
DSSS-Based Flow Marking Technique for Invisible Traceback ∗

Wei Yu†, Xinwen Fu‡, Steve Graham‡, Dong Xuan§, and Wei Zhao[

† Texas A&M University, College Station, TX 77843
weiyu@cs.tamu.edu

‡Dakota State University, Madison, SD 57042
{xinwen.fu,Steve.Graham}@dsu.edu

§The Ohio-State University, Columbus, OH 43210
xuan@cse.ohio-state.edu

[Rensselaer Polytechnic Institute, Troy, NY 12180
zhaow3@rpi.edu

Abstract

Law enforcement agencies need the ability to conduct
electronic surveillance to combat crime, terrorism, or other
malicious activities exploiting the Internet. However, the
proliferation of anonymous communication systems on the
Internet has posed significant challenges to providing such
traceback capability. In this paper, we develop a new class
of flow marking technique for invisible traceback based
on Direct Sequence Spread Spectrum (DSSS), utilizing a
Pseudo-Noise (PN) code. By interfering with a sender’s
traffic and marginally varying its rate, an investigator can
embed a secret spread spectrum signal into the sender’s
traffic. The embedded signal is carried along with the
traffic from the sender to the receiver, so the investigator
can recognize the corresponding communication relation-
ship, tracing the messages despite the use of anonymous
networks. The secret PN code makes it difficult for oth-
ers to detect the presence of such embedded signals, so the
traceback, while available to investigators is, effectively in-
visible. We demonstrate a practical flow marking system
which requires no training, and can achieve both high de-
tection and low false positive rates. Using a combination of
analytical modeling, simulations, and experiments on Tor
(a popular Internet anonymous communication system), we
demonstrate the effectiveness of the DSSS-based flow mark-

∗This work was partially sponsored by South Dakota Governor Indi-
vidual Research Seed Grant Program, and the Project of The South Dakota
Electronic Health Record Assessment (SDEHRA) from South Dakota De-
partment of Health. Any opinions, findings, conclusions, and/or recom-
mendations expressed in this material, either expressed or implied, are
those of the authors and do not necessarily reflect the views of the sponsors
listed above. The authors would like to acknowledge Ms. Larisa Archer
for her dedicated help to improve the paper and Dr. Tom Halverson for his
support of this project.

ing technique.

1 Introduction

In order to conduct lawful surveillance, law enforcement
agencies need the ability to trace Internet communications
among those suspected of criminal or terrorist activities.
Traditionally, the source and destination IP addresses in
an IP header have allowed investigators to trace commu-
nication sessions and determine corresponding participants,
timing, frequency, and quantity. However, the proliferation
of anonymous communication systems [1, 2, 3, 4] on the
Internet has posed significant challenges to effectively trac-
ing communications. For example, web file downloading
can be disguised using anonymous communication systems
such as Tor [4, 5], preventing detection of illegal use in
cases, such as child pornography [5]. Terrorists or criminals
might use anonymous communication systems to exchange
information and develop plots, without being detected.

To preserve the capacity of tracing Internet communica-
tions despite anonymous channels, we must use traffic char-
acteristics other than easily modified IP header information.
For this purpose, we may use flow marking, introduced in
[6]. To determine whether a sender is communicating with
a receiver, an investigator, known as the interferer, can em-
bed a series of marks (signals with a specific pattern) into
the sender’s traffic by interfering with the sender’s outbound
messages. Another investigator, known as the sniffer, eaves-
drops on the receiver’s inbound traffic. If a similar pattern
of embedded marks is found in the receiver’s traffic, the in-
vestigators know that the sender is communicating with the
receiver. By tracing the marks, investigators may construct
the full communication path.

There are two requirements for successfully tracing
anonymous communications: accuracy of the traceback and
invisibility of the traceback. While accuracy has received
much attention, invisibility has been largely ignored, al-
though it is also a vital requirement. When traceback at-
tempts are identified, the correspondents will simply stop
their communications, evading further detection. The cor-
respondents may even develop countermeasures to fool or
mislead investigators (e.g., by abusing some targets and
feigning communications). To the best of our knowledge,
existing techniques have failed to meet both these require-
ments simultaneously [6, 7]. For example, marks in a pe-
riodic pattern such as [6] are easy to introduce, since an
investigator may just interfere with a target traffic flow pe-
riodically. However, a periodic pattern of marks may result
in a high false positive rate, since such traffic markings may
introduce a similar periodic pattern into other traffic sharing
a link. Furthermore, when a Fourier Transform is applied to
a traffic flow containing a periodic pattern, the periodic pat-
tern emerges as obvious in the frequency domain to inves-
tigators as well as the correspondents, who may take some
countermeasures to defeat this approach. Hence, a success-
ful flow marking must effectively trace the communications
while remaining undetectable by anyone other than investi-
gators.

In this paper, we develop a novel class of flow marking
technique for invisible traceback based on Direct Sequence
Spread Spectrum (DSSS). In this technique, the investigator
introduces invisible DSSS marks into a target traffic flow.
The marks correspond to a signal modulated by a Pseudo-
noise (PN) code, known only to the investigators. Only
those knowing the code can correctly recover the original
signal and identify the communication relationship. The PN
code modulated signal will appear as innocent noise in both
the time and frequency domains, so it is difficult for others
to detect the presence of such signals in the target traffic1.
Therefore, using a DSSS-based technique, we are able to
trace anonymous communication while evading detection.

We develop a new DSSS mark generator that embeds a
secret spread signal using a secret PN code into a target
flow at the transmitter. To recover the signal at the receiver,
we use digital filters to remove direct current components,
which correspond to network traffic seasonal variations, and
high frequency noise from target traffic flow, so we can ef-
fectively recover the DSSS marks. Our DSSS-based tech-
nique has a simple and effective decision rule, compared
with other threshold-based techniques that normally require
lengthy and impractical training processes [8, 9]. Using a
model, we derive formulas for detection and false positive
rates for our traceback technique. We discuss how to de-

1Because of this property, the correspondents cannot use the approach
in [6], which relies on identifying periodic patterns in traffic, to remove
embedded signals discussed in this paper.

termine various parameters such as an appropriate PN code
length. We also address practical issues such as PN code
synchronization and tracing multiple traffic flows simulta-
neously.

Besides theoretical analysis, we have also conducted ex-
tensive evaluations to our proposed approach using simu-
lations and real-world experiments. We use ns-2 simula-
tions to explore the effectiveness of our DSSS-based tech-
nique. We show that even with low signal to noise ra-
tios, our technique is robust and able to correlate sender
and receiver communication relationships at a probability
of 100%, when the PN code length is reasonable large. We
show that the false positive rate is also significantly sup-
pressed. Our data show that the DSSS-based technique is
capable of effectively invisible traceback, since there is no
clear difference between the traffic with marks and the traf-
fic without marks in either the time domain or the frequency
domain. We show that our technique is effective for tracing
multiple traffic flows simultaneously, using different low
cross-correlated PN codes. We also show that when anony-
mous communications systems (mixes) adopt sophisticated
batching strategies, our technique can still achieve a high
detection rate.

We developed a suite tools and performed a set of real-
world Internet experiments on communications using Tor, a
popular anonymous communication network for transport-
ing TCP streams over the Internet. Our data validate the
theoretical and simulation findings and demonstrate that our
DSSS-based technique can invisibly track anonymous traf-
fic flows using Tor, even when such flows exhibit wild dy-
namics. To the best of our knowledge, there are few other
efforts applying DSSS techniques for tracing communica-
tions.

The rest of the paper is organized as follows. We in-
troduce mix networks, DSSS-based techniques, and flow
marking in Section 2. We present the detailed design of the
DSSS-based flow marking technique in Section 3. In Sec-
tion 4, we conduct the theoretical analysis of detection and
false positive rates, and discuss how to determine parame-
ters. In Section 5, we use ns simulations to demonstrate the
effectiveness of DSSS-based flow marking for traceback. In
Section 6, we present our experiments using Tor, which val-
idate our findings. We review related work in Section 7. We
conclude this paper in Section 8.

2 Background

In this section, we first give an overview of mix networks,
and then introduce the basic Direct Sequence Spread Spec-
trum (DSSS) technique followed by basics of flow marking.

2.1 Mix Network

Mix networks have been used by popular anonymous
communication systems such as Tor. In a mix network,
senders route their packets through a series of mixes. A
mix manipulates packet delivery by batching, reordering,
and forwarding the packets in order to prevent traffic anal-
ysis from correlating input packet and output packets, and
degrading anonymity. Tor does not use batching and re-
ordering because of quality of service concerns.

Work in [10] provides a relatively complete list of batch-
ing strategies for mix networks. These strategies can be ap-
plied by mix networks for message-level (packet-level) ap-
plications such as remailer [11]. But not all of them are ap-
propriate for mix networks used for flow-based anonymity
applications. For example, in a threshold mix, a mix can
transmit the batch of packets only if the number of collected
packets exceeds a pre-defined threshold. This may cause
serious problems for TCP traffic flows. For example, if the
first (SYN) packet cannot be exchanged between a sender
and receiver, the TCP flow cannot start and communication
through the mix network fails. We use three batching strate-
gies for mix networks and flow-based applications in Table
1 [6].

