
Advances in Topological Vulnerability Analysis

Steven Noel
1
, Matthew Elder

2
, Sushil Jajodia

1
, Pramod Kalapa

1
, Scott O’Hare

3
, Kenneth Prole

3

1
Center for Secure Information Systems, George Mason University, Fairfax, VA, USA

2
 Symantec Research Labs, Symantec Corporation, Herndon, VA, USA

3
 Secure Decisions, Division of Applied Visions Inc., Northport, NY, USA

snoel@gmu.edu, matthew_elder@symantec.com, jajodia@gmu.edu, pkalapa@gmu.edu,

scotto@securedecisions.com, kennyp@securedecisions.com

Abstract

Currently, network administrators must rely on

labor-intensive processes for tracking network

configurations and vulnerabilities, which requires a

great deal of expertise and is error prone. The

organization of networks and the interdependencies of

vulnerabilities are so complex as to make traditional

vulnerability analysis inadequate. We describe a

Topological Vulnerability Analysis (TVA) approach

that analyzes vulnerability dependencies and shows all

possible attack paths into a network. From models of

the network vulnerabilities and potential attacker

exploits, we discover attack paths (organized as

graphs) that convey the impact of individual and

combined vulnerabilities on overall security. We

provide sophisticated attack graph visualizations, with

high-level overviews and detail drilldown. Decision

support capabilities let analysts make optimal tradeoffs

between safety and availability, and show how to best

apply limited security resources. We employ efficient

algorithms that scale well to larger networks.

1. Introduction

While we cannot predict the origin and timing of

attacks, we can reduce their impact by knowing the

possible attack paths through our networks. Reliance

on manual processes and mental models is inadequate.

Automated tools are needed for analyzing and

visualizing vulnerability dependencies and attack paths,

for understanding overall security posture.

Our approach to such full-context security is called

Topological Vulnerability Analysis (TVA) [1][2].

TVA models network state and potential attacker

exploits, combining these to generate an attack graph

showing all possible ways an attacker can penetrate the

network. TVA transforms raw security data into a

roadmap that lets one proactively prepare for attacks.

It supports both offensive (e.g., penetration testing) and

defensive (e.g., network hardening) applications. The

mapping of attack paths through a network via TVA

provides a concrete understanding of how individual

and combined vulnerabilities impact overall network

security.

One focus of this work is to populate TVA models

through automated agent-based network discovery,

asset management, and vulnerability reporting

technology. This information is constantly updated,

and enables accurate modeling for TVA. This avoids

active network-based vulnerability scanning, which can

be intrusive for operational networks. We also form

high-level modeling abstractions that reduce model

complexity, providing better situational awareness and

improving scalability.

2. Overview of Approach

Figure 1 is an overview of our approach for building

and analyzing attack graphs via TVA. Network

Capture builds a model of the network, in terms of

relevant security attributes. Vulnerability Database

represents a comprehensive repository of reported

vulnerabilities, with each vulnerability record listing

the affected software (and hardware). The Exploit

Conditions encode how each vulnerability may be

exploited (preconditions) and the result of its

exploitation (postconditions). Network Capture

represents data collection for a network to be defended,

in terms of corresponding elements in Vulnerability

Database and Exploit Conditions. Together, all these

inputs are used to build an Environment Model for

multi-step attack graph simulation.

The Graph Engine uses the Environment Model to

simulate multi-step attacks through the network, for a

given user-defined Attack Scenario. This engine

analyzes vulnerability dependencies, matching exploit

preconditions and postconditions, thus generating all

possible paths through the network (for a given attack

scenario). The system then provides sophisticated

capabilities for interactive Visual Analysis of attack

graphs [3]. It also computes Optimal Counter

Measures, e.g., minimum number of network changes

to thwart the attack scenario [4].

Network Capture

Visual

Analysis

Optimal

Counter

Measures

Vulnerability Database

NVD

Exploit
Conditions

Attack

Scenario

Graph

Engine

Environment

Model

Vulnerability Scanning

FoundScan

Asset Inventory

Firewall Rules

Figure 1. Topological Vulnerability Analysis (TVA)

TVA integrates with Nessus [5], Retina [6], and

FoundScan [7] vulnerability scanners for populating its

network model. It also processes data from the

Sidewinder firewall [8] to capture network connectivity

to vulnerable host services. Further, TVA integrates

with Symantec Discovery (an Original Equipment

Manufacturer version of Centennial Discovery [9]),

providing more accurate and complete models. We

have investigated Altiris Inventory Solution [10],

which also incorporates asset inventory technology.

