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Abstract 
 

Currently, network administrators must rely on 

labor-intensive processes for tracking network 

configurations and vulnerabilities, which requires a 

great deal of expertise and is error prone.  The 

organization of networks and the interdependencies of 

vulnerabilities are so complex as to make traditional 

vulnerability analysis inadequate.  We describe a 

Topological Vulnerability Analysis (TVA) approach 

that analyzes vulnerability dependencies and shows all 

possible attack paths into a network.  From models of 

the network vulnerabilities and potential attacker 

exploits, we discover attack paths (organized as 

graphs) that convey the impact of individual and 

combined vulnerabilities on overall security.  We 

provide sophisticated attack graph visualizations, with 

high-level overviews and detail drilldown.  Decision 

support capabilities let analysts make optimal tradeoffs 

between safety and availability, and show how to best 

apply limited security resources.  We employ efficient 

algorithms that scale well to larger networks. 

1. Introduction 

While we cannot predict the origin and timing of 

attacks, we can reduce their impact by knowing the 

possible attack paths through our networks.  Reliance 

on manual processes and mental models is inadequate.  

Automated tools are needed for analyzing and 

visualizing vulnerability dependencies and attack paths, 

for understanding overall security posture. 

Our approach to such full-context security is called 

Topological Vulnerability Analysis (TVA) [1][2].  

TVA models network state and potential attacker 

exploits, combining these to generate an attack graph 

showing all possible ways an attacker can penetrate the 

network.  TVA transforms raw security data into a 

roadmap that lets one proactively prepare for attacks.  

It supports both offensive (e.g., penetration testing) and 

defensive (e.g., network hardening) applications.  The 

mapping of attack paths through a network via TVA 

provides a concrete understanding of how individual 

and combined vulnerabilities impact overall network 

security. 

One focus of this work is to populate TVA models 

through automated agent-based network discovery, 

asset management, and vulnerability reporting 

technology.  This information is constantly updated, 

and enables accurate modeling for TVA.  This avoids 

active network-based vulnerability scanning, which can 

be intrusive for operational networks.  We also form 

high-level modeling abstractions that reduce model 

complexity, providing better situational awareness and 

improving scalability. 

2. Overview of Approach 

Figure 1 is an overview of our approach for building 

and analyzing attack graphs via TVA.  Network 

Capture builds a model of the network, in terms of 

relevant security attributes.  Vulnerability Database 

represents a comprehensive repository of reported 

vulnerabilities, with each vulnerability record listing 

the affected software (and hardware).  The Exploit 

Conditions encode how each vulnerability may be 

exploited (preconditions) and the result of its 

exploitation (postconditions).  Network Capture 

represents data collection for a network to be defended, 

in terms of corresponding elements in Vulnerability 

Database and Exploit Conditions.  Together, all these 

inputs are used to build an Environment Model for 

multi-step attack graph simulation. 

The Graph Engine uses the Environment Model to 

simulate multi-step attacks through the network, for a 

given user-defined Attack Scenario.  This engine 



analyzes vulnerability dependencies, matching exploit 

preconditions and postconditions, thus generating all 

possible paths through the network (for a given attack 

scenario).  The system then provides sophisticated 

capabilities for interactive Visual Analysis of attack 

graphs [3].  It also computes Optimal Counter 

Measures, e.g., minimum number of network changes 

to thwart the attack scenario [4]. 
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Figure 1.  Topological Vulnerability Analysis (TVA) 

TVA integrates with Nessus [5], Retina [6], and 

FoundScan [7] vulnerability scanners for populating its 

network model.  It also processes data from the 

Sidewinder firewall [8] to capture network connectivity 

to vulnerable host services.  Further, TVA integrates 

with Symantec Discovery (an Original Equipment 

Manufacturer version of Centennial Discovery [9]), 

providing more accurate and complete models.  We 

have investigated Altiris Inventory Solution [10], 

which also incorporates asset inventory technology. 

TVA then matches host configuration information 

gathered through asset inventory with a database of 

reported vulnerabilities.  The result is an enumeration 

of vulnerabilities associated with each host.  There are 

a number of vulnerability databases available, 

maintained by the government, commercial companies, 

and the security community.  Examples include NIST’s 

National Vulnerability Database (NVD) [11], the 

Bugtraq security database [12], the SecurityFocus 

forum [13], the Open Source Vulnerability Database 

(OSVDB) [14], and the Common Vulnerabilities and 

Exposure (CVE) referencing standard [15]. 