2.2 Direct Sequence Spread Spectrum
Technique

Spread spectrum (SS) is a transmission technique in
which a pseudo-noise (PN) code, independent of the orig-
inal data signal, is employed to “spread” the signal over a
bandwidth greater than the original data signal bandwidth.
At the receiver, the signal is “despread” using a synchro-
nized copy of the PN code. Spread spectrum techniques
are often used in code division multiple access (CDMA)
systems. There are three classes of spread spectrum tech-
niques: direct sequence spread spectrum (DSSS), frequency
hop spread spectrum (FHSS), and time hop spread spectrum
(THSS) [12]. Any of these techniques could be applied in
our approach. In this paper, we adopt DSSS because of its
easy implementation and wide application [12]. The DSSS
technology was initially used in military communication
systems to provide anti-jamming and secured communica-
tion [13]. In wireless communication, DSSS technology has
been widely used to improve the communication efficiency
[14]. In addition, DSSS technology has other broad appli-
cations [15, 16, 17].

Figure 1 shows the basic principle of DSSS. The original
signal dt at the transmitter is a series of binary symbols (here
we use bits encoded as +1 or−1 instead of 1 or 0), although
the signal could be encoded by other schemes such as QPSK
(Quadrature Phase Shift Keying) [18]. The symbol duration
for both symbol +1 and −1 is Ts seconds, so the symbol

rate Rs = 1/Ts. A PN code ct of +1 and −1 is generated
at the transmitter and shared between the receiver. Each
bit (denoted as chip) in the PN code lasts for Tc seconds (
denoted as chip duration), so the chip rate is Rc = 1/Tc. Nc
is the number of chips per symbol and is also called as the
PN code length. These concepts are illustrated in Figure 2.

Despreading

Spreading

PN
Code

Original
Signal

 tb

ct

dt

PN
Code

cr

Recovered
Signal

channel

Transmitter

Receiver
 rb

dr

Figure 1. Spreading and Despreading in
DSSS

+1

-1
dt

ct
+1

-1

Tc (chip)

t

t

NcTc

 1 1 1 -1 1 -1 -1

Ts (symbol)

Figure 2. Concepts in DSSS

Now we discuss the spreading process at the transmitter.
Without loss of generality, we discuss using a PN code to
spread an original signal dt of one bit, +1 or −1. dt is di-
rectly multiplied with the PN code ct , which is independent
of the signal, to produce the transmitted signal tb = dtct ,
where ct is a 1×Nc vector with elements corresponding to
the chip values, either +1 or−1 drawn from the PN code at
the transmitter.

The transmitted signal tb passes through the communi-
cation channel and reaches the receiver. If there is no in-
terference along the channel, the received baseband signal
rb = tb = dtct . To recover the original signal from rb, rb
is multiplied with a 1×Nc subsequence from the PN code
called cr at the receiver. We have the recovered signal

dr = ∑(rb · cr)
Nc

= dt
∑(ct · cr)

Nc
, (1)

where the operator of · refers to direct multiplication of vec-
tors and the operator of ∑ adds up all the elements of a vec-
tor. There are two cases here:

Table 1. Batching Strategies
Strategy Name Adjustable Algorithm

Index Parameters
S0 Simple Proxy none No batching (or reordering).
S1 Timed Mix < t > If timer with period t expires, send all the packets queued in the last

interval.
S2 Stop-and-go (SG)

Mix (or Continuous
Mix)

< µ,σ2 > Each packet is assigned a delay (deadline) satisfying a distribution
with mean µ and variance σ2. A packet is sent out when its deadline
is reached.

1. cr = ct : If the PN code at the receiver is synchro-
nized to the PN code at the transmitter, ct · cr = 1,
where 1 refers to a 1×Nc vector with all elements
equal to 1. The original signal dt can be recovered by
dr = dt

∑(ct ·cr)
Nc

= dt
Nc
Nc

= dt .

2. cr 6= ct : If the receiver does not have the right PN code,
∑(ct · cr)/Nc 6= 1 and dr 6= dt . So a receiver without the
PN code cannot reproduce the original signal dt .

2.3 Flow Marking

Flow marking is a general technique for tracing Internet
communications despite anonymous channels [6]. Figure 3
illustrates the basic idea of flow marking. Alice is commu-
nicating with Bob through a mix network. To determine if
Alice is communicating with Bob, an interferer can embed
a pattern of marks into Alice’s messages by interfering with
her outbound traffic. A sniffer eavesdrops on Bob’s inbound
traffic. If a similar pattern of marks is discovered in Bob’s
traffic, the sniffer knows that Alice is communicating with
Bob. By tracing marks link-by-link, we can reconstruct the
path between Alice and Bob.

In this paper, we explore the dynamics of flows (caused
by flow-control) and interfere with the flows, marking them
for traceback. We focus on TCP flows for our DSSS-based
flow marking technique because of TCP’s dominant role in
Internet traffic, e.g., TCP flows constitute 60% ∼ 90% of
the Internet traffic [19, 20].

3 DSSS-Based Flow Marking Technique

In this section, we investigate how to apply DSSS to
mark traffic flows of interest. Since a new category of mod-
ulation and demodulation for flow marking context is in-
troduced, we need to develop a new mark generation and
recognition processes. We introduce the process of DSSS-
based flow marking, and then we present the detailed design
of key components followed by some extension.

3.1 Workflow

Generally speaking, there are two important modules
(mark generation and recognition) in the DSSS-based flow
marking system. Figure 4 describes the basic processes of
these two modules.

Mark generation module at the transmitter:
1. An original signal dt of “+1” or “-1” is to be trans-

mitted (to transmit n-bits of signal, just repeat the following
steps). Similar to the process in Figure 1, we obtain the
transmitted baseband signal tb as

tb = dtct , (2)

where ct is a PN code with chip duration Tc.
2. tb is then used to modulate a target traffic flow. When

a chip is +1, weak interference is applied against the flow
so that the flow has a high rate for Tc seconds. When a chip
is −1, strong interference is applied against the flow so that
the flow has a low rate for Tc seconds. If we assume that
the flow has an average traffic rate of D, then the high rate
is D + A and the low rate is D−A, where A is denoted as
mark amplitude. The rate of the target traffic flow should be
large enough for investigators to introduce the marks by in-
terference without obvious effects on the target traffic flow.
Therefore, the transmitted signal tx can be represented by,

tx = Adtct +D. (3)

3. The modulated flow is carried through the Internet,
where there exists noise created by cross traffic and inten-
tional interference. We treat all noise as an aggregated fac-
tor.

Mark recognition module at the receiver:
1. Denote noise as a random variable w. We can formu-

late the received signal rx as

rx = Adtct +D+w. (4)

The sniffer in Figure 3 derives rx by capturing the traffic at
the receiver, then dividing it into segments. Each segment

Interferer Sniffer

Bob Alice

Network

Figure 3. Flow Marking

 (a) (b)

PN
Code

Original Signal dt

Flow
Modulator

Internet

rx = spread signal + noise

tb

ct

tx

Transmitter

Receiver

PN
Code

Decision
Rule

rx = spread signal + noise

High-pass
Filter

Low-pass
Filter

rx’

rb

cr

Figure 4. Mark Generation and Recognition Mod-
ules

lasts for a chip duration of Tc seconds, and the average traf-
fic rate of each segment can then be calculated. Average
rates for Nc continuous segments constitute rx. Recall that
all items in (4) are 1×Nc vectors and Nc is the PN code
length per symbol and the number of chips for 1-bit of the
original signal.

2. A high-pass filter is applied against the received signal
rx in order to remove the direct current component D from
the received signal. Then the filtered received signal rx′ can
be represented (roughly) by,

rx′ ≈ Adtct +w. (5)

3. A locally generated PN code cr, the same as the code
at the transmitter, is used to despread the filtered received
signal rx′ to derive the received baseband signal rb,

rb = Adtct · cr +w · cr. (6)

4. A low-pass filter is used to filter out high frequency
noise. We then use a decision rule to classify the received
signal as +1 or −1 of length n.

3.2 Key Components

We have presented the process of the DSSS-based flow
marking system. In the following, we will present our de-
tailed design of key components such as DSSS marks, fil-
ters, and decision rule.

3.2.1. DSSS Marks. As we mentioned in Section 1, invisi-
bility (the difficulty of detecting the tracing by anyone other
than investigators) is one important goal we want to achieve
with our technique. Here we develop details of using DSSS
marks. The major advantage of DSSS marks is that they
are invisible without knowledge of the PN code. Since the
sender and receiver don’t know the PN code, it is very dif-
ficult for them to recognize the existence of marks embed-
ded in their traffic flow. Only investigators introducing and
recovering the DSSS marks (interferer and sniffer) can rec-
ognize them. In addition, a good PN code and the corre-
sponding modulated signal appear random for anyone who
doesn’t know the code2. The spectrum of the modulated
signal in the frequency domain resembles random noise. In
general, the longer the code length, the harder it is to detect.

A carefully chosen mark amplitude A in (3) can be very
small so that the transmitted signal tx is covered by the noise
w in the received signal rx. The recognition process will ef-
fectively restore the spread signal to its narrow band and
recover the original signal dt from the noise (even though
the mark amplitude is small). Other parameters such as PN
code length Nc, original signal length n, and chip duration Ts
impact how well flow marking can be performed. Detailed
analysis of the impact and determination of these parame-
ters is further addressed in Section 4.

