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Frédéric DUFAUX
Directeur de Recherche CNRS, Télécom
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Éxaminateur

Pierre SIOHAN
Ingénieur, Orange Labs / Éxaminateur
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Introduction

La compression numérique est aujourd’hui au cœur de notre quotidien. En effet, il
est rare que les données brutes (format “RAW”) relevées par les capteurs numériques
soient conservées telles quelles. Ces formats RAW ne sont directement utilisés que
par les professionnels du numérique, afin de travailler sur une représentation la
plus fidèle possible des données. Pour le plus grand nombre d’utilisateurs finaux, les
images sont par exemple conservées sous formats JPEG, JPEG2000, PNG, GIF, etc.
permettant d’économiser la place disponible sur le support de stockage. Les fichiers
audio sont compressés sous formats MP3, OGG, WMA, etc. Enfin les fichiers vidéo,
les plus gros en termes d’espace occupé, sont sauvegardés sous formats MPEG, MP4,
AVI, etc. Dans cette thèse, nous nous intéressons à une compression particulière de
la vidéo, qui favorise une faible complexité d’encodage, en supposant que le décodeur
dispose d’assez de ressources pour effectuer les opérations les plus gourmandes en
énergie : le Codage Vidéo Distribué.

Une séquence vidéo peut être vue comme une succession d’images, qui, placées
les unes après les autres avec un intervalle de temps assez court, donnent l’impression
de mouvement. Le but recherché dans la compression de la vidéo est de minimiser
la taille finale de la vidéo tout en assurant un confort visuel acceptable ; ceci se
fait en exploitant la corrélation qui existe dans les images qui se suivent. En ef-
fet, les pixels adjacents d’une vidéo, aussi bien dans le temps (entre deux images
différentes) que dans l’espace (entre deux pixels proches dans une même image),
se ressemblent fortement. Il semble donc intelligent, étant donné la connaissance
d’un pixel donné, de ne transmettre au décodeur que la différence avec les pixels
alentours. Par exemple, l’exploitation de la corrélation spatiale (on parle de codage
intra) est implémentée, dans le codage MPEG, par la mise en œuvre d’une transfor-
mation DCT (Discrete Cosine Transform) des images à coder. L’exploitation de la
corrélation temporelle (on parle de codage inter) est mise en œuvre par exemple par
un module de prédiction temporelle compensée en mouvement. La mise en œuvre
des ces outils nécessitent à l’encodeur un grand apport d’énergie pour la compres-
sion vidéo traditionnelle, or, dans les terminaux modernes (téléphones mobiles dotés
d’une caméra, réseaux de capteurs, etc.) l’appareil énergétiquement autonome ne
dispose que de peu de ressources pour mener à bien la compression. Il en résulte une
qualité amoindrie de la vidéo obtenue. Le but de la compression vidéo distribuée
est de migrer cette complexité vers le décodeur en trouvant un compromis entre les
besoins énergétiques de chacun, l’encodeur ne prenant en charge que des opérations
basiques. Ceci est rendu possible par un concept apparu en 1973 : le Codage de
Sources Distribuées.

Le codage de sources distribuées [SW73] vise à compresser une ou plusieurs
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12 Introduction

sources discrètes corrélées. Le terme “distribué” signifie que les encodeurs des
sources ne peuvent pas communiquer entre elles, ce qui implique que leur encodage
est disjoint. Si leur décodage s’effectue néanmoins conjointement, le résultat de
Slepian et Wolf [SW73] stipule que les performances atteignables sont similaires à
celles atteignables par un encodage conjoint. Plus précisément, on sait depuis le
Théorème de Shannon [Sha59] que le débit minimal permettant de retrouver sans
erreur deux sources corrélées, que l’on va noter X et Y , est leur entropie conjointe
H(X, Y ); seulement, le Théorème de Shannon n’est valable que si l’encodage des
deux sources se fait conjointement. Moyennant l’envoie d’une information minimale
pour chaque source, s’élevant à son entropie conditionnelle (H(X|Y ) pour X et
H(Y |X) pour Y ), Slepian et Wolf ont découvert que la somme minimale des débits
des deux sources peut rester à l’entropie conjointe pour retrouver les deux sources
sans erreur.

Lorsque l’une des deux sources, mettons Y , est disponible au décodeur (en la
compressant à son entropie H(Y ) par exemple), on parle de codage asymétrique
de Slepian-Wolf (SW); dès lors, Y est considérée comme une information adjacente
pour le décodage de X. L’autre source, X, peut être compressée à son entropie
conditionnelle H(X|Y ) pour pouvoir être décodée sans erreur. Une manière efficace
d’effectuer le codage distribué est l’utilisation de codes canal [Wyn74], car chacune
des sources peut être vue comme une version bruitée de l’autre ; dès lors une in-
terprétation du décodage d’une source est de “corriger les erreurs” présents dans
l’autre source. Un codage canal peut alors être mis en œuvre pour le codage de SW;
si le code canal utilisé atteint la capacité du canal de corrélation, alors il atteint
aussi la borne de SW. Le résultat asymétrique de Slepian et Wolf à été généralisé
par Wyner et Ziv [WZ76] pour le codage de sources à valeurs réelles. Le codage
asymétrique est un cas particulier du codage non-asymétrique de SW, où les deux
sources sont compressées à des débits se situant entre leurs entropies et leurs en-
tropies conditionnelles.

Dans cette Thèse, nous nous intéressons à ces deux cas asymétrique et non-
asymétrique, en proposant des modèles de sources binaires mieux adaptés aux sources
rencontrées dans les applications pratiques ainsi que des modèles de corrélations
également plus fidèles aux applications pratiques. Ces développements sont mo-
tivés par les nombreuses applications du codage asymétrique (par exemple pour
l’authentification de fichiers d’images et d’audios [LVG07b, LVG07a], et, une appli-
cation plus particulièrement intéressante pour cette Thèse, le codage vidéo distribué
[PR02, AZG02, AAD+07, dis]) et non-asymétrique (par exemple pour les réseaux de
capteurs où une optimisation particulière des débits montants doit être mise en place
[RG07], ou l’application au codage des “light fields” (champs de lumière) [GD05]).
Nous proposons également des outils de décodages adaptés à ces modèles de sources
et canaux de corrélation ainsi que des outils d’estimation de leurs paramètres, afin
d’atteindre les bornes de Slepian-Wolf correspondantes. Les modèles et outils que
nous avons développés pour le codage asymétrique sont ensuite investis dans la com-
pression de vidéos pour améliorer la performance débit-distorsion d’un codec vidéo
distribué existant. Ce mémoire de Thèse est structuré en deux parties regroupant
respectivement l’état de l’art du domaine du codage de sources distribuées (Chapitre
1) et celui du codage vidéo distribuée (Chapitre 2) ; nos contributions pour l’étude
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Introduction 13

de ces domaines sont présentées dans les Chapitres 3 à 5.

Le premier Chapitre est dédié à la présentation du codage de sources distribuées,
en rappelant les outils existant dans la littérature pour atteindre les bornes de
Slepian-Wolf (SW). Une présentation des résultats liés au codage de Wyner-Ziv
(WZ) est également faite. Les deux outils sur lesquels nous nous baserons dans
nos contributions (les codages Turbo [RLG07] et LDPC - Low-Density Parity-Check
- [LXG02] basés syndromes) sont décrits plus en détails dans leurs encodages et
leurs décodages. Enfin, deux modèles de canaux sont présentés pour modéliser la
corrélation entre les sources distribuées : le canal binaire symétrique sans mémoire
et le canal avec mémoire de Gilbert-Elliott (GE) [Gil60, Ell63].

Le Chapitre 2 est l’occasion de revoir les bases du codage vidéo distribué. Nous y
rappelons les motivations qui ont incité sa création en 2002 [PR02, AZG02], et nous
présentons le codec vidéo distribué [AAD+07, dis] sur lequel se basent nos contribu-
tions expérimentales : le codec développé sous le projet Européen DISCOVER (Dis-
tributed Coding for Video Services, [dis]), qui est l’un des codecs vidéo distribués
les plus aboutis du moment. D’une manière générale, un codec vidéo distribué
vise à diminuer de façon significative la complexité de l’encodeur, par rapport aux
codecs classiques MPEG, H264 dont l’encodage est extrêmement complexe. Dans
le codec du projet DISCOVER, les images sont structurées par groupes d’images,
dans lesquels les images clés sont codées en mode intra, et les images intermédiaires
(appelées images de WZ) sont codées selon le principe de WZ. Plus précisément, les
images de WZ sont transformées (par une DCT - Discrete Cosine Transform -) puis
quantifiées, et les coefficients issus de la quantification sont réduits à l’état binaire,
pour former des plans de bits. Chaque plan de bits obtenu est finalement encodé par
un code canal pour générer des syndromes. Le décodeur a un rôle plus complexe. En
effet, il a pour charge de construire une image information adjacente pour chaque
image de WZ, via une interpolation compensée en mouvement des images clés et
celles précédemment décodées. Cette image adjacente subit ensuite le même traite-
ment que les images de WZ, pour en obtenir des informations adjacentes pertinentes
pour le décodage des plans de bits des images de WZ. Le décodage des plans de bits
de WZ se fait à l’aide d’un décodeur adaptatif en débit [VAG06], et chaque requête
de bits de syndrome additionnel s’effectue par une voie de retour.

Dans le Chapitre 3, nous exposons les modèles de sources binaires non-uniforme
et avec mémoire (source de GE, nommé ainsi d’après sa similitude avec le modèle de
canal avec mémoire de GE), qui assurent chacune des bornes de compression plus
avantageuses que le modèle de source binaire uniforme (classiquement utilisé dans la
littérature), pour le codage de SW. Des méthodes d’estimation de leurs paramètres
sont décrites. Pour modéliser la corrélation entre ces sources, nous présentons deux
modèles innovants de canaux sans mémoire : les canaux binaires symétriques ad-
ditif et prédictif, qui impliquent des bornes très différentes pour le codage de SW.
Nous terminons ce Chapitre par la description d’une nouvelle méthode d’estimation
hors ligne du paramètre du canal binaire symétrique, habituellement noté p dans
la littérature, qui atteint la borne de Cramer-Rao lorsque le code est suffisamment
puissant pour estimer les sources quasiment sans erreur.

Faisant écho au Chapitre 3, le Chapitre 4 regroupe les outils que nous avons créés,
basés sur les codes LDPC et Turbo, pour effectuer des codages de SW asymétrique
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14 Introduction

et non-asymétrique efficaces pour les modèles de sources présentés au Chapitre 3.
Des algorithmes originaux pour les décodages des sources binaires non-uniforme
ou avec mémoire sont présentés, prenant la forme d’algorithmes EM (Expectation-
Maximization, [Rab89]) adaptés au problème asymétrique de SW pour le décodage
et l’estimation conjoints des sources et de leurs paramètres. Par la suite, nous
présentons les outils adaptés au codage non-asymétrique de SW, à savoir des codes
Turbo et LDPC robustes et adaptatifs en débit ; nous dérivons des conditions
nécessaires et suffisantes, sur les propriétés des codes utilisés, pour décoder effi-
cacement, et sans propagation d’erreurs, des sources uniformes ou non-uniformes.

L’expérimentation des modèles et des outils décrits dans les Chapitres 1 et 2 pour
le codage vidéo distribué est présenté dans le Chapitre 5. Nous y démontrons la per-
tinence des deux modèles de sources binaires (non-uniforme et de GE), et des deux
modèles de canal de corrélation (canal binaire symétrique additif et prédictif), pour
les modélisations, respectivement, des distributions des plans de bits générés par le
codec vidéo distribué, et de la corrélation entre ces plans de bits et l’information
adjacente extraite par le décodeur. Nous démontrons que des gains considérables
par rapport au codec initial, en termes de performance débit-distorsion du codec
obtenu, peuvent être observés ; ces gains peuvent aller jusqu’à 5.7% pour une
modélisation des plans de bits comme sources non-uniformes, et jusqu’à 10.14%
pour une modélisation des plans de bits comme sources de GE.
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Résumé

1 - Le codage de sources distribuées

Le codage de sources distribuées est l’art de compresser séparément des sources
corrélées, et de les décompresser conjointement au décodeur. Ce concept a été in-
troduit par Slepian et Wolf en 1973 [SW73] dans le cas de sources discrètes. Slepian
et Wolf ont démontré qu’il n’y a qu’une légère dégradation à encoder les sources
séparément, par rapport au cas où elles sont encodées conjointement. Dans cette
thèse, nous nous intéressons essentiellement au codage distribué de deux sources
binaires corrélées, notées X et Y . Notons d’autre part RX et RY leurs débits re-
spectifs. Si un encodage et un décodage conjoints permet de borner la somme
RX + RY à l’entropie conjointe H(X, Y ) pour retrouver les deux sources sans er-
reurs (résultat de Shannon en 1959), ce résultat est conditionnellement vrai pour
le codage de Slepian-Wolf (SW), car il faut en plus vérifier que RX ≥ H(X|Y ) et
RY ≥ H(Y |X). La dégradation provient donc de l’obligation à envoyer au minimum
ces informations équivalentes aux entropies conditionnelles pour les deux sources. Ce
résultat est résumé sur la Fig. 1 ci-dessous montrant la région et la borne des débits
atteignables pour le codage de SW :

Figure 1: La région des débits de SW.