A key vulnerability data source for our TVA tool is 

Symantec DeepSight [16].  DeepSight is a commercial 

database that includes data from Bugtraq and 

SecurityFocus.  TVA integrates with DeepSight’s XML 

data feed, which is platform-independent and 

standards-based (web services).  TVA then maps asset 

data from Symantec Discovery to the corresponding 

DeepSight/Bugtraq vulnerability descriptions.  We also 

leverage DeepSight for modeling exploit conditions, 

e.g., local versus remote attacks, privileged versus non-

privileged user access, etc.  In our experiments, 

analysis of 25,000 DeepSight vulnerabilities (covering 

340,000 different software packages) indicates that 

about 60% of these vulnerabilities represent some form 

of incremental network penetration, which we have 

modeled as TVA exploits. 

Once the attack model (network and potential 

exploits) is defined, our TVA system generates an 

attack graph for a given user-defined attack scenario.  

The scenario may define particular starting and/or 

ending points for the attack, so that the graph is 

constrained to lie between them, or may be completely 

unconstrained (all possible starting and ending points).  

Attack graphs can also guide the placement of intrusion 

detection sensors [17], correlate intrusion alarms [18], 

handle missed alarms, and filter false alarms. 

It has been suggested [19][20] that worst-case 

complexity for this kind of attack graph analysis is 

O(n
4
) or even O(n

6
), for n hosts in the network model.  

However, we have made improvements that reduce 

worst-case complexity to O(n
2
) [21].  Using a host-

centric representation, we do not search blindly for 

dependency edges from among a flat set of exploits.  

We also avoid man-in-the-middle attacks (e.g., port 

forwarding or address spoofing), which involve triples 

rather than pairs of hosts, and have limited value for 

risk analysis.  Further, we group hosts into protection 

domains (e.g., subnets) [22], with the implication of 

full reachability within a domain, reducing complexity 

to O(n) within each domain.  In terms of the database 

of potential attacker exploits, complexity is O(e), for e 

exploits. 

3. Illustrative Example 

Consider a network separated from the Internet by a 

firewall.  The network is divided into 3 subnets, with 

one host in each subnet: a DMZ web server, an internal 

client, and an internal server.  The DMZ web server is 

running Microsoft Windows Server, with Internet 

Information Services (IIS), Apache/MySQL/PHP, and 

Tomcat servlets.  The client is running Microsoft 

Windows XP, client security software, an office 

productivity suite, and other utilities.  The internal 

server is running Apache/MySQL/PHP, the Symantec 

Discovery asset inventory server, and Altiris Inventory 

Solution with associated software (e.g., IIS, Microsoft 

SQL Server).  The Altiris Agent is deployed on each 

internal machine to collect asset inventory data. 

The firewall blocks direct access to the internal 

server and client subnets from the Internet.  Thus, from 

the outside, Nessus will be unable to detect any 



vulnerabilities on the internal server and client.  In fact, 

if the firewall uses network address translation (NAT), 

Nessus cannot even discover the existence of machines 

on these 2 subnets (i.e., they lack Internet-routable 

addresses).  From the outside of the firewall, the only 

machine exposed is the DMZ server.  In particular, the 

firewall blocks all traffic except HTTP traffic to the 

DMZ server’s TCP port 80.  From behind the firewall, 

Nessus shows a variety of vulnerabilities on the DMZ 

server.  But from the Internet, only the web server 

vulnerability is exposed.  A Nessus scan from the DMZ 

to the internal subnets identifies any internal 

vulnerabilities permitted through the firewall.  In our 

network, MySQL traffic is permitted between the DMZ 

web server and the internal server, and two exposed 

MySQL vulnerabilities allow an attacker to access the 

internal server (from the DMZ web server). 

The question is whether an attacker can compromise 

the internal server from the Internet.  Figure 2 shows 

the resulting attack graph, using TVA with Nessus 

scans alone.  This shows that an attacker starting on the 

Internet can first penetrate through the firewall and 

compromise the DMZ server, exploiting a vulnerability 

on its web server installation.  Then, from the DMZ 

server, the attacker can access the internal server via 

exploitation of the two MySQL vulnerabilities. 

 
Figure 2.  Attack graph for example network 

A Nessus scan from the Internet would reveal no 

vulnerabilities on the internal server or client, so that 

there is no direct attack from the Internet to the internal 

machines.  Because the firewall blocks traffic 

originating from the server subnet to the client subnet, 

and blocks all traffic from the DMZ to the client 

subnet, there is no attack path to the client at all.  That 

is, a Nessus scan from the DMZ to the client reveals no 

vulnerabilities.  In this case, a Nessus scan of the client 

within its own subnet (no intervening firewalls) detects 

no vulnerabilities (or even open ports), because of the 

client’s personal firewall (part of the security suite). 