There are mature PN code generators such as m-
sequences code, Barker code, gold codes and Hadamard-
Walsh codes [18, 21] that we may adopt. In this paper, we
use the m-sequence code, which has the best autocorrelation
(it only highly correlates to itself with a sharp autocorrela-
tion peak) [18]. The improved autocorrelation makes it eas-
ier for the sniffer to accurately synchronize and recognize
the pattern embedded in the marked flow. The source code
for generating the m-sequence code is available at [22].

In addition, in order to embed marks into traffic such
as TCP flows, an interferer may exploit the dynamics of
flow-control and use efficient denial-of-service approaches
to modulate the signal [23].

3.2.2. Digital Filters. Since the target traffic flow of inter-
est with embedded spread signal is carried through the In-
ternet, where there exists noise created by cross traffic and
intentional interference, the ability to effectively recognize
marks in the presence of noise is a critical issue for DSSS-

2The original signal is also designed to appear random in order to main-
tain the invisibility of the traceback.

based flow marking. To address this issue, we develop dig-
ital filters (a high-pass filter followed by a low-pass filter)
to process the received signal rx and recover the original
signal dt .

As shown in Section 3.1, the high-pass filter is used to
remove the direct current component D of the received sig-
nal in (4). Therefore it decouples the embedded marks and
the target traffic flow. After despreading the output of the
high-pass filter, the low-pass filter is applied to remove in-
terference of high frequency noise. With these procedures,
the original signal dt can be effectively recovered.

3.2.3. Decision Rule. Since the digital filters can effec-
tively recover the original signal dt from the target traffic
flow, this also leads to a simple and effective decision rule
without the training process. We obtain the decision rule
based on results presented in Theorem 1. The detailed proof
of this Theorem is available in Appendix A of [24].

Theorem 1 Denote rx+1 as the result of ∑rb/Nc when the
original signal dt is +1 and rx−1 as the result of ∑rb/Nc
when the original signal dt is −1. When the received signal
passes the low-pass filter, we have

rx+1 = ∑rb|dt=+1/Nc = A(1−1/N2
c), (7)

rx−1 = ∑rb|dt=−1/Nc =−A(1−1/N2
c), (8)

rx+1 = −rx−1, (9)

where A is the mark amplitude and Nc is the PN code length.

Since 1/N2
c < 1, rx+1 > 0 and rx−1 < 0. As we men-

tioned, the low-pass filter is used to remove high frequency
noise, since the signal bandwidth is [−Rs,Rs], where Rs =
1/Ts. Given this result, it is easy to derive a decision rule as

dr =
{

+1 ,∑rb/Nc ≥ 0
−1 ,∑rb/Nc < 0.

(10)

From (10), we can see that the decision rule used to rec-
ognize an original signal dt at the receiver is very simple and
it does not need any tedious or impractical training. This
simple decision rule is an advantage of our technique com-
pared with many existing approaches [8, 9].

3.3 Extension

3.3.1. Synchronization of DSSS Marks. For proper oper-
ation in recognizing the original signal dt , the DSSS-based
flow marking requires that the locally generated PN code
cr at the receiver be synchronized with the PN code ct at
the transmitter in both frequency and time. Synchronizing
the frequency is easy, since the interferer and sniffer can
share the same values of parameters such as the chip du-
ration Tc and code length Nc. Here we focus on the time

∆t

ct

cr
t

t

Figure 5. Misaligned cr against ct

flow 1 + flow 3

flow 2 flow 1’ + flow 2’

flow 3’

Mix

Input
link 1

Input
link 2

Output
link 1

Output
link 2

Figure 6. Tracing Multiple Flows Simultane-
ously

synchronization. Although a PN code has a sharp peak in
its autocorrelation function, a misalignment of cr against ct
may not recover the original signal. In our case, this mis-
alignment comes from the uncertainty of propagation delay
between the transmitter and receiver over the Internet. Fig-
ure 5 shows a misaligned cr against ct , i.e, the PN code
generated at the transmitter and the one at the receiver have
phase difference 4t.

To address this problem, we develop a matched filter
based approach for PN code synchronization. A matched
filter calculates the correlation function of the filtered re-
ceived signal rx′ in (5) and the locally generated PN code cr
at a sample interval Ts. This can be performed on-line and
gives the shortest acquisition time. In our case, the signal
detection process has only soft real time requirements. We
can dump the traffic first and then conduct the signal recov-
ery via high performance computers. In this way, in order
to have an accurate synchronization between the sender’s
PN code and the receiver’s PN code, we need to use an ap-
propriately small sample interval. Here, the matched fil-
ter based approach uses a sliding window iteratively mov-
ing back and forth, therefore capturing a segment of traf-
fic data for the best signal match. As such, we can deter-
mine whether the expected signal exists in the segment of
dumped traffic.

3.3.2. Tracing Multiple Flows. In order to achieve effi-
cient traceback, it is better if we can trace multiple flows in
parallel. However, the different flows may go through the
same mix and interfere with each other. As shown in Figure

6, there are three flows (flow 1, flow 2 and flow 3) entering a
mix. The flow 1 and flow 2 are integrated in the output link
2 of the mix.

To address this problem, we assign different PN codes to
different target traffic flows of interest. Since the generated
PN codes are of low cross-correlation, this makes the flows,
embedded with signals modulated by different PN codes,
cause little interference to each other. Thus, it is feasible
that DSSS-based flow marking technique can trace multiple
flows in parallel. Using Figure 6 as an example, we can use
PN code one, ct,1, to mark the flow 1 on input link 1 and PN
code two, ct,2, to mark the flow 2 on input link 2. On output
link 2, a sniffer using copies of these two PN codes, can
apply the same techniques discussed previously to identify
each flow. The detailed analysis of tracing multiple flows is
shown in Appendix B of [24].

4 Analysis

We have presented the DSSS-based flow marking tech-
nique. In this section, we study the effectiveness of DSSS-
based flow marking and derive formulas for detection rate
and false positive rate of DSSS-based flow marking. Based
on these results, we also discuss how to determine important
parameters such as PN code length Nc.

4.1 Robustness in the Presence of Noise

Internet traffic introduces noise, interfering with the
spread signal tb embedded in the target traffic flow. Now
we investigate how noise influences the recovery of a 1-bit
original signal. The results are presented in Lemma 1. The
detailed proof of this Lemma is available in Appendix C of
[24].

Lemma 1 Assume that the noise is a Gaussian white noise
(WGN) process with distribution N(0,σ2

w). Detection rate
PD is defined as the probability that a 1-bit original signal
is correctly recognized. We have

PD = 1− 1
2

er f c(
√

ε), (11)

where er f c(.) is the complementary error function (mono-

tonically decreases with ε), er f c(z) = 2√
π

∞∫
z

e−t2
dt, and ε is

represented in (12)

ε =
(N2

c −1)2

2N3
c

A2

σ2
w
. (12)

In engineering, the term of A2/σ2
w in (12) is denoted as

signal to noise ratio (SNR), which quantifies the marking
interference strength over the noise.

Given PD as the detection rate of the 1-bit original signal
in Lemma 1, we have the following theorem for the detec-
tion rate of an n-bit original signal dt .

Theorem 2 Detection rate PD,n for detecting an n-bit orig-
inal signal dt is

PD,n = Pn
D. (13)

We have the following observations from Lemma 1 and
Theorem 2: Detection rate PD,n increases with SNR. In the
context of communication surveillance, we cannot have a
large SNR, which would make the marking pattern promi-
nent in the marked traffic flow and raise suspicions of trace-
back attempts. Detection rate PD,n of n-bit original signal dt
also increases with the increasing PN code length Nc. This
helps us to achieve a decent detection rate with a small SNR.

4.2 False Positives in the Case of Zero Sig-
nals

We have discussed how to detect an original signal un-
der the assumption that there are spread signals embedded
into a target traffic flow (sender and receiver are communi-
cating). In the case that there is no spread signal embedded
into the target traffic flow (sender and receiver are actually
not communicating), there is the possibility that the deci-
sion rule (10) makes a wrong decision (false positive).

As shown in Corollary 1, the classifier (10) has equal
probability of producing a “1” or “-1” when there is no
spread signal embedded in the target traffic. The detailed
proof of this Corollary is available in Appendix D of [24].

Corollary 1 Detection rate PD and error rate Pe (probabil-
ity for mistakenly recognizing the signal that does not exist)
for 1-bit original signal approach 50% when signal noise
ratio SNR approaches 0 (the case that there is no signal).

Then the false positive rate PF,n for recognizing n-bit
original signal will be

PF,n =
1
2n . (14)

As we can see, we will have lower false positive rates, as
the original signal length n gets longer. In reality, investiga-
tors know when a signal is embedded into the target traffic
flow. So the embedded signal should appear within a very
narrow interval at the receiver. In this way, the actual false
positive rate is reduced and roughly equal to that in (14).