1.1 - Codage distribué asymétrique

Un cas particulier du codage de SW consiste à compresser une source X à son
entropie conditionnelle, et de la décompresser connaissant la source Y au décodeur;

15
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16 Résumé

c’est le codage dit asymétrique de SW (point A sur la Fig. 1), aussi appelé “codage
distribué avec information adjacente au décodeur”. La source Y peut alors être
perçue comme une version bruitée de X, et retrouver X consiste à “corriger les
erreurs” présents dans Y . C’est pourquoi [Wyn74] démontre qu’une façon optimale
d’atteindre le point A (resp. B) est l’emploi de codes canal pour la compression
de X (resp. Y ). En pratique, ceci est efficacement effectué par les codes LDPC
(Low-density Parity-Check) [Gal62] ou Turbo [BG96] par exemple.

La généralisation de ce Théorème de SW pour la compression avec pertes se
retrouve dans le Théorème de Wyner-Ziv (WZ) [WZ76]. On ne parle alors plus
de “région des débits”, mais de “région des débits-distorsions”, dû à la reconstruc-
tion intrinsèquement imparfaite. Plus précisément, si l’on appelle D la distorsion
souhaitée à la reconstruction de X; X̂ la version reconstruite de X; d

(
X, X̂

)
la

mesure de la distorsion entre X et X̂; et I
(
X; X̂

)
l’information mutuelle entre X

et X̂, la compression avec pertes avec information adjacente disponible seulement
au décodeur est régie par la fonction suivante [WZ76] :

R?
X|Y (D) = min

p(Z,Y,X̂)∈M(D)
[I(X;Z)− I(Y ;Z)] (1)

où M(D) est l’ensemble des distributions p (x, y, z) possibles, telles que ∃f : Y ×Z →
X̂ : Ep(X,Y,Z)

[
d
(
X, X̂

)]
≤ D, et où X̂ = f(Y, Z).

Cette fonction débits-distorsions est à comparer au cas où Y est connue également
à l’encodeur ; [Ber72] donne :

RX|Y (D) = min
p(X,Y,X̂):Ep(X,Y,X̂)[d(X,X̂)]≤D

I
(
X; X̂|Y

)
(2)

Il est démontré dans [WZ76] qu’en règle générale, RX|Y (D) ≤ R?
X|Y (D). Par con-

tre, lorsque les sources X et Y suivent des distributions normales, Wyner démontre
dans [Wyn78] que RX|Y (D) = R?

X|Y (D). Cette égalité est démontrée en 2003 par
Pradhan [PCR03] pour des sources quelconques dont la corrélation peut se modéliser
par une loi normale.

1.2 - Codage non-asymétrique de SW

L’autre aspect du codage de sources distribuées est de travailler à tout point entre A
et B (voir Fig. 1), ce qui correspond au cas non-asymétrique du codage de SW. Ceci
peut se révéler particulièrement intéressant pour résoudre le problème d’allocation
des ressources entre les différents nœuds d’un réseau de capteurs [RG07], afin de
capturer plus efficacement les différences de conditions de transmissions des données
entre chaque capteur et le récepteur unique. Un moyen d’atteindre ces points est
également de se baser sur l’utilisation de codes canal, comme démontré dans [GD05,
TL05b].
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Résumé 17

2 - Contributions pour l’estimation du paramètre du
canal binaire symétrique

Notons que pour les codages asymétrique et non-symétrique de SW, il est généralement
adopté dans la littérature de considérer le paramètre de la corrélation connu, lorsque
cette dernière est modélisée comme un canal binaire symétrique virtuel. Nous
proposons une méthode rapide et efficace pour estimer ce paramètre, en assur-
ant d’atteindre la borne de Cramer-Rao lorsque le code utilisé est assez puissant
pour retrouver les sources sans erreur. Plus précisément, notre méthode repose sur
l’existence d’une bijection entre la valeur du paramètre du canal (usuellement noté
“p”) et la distribution de la différence entre les syndromes des sources corrélées. Une
inversion de cette fonction bijective permet de retrouver une estimée p̂ dont le biais
diminue avec la longueur du code, et dont le MSE (Mean Square Error) est proche
de la borne de Cramer-Rao. Cette estimée est ensuite raffinée grâce à un algorithme
EM, pour atteindre la borne de Cramer-Rao pour les valeurs de p permettant de
retrouver X et Y sans trop grand distorsion par le décodage canal.

3 - Contributions pour le codage non-asymétrique de
SW

Ici, nous nous situons dans la configuration où les deux sources sont compressées afin
de travailler à n’importe quel point du segment entre les points A et B (voir Fig. 1),
pour n’importe quel niveau de corrélation p entre les deux sources corrélées. Tout
d’abord, nous nous attaquons au problème du codage de SW non-asymétrique et
adaptatif en débit ; nous proposons alors un unique codec, basé sur le codage LDPC
asymétrique et adaptatif en débit introduit dans [VAG06] et sur un codage LDPC
non-asymétrique proposé dans [GD05]. Le code unique résultant est efficace, mais
lorsqu’il est réalisé en deux étapes, ce décodage est sujet à une propagation d’erreurs.
Afin de réduire cette propagation d’erreurs, nous cherchons des solutions basés sur
les codes Turbo, et nous aboutissons à des conditions nécessaires et suffisantes pour
rendre robuste le codage non-asymétrique. Deux solutions d’optimisation des codes
sont proposées pour ce problème :

� le premier consiste à transmettre des informations supplémentaires quant aux
états du treillis du code Turbo lors de l’encodage des deux sources,

� le deuxième consiste à choisir un code Turbo dont la représentation matricielle
est bloc diagonale.

Enfin, nous terminons cette étude du codage non-asymétrique par la recherche
et l’élaboration d’un code LDPC effectuant le codage non-asymétrique de sources
binaires non-uniformes. Nous montrons que la matrice correspondant au code LDPC
doit avoir une sous-partie triangulaire ; le décodage doit aussi être modifié pour
prendre en compte la non-uniformité de chacune des sources, ainsi que le modèle de
corrélation (additif / prédictif) entre chaque source.
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18 Résumé

4 - Codage vidéo distribué

Une application prometteuse du codage asymétrique de SW réside dans le codage
vidéo distribué. Le principe est d’exploiter efficacement la corrélation entre les
images successives de la vidéo par un système de codage de sources distribuées.
Le codage vidéo distribué diffère des codages conventionnels (MPEG, H264) par
sa complexité d’encodage très réduite, ce qui lui permet d’améliorer par exemple
la durée de vie de l’alimentation d’une caméra embarquée disposant de ressources
énergétiques restreintes. En contrepartie, la complexité du décodeur est plus grande
par rapport à celle des décodeurs conventionnels.

Le tout premier dispositif pratique pour le codage vidéo distribué a été pro-
posée par Puri et Ramchandran [PR02] à l’université de Berkeley, en 2002, sous la
dénomination “PRISM”. Pendant la même période, une autre solution de codage
vidéo distribué a été conçue par Girod et son équipe [AZG02], à l’université de
Stanford. Une troisième solution a vu le jour en 2005, développée dans le cadre du
projet Européen DISCOVER [AAD+07, dis], basée sur l’architecture de la solution
provenant de Stanford. Ce dernier codec est aujourd’hui l’un des plus avancés dans
ce domaine. Voici une description rapide des deux composantes du codec :

L’encodeur structure les images successives par groupes d’images, dans lesquels
les images clés sont codées en mode intra, et les images intermédiaires (aussi ap-
pelées images de WZ) sont codées selon un principe distribué. Plus précisément,
les images de WZ sont transformées (par DCT - Discrete Cosine Transform -) puis
quantifiées, et les coefficients issus de la quantification sont réduits à l’état binaire,
pour former des plans de bits. Chaque plan de bits obtenu est finalement encodé
par un code canal (un code LDPC basé syndrome dans notre cas) pour en obtenir
des syndromes pouvant être stockés dans un buffer, pour une transmission graduelle
vers le décodeur.

Le décodeur a un rôle plus complexe. En effet, il a pour charge de construire une
information adjacente pour chaque image de WZ, via une interpolation compensée
en mouvement des images actuellement disponibles qui lui sont les plus proches.
L’image adjacente obtenue subit ensuite le même traitement que les images de WZ,
pour en obtenir des informations adjacentes exploitables pour le décodage LDPC
des plans de bits des images de WZ. Dans l’état actuel du codec, la corrélation,
entre les plans de bits de WZ et l’information adjacente leur correspondant, est
modélisée par un canal Laplacien. Le décodage des plans de bits de WZ se fait à
l’aide du décodeur adaptatif en débit décrit dans [VAG06], et chaque requête de bits
de syndrome additionnel s’effectue par une voie de retour vers le buffer.

Si nous nous intéressons à la modélisation des plans de bits extraits de la vidéo
au niveau de l’encodeur du codec DISCOVER, leur distribution est classiquement
supposée uniforme, c’est-à-dire P(1) = P(0) = 0.5. Or notre analyse approfondie
démontre qu’ils sont plus fidèlement représentés par un modèle de source binaire
non-uniforme, c’est-à-dire P(1) = pX ,P(0) = (1− pX), où pX 6= 0.5. De ce constat,
nous nous sommes penchés sur la production d’un codeur LDPC adapté à cette non-
uniformité, pour bénéficier d’un débit plus réduit par rapport au codage d’une source
uniforme, et ainsi améliorer la caractéristique débit-distorsion de la vidéo après son
décodage. Une analyse plus poussée des plans de bits démontre que la distribution

te
l-0

05
39

04
4,

 v
er

si
on

 1
 - 

23
 N

ov
 2

01
0



Résumé 19

binaire de ces mêmes plans de bits est encore plus fidèlement modélisable par un
modèle de source avec mémoire inspiré du modèle de canal de Gilbert-Elliott (GE)
[Gil60, Ell63], que nous appelons source de GE ; une autre de nos productions est
aussi la construction d’un codeur LDPC capable d’exploiter la mémoire dans ces
sources, pour améliorer davantage la caractéristique débit-distorsion du codec vidéo
distribué. La Section qui suit décrit l’exploitation de cette mémoire à l’aide d’un
décodeur LDPC.

5 - Le modèle de source de Gilbert-Elliott (GE)

5.1 - Présentation du modèle

Notons X la source de GE, et x sa réalisation de longueur N . Notons par ailleurs
Σ le processus Markovien de ses états, et σ sa réalisation de longueur N . La Fig. 2
décrit la méthode de génération d’une source de GE, où le paramètre du modèle
est noté θX = {p0, p1, t10, t0,1}. Deux états gouvernent la génération des symboles
de la source: 0 et 1 dans lesquels, à chaque position n ∈ [1, N ], la source suit
des lois de Bernoulli de paramètres respectifs p0 = PθX (Xn = 1|Σn = 0) et p1 =
PθX (Xn = 1|Σn = 1), telles que p0, p1 ∈ [0, 1] et p0 ≤ p1. Le basculement d’un état
à l’autre est régi par les paramètres de transitions t01 = PθX (Σn = 1|Σn−1 = 0)
et t10 = PθX (Σn = 0|Σn−1 = 1) ∈ [0, 1]. La source contient donc une mémoire
infinie, qui est plus persistante lorsque les paramètres de transitions sont plus faibles.
Nous regroupons les paramètres de la source X dans le paramètre unique θX =
(p0, p1, t10, t01). Il est montré dans [Cov75] que la source X de GE a une entropie-
rate H(X) plus petite que l’entropie d’une source uniforme. Cette entropie est
efficacement calculable par la méthode présentée dans [Rez05].