TVA then matches host configuration information

gathered through asset inventory with a database of

reported vulnerabilities. The result is an enumeration

of vulnerabilities associated with each host. There are

a number of vulnerability databases available,

maintained by the government, commercial companies,

and the security community. Examples include NIST’s

National Vulnerability Database (NVD) [11], the

Bugtraq security database [12], the SecurityFocus

forum [13], the Open Source Vulnerability Database

(OSVDB) [14], and the Common Vulnerabilities and

Exposure (CVE) referencing standard [15].

A key vulnerability data source for our TVA tool is

Symantec DeepSight [16]. DeepSight is a commercial

database that includes data from Bugtraq and

SecurityFocus. TVA integrates with DeepSight’s XML

data feed, which is platform-independent and

standards-based (web services). TVA then maps asset

data from Symantec Discovery to the corresponding

DeepSight/Bugtraq vulnerability descriptions. We also

leverage DeepSight for modeling exploit conditions,

e.g., local versus remote attacks, privileged versus non-

privileged user access, etc. In our experiments,

analysis of 25,000 DeepSight vulnerabilities (covering

340,000 different software packages) indicates that

about 60% of these vulnerabilities represent some form

of incremental network penetration, which we have

modeled as TVA exploits.

Once the attack model (network and potential

exploits) is defined, our TVA system generates an

attack graph for a given user-defined attack scenario.

The scenario may define particular starting and/or

ending points for the attack, so that the graph is

constrained to lie between them, or may be completely

unconstrained (all possible starting and ending points).

Attack graphs can also guide the placement of intrusion

detection sensors [17], correlate intrusion alarms [18],

handle missed alarms, and filter false alarms.

It has been suggested [19][20] that worst-case

complexity for this kind of attack graph analysis is

O(n
4
) or even O(n

6
), for n hosts in the network model.

However, we have made improvements that reduce

worst-case complexity to O(n
2
) [21]. Using a host-

centric representation, we do not search blindly for

dependency edges from among a flat set of exploits.

We also avoid man-in-the-middle attacks (e.g., port

forwarding or address spoofing), which involve triples

rather than pairs of hosts, and have limited value for

risk analysis. Further, we group hosts into protection

domains (e.g., subnets) [22], with the implication of

full reachability within a domain, reducing complexity

to O(n) within each domain. In terms of the database

of potential attacker exploits, complexity is O(e), for e

exploits.

3. Illustrative Example

Consider a network separated from the Internet by a

firewall. The network is divided into 3 subnets, with

one host in each subnet: a DMZ web server, an internal

client, and an internal server. The DMZ web server is

running Microsoft Windows Server, with Internet

Information Services (IIS), Apache/MySQL/PHP, and

Tomcat servlets. The client is running Microsoft

Windows XP, client security software, an office

productivity suite, and other utilities. The internal

server is running Apache/MySQL/PHP, the Symantec

Discovery asset inventory server, and Altiris Inventory

Solution with associated software (e.g., IIS, Microsoft

SQL Server). The Altiris Agent is deployed on each

internal machine to collect asset inventory data.

The firewall blocks direct access to the internal

server and client subnets from the Internet. Thus, from

the outside, Nessus will be unable to detect any

vulnerabilities on the internal server and client. In fact,

if the firewall uses network address translation (NAT),

Nessus cannot even discover the existence of machines

on these 2 subnets (i.e., they lack Internet-routable

addresses). From the outside of the firewall, the only

machine exposed is the DMZ server. In particular, the

firewall blocks all traffic except HTTP traffic to the

DMZ server’s TCP port 80. From behind the firewall,

Nessus shows a variety of vulnerabilities on the DMZ

server. But from the Internet, only the web server

vulnerability is exposed. A Nessus scan from the DMZ

to the internal subnets identifies any internal

vulnerabilities permitted through the firewall. In our

network, MySQL traffic is permitted between the DMZ

web server and the internal server, and two exposed

MySQL vulnerabilities allow an attacker to access the

internal server (from the DMZ web server).

The question is whether an attacker can compromise

the internal server from the Internet. Figure 2 shows

the resulting attack graph, using TVA with Nessus

scans alone. This shows that an attacker starting on the

Internet can first penetrate through the firewall and

compromise the DMZ server, exploiting a vulnerability

on its web server installation. Then, from the DMZ

server, the attacker can access the internal server via

exploitation of the two MySQL vulnerabilities.