4.3 Suppressing False Positives Caused by
Cross Flows

When the target traffic flow of interest is interfered with
embed the spread signal, cross traffic will also be influenced

when it shares some link with the target traffic flow. This
will cause possible false positives such that the sniffer incor-
rectly identifies the communication (e.g., in case of Alice
actually communicating with Bob, the investigators mistak-
enly determine that Alice is also communicating with John).

However, our DSSS-based technique can effectively sup-
press this kind of false positive. Basically, when the tar-
get traffic flow rate decreases, the cross traffic flow rate in-
creases. When the target traffic flow rate increases, the cross
traffic flow rate decreases. That is, in an ideal case, a spread
signal txc = −tx is embedded into the cross traffic flows.
By using a derivation similar to Theorem 1, we can have
the despread signal for a cross traffic flow as

rb =−dt(1−1/N2
c). (15)

Therefore, after despreading, we have

rx+1 = −A(1−1/N2
c), (16)

rx−1 = A(1−1/N2
c). (17)

As we can see, the recovered signal is simply the inverse
of the original signal embedded into the target traffic flow.
Since the recovered signal does not match the original sig-
nal, false positive caused by cross flows can be effectively
suppressed. As we mentioned, other approaches have a
problem with high false positive rate caused by cross flows
[6].

4.4 Determination of DSSS-Based Flow
Marking Parameters

We can use above analytical results to determine DSSS-
based flow marking parameters. We give the detail of pa-
rameter determination as follows. 1) Original Signal Length
n: Given the false positive rate PF,n in (14), we can deter-
mine the original signal length n. For example, given the
false positive rate of 1.5% (or 0.7%), we can use the orig-
inal signal of length 6 (or 7). 2) Mark Amplitude A: From
Lemma 1 and Theorem 2, we can see that a bigger SNR
renders a high detection rate. However, since an invisible
mark is desired, the mark amplitude A should be chosen as
small as possible so that the marks can be covered by noise
and dynamics of traffic flow. 3) Code Length Nc: Given
the detection rate PD,n, original signal length n and mark
amplitude A, we can further determine the code length Nc
by resolving (11) and (13). 4) Chip duration Tc: In prac-
tice, the duration of a traffic flow may be limited. To embed
enough marks into the target traffic flow, the chip duration
should be as small as possible. As the mark is introduced
by interference, it takes time for the interference to take ef-
fect (e.g., it takes time for flow-control to react [23]). A too
small Tc may not provide enough time for the traffic flow to
reach a necessary traffic rate given the intensity of interfer-
ence. The choice of chip duration Tc has a direct impact on

mark amplitude, and thus SNR. The simulations in Section
5 and experiments on Tor in Section 6 will further validate
these findings.

5 Evaluation by Simulations

We have systematically developed the DSSS-based flow
marking technique for traceback in previous sections. In
this section, we use ns-2 simulations to investigate the ef-
fectiveness of this technique. We use TCP traffic as the ex-
ample because of TCP’s dominant role in Internet traffic.

5.1 Simulation Setup

Figure 7 gives the simulation topology. We conduct two
types of simulations: 1) tracing a single target flow and 2)
tracing multiple flows in parallel. Except where it is ex-
plicitly stated, we focus on the single target flow case in
our discussion. In Figure 7, n5 and n7 are mixes, which
may use batching schemes, illustrated in Table 1. The tar-
get FTP flow runs from node n0 to node n8 throughout the
simulations. There are also cross FTP flows as noise for the
duration of each simulation. In our simulation, the inter-
ferer uses UDP constant bit rate (CBR) traffic to modulate
the target FTP flow. The CBR traffic runs from n1 to n4 and
is an on-off traffic source sharing the link between n2 and n3
with the target FTP flow. As we know from the TCP flow-
control, when the CBR traffic rate increases, the FTP traffic
rate decreases while when the CBR traffic rate decreases
(e.g., no CBR traffic), the FTP traffic rate increases.

n0

n1

n2 n5

n4

n3

n8

n7

n9 n6

10M

10M
10M 2M

10M

10M

2M 2M 2M Mix Mix

n11

n13 n12

n10

10M 10M

2M

10M

n14 n15

1M 1M

Figure 7. Topology in ns-2 Simulations

In our simulation, the CBR traffic is turned off when a
chip within a signal modulated by the PN code is +1 and
it is turned on when the chip is −1. The on-interval and
off-interval are equal to the chip duration. In this way, we
mark the target FTP flow by adjusting its rate through the
interference of the CBR traffic. To use the DSSS technique
and recover the original signal, we have to obtain a time
series of the FTP flow rate. We use a sample interval of

0.1s (the sampling rate is 10Hz). In order to recover the
spread signal, the sampling period should be less than half
of the chip duration based on the Nyquist sampling theory
[25]. In other words, our sample interval of 0.1s is suitable
for a chip duration greater than or equal to 0.2s. We can
increase the sampling rate to increase the quality of the re-
covered signal. This also increases the accuracy of PN code
synchronization.

In practice, we cannot accurately predict the delay be-
tween a sender and receiver, because of the complexity and
dynamics of the Internet. In our simulations, in order to
synchronize the PN code at the receiver with that of the
sender, we use a coarse estimation of the delay, which is
roughly equal to the cumulative propagation and queueing
delay of the flow path. Then, we use the matched filter
based approach discussed in Section 3.3.1 to search for the
best match within a certain search range. We set that range
as [−0.5s,0.5s] in our simulation cases.

5.2 Mix Implementation in ns-2

We have implemented mix batching techniques as in Ta-
ble 1 in ns-2. A mix is implemented as an ns-2 node that
is placed between sender and receiver nodes. Packets enter-
ing a mix can be batched and reordered based on the mix
type: MixBoxSG (continuous-time/stop-and-go mix) and
MixBoxT (timed mix). A simple mix proxy behaves like
a general router, except that all packets passing through it
have the same size.

Node/MixBoxSG consists of a Classifier/MixBoxSG
that sits in front of the default classifier, which first de-
lays and reorders packets, and then sends packets. When
a packet arrives at the mix, a deadline is generated for the
packet. Packets are buffered and sorted so that the packet
with the earliest deadline is stored at the beginning of the
buffer. A timer event is generated for the first packet in the
buffer. If a new packet’s deadline is earlier than the dead-
line of the first packet already in the buffer, we cancel the
current timer event and schedule a new event for the new
packet. When a packet is sent, Classifier/MixBoxSG passes
the packet on to the default classifier.

Node/MixBoxT also consists of a Classifier/MixBoxT
that sits in front of the default classifier, delays and re-
orders packets, and sends packets in batches at fixed in-
tervals. Packets are stored in a buffer. The packet buffer
is implemented as a multi-map, in which the key is a gen-
erated value from a uniform distribution. A timer expires
periodically, flushing out packets from the buffer. When a
packet is sent, Classifier/MixBoxT passes the packet on to
the default classifier.

5.3 Effectiveness of DSSS-Based Flow
Marking

For the following experiments, unless it is explicitly
stated, the detection rate refers to the probability that an
n-bit signal is correctly recognized, as we analyzed in Sec-
tion 4. Figure 8 shows the detection rate of a 7-bit signal,
{ 1 -1 1 1 -1 1 -1} in terms of the code length for different
CBR interference rates. In this set of simulations, the chip
duration is fixed at 0.4 seconds.

From Figure 8, we make the following observations. The
DSSS-based flow marking technique can correlate a sender
and receiver at a probability of 100% for all CBR traffic
rates when the PN code length is reasonably large. For ex-
ample, when the CBR traffic rate is 1.118Mbps, a 15-chip
PN code achieves the detection rate of 100%. This validates
the effectiveness of the DSSS flow marking technique. As
predicted in Lemma 1 and Theorem 2, the detection rate
increases with the PN code length.

Figure 9 shows the detection rate in terms of the CBR
traffic rate when the PN code length is 7. We can see that
when the CBR traffic rate increases, the detection rate also
increases. This is because when a CBR traffic with a higher
rate is on, the FTP flow gets a smaller share of the link band-
width from n2 to n3. This increases the mark amplitude A
in (12), and yields a greater SNR. The greater SNR leads to
a better detection rate.

Figure 10 shows the detection rate in terms of the chip
duration. We can see that when the CBR traffic rate is either
1.116Mbps or 1.118Mbps, the detection rate increases with
the increasing chip duration until it reaches 100%. Again,
this comes from TCP’s flow-control dynamics. When the
CBR traffic is turned on, it takes time for the FTP flow to
reach its lowest rate. When the CBR traffic is turned off,
it also takes time for the FTP flow to return to its previous
rate. So, a longer chip duration increases the mark ampli-
tude A in (12), and yields a greater SNR, and a better de-
tection rate. A longer chip duration also reduces the error
introduced by PN code synchronization, again contributing
to a better detection rate.

5.4 Invisibility of DSSS-Based Flow
Marking

Invisibility (the difficulty of detecting the tracing by any-
one other than investigators) is another goal we hope to
achieve with our technique. To demonstrate this capability,
Figure 11 shows the average rate for FTP traffic with marks
and without marks and the corresponding frequency domain
spectrum of such traffic3. Figure 12 shows the Probabil-
ity Density Function (PDF) of traffic rates with marks and

3We obtain the FFT of the traffic rate time series and then derive its
power spectrum.