Figure 2: Diagramme décrivant la source de GE.

Venons-en au codage distribué asymétrique des sources de GE. Notons Z la
différence entre X et Y , un canal binaire symétrique additif (c’est-à-dire Y = X⊕Z)
virtuel de paramètre p. La borne de SW pour la compression de X est ainsi donnée
par :

H(X|Y) = H(p)− [H(Y)−H(X)] (3)

Cette entropie conditionnelle est plus petite de H(Y) − H(X) par rapport à
l’entropie conditionnelle H(X|Y ) = H(p) d’une source uniforme. Cependant, il est
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20 Résumé

primordial de noter que cette Equation (3) n’est valable que pour le modèle de canal
additif ; en effet, pour le modèle de canal prédictif (où X = Y ⊕ Z), il n’y a aucun
gain pour la compression de X par rapport à la compression classique d’une source
uniforme. Le décodeur LDPC exploitant la mémoire dans la source X devra donc
être différent selon les deux modèles de corrélation.

5.2 - Outil de décodage et d’estimation conjoints

Le décodeur que nous introduisons ici, qui permet d’exploiter la mémoire infinie de
la source X, et d’estimer ses paramètres simultanément, est basé sur l’algorithme
EM (Expectation-Maximization) [Rab89]. Ce dernier permet de mettre à jour les
paramètres de la source au fur et à mesure de l’avancement du décodage ; la con-
vergence de l’algorithme est donné par le résultat dans [Wu83]. Plus précisément, à
chaque itération l, l’algorithme EM met à jour le paramètre θX , en maximisant la
fonction de vraisemblance logarithmique moyenne donnée dans l’Equation (4), étant
donnés la réalisation de Y , noté y, le syndrome de X, noté sx, et l’estimée actuelle
de θX , noté θlX :

θ
(l+1)
X = arg max

θX

(
EX,Σx|Y,SX,θ

l
X

[
log

(
PθX (y,x, σx, sx)

) ])
(4)

L’étape “E” (Estimation) de l’algorithme EM consiste à calculer cette fonction,
à chercher une estimée des états σ par un algorithme forward-backward, et à chercher
une estimée de x par un décodage LDPC modifié. L’étape “M” consiste à mettre
à jour le paramètre θX en maximisant la fonction (4). Après chaque itération, θl+1

X

est plus proche de θX que θlX . Des estimées de x et de σ sont fournies en tant que
produits dérivés de l’algorithme EM. En ce qui concerne le décodage LDPC, dans
le cas d’un modèle de corrélation additif, des messages additionnels proviennent et
partent des nœuds de variables vers les états, par rapport au décodage classique
[LXG02] ; si le modèle de corrélation est prédictif, l’algorithme traditionnel est déjà
le mieux que l’on puisse faire.

L’algorithme EM est initialisé avec les paramètres du modèle de GE provenant de
l’information adjacente. En effet, comme X et Y sont des sources corrélées, les états
de Y sont les mêmes que ceux de X, donc le paramètre θY est la meilleure valeur
pour θ0

X à ce niveau de l’algorithme. Pour trouver les paramètres de la source Y ,
un algorithme de Baum-Welch est employé ; ce dernier est initialisé avec les valeurs
figées θ0 = {p0

0 = 0.49, p0
1 = 0.51, t010 = 0.1, t001 = 0.1}.

L’algorithme EM peut être arrêté après chaque itération si le vecteur décodé x̂
vérifie les équations de la matrice de parité, ou si un nombre maximal d’itérations
est atteint (dans nos tests, 100 itérations sont suffisants pour obtenir une estimée
acceptable de x).

Notons qu’une source non-uniforme ou une source uniforme sont des cas parti-
culiers de la source de GE, donc le décodeur est commun à ces trois modèles de
sources du moment que la corrélation est modélisée par un canal binaire symétrique.

Nous sommes maintenant prêts à mener les tests de validation sur le codec DIS-
COVER, pour évaluer l’efficacité de notre estimateur-décodeur basé sur l’algorithme
EM.
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Résumé 21

6 - Expérimentations sur le codec DISCOVER

6.1 - Validation des modèles proposés

Avant de remplacer l’ancien décodeur de SW de DISCOVER par le nouveau, basé
sur l’algorithme EM, il nous faut vérifier la pertinence des deux modèles de sources
que nous avons proposés. Pour ce faire, nous extrayons les plans de bits générés par
le codec, et nous les analysons hors ligne afin de vérifier leurs distributions binaires.

Pour le modèle de source binaire non-uniforme, il faut calculer, pour chaque
plan de bit, le pourcentage de “1” contenu dans le plan de bit. Cela nous fournit
le paramètre pX du plan de bit. Si pX est différent de 0.5, alors le plan de bit est
effectivement non-uniforme. Les résultats obtenus hors ligne sont concluants car la
plupart des plans de bits sont hautement non-uniformes.

Pour le modèle de source de GE, il nous faut analyser les distributions de trâınées
de “1” pour les plans de bits. En effet, pour une source sans mémoire (c’est-à-dire
uniforme ou non-uniforme), la probabilité Pk d’observer une trâınée de longueur k
est donnée par la formule Pk = (1 − pX)pk−1

X . Il en ressort que le logarithme de la
distribution des trâınées de “1” est linéaire avec la longueur k de la trâınée, ce qui
n’est pas le cas pour une source de GE. Lors des analyses sur les plans de bits de la
vidéo, cette vérification est aussi concluante : un nombre important de plan de bits
possède effectivement de la mémoire.

Pour l’estimation du modèle de canal de corrélation, il ne nous est malheureuse-
ment pas possible d’estimer si le modèle de corrélation est additif ou prédictif ;
aucun critère fiable ne permet à ce jour de faire la discrimination par l’observation
des informations à notre disposition. Donc, notre solution est de tester les deux
modèles et de choisir celui qui fournit un décodage plus rapide du code LDPC
adaptatif en débit. Notons que ce n’est pas un système “aidé” car aucun élément
additionnel n’est donné par rapport au système standard.

6.2 - Mise en œuvre du nouveau décodeur de SW dans DISCOVER

Une fois que les modèles de sources ont été définis et validés, et que les outils
nécessaires à leurs décodages ont été élaborés, il nous reste à implémenter le tout à
la place du décodeur de SW dans le codec DISCOVER. Nous observons ensuite les
performances débits-distorsions du codec obtenu pour les cinq séquences vidéo Hall
Monitor, Foreman, Coastguard, Flower, et Soccer. Nous les comparons enfin aux
performances du codec standard. Les résultats sont en faveur du système que nous
proposons : le gain en débit, pour la même qualité de reconstruction des vidéos,
atteint 5.7% pour la séquence Soccer, au plus fort PSNR, lorsque les plans de bits
sont modélisés comme des sources non-uniformes ; ce gain atteint 10.14%, lorsque
les plans de bits sont modélisés comme des sources de GE. Les résultats sont résumés
dans le Tableau 1 pour la modélisation avec des sources non-uniformes, et dans le
tableau 2 pour la modélisation avec des sources de GE :

Ces résultats confirment que les modélisations des plans de bits comme des
réalisations de sources non-uniformes ou de sources de GE sont plus efficaces que la
modélisation en source uniforme, pour le codage vidéo distribué. D’autre part, il y a
environ deux fois plus de gain avec le modèle de GE qu’avec le modèle non-uniforme.
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22 Résumé

Séquence Gain en débit (kbps) Gain en débit (%)

Hall Monitor 0.94 1

Foreman 5.88 2.68

Coastguard 2.04 1.15

Flower 2.97 1.47

Soccer 16.57 5.7

Table 1: Gains lorsque les plans de bits sont modélisés en sources non-uniformes.

Séquence Gain en débit (kbps) Gain en débit (%)

Hall Monitor 2.54 2.73

Foreman 8.76 4

Coastguard 4.28 2.41

Flower 5.96 2.95

Soccer 29.55 10.14

Table 2: Gains lorsque les plans de bits sont modélisés en sources de GE.

Néanmoins, le choix des sources non-uniformes est motivé par la moindre complexité
du décodage, par rapport aux sources avec mémoire.
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Chapter 1

Distributed source coding

This chapter presents the theoretical background of Distributed Source Coding
(DSC), and introduces some existing practical solutions. A quick overview of the
different frameworks based on channel codes is depicted. Then, the practical im-
plementations of two DSC codes, namely syndrome-based Turbo and Low-Density
Parity-Check (LDPC) codes, are detailed. This choice of codes is motivated by the
reputation of Turbo and LDPC codes to be near capacity-achieving codes. As the
DSC problem can be formally interpreted as a channel coding one, these two codes
are also near optimal for DSC. The results on discrete binary sources are first pre-
sented in Section 1.2 in which the correlation between the sources is modeled as a
Binary Symmetric Channel (BSC). In Section 1.2.6, we review distributed coding
using source codes, which is shown to exhibit performances that are comparable to
that of Turbo codes in Section 4.1.1.4. Then, in Section 1.4.1.2, the background on
the BSC parameter estimation is reviewed. Afterward, the generalization to contin-
uous sources is described in Section 1.5. We end this chapter with an overview of
our contributions for DSC in Section 1.6.

1.1 A word on notation

In this Thesis, uppercase variables (X, Y, Z,Σ) refer to random stochastic processes,
uppercase variables (Xn, Yn, Zn,Σn) refer to random variables at instant n, and low-
ercase variables (xn, yn, zn, σn) refer to their respective realizations. Bold uppercase
variables (X = XN

1 ,Y = Y N
1 ,Z = ZN

1 ,Σ=ΣN
1 ) refer to vectors of random variables,

and bold lowercase variables (x = xN1 ,y = yN1 , z = zN1 , σ = σN1 ) refer to vectors
of their realizations. The symbol “⊕” stands for the module-two addition of binary
symbols. The bold H stands for the parity-check matrix of channel code, H(X)
stands for the entropy of the memoryless source, and H(X) [CT91] stands for the
entropy-rate of the memory source.

More notation will be defined, when needed, for clarity of writing.
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26 CHAPTER 1. DISTRIBUTED SOURCE CODING

1.2 Lossless compression of correlated sources

Distributed Source coding (DSC) refers to the problem of compressing correlated
sources without the need of cooperation between the source encoders, but with a
joint decoder. Here, two correlated discrete sources X and Y are considered, but the
results can be extended to any number, as in [LGS04, LGS06] for three correlated
sources. Prima facie, this problem seems desperate since the well-known Shannon’s
Theorem [Sha59] is only proved when the two encoders cooperate to send the best
joint description of the sources to the joint decoder; in that case, the minimum
achievable transmission rate that allows perfect recovery is the joint entropy of the
sources, H(X, Y ). Then we expect some rate loss when forbidding any cooperation
at the encoders. However, Slepian and Wolf in 1973 [SW73], stated that no rate loss
is incurred by the disjoint encoding of binary sources, and Wyner and Ziv in 1974
[Wyn74] stated a partial generalization of this result to continuous sources. In the
following, we present these results and the conditions for the success of such codings.

1.2.1 The Slepian-Wolf coding paradigm

1.2.1.1 The Slepian-Wolf rate region

The Slepian-Wolf (SW) theorem [SW73], for distributed compression of two corre-
lated discrete sources X and Y , states that the minimum achievable rate, to ensure
their perfect recovery, is still H(X, Y ) when no cooperation exists between the en-
coders, provided the individual achievable rates RX and RY verify Equation (1.1),
and the decoding is done jointly.

RX ≥ H(X|Y )

RY ≥ H(Y |X)

RX +RY ≥ H(X, Y )

(1.1)

The minimum achievable rate for each source is its conditional entropy given the
other. The equations in (1.1) can be summarized by the picture in Fig. 1.1. The so-
called Slepian-Wolf rate region, in red, is only valid for a given correlation between
the sources; the less the sources are correlated, the further it is from the origin. It
can be noted that forbidding cooperation between the encoders, but allowing joint
decoding, involves preventing from achieving the whole blue rate region in (Fig. 1.1).
The difference comes from the necessity to send at least information that amounts
the conditional entropy from each source, not only a total rate that amounts the joint
entropy. Constructing practical codes that adapt to any correlation level between
the sources is a challenging problem.

In that picture, several operating points are of our interest.