Figure 2. Attack graph for example network

A Nessus scan from the Internet would reveal no

vulnerabilities on the internal server or client, so that

there is no direct attack from the Internet to the internal

machines. Because the firewall blocks traffic

originating from the server subnet to the client subnet,

and blocks all traffic from the DMZ to the client

subnet, there is no attack path to the client at all. That

is, a Nessus scan from the DMZ to the client reveals no

vulnerabilities. In this case, a Nessus scan of the client

within its own subnet (no intervening firewalls) detects

no vulnerabilities (or even open ports), because of the

client’s personal firewall (part of the security suite).

However, the model based solely on Nessus data

paints an incomplete picture of the attack paths through

this network. In this case, while Nessus shows no

vulnerabilities on the internal client, our approach of

correlating asset inventory against a vulnerability

database reveals otherwise. A detailed software

inventory of the internal client machine from Altiris

identifies 99 software executables.

We compare products and versions from Altiris

against a vulnerability database to determine the

vulnerabilities associated with each application. For

many applications, a particular product and version

maps to many vulnerabilities. For Microsoft products,

this correlation process involves an extra step of first

determining how many vulnerabilities are associated

with the Microsoft product and version installed, then

comparing the Microsoft patches and hotfixes installed

(data that is also collected by the Altiris Inventory

Solution product), thus determining which Microsoft

vulnerabilities are unpatched. So, for example, while

there are almost 200 vulnerabilities associated with

Microsoft Windows XP SP2, many of the older

vulnerabilities are patched on the client machine. On

the other hand, no Microsoft hotfixes are applied on the

client for Microsoft Office components after Office

SP2. Thus all of the dozens of vulnerabilities

associated with that version of Microsoft Office are

relevant to the client.

These client-side vulnerabilities are associated with

software that has no network service running. Still,

these vulnerabilities represent vectors by which an

attacker might obtain access to the client machine.

Significant numbers of vulnerabilities are associated

with web browsers and plug-ins. The typical scenario

for these increasingly widespread vulnerabilities is that

a user running a vulnerable web browser or plug-in

visits a web site with malicious content that exploits the

client-side vulnerability. Another important class of

vulnerabilities is associated with document processing

applications, e.g., infected documents via e-mail.

Figure 3 shows the attack graph resulting from our

higher-fidelity model. This shows that it is actually

possible to attack the client directly from the Internet,

via 12 different client-side vulnerabilities. Strictly

speaking, the client needs to make an outbound

connection (e.g., web site visit) to a compromised

server. But the firewall allows this, so it is correct to

model the server as the attacker and the client as the

victim. The attacker on the client can then compromise

the internal server, through a firewall hole allowing

access from client to server.

Figure 3. Attack graph for higher-fidelity model

This example illustrates the importance of

accounting for such client-side vulnerabilities.

Services on an internal server would typically be

exposed to internal clients, and may be vulnerable. In

this case, our higher-fidelity model has uncovered

attack paths that would have otherwise been undetected

through a model populated by a vulnerability scanner.

A major benefit of correlating asset inventory and

vulnerability databases is uncovering vulnerabilities not

seen from remote vulnerability scans. These “dark”

vulnerabilities are an important input to attack graph

analysis, for a more complete picture of the network

security posture. An important class of vulnerabilities

detected by this approach is client applications. Client-

side vulnerabilities have a major impact on enterprise

network security posture. For example, client-side web

applications represent about 60% of vulnerabilities

documented in 2007 [23].

4. Analysis and Visualization

To make TVA attack graphs feasible for realistic

networks, we need scalable mathematical

representations and algorithms. Modeling the

attacker’s control over the network as monotonic

(increasing over time), we need only represent the

dependencies among exploits (preconditions and

postconditions), rather than explicitly enumerating

every sequence of exploits. The resulting exploit-

dependency attack graphs grow only quadratically (as

opposed to exponentially) with the number of exploits,

so that it becomes feasible to apply them for realistic

networks. The assumption of monotonicity is quite

reasonable, corresponding to the conservative

assumption that once an attacker gains control of a

network resource, he need not relinquish it to further

advance the attack. That is, attack behavior is

monotonic at a reasonable level of detail.

Based on a given attack scenario, the attack graph

can be constrained by specific starting and ending

points. The scenario could also be less constrained,

such as finding all possible attack starts leading to one

or more goals, or finding all possible paths from

particular starting points. For example, one may wish

to know how a particular critical system can be

compromised from all possible starting points. Or, one

may want to know all systems that could be

compromised from a particular starting point, or even

from all possible starting points. Our TVA

implementation supports each combination of

specified/unspecified attack start/goal.