10
1

10
2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

PN Code Length

D
et

ec
tio

n
R

at
e

(P
D

,7
)

1.115Mbps
1.116Mbps
1.117Mbps
1.118Mbps
1.120Mbps

Figure 8. Detection Rate v.s. PN Code Length

1.115 1.116 1.117 1.118 1.119 1.12
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Inteference Traffic Rate

D
et

ec
tio

n
R

at
e

(P
D

, 7
)

(N
c
=7)

Figure 9. Detection Rate v.s. Interference Traffic
Rate

without marks in both time and frequency domains. The
CBR traffic has a rate of 1.116Mbps, the PN code length is
7, the signal length is 7 and the chip duration is 0.4 seconds.
Recall that we sample the traffic at 0.1 seconds, that is, we
divide the traffic into segments, with each lasting for 0.1
seconds, after which the average rate for each segment is
calculated. It can be observed that in the time domain, there
is no clear difference between traffic with marks and traf-
fic without marks. We also observe that there is no apparent
difference between the power spectrum of traffic with marks
and without marks.

5.5 False Positive Rate

Figure 13 shows the false positive rate when we try to
recognize a signal from traffic where no marks exist (sender
and receiver are not communicating). In our simulation, we
vary signal length from 1 to 7, and for each fixed signal
length we measure the false positive rates for codes of dif-
ferent lengths (from 2 to 7). The false positive rate for each
signal length is calculated as the average of the “detection
rate” for the different code lengths tested with that signal.
From Figure 13, we can see that the false positive rate de-
creases exponentially with the increasing signal length. The

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Chip Duration (seconds)

D
et

ec
tio

n
R

at
e

(P
D

, 7
)

1.116Mbps
1.118Mbps

Figure 10. Detection Rate v.s. Chip Duration

10 20 30 40 50 60
0.5

0.6

0.7

0.8

0.9

1

Time (second)

Av
er

ag
e

Tr
af

fic
 R

at
e

0 1 2 3 4 5
10

−10

10
−5

10
0

10
5

Frequency (Hz)

Po
w

er
 S

pe
ct

ru
m

No Mark
With Mark

No Mark
With Mark

1.116M−0.4S

Figure 11. Overlapping Traffic Rate Curves

theoretical curve (from Section 4.3) matches the empirical
curve very well.

5.6 Flow Marking against Mixes with Dif-
ferent Mix Strategies

Figure 14 shows the detection rate in terms of CBR inter-
ference traffic rate for mixes with different batching strate-
gies. We use node n5 and n7 as mix nodes in Figure 7. The
average delay of packets for timed mixes and continuous-
time mixes are set at 5 ms.

We make the following observations from Figure 14.
In the presence of batching strategies in the mix network,
the DSSS-based flow marking can still achieve a detection
rate of 100%. This demonstrates the effectiveness of the
DSSS-based flow marking against anonymous communica-
tion systems with sophisticated strategies. Different mix
strategies have different impact on the detection rate. A
large interference traffic rate is needed to achieve a good
detection rate for the continuous-time mix. This is because
the continuous-time (stop-and-go) mix’s reordering strategy
is very aggressive. It reduces TCP throughput significantly.
So we have to increase the interference traffic rate in order
to interfere with the FTP traffic to preserve delectability.

0.75 0.8 0.85 0.9 0.95 1 1.05 1.1
0

5

10

15

20

Average Traffic Rate

D
en

si
ty

No Mark
With Mark

−200 −100 0 100 200 300 400 500 600
0

1000

2000

3000

4000

5000

Power Spectrum

D
en

si
ty

No Mark
With Mark

Figure 12. PDF of Overlapping Traffic Rate
Curves

1 2 3 4 5 6 7
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Signal Length

Fa
ls

e
Po

si
tiv

e
R

at
e

(P
F,

n)

Simulation
Theory

Figure 13. False Positive Rate

5.7 Effectiveness of Tracing Multiple
Flows

To demonstrate the effectiveness of DSSS-based flow
marking technique at tracing multiple flows, we add another
target flow of interest in Figure 7. The two target flows are:
one from n0 to n9 and the other from n12 to n9. Both flows
traverse mixes n5 and n7. To interfere with these two flows,
we use two CBR traffic sources, which are modulated using
two different PN codes of length 7. One is from n1 to n4
and other one is from n13 to n10.

Figure 15 shows the detection rate for both flows with
respect to CBR interference traffic rates. In this set of sim-
ulations, we change all the 2Mbps links to 4Mbps links.
The change allows TCP flows to get decent rate. The chip
duration is 0.4 seconds and the signal of length 7. From
this figure, we observe that the DSSS-based flow marking
technique can effectively correlate senders and receivers of
both flows. The reason is that the marked traffic flows are
modulated by PN codes that are minimally cross-correlated
(described in Section 3.3.2 and Appendix B of [24]). The
capability of simultaneously tracing multiple flows can sig-
nificantly improve the traceback capacity and investigators
efficiency.

1.1 1.2 1.3 1.4 1.5 1.6 1.7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Interference Traffic Rate (Mbps)

D
et

ec
tio

n
R

at
e

P D
, 7

SG−Mix
Timed Mix
Simple Proxy

Figure 14. Detection Rate with Different
Batching Strategies

3.1 3.15 3.2 3.25 3.3 3.35 3.4 3.45 3.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Interference (Mbps)

D
et

ec
tio

n
R

at
e

Flow n
0
 ~ n

9
Flow n

12
 ~ n

9

Figure 15. Detection Rate v.s. Interference
Traffic Rate for Tracing Multiple Flows

6 Evaluation by Tor

6.1 Experiment Setup

To evaluate the performance of the DSSS-based flow
marking technique, we conducted extensive real-world ex-
periments on Tor, a popular anonymous communication
system. Figure 16 gives the experimental setup similar to
that in Figure 7. We setup a server on Redhat 7.3 at one
university campus location, and download a file from this
server to an off-campus computer running with Fedora Core
3. This represents a typical use of Tor for anonymous file
downloading and web browsing. The downloading soft-
ware was the command line utility wget, shipped with most
Linux distributions. By configuring wget’s parameters of
http proxy and ftp proxy, we can force wget to download
files through Privoxy, the proxy server used by Tor.

For testing purposes, we used a computer to send out an
appropriate volume of traffic which acts as interference to
the server, and another computer was used as a sniffer to
collect the traffic destined for the client machine. The in-
terferer and server were connected by a hub, as were the
sniffer and the client machine. We emphasize that there are

more efficient approaches for interference (such as drop-
ping packets) and sniffing available to authorized law en-
forcement agencies conducting Internet surveillance. We
use this simple approach to demonstrate the effectiveness
of the DSSS-based flow marking technique, even though
the interference is not efficient.

Tor
network

Off-campus

 Sniffer

Client
Server

 On-campus

Interferer

Hub Hub

Figure 16. Experiment Setup

An accurate timer is critical for DSSS-based flow mark-
ing. The accurate timer is needed when we use the spread
signal to modulate a TCP flow and embed the spread signal
accurately into the TCP flow at the transmitter. A coarse
timer will inhibit synchronization of the PN code at the
receiver. In our experiments, we used the high resolution
timer patch [26] to Linux kernel 2.6.17 and used POSIX
1003.1b Section 14 (Clocks and Timers) API for the inter-
ferer to produce accurate timers. The interferer’s machine
was a Gateway E6500 with a 2.8GHz CPU. The timer accu-
racy we achieved was roughly 0.1ms, which is reasonable
in our context. Our future work includes testing the DSSS-
based flow marking technique using Real Time Linux sys-
tems with their more accurate timing [27].

6.2 Experiment Results

We developed a prototype traceback software using Mat-
lab. Figure 17 shows the interface of this software. The in-
terface is much like that of a seismograph. A traffic trace
is fed into the traceback software, which uses the matched
filter based approach (described in Section 3.3.1) to recover
the predefined signal, in our case, {1 -1 1 1 -1 1 -1}. If
there is a match with this signal, we print out the time of
the match above the corresponding time axis position and
at an appropriate height to distinguish different matches4.
In this figure, we show one matched signal near time 2400
seconds. In the experiments for Figure 17, chip duration is 2
seconds5, and the PN code is an m-sequence code of length
7, {1 -1 -1 1 1 1 -1}. For every 196 seconds, we replay the

4Each time stamp represents a different match. The vertical position
of the time stamp is not significant and, in particular, is not related to the
signal amplitude.

5This is reasonable given the low traffic rate in Tor. Refer to Figure 18.

flow marking against the file download traffic. Based on our
experiments on Tor, we make the following observations.