� The “corner points” (A and B in Fig. 1.1) correspond to the case where one
of the sources (say Y , point A) is transmitted at a rate equal to its entropy
H(Y ) and can be recovered error-free by the decoder without the need of any
information from the other source (say X); X is transmitted at a rate equal to
its conditional entropy H(X|Y ) and can be recovered exploiting the information
from Y . This case is called the “asymmetric setup” of the SW problem (or “DSC
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1.2. LOSSLESS COMPRESSION OF CORRELATED SOURCES 27

Figure 1.1: The domain of achievable compression rates for disjoint coding of correlated sources
is the so-called “Slepian-Wolf rate region”.

with side information at the decoder”), and Y is called the “side-information”
for the decoding of X.

� The “non-asymmetric points” (between A and B in Fig. 1.1) correspond to the
“non-asymmetric setup” of the SW problem. In that case, neither X nor Y is
available at the decoder; the two sources are transmitted at rates RX and RY

verifying H(X|Y ) ≤ RX ≤ H(X) and H(Y |X) ≤ RY ≤ H(Y ) respectively. The
decoder must recover the two sources simultaneously.

� The “symmetric point” (point C in Fig. 1.1) corresponds to the “symmetric
setup” of the SW problem; symmetric transmission rates are allocated to both
sources. In this case, RX = 1

2
(H(X)−H(X|Y )) andRY = 1

2
(H(Y )−H(Y |X)).

The asymmetric and the symmetric cases are particular cases of the non-asymmetric
one. The asymmetric setup has found considerably more interest in terms of ap-
plicative implementations for multimedia: [LVG07b, LVG07a, VLG08] for image and
audio authentication, and [PR02, AZG02, AAD+07] for Distributed Video Coding.
The non-asymmetric and the symmetric setups are motivated by the application for
optimal rate allocation in wireless sensor networks [RG07]. In Sections 4.1 and 4.2,
we give some novel tools to improve the decoding performance of DSC codes for the
asymmetric SW problem; in Section 4.3, we investigate the conditions to improve
the decoding for the non-asymmetric SW problem.

1.2.2 Random code partitioning solution for DSC

To prove their landmarking Theorem [SW73], Slepian and Wolf rely on the principle
of random binning. First, the achievability of the corner points is shown. More
precisely, let N be the length of the vector of source realization that is to be com-
pressed. Every x among the 2NH(X) is randomly and uniformly assigned to one of
2NH(X|Y ) bins identified by an index. The encoder sends the index of x. The decoder
finds the estimate x̂ as the vector contained in the bin referenced by the index that
is most correlated to y. Finally, time-sharing allows to achieve all the points in the
SW region. If the binning approach is shown to be optimal, it is not convenient for
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28 CHAPTER 1. DISTRIBUTED SOURCE CODING

practical implementation, because of exhaustive search that has to be done in lieu
of the decoding. However, the proof gives some useful insights about the solution

1.2.3 Practical solutions for Asymmetric DSC

Despite its power, the SW theorem has been ignored during decades since the proof
given by Slepian and Wolf in [SW73] is non-constructive. It is only lately that
some solutions were proposed in the literature to perform source coding with side-
information at the decoder based on channel codes. They can be split into two
categories: syndrome-based approaches and parity-based approaches.

1.2.3.1 The syndrome-based approach

The optimality of this approach is proved by Wyner in [Wyn74]. It is suggested
to construct bins as cosets of a capacity-achieving channel code. More precisely,
an (N,K) channel code partitions the space of 2N sequences into 2N−K “cosets”
containing 2K words each, with maximum Hamming distance between them. Each
coset is indexed by an (N −K)-long syndrome, which transmission to the decoder
yields compression of the source. All the sequences in the same coset Cs share the
same syndrome s, i.e. Cs = {x : Hx = s}. To encode a particular vector x, the
encoder transmits its syndrome sx = Hx, achieving a compression rate of N−K

N
;

the side-information y is sent at its entropy H(Y ) and can therefore be retrieved.
The decoder’s estimation of x̂ consists in finding the closest sequence to y having
syndrome sx. If the code achieves the capacity of the underlying channel modeling
the correlation between the sources X and Y , then the code should manage to
retrieve x error-free.

The first practical asymmetric Slepian-Wolf coding solution is called DIstributed
Source Coding Using Syndromes (DISCUS), and has been proposed in [PR99] using
the Viterbi algorithm on a modified trellis for systematic Convolutional codes. Later,
Roumy et. al [RLG07] introduced a novel representation for Convolutional and
Turbo codes, based on the syndrome trellis, that is more suited to the syndrome
approach. This approach allows to deal with any Convolutional/Turbo codes (not
only systematic ones). The syndrome-based decoding of a Convolutional/Turbo
code is presented in Section 1.3.1.

The authors of [LXG02] describe the practical implementation of syndrome-
based LDPC codes; this method is still the standard decoding for such codes. The
syndrome-based decoding of an LDPC code is presented in Section 1.3.2.

1.2.3.2 The parity-based approach

The parity approach offers the ability to utilize traditional channel codes with-
out the need to implement other decoding algorithms. The main drawback of the
syndrome-based approach described in Section 1.2.3.1 is its difficult implementation
for puncturing the syndrome, which involves the degradation of the code [TL05a].
The parity-based approach aims at solving this issue with the use of the genera-
tor matrix of the channel code. More precisely, consider an (N, 2N −K) systematic

channel code, having the generator matrix G =
(
I
P

)
of size (2N−K×N), where I is
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1.2. LOSSLESS COMPRESSION OF CORRELATED SOURCES 29

the identity matrix of size N×N and P is a parity-check matrix of size (N−K)×N .
Let H be the parity-check matrix s.t HG = 0. To encode, the word x of length N
is multiplied by G, yielding the vector [x,xp] = Gx; the transmission of only the
parity part xp of length (N−K) ensures a compression rate of N−K

N
. At the decoder,

the side-information y, correlated to x, of length N is available. The decoding is
performed, using the usual ML decoder to “correct” the word [y,xp], knowing that
H[x,xp] = 0, and the parity part xp is perfectly known.

The principle was first introduced and implemented in [GFZ01] using Turbo
codes, for the general case of non-asymmetric SW problem (Section 1.2.4). The
Turbo decoding takes into account that the parity part is perfectly known in the
calculation of the transition probabilities in the trellis of the code. It has then been
used by [BM01, AG02, GFC04] to improve the performance of the code in terms of
achieving the SW bound.

The parity approach has also been implemented for LDPC codes in [SF05]. The
information that some part of the word are perfectly known is exploited by setting
the corresponding LLR to infinity.

1.2.4 Practical solutions for Non-asymmetric DSC

Code design has then been recently extended to the case where both sources are
compressed, in order to reach any point of the segment between A and B, see Fig. 1.1,
for a given cross-over probability p. We refer to this set-up as non asymmetric DSC
and to symmetric DSC, when both sources are compressed at the same rate.

1.2.4.1 Time-sharing

The approaches in Section 1.2.3 reach the asymmetric points of the SW rate region.
To achieve the remaining points on the SW bound, for a given correlation level, one
can implement time sharing based solutions. More precisely, let α ∈ [0, 1]. Then, if
Y plays the role of the side-information in a proportion α of some time unit, and if
X plays the role of the side-information during the other (1− α) proportion of the
same time unit, then the average transmission rates RX = αH(X|Y )+(1−α)H(X)
and RY = αH(Y ) + (1 − α)H(Y |X) are achieved. The resulting couple of rates
(RX , RY ) covers all the SW bound. This solution is practically hard to implement
since it requires perfect time synchronization between the two sources, otherwise
the side information would be shifted, with respect to the source that has been
compressed.

1.2.4.2 The syndrome-based approach

The first syndrome-based approach that is able to achieve the whole SW bound was
proposed by Pradhan and Ramchandran in [PR00] using systematic Turbo codes,
based on the DISCUS framework [PR99]. The authors consider an (N,K) channel
code with generator matrix G of size K ×N and partition it into two sub-codes of
respective generator matrices G1 and G2 of respective sizes k1×N and k2×N , s.t.
k1 + k2 = K. Therefore, the total encoding rate is not modified, ensuring that the
code achieves the same bound as its asymmetric version, and the correlated pairs
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30 CHAPTER 1. DISTRIBUTED SOURCE CODING

(x,y) can still be determined uniquely by properly choosing the rows of G forming
the two sub-codes. Later, inspired by this work, Stankovic et. al extend the principle
to practical punctured Turbo and IRA codes and manage to achieve the SW at a
0.04-bit gap. Systematic linear codes have also been considered in [GD05] using any
linear block code, and later in [TL05b] using the so-called “syndrome formers” and
“inverse syndrome formers”. More precisely, the encoders send the two syndromes
sx and sy, of x and y, along with k′ systematic bits of x and K − k′ systematic bits
of y. The decoder first finds the difference ẑ between the two sources, and recovers
the missing parts using the linearity of the code. This approach is described with
more details in Section 4.3.1.1.

1.2.4.3 The parity-based approach

Existing channel codes can also be employed to cover the whole SW bound, given
the correlation between the two sources. The general approach is presented by
Cabarcas and Garcia-Frias in [GFC04]. x is partitioned into two subsets xh = xl1
and xs = xNl+1, where l ∈ [1, N ]; the complementary partitioning is apply to y to
obtain yh = yNl+1 and ys = yl1. xh and yh are compressed at their entropy and
can be recovered at the decoder (for binary sources, these parts are simply sent to
the decoder); xs and ys are coded by a channel encoder to yield the parity bits
cx = (cx1 , . . . c

x
a) and cy = (cy1, . . . c

x
b ), where a ≥ (N − l)H(X|Y ) and b ≥ H(Y |X).

It can be shown that varying l ∈ [1, N ] involves reaching the whole SW bound,
provided that the channel code achieves the capacity of the underlying correlation
channel between the sources X and Y . The implementation of this principle has
been carried out by the same authors using Turbo codes in [GFZ01, GFC04] to reach
all the non-asymmetric point.

1.2.5 Practical solutions for Rate-adaptive DSC

The setup presented in the previous Sections 1.2.3 and 1.2.4 consider that the cor-
relation between the two sources remain constant over time, which is not true in
practical applications. For example for joint optimization of the rate and power of
transmission in a sensor network application [RG07]. Spatially distributed sensors
gather the data and send them to a common center. It is shown in [RG07] that
the optimal rate allocation actually depends on the transmission conditions and can
therefore be associated to any point in the SW region. It is thus of interest to
construct DSC codes that can achieve any point in the SW region.

1.2.5.1 The syndrome-based approach

As the syndrome approach is barely amenable to code puncturing [TL05a], the
syndrome must first be protected in order to maximize the decoding performance of
each sub-code induced by the puncturing. For the asymmetric setup, it is proposed
in [VAG06] to accumulate the syndromes of an LDPC code before the puncturing.
This is equivalent to merging some rows of the parity-check matrix by adding them
modulo-two. More precisely, consider an (N,K) linear block code with matrix H
of size (N − K) × N . A set of M matrices (Hm)Mm=1, with increasing sizes (N −
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1.2. LOSSLESS COMPRESSION OF CORRELATED SOURCES 31

Km)×N,K ≤ N , are created by merging decreasingly less rows of H. y is available
at the decoder and x is compressed by the encoder at the lowest compression rate
to yield the syndrome sx of size N . Knowing the correlation between the sources,
the decoder tries to estimate x̂ from y and a small subset of sx, corresponding to
H1. If the decoding fails, more syndrome bits are requested from the encoder. This
process goes on until the decoding is successful. With this framework, there is no
need to re-encode x after each failure of the decoding. This approach is extended
for the whole SW bound in Section 4.3.1.

1.2.5.2 The parity-based approach

To adapt to any correlation level between the sources, standard puncturing of the
parity bits can be applied. The decoding is also standard as that of channel decoding.

1.2.6 Approaches based on source codes

Besides techniques based on channel coding, a few authors have also investigated
the use of source codes for the SW problem. This is motivated by the fact that
existing source coders obviously exhibit nice compression features that should be
retained, such as the ability to employ flexible and adaptive probability models, and
low encoding complexity. In [KTRR03] the problem of designing a variable-length
distributed source code is addressed; it is shown that the problem of designing a
zero-error coder is NP-hard. In [ZE03] a similar approach is followed; the authors
consider the problem of designing Huffman and Arithmetic distributed codes for
multilevel sources with zero or almost-zero error probability. The idea is that, if
the source and the side information are dependent, the same codeword (or the same
interval for the arithmetic coding process) can be associated to multiple symbols.
This approach leads to an encoder with a complex modeling stage (NP-hard for
the optimal code, though suboptimal polynomial-time algorithms are provided in
[ZE03]), while the decoding process resembles a classical arithmetic decoder.