In their raw non-aggregated form, attack graphs can

quickly become too complex for easy understanding.

To help manage attack graph complexity, we aggregate

the graph to higher levels of abstraction, providing

better situational awareness. An important high-level

abstraction in TVA is the protection domain, which

represents a set of machines that have full access to one

another’s vulnerabilities. In a raw (non-aggregated)

form, the graph would be fully connected within a

protection domain. Instead, we list the machines in a

protection domain, along with exploits against each of

their vulnerabilities. Then we implicitly rely on the

fact that once an attacker takes control of a machine

within a protection domain, he can exploit all

vulnerabilities on machines within it. We thus need not

explicitly list every n
2
 (fully-connected) exploit

dependency within the protection domain.

In TVA, a high-level view (Figure 4) displays attack

relationships among protection domains, which can be

opened individually or in groups for deeper views of

attack properties and relationships. In this process, no

graph information is lost; one has merely to expand a

folder to acquire information at a lower level. A

complete listing of exploits and associated details for

any selected component is available at all times. This

supports in-depth analysis of exploit details, while

overall topology and network relationships are kept

simple and understandable within the main graph view.

Figure 4. Attack graph visualization interface

Our TVA tool also emulates the hardening of

machines and exploitable vulnerabilities to study the

effects of remediation and what-if scenarios. Exploring

the attack graph, the analyst is often faced with

multiple options for remediation. This involves

choosing a machine or set of machines to protect

(harden), or identifying specific exploits to protect

against. We display the attack graph effects that occur

when a specific machine or protection domain is

hardened or when a specific exploit is neutralized.

Hardened elements are maintained in a log, e.g., for

reporting. The TVA tool also generates

recommendations automatically, i.e., first layer (from

start), last layer (from goal), and minimum set that that

separates start from goal.

To aid user navigation, the TVA tool maintains a

global overview of the entire attack graph at all times,

which can be used to pan the main graph view. The

tool also has a graphical (tree) attack dictionary of all

graph elements. The various graph views are linked, so

that selecting an element in one view cause it to be

selected in all views. A variety of toolbars are

available for commonly used tools. This includes a

suite of interactive layout tools, with manual

repositioning as well as full-scale layout algorithms,

continuously available to restructure the display.

5. Related Work

Early work in attack graph generation was based on

explicit enumeration of attack states, which had serious

scalability problems [24][25][26]. Under a practical

assumption of monotonic logic, attack graph

complexity was shown to be polynomial rather than

exponential [19]. Graph complexity has been further

reduced, to worst-case quadratic in the number of hosts

[21][22]. Commercial capabilities for attack graph

analysis remain limited, especially in the area of

visualization for large-scale graphs [27][28]. A more

detailed review of attack graph research (as of 2005) is

given in [29].

Attack graph research has largely focused on

scalability, with relatively little work on aspects of

model population. Notable exceptions include

[30][31][32], although these are more theoretical

frameworks than practical model population. In most

studies that apply attack graphs to real networks,

models are populated via the Nessus vulnerability

scanner. But network-based (remote) scanners such as

Nessus have fundamental limitations, especially

regarding access to host data and potential disruption to

operational systems.

6. Summary and Conclusions

Attack graphs provide a powerful way of

understanding the context and relative importance of

vulnerabilities across systems and networks. Attack

graph analysis depends on a complete and accurate

model of the network. Typically such models have

been built using data from network (remote)

vulnerability scanners such as Nessus. However,

remote scanning has fundamental limitations regarding

the information available about target hosts. We

propose a new way of building attack graph models,

using data from asset inventory correlated with a

vulnerability database. We demonstrate this approach

using a small testbed network, and describe some

validations we have conducted in operational

environments. Our testbed experiments use Symantec

Discovery asset inventory, correlated against the

Symantec DeepSight vulnerability database. We

compare the resulting attack graphs against those from

a baseline network model using Nessus scans. Our

approach reveals host vulnerabilities not detected by

Nessus, including the important class of client-side

vulnerabilities. The result is a more complete and

accurate assessment of enterprise network security.

7. Acknowledgements

This material is partially based upon work supported

by Homeland Security Advanced Research Projects

Agency under the contract FA8750-05-C-0212

administered by the Air Force Research Laboratory

(Rome); by Air Force Research Laboratory (Rome)

under the contract FA8750-06-C-0246; and by Federal

Aviation Administration under the contract DTFAWA-

04-P-00278/0001.

