar to
our detection characteristics. However, their approach and
evaluation are based on a single point of observation.
In contrast, our approach focuses on the collaboration
between multiple observation points.

B. Collaborative Intrusion Detection

Locasto et al. [14] proposed a fully distributed CIDS
based on a P2P architecture. Each participant uses an IDS

to monitor its subnetwork or hosts. A tool called Wormi-
nator is run on the participating hosts at specified intervals
to parse the alert output of the local IDS into the form
of a watchlist (a list of suspicious IP addresses). Next,
the encoded watchlists are distributed over a decentralized
P2P-style network among the participants.

The DOMINO project [19], [25] is a distributed CIDS
that aims to monitor Internet-scale outbreaks. The nodes
in DOMINO are connected using a P2P protocol, and
they participate in a periodic exchange of intrusion in-
formation. However, the DOMINO system has not been
evaluated in a large-scale deployment.

Dash et al. [4] proposed a collaborative system of host-
based IDSs, which use distributed probabilistic inference
to detect slow network intrusions. A gossip protocol is
used to communicate state between detection systems. A
global view of the current security status of the monitored
system is generated by analyzing local state information
using a probabilistic detector model.

VII. CONCLUSION

In conclusion, FF domains are extremely difficult to
detect in a timely and accurately manner, due to the use
of a screen of proxies to shield the FF mothership. We
present a theoretical model to analyze the FF detection
problem by quantifying the number of DNS queries
needed to retrieve a certain number of unique IP ad-
dresses. Our analytical model identifies an upper bound on
the expected time required to detect a sufficient number of
unique IP addresses to confirm a FF domain, and the the-
oretical speed-up for cooperation between multiple DNS
severs. We then propose two approaches to correlating
evidence from multiple DNS servers and from multiple
suspect FF domains to speed-up FF domain detection.
Our experimental results on real-world data show that
a substantial speed-up in the number of queries needed
for FF domain detection can be achieved. We finally
discuss the implementation of our proposed correlation
schemes in practice by using a decentralized correlation
architecture called LarSID, as experimental results have
shown that this decentralized correlation architecture is
more scalable than a fully centralized architecture.
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