In [GMO07] an extension of arithmetic coding (AC), named distributed arith-
metic coding (DAC), has been proposed for asymmetric Slepian-Wolf coding. The
idea is to perform the binary AC process in such a way as to allow the intervals of
symbols “0” and “1” to overlap to some extent. This introduces an ambiguity in the
description of the source, which lowers the codeword bit-rate, and requires a corre-
lated side information signal to be resolved. Moreover, in [GMO09] DAC has been
extended to the case of symmetric distributed coding of two sources at arbitrary
rates within the Slepian-Wolf rate region. A rate-compatible extension of DAC has
been presented in [GMTO08]. Similar concepts have been proposed in [AMGT07],
in which the interval overlap is applied to quasi-arithmetic codes, and [AMGT08],
in which sources with memory are considered.
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32 CHAPTER 1. DISTRIBUTED SOURCE CODING

1.3 Practical implemantation of two syndrome-based
DSC codes

1.3.1 Syndrome-based Convolutional/Turbo coding

The Turbo code we use in the systems in Sections 4.1.1 and 4.3.2 is composed of
two identical (n, k, L) Convolutional codes (Fig. 1.3) separated in parallel by an
N -long interleaver, and the decoding is performed using the syndrome trellis first
described in [RLG07]. Instead of generating parity bits as for the original Turbo
code [GFZ01, GFC04], we give syndrome bits to the decoder.

1.3.1.1 The syndrome trellis

Given the constituent (n, k, L) Convolutional code of the generator matrix G, the
idea in [RG07] is to build the syndrome trellis based on the parity-check matrix H,
s.t. HG = 0. This construction is of low cost in the sense that there is no need to
expand the parity check polynomials matrix (see Equation (1.2)) into a matrix of an
equivalent block code of large dimension. We consider here a numerical example for
easier explanation. Let H be the parity-check matrix of the (3, 1, 4) Convolutional
code; the constraint length of the code is L = 4, n = 3, and n− k = 2. The matrix
is given by:

H =

(
11 15 06

15 12 17

)
(oct)

=

(
1001 1101 0110

1101 1010 1111

)
(bin)

(1.2)

In order to efficiently construct the syndrome trellis, we derive the following
diagram from the binary form of H given in equation (1.2). The boxes in gray
represent the memories (their combined values define the states of the trellis).

Figure 1.2: Block diagram for the computation of the syndrome for the rate 2 : 3 Convolutional
code.

The states of the resulting trellis are determined by the values of the memories
in that diagram. The transition between two states of the trellis is labeled by three
input bits (noted ν1, ν2, ν3) and two output bits (noted σ1, σ2).
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1.3. PRACTICAL IMPLEMANTATION OF TWO SYNDROME-BASED DSC CODES33

1.3.1.2 Encoding using the syndrome trellis

Let x be the binary word of length N that is to be compressed into its (N − K)-
long syndrome sx. The coder splits x into small portions of length n, and feeds the
block diagram in Fig. 1.2 with that information. (n − k)-long syndrome portions
are output. This process is repeated until all the N bits are treated. This process
has a linear complexity with N , and does not need to know explicitly the whole
(N −K)×N -sized parity-check matrix H.

The coding can also be done by multiplying the word to be encoded with the
matrix representation of the code. Therefore, sx = Hx. However, this encoding
solution has a complexity that scales with N2.

1.3.1.3 Decoding of syndrome-based Convolutional codes

In channel coding, the standard algorithms for the decoding of convolutional codes
over the BSC are the Viterbi algorithm [Vit67] and the BCJR algorithm [BCJR74],
from the names of its inventors Bahl, Cocke, Jelinek, Raviv. The Viterbi algorithm
performs the optimal block-wise Maximum a posteriori (MAP):

x̂ = arg max
x:Hx=sx

P(x|y) (1.3)

while the BCJR algorithm performs the optimal symbol-wise MAP:

∀n ∈ [1, N ], x̂n = arg max
xn∈{0,1}

P(xn|y) (1.4)

In asymmetric DSC, when the virtual correlation channel between the corre-
lated sources X and Y is modeled as a BSC, the Viterbi algorithm is recast into a
syndrome-based algorithm that takes into account the syndrome of x by performing
the optimal block-wise MAP

x̂ = arg max
x:Hx=sx

P(x|y, sx) (1.5)

and the BCJR is recast into a syndrome-based algorithm that performs the optimal
symbol-wise MAP:

∀n ∈ [1, N ], x̂n = arg max
xn∈{0,1}

P(xn|y, sx) (1.6)

The decoder, knowing the syndrome sx, looks for the sequence having that syn-
drome which is closest to y in terms of their Hamming distance.

In the work presented here, we decide to always use syndrome-based BCJR for
the decoding. The recurrences for the calculation of the forward state metric, noted
α in the literature, and the backward state metric, noted β, are the same as in
[BCJR74]:

αtj =
∑

i∈{0,1}
α

(t−1)
i · γ(t−1),t

i,j

βti =
∑

i∈{0,1}
γ
t,(t+1)
i,j · β(t+1)

j
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34 CHAPTER 1. DISTRIBUTED SOURCE CODING

where:

� αtj is the forward probability for the source to be in state j at position t;

� βti is the backward probability for the source to be in state i at position t.

Basically, the only change to bring to the original BCJR decoding [BCJR74] is
the calculation of the branch metric, γ.

Let (mt)t=1...τ the sequence of states of the trellis corresponding to a given block
x. Let νn1 be the n input bits and σn−k1 the (n−k) output bits labeling the transition
between the statesmt−1 andmt, as on Fig. 1.2. Let yn1 be the current side information
bits and sn−k1 the current syndrome bits. Let pj be the extrinsic probability P(x̂j =
1), j ∈ [1, N ]. By definition, for a uniform binary source, γ = P(mt,yt|mt−1) is given
by:

γ = δσn−k1 =sn−k1
·
n∏
j=1

(
pδνj 6=yj · (1− p)δνj=yj

·p
δνj=1

j · (1− pj)δνj=0

) (1.7)

where δ is the Kronecker’s symbol (δbool = 1 if bool = true and 0 otherwise).
Because the transitions of the trellis that do not match the received syndrome are

not followed (since δσn−k1 =sn−k1
= 0), the search is actually performed in the coset with

syndrome sx. Note that to compress the source, the syndrome has to be punctured;
that changes the term δσn−k1 =sn−k1

of (1.7) into the following expression:

n−k∏
i=1

((
1

2

)δPct(si)
(δσi=si)

δ
Pct(si)

)
(1.8)

where “Pct(si)” illustrates the information that bit i of the syndrome is punc-
tured. Puncturing the syndrome makes our code rate compatible for other compres-
sion rates.

The first line in the product of equation (1.7) formalizes the information on the
correlation from the side information; note that the process requires prior knowledge
of the BSC parameter p. The second line exploits the extrinsic probabilities.

The expression of the source a posteriori probabilities remain the same as de-
scribed in [BCJR74], ∀j ∈ [1, N ]:

P(xj = 1|y, sx) =
∑

i∈{0,1}
α

(t−1)
i γ

(t−1,t)
ij βtj (1.9)

1.3.1.4 The Turbo-syndrome framework for coding uniform Bernoulli sources

The source X, having realizations x of length N , is mapped into its two syndromes
sx1 and sx2, of length (N −K), s.t. 2·(N−K)

N
= RX , RX ≥ H(X|Y ).

Then the modified BCJR is used for each constituent Convolutional decoder to
estimate x̂, passing iteratively updated extrinsic messages between them, at each
iteration. The Turbo decoding stops when x̂ matches the two syndromes, or when
a maximum number of iterations is reached.
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1.3. PRACTICAL IMPLEMANTATION OF TWO SYNDROME-BASED DSC CODES35

Figure 1.3: Turbo-syndrome scheme for asymmetric coding of correlated sources.

The Turbo decoder does not perform the optimal symbol-wise MAP decoding
(1.4) since its graph contains cycles due to the interleaver. The decoding is sub-
optimal in that sense.

1.3.2 Syndrome-based LDPC coding

The (N,K) syndrome-based LDPC codes that we use in Sections 4.1.2,4.2, 4.3.1
and 4.3.3 are defined by an (N −K)×N parity-check matrix H which is sparse, i.e.
which contains a larger proportion of 0’s than 1’s. The standard syndrome-based
decoding that we present here was first introduced in [LXG02].

1.3.2.1 Factor graph of a syndrome-based LDPC code

The factor graph [KFL01] of an LDPC code (or “Tanner graph” [Tan81]) graphically
represents the relationships between the variables involved in the coding/decoding
process. For an (N,K) code, mapping an N -long word x to its (N − K)-long
syndrome sx, with the side-information y available only at the decoder, and the
error pattern z representing the correlation between x and y, Fig. 1.4 shows the
corresponding factor graph.

Circle nodes represent the variables that are involved in the process. Square
nodes represent the functions linking them.

1.3.2.2 Matrix representation of a syndrome-based LDPC code

The parity-check matrix of the LDPC code reflects the same relationships between
the variables involved in the coding/decoding process. More precisely, the matrix
H = (hmn)m∈[1,(N−K)],n∈[1,N ] can be deduced from the graph of the code (and re-
ciprocally) since ∀m,n, hmn = 1 in the matrix if, and only if, the check node sm is
connected to the variable node xn in the graph.

The construction of the LDPC code corresponds to placing the 1’s in the matrix
according to a given couple of degrees distributions (see next Section).
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36 CHAPTER 1. DISTRIBUTED SOURCE CODING

Figure 1.4: General factor graph on an LDPC code.

1.3.2.3 Degree distribution of an LDPC code

The variable degree distribution Λ(x) =
∑dmaxv
dv=1 λdvx

(dv−1) and the check degree distri-

bution Φ(x) =
∑dmaxc
dc=1 φdcx

(dc−1) completely describe the LDPC code. ∀dv ∈ [1, dmaxv ],
there are λdvN columns of H with dv 1’s, and ∀dc ∈ [1, dmaxc ], there are λdcN rows of
H with dc 1’s. dmaxv and dmaxc stand for the maximum number of 1’s in the columns
and the rows of H.

The optimal degree distribution of LDPC codes is function of their compression
rate N−K

N
. All the codes having the same length and the same degree distribution

achieve the same performance with respect to the Slepian-Wolf bound. These distri-
butions also depend on the channel that models the correlation between the sources
X and Y (i.e. BSC, Gaussian, Laplacian, ...).

An open tool is available on the Internet [ldp], based on density evolution
[RSU01], for finding the best degrees distributions associated to a given code rate,
and theoretically informs on the gap to the SW bound that is incurred. Once the
best degree distribution is found, the matrix H can be built using the Progressive
Edge Growth (PEG) algorithm [HEA05], that we present with more details in Annex
B.1.

1.3.2.4 Encoding with the syndrome-based LDPC code

As for Turbo codes, the encoding can be done by two different ways. First, the
graph of the code can be used; in this case, the value of each resulting syndrome bit
is the modulo-two addition of all the input bits of x connected to it. This encoding
solution has a complexity that scales with N logN . Otherwise, the encoding can
be performed by multiplying x with the matrix H, to yield the syndrome sx =(
sm =

∑N
n=1 hmnxn

)N−K
m=1

; this encoding has a complexity that scales with N2.

1.3.2.5 Decoding of the syndrome-based LDPC code

The standard decoding algorithm (also called sum-product algorithm, or belief prop-
agation) for the syndrome-based LDPC code is proposed by Liveris et. al in [LXG02].
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1.3. PRACTICAL IMPLEMANTATION OF TWO SYNDROME-BASED DSC CODES37

The original sum-product algorithm for general LDPC codes was proposed by Gal-
lager in his Thesis [Gal62]. The aim is to find the best estimate x̂ according to
the symbol-wise MAP (1.6) as for the BCJR. The decoding is sub-optimal from the
presence of cycles in the factor graph of the code. To that end, extrinsic messages
are propagated on the graph in Fig. 1.4. These messages are:

� dxn is the degree of the variable node xn;

� dsm is the degree of the check node sm;

� In, n ∈ [1, N ] are the intrinsic, passed from yn to xn;

� En,e, n ∈ [1, N ], e ∈ [1, dxn] are the extrinsic information, passed from xn on its
e-th edge to the dxn check nodes connected to it;

� Qm,e,m ∈ [1, (N −K)], e ∈ [1, dsm] are the messages passed from sm on its e-th
edge to the dsm variable nodes connected to it;

� En, n ∈ [1, N ] are the a posteriori probabilities, needed for the decision on the
final estimate x̂n.