600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600
0

10

20

30

40

Time (seconds)

T
ra

ffi
c

R
at

e
(p

kt
s/

0.
1s

)

1000 1200 1400 1600 1800 2000 2200 2400 2600
−1.5

−1

−0.5

0

0.5

1

1.5

Time (seconds)

S
ig

na
l A

m
pl

itu
de 995.5

996.3
996.4
1005.5
1005.6

1005.7
1005.8
1005.9
1006.0
1006.1

1182.4
1191.3
1191.4
1191.5
1191.6

1191.7
1191.8
1191.9
1192.0
1192.1
1192.2
1192.3
1192.4
1192.5
1192.6

1192.7
1192.8
1192.9
1202.5
1202.6
1203.0
1203.1
1203.2
1203.3
1203.4

1203.5
1203.6
1203.7
1203.8
1203.9
1204.0

1272.7
1386.5
1386.6
1386.9

1387.0
1387.1
1387.2
1387.3
1387.4
1387.5
1387.6
1387.7
1387.8
1387.9

1388.0
1388.1
1388.2
1388.3
1396.2
1396.3

1459.3
1564.4
1564.5
1564.7

1564.8
1573.8
1574.0
1574.9
1575.0
1575.1
1575.2
1575.3
1575.4
1575.5

1583.1
1583.2
1583.3
1583.4
1583.5
1583.6
1583.7
1583.8
1583.9
1584.0

1584.1
1584.2
1584.3
1584.4
1584.5

1770.4
1778.8
1778.9
1779.0
1779.1

1779.2
1779.3
1779.4
1779.5
1779.6
1779.7
1779.8
1779.9
1780.0
1780.1

1780.2
1780.3
1780.4
1780.5
1780.6

1925.1
1925.2
1925.3
1925.4
1935.7

1973.8
1973.9
1974.0
1974.1
1974.2
1974.3
1974.4
1974.5
1974.6
1974.7

1974.8
1974.9
1975.0
1975.1
1975.2
1975.3
1975.4
1975.5
1975.6
1984.7

1984.8
1984.9
1985.0
1985.1
1985.2

2056.9
2170.8
2170.9
2171.0
2171.1

2171.2
2171.3
2171.4
2171.5
2171.6
2171.7

2317.0
2317.1
2317.2
2317.3

2358.2
2358.3
2358.4
2358.5
2367.9
2368.0
2368.1
2368.2
2368.3
2368.4

2368.5
2368.6
2368.7
2368.8
2368.9
2376.5
2376.6
2377.4
2377.5
2377.6

2377.7

Figure 17. Demo of Tracking Anonymous
Flows through Tor Mix Network

1. The interval between two recovered continuous sig-
nals is indeed approximately 196 seconds (the gap between
columns of matched points). This demonstrates the effec-
tiveness of the DSSS-based flow marking technique against
Tor. It can be observed that there are columns of matches
forming bars. This is because the sampling interval is 0.1
seconds and we attempt to match the target traffic every 0.1
seconds. Since the chip duration of 2 seconds is much larger
than the sample interval of 0.1 seconds, the signal can be
recovered even if the synchronization is somewhat skewed.
Intuitively, a high bar indicates a strong signal match. The
DSSS-based flow marking technique is invisible to people
without knowledge of the PN code and embedded signal.
Here we only show the the curve of the time domain traf-
fic rate and similar results in Section 5.4 are also obtained
(e.g., no any useful pattern showing that an ongoing trace-
back process exists).

2. The traffic rate in Tor may vary dramatically. Tor is
a heterogeneous network built with a variety of Tor servers,
composed of whatever users contribute. The performance
and bandwidth of those servers vary dramatically. Also, Tor
creates a mix routing path dynamically: a particular flow
will continue to use the same routing path, otherwise the
path is changed every 10 minutes for a Tor client. This
may lead to wide performance differences from time to
time. Figure 18 shows the Cumulative Distribution Func-
tion (CDF) of the average file download rate and demon-
strates the performance variation. We download a file of
size 455,902 bytes and record the downloading time for
each run. The average rate is calculated as the file size over

the download time. We conducted the experiment for 10
days from July 12, 2006 to July 21, 2006, and collected the
download time every 10 minutes. As shown in Figure 18,
we observe that 70% of the flows had a traffic rate lower
than 100KB/s and 20% had a traffic rate lower than 20KB/s.

3. Although there are wild rate dynamics for traffic using
Tor, the DSSS-based flow marking technique is still effec-
tive. In Figure 17, we can see that even the flow rate along
the same path has wild dynamics. However, our DSSS-
based flow marking technique can still effectively recover
the signal.

4. The DSSS-based flow marking technique sometimes
misidentified the user input signal. We can see bars ap-
pearing away from the expected times. For example, at
time 1272 seconds, we mistakenly matched the input signal.
However, most such false positives are easily recognized
and discarded since they are inconsistent with the expected
propagation delays. The interferer and sniffer can syn-
chronize with each other using the Network Time Protocol
(NTP) or Global Positioning System (GPS). Then the snif-
fer, who is operating the traceback software, knows roughly
the time when the signal should arrive. The propagation
delay can be derived statistically through experiments with
Tor. Thus, a positive signal match beyond that propagation
delay is false and can be discarded. This is the approach we
use to calculate the detection rate in Figure 19.

Figure 19 shows the detection rate of a 7-bit signal mod-
ulated by a PN code of length 7 in terms of chip duration.
When we obtained the detection rate in Figure 19, we didn’t
apply any offline training for the decision rule. From Fig-
ure 19, we can make the following observation consistent
with those from Figure 10: a long chip duration can in-
crease the mark amplitude A in (12), and achieve a greater
SNR. The greater SNR leads to a better detection rate. In
reality, a longer chip duration is not always good. There ex-
ists a variety of unexpected interference on the Internet. A
longer chip duration increases the possibility that impulse-
like noise (bursts of noise interference) may occur during a
chip. This will destroy the signal and reduce the detection
rate.

7 Related Work

In this section, we first introduce various work related to
mix systems. Then we explore work related to degrading
the anonymous communication through mix systems.

Mix techniques can be used for either message-based
(high-latency) or flow-based (low-latency) anonymity ap-
plications. The message-based anonymity application can
use relay servers, i.e., mixes, to reroute messages, which are
encrypted by mixes’ public keys. Mixes use source rout-
ing for message forwarding. Examples of message-based
anonymity systems include the first Internet anonymity sys-

10
−1

10
0

10
1

10
2

10
3

10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Average Download Rate (KB/s)

C
um

ul
at

iv
e

D
is

tri
bu

tio
n

Fu
nc

tio
n

with Tor
without Tor

Figure 18. Average Download Rate in Tor Mix Net-
work

0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Chip Duration (s)

D
et

ec
tio

n
R

at
e

of
 A

 S
ig

na
l

Figure 19. Detection Rate of a 7-bit Signal

tem remailer by Helsingius [11], cypherpunk remailer by
Eric Hughes and Hal Finney [28], Babel by Gülcü and
Tsudik [29] and Mixmaster by Cottrell [30]. Danezis et
al. [2] recently developed a so-called Type III Anonymous
Remailer Protocol Mixminion, which considers a relatively
complete set of threats that researchers have discovered.

Low-latency anonymity applications can use either core
mix networks or peer-to-peer networks. In a system using
a core mix network, users connect to a pool of mixes and
select a forwarding path through the mix network to the
receiver. Tor [4], Freedom [31], and many others belong
to this category. In a system using a peer-to-peer network,
every node is a mix, but it can also be a sender and/or re-
ceiver. A peer-to-peer mix network may scale well and pro-
vide better anonymity if enough participants contribute to
and choose the anonymity service. Crowds [3], Tarzan [32],
and many others belong to this category.

There have been many articles on how to degrade the
anonymous communication through mix networks. To
identify the communication relationship (e.g., find whether
Alice is communicating with Bob) through a mix network,
the similarity between Alice’s outbound traffic and Bob’s
inbound traffic may be measured. Zhu et al. [8] proposed
using mutual information for the similarity measurement.

In the one-mix case, an adversary collects a sample from
an input flow and each output flow of the mix. Each sam-
ple is divided into multiple equally sized segments based
on time. The number of packets in each segment is counted
and forms a time series of packet counts. Then, the ad-
versary chooses the output link, whose flow’s packet count
time series has the biggest mutual information with the in-
put flow’s packet count time series as the input flow’s output
link. To counter this scheme, the defensive strategy of us-
ing adaptive padding was discussed in [8]. Levine et al. [9]
also tackled the same problem of identifying the commu-
nication relationship through a mix network for flow-based
applications. However, they adopted the scheme that uses
cross correlation to measure similarity between flows. If the
cross correlation is beyond a threshold, the adversary de-
cides the communication relationship; otherwise not. The
choice of threshold is the key problem of this scheme and
may not be easily derived in practice. To counteract this
scheme, Levine et al. also proposed the defensive dropping
strategy, e.g., Alice generating dummy packets to Bob and
intermediate mixes on the flow’s path randomly dropping
those dummy packets.

Authors in [33] and [34] mentioned very briefly that a
“spike” may be introduced into traffic to find the communi-
cation relationship between users, but did not pursue an in-
depth study of how to introduce spikes, what kind of spike
should be introduced, or how to recognize the spike. Zhang
and Paxson proposed a simple ON/OFF based approach to
correlated encrypted traffic [35]. Fu et al. [6] studied the
flow marking scheme using the frequency as the unique pat-
tern to degrade the anonymous systems and also pointed out
that this marking scheme can be effectively countered by
filter-based countermeasures (i.e., filtering out the suspect
band of feature frequencies). Overlier et al. [36] studied
the scheme to use one compromised mix node to identify
the “hidden server” anonymized by Tor. However, their
scheme relies on compromising at least one mix node of
mix network. Also their scheme can be effectively coun-
tered by using random entry guard mix nodes and other
means. Murdoch et al. [34] investigated timing based attack
on Tor with similar assumptions of using compromised Tor
nodes. Wang and Peng et al. [37, 7] studied the inter-packet
timing based scheme to trace connections through stepping
stones or anonymous VoIP systems. By slightly changing
the timing of packets, that approach correlates communica-
tion relationship for encrypted network connections. How-
ever, that approach would not effectively track communica-
tion through mix network with batching strategies that ma-
nipulate inter-packet delivery timing.