However, the model based solely on Nessus data 

paints an incomplete picture of the attack paths through 

this network.  In this case, while Nessus shows no 

vulnerabilities on the internal client, our approach of 

correlating asset inventory against a vulnerability 

database reveals otherwise.  A detailed software 

inventory of the internal client machine from Altiris 

identifies 99 software executables. 

We compare products and versions from Altiris 

against a vulnerability database to determine the 

vulnerabilities associated with each application.  For 

many applications, a particular product and version 

maps to many vulnerabilities.  For Microsoft products, 

this correlation process involves an extra step of first 

determining how many vulnerabilities are associated 

with the Microsoft product and version installed, then 

comparing the Microsoft patches and hotfixes installed 

(data that is also collected by the Altiris Inventory 

Solution product), thus determining which Microsoft 

vulnerabilities are unpatched.  So, for example, while 

there are almost 200 vulnerabilities associated with 

Microsoft Windows XP SP2, many of the older 

vulnerabilities are patched on the client machine.  On 

the other hand, no Microsoft hotfixes are applied on the 

client for Microsoft Office components after Office 

SP2.  Thus all of the dozens of vulnerabilities 

associated with that version of Microsoft Office are 

relevant to the client. 

These client-side vulnerabilities are associated with 

software that has no network service running.  Still, 

these vulnerabilities represent vectors by which an 

attacker might obtain access to the client machine.  

Significant numbers of vulnerabilities are associated 

with web browsers and plug-ins.  The typical scenario 

for these increasingly widespread vulnerabilities is that 

a user running a vulnerable web browser or plug-in 

visits a web site with malicious content that exploits the 

client-side vulnerability.  Another important class of 

vulnerabilities is associated with document processing 

applications, e.g., infected documents via e-mail. 

Figure 3 shows the attack graph resulting from our 

higher-fidelity model.  This shows that it is actually 

possible to attack the client directly from the Internet, 

via 12 different client-side vulnerabilities.  Strictly 

speaking, the client needs to make an outbound 

connection (e.g., web site visit) to a compromised 

server.  But the firewall allows this, so it is correct to 

model the server as the attacker and the client as the 

victim.  The attacker on the client can then compromise 

the internal server, through a firewall hole allowing 

access from client to server. 



 
Figure 3.  Attack graph for higher-fidelity model 

This example illustrates the importance of 

accounting for such client-side vulnerabilities.  

Services on an internal server would typically be 

exposed to internal clients, and may be vulnerable.  In 

this case, our higher-fidelity model has uncovered 

attack paths that would have otherwise been undetected 

through a model populated by a vulnerability scanner. 

A major benefit of correlating asset inventory and 

vulnerability databases is uncovering vulnerabilities not 

seen from remote vulnerability scans.  These “dark” 

vulnerabilities are an important input to attack graph 

analysis, for a more complete picture of the network 

security posture.  An important class of vulnerabilities 

detected by this approach is client applications.  Client-

side vulnerabilities have a major impact on enterprise 

network security posture.  For example, client-side web 

applications represent about 60% of vulnerabilities 

documented in 2007 [23]. 

4. Analysis and Visualization 

To make TVA attack graphs feasible for realistic 

networks, we need scalable mathematical 

representations and algorithms.  Modeling the 

attacker’s control over the network as monotonic 

(increasing over time), we need only represent the 

dependencies among exploits (preconditions and 

postconditions), rather than explicitly enumerating 

every sequence of exploits.  The resulting exploit-

dependency attack graphs grow only quadratically (as 

opposed to exponentially) with the number of exploits, 

so that it becomes feasible to apply them for realistic 

networks.  The assumption of monotonicity is quite 

reasonable, corresponding to the conservative 

assumption that once an attacker gains control of a 

network resource, he need not relinquish it to further 

advance the attack.  That is, attack behavior is 

monotonic at a reasonable level of detail. 

Based on a given attack scenario, the attack graph 

can be constrained by specific starting and ending 

points.  The scenario could also be less constrained, 

such as finding all possible attack starts leading to one 

or more goals, or finding all possible paths from 

particular starting points.  For example, one may wish 

to know how a particular critical system can be 

compromised from all possible starting points.  Or, one 

may want to know all systems that could be 

compromised from a particular starting point, or even 

from all possible starting points.  Our TVA 

implementation supports each combination of 

specified/unspecified attack start/goal. 