All these messages are Log-Likelihood Ratio (LLR), they are labeled (in) or (out) if
they come to or from the nodes. For uniform binary sources, the update rules are:

In = (1− 2yn) log

(
1− p
p

)
(1.10)

(1.10) is the best approximation of the general formulation “log
(

P(yn|Xn=0)
P(yn|Xn=1)

]
”. Note

that this calculation requires the a priori knowledge of the parameter p.

E(out)
n,e = In +

dxn∑
k=1,k 6=e

E
(in)
n,k (1.11)

(1.11) is the best approximation of the general formulation “log
(

P(Xn=0|y\n)

P(Xn=1|y\n)

]
”.

Q(out)
m,e = 2 tanh−1

(1− 2sn)
dsm∏

k=1,k 6=e
tanh

Q(in)
m,e

2

 (1.12)

En = In +
dxn∑
k=1

E
(in)
n,k (1.13)

(1.13) is the best approximation of the general formulation log
(

P(Xn=0|y)
P(Xn=1|y)

]
.

Now there remains to decide the final estimated value:

∀n ∈ [1, N ], x̂n =

{
0, if En ≥ 0

1, if En < 0
(1.14)

The decoding consists in the initialization (1.10), and repeating the operations
(1.11), (1.12), (1.13), and (1.14). The decoding stops if one of the three following
conditions are met:

1. Hx̂ = sx;
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38 CHAPTER 1. DISTRIBUTED SOURCE CODING

2. No symbols of x̂ are updated during the decision step (1.14);

3. The maximum number of iterations is reached (100 iterations are a good com-
promise between decoding performance and complexity).

1.4 Models for the correlation channel

We describe two models of binary channels that are the most commonly used models
for representing memoryless channel errors (the Binary Symmetric Channel, BSC)
and infinite memory channel errors (the Gilbert-Elliott, GE, channel).

1.4.1 The Binary Symmetric Channel (BSC)

1.4.1.1 Presentation of the model

The BSC of parameter p ∈ [0, 0.5] is the simplest way to represent distortions intro-
duced by an error-prone transmission channel. It flips the binary input x ∈ {0, 1}
into its complementary symbol with probability p, and it leaves the input bit un-
changed with probability (1 − p) (see Fig. 1.5). The capacity of this channel is
given by CBSC = 1 − H(p), where H is the binary entropy function: H(p) =
−p log(p)− (1− p) log(1− p).

Figure 1.5: The Binary Symmetric Channel of parameter p.

Given a binary source X with entropy-rate [Cov75] H(X), the achievable asym-
metric rate for the decoding of X, given the side-information Y is

H(X|Y) = H(p)− [H(Y)−H(X)] (1.15)

In case X is a uniform Bernoulli source, H(X|Y ) = H(p).

1.4.1.2 Background on BSC parameter estimation for DSC

As described in Sections 1.3.1 and 1.3.2, the decoding of Turbo and LDPC codes
require a priori knowledge of the BSC parameter p. In the literature, see [LXG02] or
[LA05], the BSC parameter is also assumed to be available at the decoder. However,
in practice, it is necessary to estimate this parameter on-line.
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1.4. MODELS FOR THE CORRELATION CHANNEL 39

BSC parameter estimation for channel coding over the BSC In channel coding,
Simons et. al propose an estimator of the BSC parameter in [Sim91, PSM98]. Their
method consists into observing the output of the BSC, and deduce p based on the
assumption that certain finite sequences appear rarely in the input. This method is
only efficient when the source distribution is known.

BSC parameter estimation in the Slepian-Wolf context In the context of DSC,
[GFZ01, ZRS07] propose to estimate p with an expectation-maximization (EM) al-
gorithm. However, no pertinent initialization of the estimate is proposed, while
the estimation accuracy depends on the quality of this initialization, especially for
sources with low correlation (or equivalently, with large p). [FJ09] uses the Log-
Likelihood Ratio, propagated during the Message-Passing of LDPC decoding, to
observe a function of p; this method is only efficient for high correlation between the
sources since the log-likelihoods also depend on the initial value for the estimate.
Particle filtering combined with LDPC codes is used in [CWC09] to iteratively up-
date the estimate p̂; the method can be used to pursue slow changes of p, but it
needs a large number of iterations to converge. The performance of all these methods
[GFZ01, ZRS07, FJ09, CWC09] are closely dependent on the choice of initialization
of p̂, and are only efficient when the sources are highly correlated (or equivalently,
with small p).

1.4.2 The Gilbert-Elliott channel

1.4.2.1 Presentation of the model

The GE is one of the simplest way to represent bursts of errors in an error-prone
transmission channel. It is defined by the switch between a “good” BSC (state G)
of crossover probability pG and a “bad” BSC (state B) with crossover probability
pB, s.t. pG, pB ∈ [0, 1], and pG ≤ pB. The sequence of states of the channel is a
Markovian process with transition probabilities g from B to G and b from G to B.
The diagram for the channel generation is shown in Fig. 1.6

Figure 1.6: The Gilbert-Elliott channel with parameters g, b, pG, pB

Traditionally, the set of parameters of the model is noted θ = {g, b, pG, pB}. The
persistence of the channel memory can be measured using the parameter µ = 1−g−b
[Ell63]; the closer |µ| is to 1, the more persistent are the states.
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40 CHAPTER 1. DISTRIBUTED SOURCE CODING

1.4.2.2 Achievable rates for asymmetric SW coding over the GE channel

Let Z represent the GE channel of parameter θ. Let X and Y be correlated binary
sources of arbitrary distribution. The correlation between X and Y is modeled as
an additive channel with Y = X ⊕ Z. Therefore, the achievable SW bound for
asymmetric coding of X given Y at the decoder is given by:

H(X|Y) = H(Z)− [H(Y)−H(X)] (1.16)

where the entropy-rates [Cov75] of the variables are involved. In case X is a uniform
Bernoulli source, H(X|Y ) = H(Z).

A method to compute the entropy-rate H(Z) of the GE channel has been pro-
posed in the original paper from Gilbert [Gil60], but for practical implementation,
statistical methods were introduced by Loeliger et. al to compute the information
rate for finite state channels [AL01, DLV02]; it consists in generating a long ran-
dom sequence x knowing the input distribution, and the channel output sequence
y is obtained by simulation. The output distribution needs to be evaluated by the
sum-product algorithm.

Lately, Rezaeian showed in [Rez05], based on [MBD89], that the statistical ap-
proach does not require the sum-product algorithm to make an estimation of the
capacity of GE channels; they propose an algorithm that iteratively generates a
Bernoulli random variable Z and modifies the probability of crossover q for that
variable based on the outcome z (realization of Z) in each iteration l, the binary
entropy of the equivalent BSC H(ql) of the random numbers generated by that coin-
tossing method converges in probability to the entropy of the GE channel when l is
large enough.

The algorithm is initialized with q0 = Pθ(z0 = 1) = gpG+bpB
g+b

, which is a function
of the parameters of the model.

The update rule for the crossover probability is given by:

ql(z
l−1
1 ) = v

(
zl−1, ql−1

(
zl−2

1

))
(1.17)

where, assuming that pG < pB, pG 6= 0, pB 6= 1, and q ∈ [pG, pB]}, the function
v(·, ·) is given by:

v(z, q) =


pG + b(pB − pG) + µ(q − pG)

1− pB
1− q

, if z = 0

pG + b(pB − pG) + µ(q − pG)
pB
q
, if z = 1

(1.18)

This study of these two correlation channels ends our litterature review for loss-
less coding of discrete sources using SW coding. Now, we introduce lossy coding of
continuous sources using WZ coding.
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1.5. RATE-DISTORTION FUNCTION FOR CORRELATED CONTINUOUS SOURCES41

1.5 Rate-Distortion function for correlated continu-
ous sources

In the context of lossy compression, the optimal compression is given by a rate-
distortion function. For a given distortion between the original input and its recon-
struction, the minimum compression rate is computed.

1.5.1 The Wyner-Ziv theorem for continuous sources

1.5.2 Formal expression of the rate-distortion function for gen-
eral sources

First, for the compression of a single source (no side-information is needed neither
at the encoder nor at the decoder), the expression of the rate-distortion function
RX(D) is that described by Shannon [Sha59]; more precisely:

RX(D) = min
p(X̂|X):Ep(X,X̂)[d(X,X̂)]≤D

I
(
X; X̂

)
(1.19)

where:

� D is the target distortion;

� X̂ is the reconstructed (estimate of) X;

� d
(
X, X̂

)
is the measure of distortion between X and X̂;

� I
(
X; X̂

)
is the mutual information between X and X̂.

Now, consider that the side-information is available at the encoder and the de-
coder. Suppose that Y is this side-information and X is to be compressed. Then
the rate-distortion function is given by [Ber72]:

RX|Y (D) = min
p(X,Y,X̂):Ep(X,Y,X̂)[d(X,X̂)]≤D

I
(
X; X̂|Y

)
(1.20)

We come to the distributed source coding problem with a fidelity criterion. The
side-information is only available at the decoder. Let Z be a dummy variable that
is conditionally independent of X, and s.t.

∑
z p(x, y, z) = Q(x, y). The expression

of the rate-distortion function is demonstrated in [WZ76] as:

R?
X|Y (D) = min

p(Z,Y,X̂)∈M(D)
[I(X;Z)− I(Y ;Z)] (1.21)

where M(D) is the set of all possible distributions p (x, y, z) s.t.

∃f : Y × Z → X̂ : Ep(X,Y,Z)

[
d
(
X, X̂

)]
≤ D (1.22)

where X̂ = f(Y, Z).
As a corollary of the WZ theorem, Equation (1.21), it is also demonstrated in

[WZ76] that:
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42 CHAPTER 1. DISTRIBUTED SOURCE CODING

RX|Y (D) ≤ R?
X|Y (D) ≤ RX(D) (1.23)

Note that for the case of discrete sources (SW Theorem (1.1)) the equalities
RX|Y (D) = R?

X|Y (D) = H(X|Y ) hold and no rate loss is incurred by the disjoint
encoding. In the next Section, we see under which conditions the same equalities
can hold for continuous sources.

1.5.3 Zero rate loss for distributed coding of particular continu-
ous sources

In his 1978 work [Wyn78], Wyner exhibited the conditions under which the equality
RX|Y (D) = R?

X|Y (D) holds for continuous sources. These conditions are shown to
hold when the sources are jointly Gaussian. In that case, a closed-form expression of
the rate-distortion function is given. More precisely, suppose that X ∼ N(µX , σ

2
X),

Z ∼ N(µZ , σ
2
Z), and Y = X + Z; then:

R?
X|Y (D) = RX|Y (D) =


1

2
log

(
σ2
Zσ

2
X

(σ2
Z + σ2

X)D

)
, if D ∈

]
0,

σ2
Zσ

2
X

σ2
Z + σ2

X

]

0 , if D >
σ2
Zσ

2
X

σ2
Z + σ2

X

(1.24)

Later in 2003, Pradhan et. al [PCR03] state that this equality also holds when
the two correlated sources X and Y have arbitrary distributions, provided that the
difference between them, Z, is Gaussian. This result comes from the information-
theoretic duality between source coding with side information at the decoder, and
channel coding with side information at the encoder.

To reach the rate-distortion bounds involved in the WZ problem, practical so-
lutions consist in quantizing the continuous data, and then use channel codes to
compress their binarized version. This is shown to be optimal in [KB82], in the
sense that it minimizes the distortion, with respect to the other schemes.

1.6 Summary of contributions

In view of the existing work, we now present what our contributions are. This is an
overview of Chapters 3 and 4 in Part II. These contributions are mostly motivated
by the application to DVC (which principle is introduced in Chapter 2).

1.6.1 Source and correlation models

We consider memoryless binary sources that are non-uniformly distributed; the
correlation is modeled as an additive BSC. We show that considerable gain stems
from exploiting the non-uniformity, in terms of the achievable DSC rate bounds, and
we propose DSC codes (based on Turbo and LDPC) that are able to estimate and
to take into account the non-uniformity of the sources. In the DVC experiments, we
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1.6. SUMMARY OF CONTRIBUTIONS 43

show that non-uniform sources are better models for the generated bit planes than
uniform sources.