In this paper, we studied a novel class of DSSS-base flow
marking technique to effectively track anonymous commu-
nication through mix networks. Our proposed technique
is capable of invisible traceback and does not require any

knowledge of mix networks. Work in [38] also discussed
the way to use PN code to secretly locate Internet threat
monitors. Since it is applied to a different problem domain,
the solution in [38] is much different from that in this pa-
per, including the way of using the PN code, designed algo-
rithms, decision rule, and theoretical analysis.

8 Conclusion

In this paper, we investigated how suspect malicious
anonymous communication (ranging from audio and video
plagiarists to potential terrorists) can be effectively identi-
fied and traced on the Internet. We developed a DSSS-based
network flow marking technique for traceback, introducing
invisible marks into a target traffic flow which is persist and
detectable despite a variety of anonymity schemes, making
it possible to trace anonymous communications. Through
a combination of analytical modeling and an extensive set
of simulations, we demonstrated the effectiveness of the
DSSS-based flow marking technique. A proof-of-concept
traceback system was also developed, and the analytical and
simulation results were verified by empirical data from In-
ternet experiments using Tor.

The DSSS-based flow marking technique has the follow-
ing advantages. It can achieve both high detection and low
false positive rates. The high detection rate originates from
the flexible selection of parameters such as the PN code
length, signal length, mark amplitude, and chip duration.
Furthermore, the designed DSSS-based flow marking sys-
tem has a simple decision rule and does not require the ex-
tensive training required by many other approaches.

We emphasize that our DSSS-based technique is a gen-
eral one and can be used to trace other communications, un-
der any conditions where the IP header information is unre-
liable for recognizing communication relationships. To the
best of our knowledge, this paper is the first to apply spread
spectrum techniques for the purpose of Internet traceback.
As part of our future work, we are applying DSSS tech-
niques to other realms and evaluate their effectiveness.

References

[1] D. Chaum, “Untraceable electronic mail, return addresses,
and digital pseudonyms,” Communications of the ACM, vol.
4, no. 2, February 1981.

[2] G. Danezis, R. Dingledine, and N. Mathewson, “Mixmin-
ion: Design of a Type III Anonymous Remailer Protocol,” in
Proceedings of the 2003 IEEE Symposium on Security and
Privacy (S&P), May 2003.

[3] M. Reiter and A. Rubin, “Crowds: Anonymity for web trans-
actions,” ACM Transactions on Information and System Se-
curity, vol. 1, no. 1, 1998.

[4] R. Dingledine, N. Mathewson, and P. Syverson, “Tor: The
second-generation onion router,” in Proceedings of the 13th
USENIX Security Symposium, August 2004.

[5] R. Dingledine and N. Mathewson, “Tor: An anonymous in-
ternet communication system,” http://tor.eff.org/
index.html.en, 2006.

[6] X. Fu, Y. Zhu, B. Graham, R. Bettati, and W. Zhao, “On
flow marking attacks in wireless anonymous communication
networks,” in Proceedings of the IEEE International Con-
ference on Distributed Computing Systems (ICDCS), April
2005.

[7] P. Peng, P. Ning, and D. S. Reeves, “On the secrecy of
timing-based active watermarking trace-back techniques,” in
Proceedings of the IEEE Security and Privacy Symposium
(S&P), May 2006.

[8] Y. Zhu, X. Fu, B. Graham, R. Bettati, and W. Zhao, “On flow
correlation attacks and countermeasures in mix networks,” in
Proceedings of Workshop on Privacy Enhancing Technolo-
gies (PET), May 2004.

[9] B. N. Levine, M. K. Reiter, C. Wang, and M. Wright, “Tim-
ing attacks in low-latency mix-based systems,” in Proceed-
ings of Financial Cryptography (FC), February 2004.

[10] A. Serjantov, R. Dingledine, and P. Syverson, “From a trickle
to a flood: active attacks on several mix types,” in Proceed-
ings of Information Hiding Workshop (IH), February 2002.

[11] J. Helsingius, “Press release: Johan helsingius closes
his internet remailer,” http://www.eff.org/
Censorship/Foreign_and_local/Finland/
960830_penet_closure.announce, August 1996.

[12] IEEE Computer Society, Part 11: Wireless LAN Media
Access Control (MAC) and Physical Control Specifications
(802.11), IEEE, 1999.

[13] R. K. Pickholtz, D. L. Schilling, and L. B. Milstein, “Theory
of spead-spectrum communication - tutorial,” IEEE Trans-
action on Communication, vol. 30, no. 5, pp. 855–884, 1982.

[14] E. J. Crusellers, M. Soriano, and J. L. Melus, “Spreading
codes generator for wireless cdma network,” International
Journal of Wireless Personal Communications, vol. 7, no. 1,
1998.

[15] M. Bellare, S. Goldwasser, and D. Miccianciom, “Pseudo-
random number generation within cryptographic algorithms:
the dss case,” in Proceedings of advances in cryptology’97,
Lecture Notes in Computer Science, May 1997.

[16] L. Wang and B. B. Hirsbrunner, “Pn-based security design
for data storage,” in Proceedings of Databases and Applica-
tions, Feberary 2004.

[17] X. G. Xia, C. G. Boncele, and G. R. Arce, “A multiresolu-
tion watermark for digital images,” in Proceedings of Inter-
national Conference on Image Processing (ICIP), October
1997.

[18] T. F. Wong, “Spread spectrum and code division multiple ac-
cess,” http://wireless.ece.ufl.edu/˜twong/
notes1.html, August 2000.

[19] M. Fomenkov, K. Keys, D. Moore, and K. Claffy, “Longitu-
dinal study of internet traffic in 1998-2003,” in Proceedings
of the Winter International Synposium on Information and
Communication Technologies, January 2004.

[20] K. Thompson, G. Miller, and R. Wilder, “Wide-area internet

traffic patterns and characteristics,” IEEE Network maga-
zine, vol. 11, no. 6, November/December 1997.

[21] ir.J.Meel, “Spread spectrum (ss) - introduction,”
http://www.sss-mag.com/pdf/Ss_jme_
denayer_intro_print.pdf, 1999.

[22] G. Buracas, “m-sequence generation program,”
http://www.mathworks.com/matlabcentral/
fileexchange/loadFile.do?objectId=
990&objectType=file, 2003.

[23] A. Kuzmanovic and E. W. Knightly, “Low-rate tcp-targeted
denial of service attacks,” in Proceedings of ACM SIG-
COMM, August 2003.

[24] W. Yu, X. Fu, S. Graham, D. Xuan, and W. Zhao, “DSSS-
based flow marking technique for invisible traceback,” Tech-
nical report TR-0307-001, College of Business and Informa-
tion Systems, Dakota State University, March 2007.

[25] A. V. Oppenheim, A. S. Willsky, and S. H. Nawab, Signals
and systems, Prentice-Hall, Upper Saddle River, NJ 07458,
USA, second edition, 1997.

[26] G. Anzinger, “High resolution timers,” http://www.
tglx.de/projects/hrtimers/2.6.17/, 2006.

[27] timesys.com, “Embedded linux development tools,” http:
//www.timesys.com/, 2006.

[28] S. Parekh, Prospects for Remailers -
Where is Anonymity Heading on the Internet,
http://www.firstmonday.dk/issues/issue2/remailers/, 1996.

[29] C. Gülcü and G. Tsudik, “Mixing E-mail with Babel,” in
Proceedings of the Network and Distributed Security Sym-
posium (NDSS), February 1996.

[30] U. Möller and L. Cottrell, Mixmaster Protocol — Version 2,
http://www.eskimo.com/ rowdenw/crypt/Mix/draft-moeller-
mixmaster2-protocol-00.txt, January 2000.

[31] P. Boucher, A. Shostack, and I. Goldberg, “Freedom systems
2.0 architecture,” December 2000.

[32] M. J. Freedman and R. Morris, “Tarzan: A peer-to-peer
anonymizing network layer,” in Proceedings of the 9th
ACM Conference on Computer and Communications Secu-
rity (CCS), November 2002.

[33] A. Serjantov and P. Sewell, “Passive attack analysis for
connection-based anonymity systems,” in Proceedings of
European Symposium on Research in Computer Security
(ESORICS), October 2003.

[34] S. J. Murdoch and G. Danezis, “Low-cost traffic analysis
of tor,” in Proceedings of the IEEE Security and Privacy
Symposium (S&P), May 2006.

[35] Y. Zhang and V. Pasxon, “Detecting stepping stones,” in
Proceedings of the 9th USENIX Security Symposium, August
2000.

[36] L. Overlier, “Locating hidder servers,” in Proceedings of the
IEEE Security and Privacy Symposium (S&P), May 2006.