8. References

[1] S. Jajodia, S. Noel, B. O’Berry, “Topological Analysis

of Network Attack Vulnerability,” in Managing Cyber

Threats: Issues, Approaches and Challenges, V. Kumar, J.

Srivastava, A. Lazarevic (eds.), Springer, 2005.

[2] S. Jajodia, S. Noel, “Topological Vulnerability

Analysis: A Powerful New Approach for Network Attack

Prevention, Detection, and Response,” Indian Statistical

Institute Monograph Series, World Scientific Press, 2008.

[3] S. Noel, M. Jacobs, P. Kalapa, S. Jajodia, “Multiple

Coordinated Views for Network Attack Graphs,” ACM

Workshop on Visualization for Computer Security, 2005.

[4] L. Wang, S. Noel, S. Jajodia, “Minimum-Cost Network

Hardening Using Attack Graphs,” Computer

Communications, 29, 2006.

[5] Nessus Vulnerability Scanner, http://www.nessus.org.

[6] Retina Security Scanner, http://www.eeye.com/.

[7] FoundScan, http://www.foundstone.com/.

[8] Sidewinder, http://www.securecomputing.com/.

[9] Discovery, http://www.centennial-software.com/.

[10] Altiris, http://www.altiris.com/.

[11] National Vulnerability Database, http://nvd.nist.gov/.

[12] Bugtraq, http://www.securityfocus.com/vulnerabilities.

[13] Security Focus, http://www.securityfocus.com/.

[14] Open Source Vulnerability Database, http://osvdb.org/ .

[15] Common Vulnerabilities and Exposures (CVE),

http://cve.mitre.org/.

[16] Symantec DeepSight Threat Management System,

https://tms.symantec.com/Default.aspx.

[17] S. Noel, S. Jajodia, “Optimal IDS Sensor Placement and

Alert Prioritization Using Attack Graphs,” Journal of

Network and Systems Management, September 2008.

[18] S. Noel, E. Robertson, S. Jajodia, “Correlating Intrusion

Events and Building Attack Scenarios through Attack Graph

Distances,” 20th Annual Computer Security Applications

Conference, 2004.

[19] P. Ammann, D. Wijesekera, S. Kaushik, “Scalable,

Graph-Based Network Vulnerability Analysis,” ACM

Conference on Computer and Communications Security,

2002.

[20] R. Lippmann, K. Ingols, C. Scott, K. Piwowarski, K.

Kratkiewicz, M. Artz, R. Cunningham, “Validating and

Restoring Defense in Depth Using Attack Graphs,” MILCOM

Military Communications Conference, 2006.

[21] S. Noel, J. Jajodia, “Understanding Complex Network

Attack Graphs through Clustered Adjacency Matrices,” 21st

Annual Computer Security Applications Conference, 2005.

[22] S. Noel, S. Jajodia, “Managing Attack Graph

Complexity through Visual Hierarchical Aggregation,” in

Visualization and Data Mining for Computer Security, 2004.

[23] D. Turner, M. Fossi, E. Johnson, T. Mack, J. Blackbird,

S. Entwisle, M. K. Low, D. McKinney, C. Wueest, Symantec

Global Internet Security Threat Report Trends, 2008.

[24] C. Phillips, L. Swiler, “A Graph-Based System for

Network-Vulnerability Analysis,” New Security Paradigms

Workshop, 1998.

[25] R. Ritchey, P. Ammann, “Using Model Checking to

Analyze Network Vulnerabilities,” IEEE Symposium on

Security and Privacy, 2000.

[26] O. Sheyner, J. Haines, S. Jha, R. Lippmann, J. Wing,

“Automated Generation and Analysis of Attack Graphs,”

IEEE Symposium on Security and Privacy, 2002.

[27] Skybox Security, http://www.skyboxsecurity.com/.

[28] RedSeal Systems, http://www.redseal.net/.

[29] R. Lippmann, K. Ingols, “An Annotated Review of Past

Papers on Attack Graphs,” Lincoln Laboratory Technical

Report ESC-TR-2005-054, 2005.

[30] F. Cuppens, R. Ortalo, “LAMBDA: A Language to

Model a Database for Detection of Attacks,” Workshop on

Recent Advances in Intrusion Detection, 2000.

[31] S. Templeton, K. Levitt, “A Requires/Provides Model

for Computer Attacks,” New Security Paradigms Workshop,

2000.

[32] R. Ritchey, B. O’Berry, S. Noel, “Representing TCP/IP

Connectivity for Topological Analysis of Network Security,”

18th Annual Computer Security Applications Conference,

2002.