Similarly, we consider memory binary sources, which are modeled as Gilbert-
Elliott processes [Ell63], i.e. with infinite memory; the correlation is aslo modeled
as an additive BSC. We show that more gain comes from the exploitation of the
memory, using the appropriate DSC decoding. This model appears to be a bet-
ter model than uniform or non-uniform sources, when it comes to modeling the
bit planes generated by DVC codecs. An EM algorithm is proposed for the joint
parameter estimation and source decoding.

When the sources are modeled as non-uniform or GE sources, the conditional
entropies of X and Y are no longer the same, and the additive correlation chan-
nel model is incomplete for the description of the correlation in the DVC setup.
Therefore, we propose another correlation model, called predictive channel. This
model explains the rate loss for the DVC experiments, since exploiting the source
distribution degrades the performance of the DSC codecs when the correlation is
predictive.

For the particular case of Binary Symmetric Channel, we propose an estimation
algorithm that estimates the parameter p before the decoding. The method allows
to have the same performance of the DSC codes, with respect to the distance to
the SW bound that is achieved. This first estimate is then refined using an EM
algorithm.

1.6.2 Tools for DSC

We propose several tools based on syndrome-based DSC codes for different purposes.
First, for asymmetric DSC, we propose DSC codes that are able to exploit the
source distributions (namely non-uniform and GE sources); these codes are able to
differentiate the additive BSC from the predictive BSC. For non-asymmetric DSC,
we propose rate-adaptive DSC codes that can reach any point of the SW bound, for
a given correlation, and adapt to the correlation when it varies; this is done using
accumulated and punctured DSC codes.

Particularly for non-asymmetric DSC, we raise the problem of error propagation
during the decoding. This is observable for any linear code that is based on a
matrix representation. We propose to limit that error propagation by appropriately
designed DSC codes. Moreover, we give necessary and sufficient conditions on the
codes to avoid error propagation.

Finally, for non-uniform sources, we propose a non-asymmetric DSC codec that
is able to exploit the non-uniformity of the sources, while adapting to the additive
and the predictive correlation channel. Necessary and sufficient conditions are also
exhibited for successful recovery of the sources.
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Chapter 2

Notions of Distributed Video Coding

This Chapter constitutes an overview of the existing Distributed Video Coding
(DVC) techniques, and aims at introducing our contributions in this field. To get
some insights about traditional video compression, we begin this Chapter with the
motivation for the development of DVC tools, by presenting the state of the art of
video compression before DVC. Then, we introduce what DVC brings to the domain,
and we formally define the tools behind DVC. We end this Chapter by introducing
our contributions to DVC.

2.1 Motivation for DVC implementation

A video sequence could be perceived as a succession of images (or frames) that give
the impression of movement when put one after another. Therefore, the first video
compression algorithms only compress and decompress the frames independently.
However, a given frame is dependent of the previous one, which implies a large sta-
tistical time (frame to frame) and space (adjacent blocks) redundancy between the
pixels. The aim of video compression is to reduce the video storage and transmission
costs; this is efficiently done by exploiting that correlation. Therefore, the informa-
tion contained in a particular pixel can be predicted by exploiting the information of
pixels from the previous images (inter-frame correlation), and from adjacent pixels
(intra-frame correlation).

MPEG-like compression algorithms perform Discrete Cosine Transform (DCT)
on 8 × 8 blocks of the frames to effectively exploit spatial correlation within the
frames (intra coding). This method is one among others, namely fractals, wavelets,
or matching pursuit. To exploit time correlation, techniques based on Differen-
tial Pulse-Code Modulation (DPCM) have been proposed (inter coding). A clever
combination of intra and inter coding techniques leads to a great data compression
efficiency (hybrid coding).

These traditional techniques are efficient when both the encoder and the de-
coder have access to as much power as needed to perform data analysis and coding.
However, emerging applications are bounded by the encoder’s power restriction for
the compression and large decoder’s power for the decoding; for example mobile
phones which send captured video sequences to a central processor must cope with
the battery life duration, and hence need to perform as less operations as possible

45
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46 CHAPTER 2. NOTIONS OF DISTRIBUTED VIDEO CODING

to improve their power autonomy; such power restriction can be encountered when
dealing with distributed sensor networks.

In order to deal with that low power constraint at the encoder, video compression
has found interests in DSC, to yield the field of DVC. The main concern in DVC is to
reduce the complexity of the encoding, which implies to perform only the most basic
operations at the encoder side. This means in particular that the exploitation of
the correlation is performed at the decoder only. Practical DVC solutions are based
on channel codes, which improves the codec’s resistance to transmission errors, or
prevents error propagation between the frames.

2.2 Distributed video coding solutions

The first practical DVC solution has been proposed by Puri and Ramchandran
[PR02] at Berkeley University, in 2002, under the name Power-efficient, Robust,
hIghcompression, Syndrome-based Multimedia coding (PRISM). In the meantime,
another DVC solution has emerged from the Stanford University [AZG02], designed
by Girod et. al. In the sequel, we focus on a third DVC solution, developed
within the European project Distributed Coding for Video Services (DISCOVER)
[AAD+07, dis], which is based on the Stanford framework, and will be referred to
as the DISCOVER codec in the sequel. All our contributions (namely in Chapter 5)
aim at improving the rate-distortion performance of this last video codec.

2.2.1 Overview of the DISCOVER codec

This Section briefly describes the encoder and the decoder constituents of the DIS-
COVER codec. These constituents are detailed in the next two Sections 2.2.2 and
2.2.3. Fig. 2.1 shows the DISCOVER codec block diagram.

Figure 2.1: Block diagram of the DISCOVER codec.

The encoder first splits the video frames into key frames and WZ frames. The
key frames are conventionally encoded using H264/AVC encoder and transmitted to
the decoder. The WZ frames are first transformed with a Discrete Cosine Transform
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2.2. DISTRIBUTED VIDEO CODING SOLUTIONS 47

(DCT), and the obtained transform coefficients are quantized. The quantized coeffi-
cients are organized into bands, where every band contains the coefficients associated
to the same frequency in different blocks. Then, the quantized coefficients bands are
fed bit plane by bit plane to a SW encoder, which computes their syndromes.

At the decoder, the key frames are first decoded using a conventional video de-
coder. Then a motion compensated interpolation between every two closest key
frames is performed, in order to produce the SI for intermediary WZ frames. Each
WZ frame is split into blocks, which are then DCT transformed. The correlation
channel between the WZ and SI DCT coefficients is approximated by a Laplacian
model. Knowing the side-information and the syndrome bits, the decoder estimates
the transmitted bit planes. If the number of syndrome bits is not sufficient to have a
BER lower than 10−4 at the output of the decoder, more syndrome bits are requested
from the encoder.

2.2.2 The encoding process

2.2.2.1 WZ/conventional video splitting

The successive images of the video sequence are split into Group Of Pictures (GOP)
including one key frame and several WZ frames (Block 1 in the diagram of Fig. 2.1).
The GOP size can be of fixed or variable length, according to the configuration
desired by the user. In case the GOP size is variable, the algorithm proposed by
Ascenso et. al [ABP06] is run to dynamically decide the appropriate length. The
algorithm proposed in [ABP06] proceeds in two steps: first, activity measures are
computed between two consecutive frames, and based on that information, GOP are
formed, with a constraint on the maximum GOP size. Once labeled, the key frames
are intra-encoded using a traditional video encoder (MPEG,H26x/AVC, Block 2),
which exploits only the spatial correlation and does not perform any motion estima-
tion nor memory modeling. The WZ frames are WZ-coded (Block 3) to, eventually,
yield syndrome bits from the SW (Low-Density Parity-Check) LDPC encoder.

2.2.2.2 DCT transform, quantization, and binarization

Each WZ frame of the GOP undergoes DCT transforms on each block of pixels of
size 4×4 (Block 3a), to yield 16 frequency bands grouping the coefficients of the same
frequency. The frequency bands are then quantized (Block 3b). The quantization
level is the same for all the images of the video sequence, and depends on the target
quality for the WZ frames. Next, the quantized DCT coefficients are ordered bit
plane by bit plane (Block 3c) and fed to the LDPC encoder.

2.2.2.3 SW encoding

The SW coding is rate-adaptive with respect to the correlation. The DISCOVER
codec has a collection of LDPC matrices that form a rate-adaptive SW codec; they
are obtained by gradually expanding, see [VAG06], an LDPC matrix of minimum
rate until a square matrix of rate 1 is obtained (in that configuration, one syndrome
bit is transmitted to the decoder for one source bit, Block 3d). A full-rate syndrome
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48 CHAPTER 2. NOTIONS OF DISTRIBUTED VIDEO CODING

is computed for each bit plane, and placed into a buffer (Block 3f). The minimum
number of syndrome bits is then transmitted, and the decoding is performed with
that information, knowing the side-information. The theoretical minimum number
of syndrome bits is estimated from the side-information itself (Block 3e), depending
on the target reconstruction quality of the WZ frames.

2.2.3 The decoding process

2.2.3.1 Side-information extraction

First, the key frames are conventionally decoded (Block 4). Then, the side-information
frame for the current WZ frame is extracted (Block 5) from the two most adjacent
frames (reference frames, XB and XF . If the GOP is of size 2, the reference frames
are the key frames directly before and after the WZ frame. If the GOP is larger, the
reference frames are chosen as indicated in [ABP06]. More precisely, a motion esti-
mation algorithm is run between the low-pass-filtered versions of XB and XF , so as
to minimize a criterion that is expressed in [ABP06]; the low-pass filter is to reduce
the perturbation from the noise that could deteriorate the resulting motion vectors,
even for a relatively large search window (±32 pixels). The obtained bidirectional
motion vectors between XB and XF are exploited to generate the side-information
(SI) frame Y for the WZ frame, that is the best estimate of the WZ frame so far.
Each pixel s of the SI is computed as follows:

Y (s) =
tFXB(s + uB) + tBXF (s + uF )

tF + tB
(2.1)

where (uB,uF ) is the vector associated to the block containing pixel s; and tB, tF
are the distances between the WZ frame and the frames XB, XF respectively, when
the GOP size is 2, tF = tB = 1.

2.2.3.2 Correlation channel modeling

The side-information image undergoes the same process as the WZ frame (Section
2.2.2.2) to yield the associated DCT transform coefficients (Block 7a). In the DIS-
COVER codec, the difference between the WZ coefficients and the SI’s coefficients
is modeled as a Laplacian channel (such a modeling is motivated by the analysis
shown in [AZG02]). However, as the WZ frame is not available at the decoder,
the Laplacian parameters needed for the decoding of the WZ frame are estimated
on-line directly from the residual R (2.2) (Block 6). In the following, we describe a
precise modeling of the Laplacian channel at the coefficient level.

First, the pixel s of the “residual” frame R is calculated, given the motion vector
u = (uB,uF ), as:

R(s) =
XB(s + uB)−XF (s + uF )

2
(2.2)

Once the 16 frequency bands Rk, k ∈ [1, 16] are formed from R, let rk,i be the
i-th coefficient of the band k, of size Nk. Let µ|k| =

∑
i |rk,i|. The variance σ2

|k| of
the absolute values of the coefficients is thus given by:
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2.2. DISTRIBUTED VIDEO CODING SOLUTIONS 49

σ2
|k| = E

[
|rk,i − µ|k||

]2
=

1

Nk

Nk∑
i

[
|rk,i − µ|k||

]2
(2.3)

Therefore, for the band k, the parameter αk of the Laplacian model is given,
depending on the obtained value of |rk,i|, by:

α̂k,i =



α̂k =

√
2

σ2
k

, if
[
|rk,i − µ|k||

]2
≤ σ2

|k|√√√√√ 2[
|rk,i − µ|k||

]2 , if
[
|rk,i − µ|k||

]2
> σ2

|k|

(2.4)

where σ2
k is the variance of the coefficients rk,i.

An alternative to the Laplacian correlation model is introduced in [BKW08]
to capture occlusions and objects introduction in the scene (Gaussian-Bernoulli-
Gaussian channel), or when the camera is moving (Gaussian-Erasure channel). The
authors exhibit the bounds on the rate-distortion functions for both models.