[37] X. Wang, S. Chen, , and S. Jajodia, “Tracking anonymous
peer-to-peer voip calls on the internet,” in Proceedings of the
12th ACM Conference on Computer Communications Secu-
rity (CCS), November 2005.

[38] W. Yu, X. Wang, X. Fu, D. Xuan, and W. Zhao, “Towards se-
cret fingerprint of internet threat monitors,” Technical report,
Computer and Engineering Dept., The Ohio State University,
Septermber 2006.

[39] A. V. Oppenheim and R. W. Schafer, Digital Signal Process-
ing, PrenticeHall, Inc., 1975.

[40] R. Dixon, Spread Spectrum Systems, 2nd Edition, John Wi-
ley & Sons, 1984.

Appendix A: Proof of Theorem 1

Proof 1 Recall Ts is the symbol duration and Tc is the chip
duration. We impose the condition that

Ts = NcTc, (18)

where Nc is the length of PN code. We consider the case that
there does not exist any noise. Therefore, as we discussed
in Section 3.1,

rx = Adt · ct +D, (19)

where dt is the signal (either +1 or −1), A is the mark am-
plitude, and D is the direct component. Let’s use txb to
represent Adt · ct in (19), so

rx = txb +D, (20)

where txb is the base band signal the receiver intends to
recover.

The sheer purpose of the high-pass filter at the receiver
is to remove the direct current component of the received
signal rx. From Discrete Fourier Transform (DFT) [39],
we have

RX(k) =
Nc−1

∑
n=0

(txb(n)+D)W kn
N (21)

= T Xb(k)+
Nc−1

∑
n=0

DW kn
N , (22)

rx(n) =
1

Nc

Nc−1

∑
k=0

RX(k)W−kn
N , (23)

where

WN = e− j2π/Nc . (24)

If the direct current component RX(0) is removed by the
low-pass filter, then

rx′(n) =
1

Nc
[
Nc−1

∑
k=0

RX(k)W−kn
N −RX(0)] (25)

=
1

Nc
[
Nc−1

∑
k=0

(T Xb(k)+
Nc−1

∑
m=0

DW km
N)W−kn

N −RX(0)](26)

=
1

Nc
[
Nc−1

∑
k=0

(T Xb(k)W−kn
N +NcD−RX(0)]. (27)

If ct is from a m-sequence generator, the length of ct , Nc,
is always an odd number. Thus,

RX(0) =
Nc−1

∑
n=0

(txb(n)+D)W 0n
N (28)

=
Nc−1

∑
n=0

Adtct(n)+NcD (29)

= Adt

Nc−1

∑
n=0

ct(n)+NcD. (30)

According to the “balanced” property of PN code [40],
i.e., the occurrence frequencies of −1 and +1 are nearly
equal. Without loss of generality, we assume that ∑cr = 1.
Then we have

RX(0) = Adt +NcD, (31)

and

rx′(n) =
1

Nc
[
Nc−1

∑
k=0

T Xb(k)W−kn
N −Adt] (32)

= txb(n)− Adt

Nc
. (33)

Therefore,

∑rxb = ∑(rx′ · cr) (34)

= ∑(tx− Adt

Nc
) · cr (35)

= ∑(Adtct − Adt

Nc
) · cr (36)

= ANcdt − Adt

Nc
∑cr (37)

= Adt(Nc− 1
Nc

). (38)

Denote rx+1 as the result of ∑rxb/Nc when the 1-bit sig-
nal dt is +1 and rx−1 as the result of ∑rxb/N when the 1-bit
signal dt is −1. Therefore, after despreading, we have

rx+1 = ∑rb|dt=1/Nc (39)

= A(Nc− 1
N

)/Nc (40)

= A(1−1/N2
c), (41)

rx−1 = ∑rxb|dt=−1/Nc (42)

= −A(Nc− 1
Nc

)/Nc (43)

= −A(1−1/N2
c) (44)

= −rx+1. (45)

Appendix B: Effectiveness of Tracing Multiple
Flows

We now formally analyze the effectiveness of the DSSS-
based flow marking on tracing multiple flows through a mix.
Refer to Figure 6, we use one PN code, ct,1, to modulate
flow 1 on input link 1 and a second PN code, ct,2, to mod-
ulate the flow 2 on input link 2. Without loss of generality,
we assume that sniffer tries to determine which flows go
through output link 2.

Let’s use the dt,1 to represent the signal for flow 1 and
dt,2 to represent the signal for flow 2, respectively. Let’s
use tx1 to represent an embedded spread signal for flow 1
modulated by ct,1 and tx2 to represent an embedded spread
signal for flow 2 modulated by ct,2. From the analysis in
Section 3, we have

tx1 = A1dt,1ct,1, (46)
tx2 = A2dt,2ct,2. (47)

As we can see that tx1 and tx2 are mixed on output link
2. Assume that PN codes for these two signals are synchro-
nized (using the scheme discussed in Section 3.3.1). After
the received integrated signals on output link 2 pass through
the high-pass filter, we have

rx′1(n) = tx1(n)−A1ct,1/Nc, (48)
rx′2(n) = tx2(n)−A2ct,2/Nc. (49)

Substitute (46) and (47) into (48) and (49) respectively,
we have

rx′1 = A1dt,1ct,1−A1dt,1/Nc, (50)
rx′2 = A2dt,2ct,2−A2dt,2/Nc. (51)

To determine if flow 1 on input link 1 passes through
output link 2, we use cr,1 = ct,1 to despread the integrated
flow on output link 2,

rx+1 = rx′1 cr,1 + rx′2cr,1 (52)

= A1(1−1/N2
c)+A2dt,2ct,2 · cr,1/Nc−A2dt,2/N2

c ,(53)

rx−1 = −A1(1−1/N2
c)+A2dt,2ct,2 · cr,1/Nc−A2dt,2/N2

c .(54)

Since ct,1 and ct,2 are minimally cross-correlated, e.g.,
ct,2 · cr,1 ≈ 0, we have

rx+1 = A1(1−1/N2
c)−A2dt,2/N2

c , (55)

rx−1 = −A1(1−1/N2
c)−A2dt,2/N2

c . (56)

From (55) and (56), the original signal dt,1 can be accu-
rately recovered by using PN code ct,1. Similarly, the origi-
nal signal dt,2 can also be accurately recovered by using PN
code ct,2.

As we can see, the low cross-correlation property of PN
code provides salient capability for investigators to trace
multiple flows through the same mix without interfering
with each other. Note that PN code by the m-sequence gen-
erator used in the paper has good cross-correlation property.
Investigating performance of other codes such as gold codes
[21] will be part of our on-going work.

Appendix C: Proof of Lemma 1

Proof 2 First, when White Gaussian Noise (WGN) multi-
plies the receiver’s local spreading code cr, it will be still
WGN. Since our classifier is ∑rb/Nc, its noise component
is denoted as wr = ∑w · cr/Nc. Let’s calculate wr’s mean
and variance as follows:

E(wr) = E(∑w · cr/Nc) (57)

= ∑E(wi)E(cr)/Nc. (58)

As we know, E(wi) = 0, then

E(wr) = 0. (59)

and

var(wr) = E((wr−E(wr))2) (60)
= E((∑w · cr/Nc)2) (61)

= ∑(E(n2
i)E(c2

r,i))/N2
c . (62)

Since E(w2
i) = σ2

w and E(c2
r) = 1 (given that a chip of the

PN code takes 1 or −1 with equal probability), we have

var(wr) =
σ2

w

Nc
. (63)

For different symbols 1 and −1 of the signal, we have

rx+1 = A(1−1/N2
c)+wr, (64)

rx−1 = −A(1−1/N2
c)+wr. (65)

To differentiate rx+1 and rx−1, we can use Bayes decision
rule as shown in Figure 20. The decision boundary of 0,
shown in (10), achieves the minimum decision error.

Assume symbols +1 and −1 have the same occurrence
probability. The decision error Pe, the probability that a
signal is not recognized, can be easily derived as the area
of the shaded region in Figure 20.

Pe =
1
2

P(rx+1 < 0)+
1
2

P(rx−1 > 0) (66)

=
∫ ∞

0

1√
2πσw/

√
Nc

e
[x+A(1−1/N2

c)]2

2σ2w/Nc dx (67)

=
∫ ∞

A(1−1/N2c)
σw/

√
Nc

1√
2π

e−
x2
2 dx (68)

=
1
2

er f c(
√

ε), (69)

1−rx
1+rx

0 dr

Pe

Figure 20. Bayes Decision Rule

where er f c(.) is the complementary error function and
monotonically decreases with ε , and

ε =
(N2

c −1)2

2N3
c

A2

σ2
w
. (70)

Since the detection rate PD for 1-bit original signal is as
the probability that one symbol is correctly recognized, we
have

PD = 1−Pe (71)

= 1− 1
2

er f c(
√

ε). (72)

Appendix D: Proof of Corollary 1

Proof 3 When SNR = A2/σ2
w = 0, we have ε = 0 in (12).

Therefore,

er f c(
√

ε) = er f c(0) = 1, (73)

Pe =
1
2

er f c(
√

ε) = 0.5, (74)

PD = 1−Pe = 0.5. (75)