In their raw non-aggregated form, attack graphs can 

quickly become too complex for easy understanding.  

To help manage attack graph complexity, we aggregate 

the graph to higher levels of abstraction, providing 

better situational awareness.  An important high-level 

abstraction in TVA is the protection domain, which 

represents a set of machines that have full access to one 

another’s vulnerabilities.  In a raw (non-aggregated) 

form, the graph would be fully connected within a 

protection domain.  Instead, we list the machines in a 

protection domain, along with exploits against each of 

their vulnerabilities.  Then we implicitly rely on the 

fact that once an attacker takes control of a machine 

within a protection domain, he can exploit all 

vulnerabilities on machines within it.  We thus need not 

explicitly list every n
2
 (fully-connected) exploit 

dependency within the protection domain. 

In TVA, a high-level view (Figure 4) displays attack 

relationships among protection domains, which can be 

opened individually or in groups for deeper views of 

attack properties and relationships.  In this process, no 

graph information is lost; one has merely to expand a 

folder to acquire information at a lower level.  A 

complete listing of exploits and associated details for 

any selected component is available at all times.  This 

supports in-depth analysis of exploit details, while 

overall topology and network relationships are kept 

simple and understandable within the main graph view. 



 

Figure 4.  Attack graph visualization interface

Our TVA tool also emulates the hardening of 

machines and exploitable vulnerabilities to study the 

effects of remediation and what-if scenarios.  Exploring 

the attack graph, the analyst is often faced with 

multiple options for remediation.  This involves 

choosing a machine or set of machines to protect 

(harden), or identifying specific exploits to protect 

against.  We display the attack graph effects that occur 

when a specific machine or protection domain is 

hardened or when a specific exploit is neutralized.  

Hardened elements are maintained in a log, e.g., for 

reporting.  The TVA tool also generates 

recommendations automatically, i.e., first layer (from 

start), last layer (from goal), and minimum set that that 

separates start from goal. 

To aid user navigation, the TVA tool maintains a 

global overview of the entire attack graph at all times, 

which can be used to pan the main graph view.  The 

tool also has a graphical (tree) attack dictionary of all 

graph elements.  The various graph views are linked, so 

that selecting an element in one view cause it to be 

selected in all views.  A variety of toolbars are 

available for commonly used tools.  This includes a 

suite of interactive layout tools, with manual 

repositioning as well as full-scale layout algorithms, 

continuously available to restructure the display. 

5. Related Work 

Early work in attack graph generation was based on 

explicit enumeration of attack states, which had serious 

scalability problems [24][25][26].  Under a practical 

assumption of monotonic logic, attack graph 

complexity was shown to be polynomial rather than 

exponential [19].  Graph complexity has been further 

reduced, to worst-case quadratic in the number of hosts 

[21][22].  Commercial capabilities for attack graph 

analysis remain limited, especially in the area of 

visualization for large-scale graphs [27][28].  A more 

detailed review of attack graph research (as of 2005) is 

given in [29]. 

Attack graph research has largely focused on 

scalability, with relatively little work on aspects of 

model population.  Notable exceptions include 

[30][31][32], although these are more theoretical 

frameworks than practical model population.  In most 

studies that apply attack graphs to real networks, 

models are populated via the Nessus vulnerability 

scanner.  But network-based (remote) scanners such as 

Nessus have fundamental limitations, especially 

regarding access to host data and potential disruption to 

operational systems. 



6. Summary and Conclusions 

Attack graphs provide a powerful way of 

understanding the context and relative importance of 

vulnerabilities across systems and networks.  Attack 

graph analysis depends on a complete and accurate 

model of the network.  Typically such models have 

been built using data from network (remote) 

vulnerability scanners such as Nessus.  However, 

remote scanning has fundamental limitations regarding 

the information available about target hosts.  We 

propose a new way of building attack graph models, 

using data from asset inventory correlated with a 

vulnerability database.  We demonstrate this approach 

using a small testbed network, and describe some 

validations we have conducted in operational 

environments.  Our testbed experiments use Symantec 

Discovery asset inventory, correlated against the 

Symantec DeepSight vulnerability database.  We 

compare the resulting attack graphs against those from 

a baseline network model using Nessus scans.  Our 

approach reveals host vulnerabilities not detected by 

Nessus, including the important class of client-side 

vulnerabilities.  The result is a more complete and 

accurate assessment of enterprise network security. 
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