2.2.3.3 Rate-adaptive SW decoding

The LDPC decoding that is performed here is the Belief Propagation described in
Section 1.3.2.5, but the correlation channel is no longer a BSC, but results from the
combination of Laplacian channel, the quantization and the binarization processes
(see Section 2.2.2.2). Given the subset of syndrome bits received from the syndrome
buffer (Block 3f), the LDPC decoder tries to recover the current bit plan (Block
8a). If the decoding fails (this decision is taken in Block 8b), the decoder requests
for more syndrome bits and tries again. This goes on until the decoded bit plane
is well estimated (the criteria for such good decoding are enumerated in Section
1.3.2.5). The less the frames are correlated, the more syndrome bits are requested.
Note that, when all the syndrome bits are transmitted, the WZ and the SI bands
are not correlated.

The search for the minimal rate to begin the rate adaptive decoding is crucial
for the SW codec, since sending the minimum syndrome bits possible incurs a large
number of requests, which increases the decoder’s complexity. A first approach is
described has been proposed in [Laj06] that is based on the WZ bound of each bit
plane, taking into account the distortion in the reconstruction. Later, in [Kub08], a
better lower bound of the minimum rate is computed based on the SW bound. This
latter method is better since it provides a lower rate bound that is closer to the final
rate of the rate-adaptive decoding. In the following, we briefly describe the method
in [Kub08].

The aim is to estimate an average crossover probability p̂cr for the whole bit
plane b. The indicator function of the crossover event is given by:

Icr =


1, if xbk,i 6= arg max

t∈{0,1}
Epy|xk,i

[
P
(
xbk,i = t|ybk,i, x1

k,i, x
b−1
k,i

)]
0, otherwise

(2.5)
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50 CHAPTER 2. NOTIONS OF DISTRIBUTED VIDEO CODING

where xbk,i is the i-th bit of the bit plane b of the coefficient band k, and ybk,i is the
corresponding SI.

It is shown that the average crossover probability of the bit plane is given by:

p̂cr =
1

N

∑
i

Icr(xk,i) (2.6)

where N is the size of the bit plane.
The minimal theoretical rate is then estimated as:

Rmin = −pcr log(pcr)− (1− pcr) log(1− pcr) (2.7)

that is the entropy H(pcr) of a virtual BSC which crossover probability is equivalent
to that implied by the correlation channel.

2.2.3.4 Inverse quantization, reconstruction, and multiplexing

Once all the decoded bit planes of the current frame are available, inverse quan-
tization is performed to yield estimates of the quantized DCT coefficients. A re-
construction algorithm is then run on these quantized versions to yield estimates of
the original coefficients (Block 8c); in the DISCOVER codec, this reconstruction is
performed according to the optimal algorithm for the Laplacian model. More pre-
cisely, let xk,i be the current coefficient to be decoded and yk,i the side-information
available at the decoder, let [l, u) be the quantization interval for xk,i, let γ = yk,i− l,
δ = u− yk,i, and ∆ = u− l. Then the optimal estimator for xk,i is given by:

x̂k,i =



l +
1

α̂k,i
+

∆

1− eα̂k,i∆
, if yk,i < l

yk,i +

(
γ + 1

α̂k,i

)
e−α̂k,iγ −

(
δ + 1

α̂k,i

)
e−α̂k,iδ

2− (e−α̂k,iγ + e−α̂k,iδ)
, if yk,i ∈ [l, u)

u− 1

α̂k,i − ∆

1−eα̂k,i∆
, if yk,i ≥ u

(2.8)

The proof for the optimality of this reconstruction (2.8) is given in [KNG07]. The
WZ decoding ends with applying inverse DCT transform to the obtained coefficients
to yield the reconstructed WZ frames. Finally, appropriately multiplexing the key
and the WZ frames yields the complete video sequence.

2.3 Summary of contributions

Our work on DVC, presented in Chapter 5, aims at improving the rate-distortion
performance of the existing DVC codec DISCOVER. To that end, we study the
binary distribution of the bit planes that are generated during the encoding step,
before the syndromes are computed by the SW encoder. More precisely, we show that
these bit planes can be viewed as realizations of Bernoulli or Hidden Markov sources,
and we modify the SW decoder in order to take into account their distribution.
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2.3. SUMMARY OF CONTRIBUTIONS 51

2.3.1 Non-uniform source modeling

In the first part of Chapter 5 (Section 5.1), we show that the bit planes can be
modeled as realizations of non-uniform Bernoulli sources, which parameters differ
from bit plane to bit plane, and need to be estimated on-line. This first model is
presented in more details in Section 3.1. Then, we use the tools based on LDPC
codes, presented in Section 4.1.2, to implement them in the existing DISCOVER
codec. Finally, we show that considerable gain is observed when modeling the video
bit planes that way. However, there is an issue, since almost all the bit planes follow
some non-uniform Bernoulli distribution, but no rate gain is observed for many of
them. Such a phenomenon is explained in Sections 3.3 with the introduction of the
predictive correlation channel, and 5.1.2.4 with its analysis for the coding of video
bit planes.

2.3.2 Hidden Markov source modeling

The second part of Chapter 5 is dedicated to the study of modeling the bit planes
as independent realizations of hidden Markov sources (Section 5.2). We analyze the
burst length distributions of the bit planes, and we show that those burst lengths are
more likely observed from GE sources than Bernoulli sources, or uniform sources.
Strengthened by that result, we use the tools presented in Section 4.2 for the SW
coding of GE sources, to implement them in lieu of the standard channel decoding
performed by the original DISCOVER. We show that the predictive correlation
channel also applies for the GE model. We show that this modeling is more effective
than non-uniform sources, or “simple” Markov sources.

For both the non-uniform and the hidden Markov source modeling, the extra
decoding cost involved by the parameter estimation remains negligible, with respect
to the improvement in terms of rate-distortion performance. The improvement is up
to 5.7% for the non-uniform source modeling, and it is up to 10.4% for the hidden
Markov modeling.te
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Chapter 3

Source and correlation models for
DSC

In this chapter, we first propose two source models (In Sections 5.1.1 and 5.2.1,
we will show that these models are well suited for the bit planes generated by
the DISCOVER codec), namely non-uniform Bernoulli source in Section 3.1, and
Gilbert-Elliott (GE) [Gil60, Ell63] source in Section 3.2. We formally and empirically
show the compression rate gain that can be achieved for these models, compared to
the compression rate achieved for uniform sources. Then, we investigate two models
for the Binary Symmetric Channel (BSC), in Section 3.3, that are used to model the
correlation between correlated binary sources, namely additive and predictive BSC.
We show that the expected gain from the two source models is only true when the
BSC is additive, and some loss is always observed if a mismatch between these two
models occurs during the decoding. We also present a simple and optimal method for
the BSC parameter estimation, when the sources are coded with a syndrome-based
DSC code. The estimation is independent of the source distribution and can be
performed prior to decoding (Section 3.4). The method is based on the probability
of observing ones in the syndromes of the sources.

3.1 Non-uniform source modeling

All DVC codec implementations often assume the binary distribution of the bit
planes to be uniform, which is actually far from being the case (as we will see in
Section 5.1). In this Section, we introduce the theory behind the non-uniform mod-
eling of the binary sources and show that, interestingly, the achievable compression
rates are lower than that of uniform sources. This implies that a given DSC code
can successfully decode correlated non-uniform sources when the correlation is lower
(with respect to the case when the source is uniform). In Sections 4.1.1 and 4.1.2,
we describe the modifications to add to existing DSC codes to take into account the
non-uniformity of the source.

55
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56 CHAPTER 3. SOURCE AND CORRELATION MODELS FOR DSC

3.1.1 The non-uniform source model in the asymmetric DSC

Let the notation “X ∼ B(pX)” denote a binary variable, Bernoulli distributed, with
parameter pX = P(X = 1). In asymmetric DSC, a second source Y , with realization
y, is correlated to X and available at the decoder. The correlation is modeled as
a virtual (X, Y, p) additive BSC as defined below. The BSC is the most commonly
used correlation channel when dealing with correlated binary sources. The input
symbols are flipped with “cross-over” probability p.

Definition 3.1. An (X, Y, p) additive BSC is a channel with binary
input X, binary output Y . The noise Z ∼ B(p) is independent of
the channel input, and the channel output is obtained by Y = X⊕Z.

In DSC, the achievable lower bound depends not only on the correlation between
X and Y , but also on their respective distributions. Let X ∼ B(pX) and Y ∼ B(pY ).
Let Z be the noise, modeled as a BSC. First, when the source X is uniform, i.e.
pX = 0.5, the source Y is also uniform, and

H(X) = H(Y ) = 1

H(X|Y ) = H(Y |X) = H(Z) = H(p)
(3.1)

Now, consider that X is non-uniform (i.e. pX 6= 0.5). Then Y is also non-
uniform. We claim the following result to characterize the rate gain that is expected
when the BSC is additive.

Claim 3.1. Let X ∼ B(pX) and Y ∼ B(pY ) be two correlated
sources, where the correlation is modeled as a virtual (X, Y, p) addi-
tive BSC. We consider the asymmetric distributed problem, where
Y is available at the decoder and compressed at its entropy H(Y )
and X is compressed at its conditional entropy H(X|Y ). If the
source X is non-uniform, the compression rate for X is reduced by
H(Y ) − H(X) ≥ 0 compared to the compression rate achieved for
uniform sources.

Proof. Since the BSC is additive, ∃ Z independent of X s.t. X ∼ B(pX) and
Y = X ⊕ Z. Then the non-uniformity of Y is characterized by the parameter
pY = pX(1− p) + (1− pX)p, with pY nearer to 0.5 than pX . The concavity of H(·)
implies H(Y ) ≥ H(X). Moreover H(X|Y ) = H(Z) − [H(Y ) − H(X)] since Z is
independent of X. Since H(Y ) − H(X) ≥ 0 (with equality iff the source X is
uniform), the non-uniformity of X reduces the lower bound H(X|Y ), and the rate
gain is H(Y )−H(X).

3.1.2 Compression rate gain

We consider three Bernoulli sources of respective parameters pX = {0.5, 0.2275, 0.15},
and we compare in Fig. 3.1 the minimum achievable rates H(X|Y ) for each source,
for the BSC parameter p ∈ ]0, 1[.

It is clearly shown that the minimum achievable rates decrease when the source
parameter is further from 0.5, i.e. the non-uniformity increases, for any value of
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3.2. GILBERT-ELLIOTT SOURCE MODELING 57

Figure 3.1: Minimum achievable rates for distributed coding of three non-uniform sources, for
p ∈ [0, 1].

p. Therefore, one can achieve lower compression rates when coding non-uniform
sources, with respect to the compression rates achievable for uniform sources.

3.1.3 Non-uniform source parameter estimation

Let X ∼ B(pX), and let x = xN1 be its realization of length N . We want to estimate

pX from the observation of x only. From [Kay93, Theorem 5.1],
N∑
n=1

xn is a sufficient

statistic for the estimation of pX ., and the Minimum Variance Unbiased (MVU)
estimator of pX , with respect to x, is:

p̂X =
1

N

N∑
n=1

xn (3.2)

3.2 Gilbert-Elliott source modeling

Now we investigate memory sources where the memory is spread over the entire
sampled data. More precisely, the sequence of symbols is generated by a Hidden
Markov Model (HMM): the two-state Gilbert-Elliott (GE) process [Ell63]. The
probability of a given symbol is dependent only on the current state. The GE channel
was investigated by Garcia-Frias [GF04] as a model for the correlation between X
and Y and the decoding of Low-Density Parity-Check (LDPC) codes over the GE
channel is also shown; here, we use it as a model for the source. We show here that a
considerable gain results by exploiting the memory in the data and this gain is even
greater than exploiting only the non-uniformity of the source (as in Section 3.1). The
estimation of the GE channel parameters was carried out by [MBD89]. We propose
the estimation of the model parameters using an Expectation Maximization (EM)
algorithm [Rab89]. This memory source model is motivated by the DVC application;
we will show that the proposed source model fits to the generated video bit planes
(Section 5.2), and we will propose a modified LDPC-based EM algorithm to decode
the memory source (Section 4.2).
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58 CHAPTER 3. SOURCE AND CORRELATION MODELS FOR DSC

3.2.1 The hidden Markov source model in the asymmetric DSC

Let Σ be a finite Markovian process with memory order one, having two realizations
(called states) 0 and 1. Let X be a binary source which is dependent on the
underlying and persistent Markov state process Σ. In each state 0 and 1, the source
is drawn according to a Bernoulli law of parameter p0 and p1 respectively (Fig 3.2).

Figure 3.2: Diagram for the GE source modeling.

We define the transition probabilities t00, t01, t10 and t11, between the states, as
shown in Fig. 3.2. Since t00 = (1− t01) and t11 = (1− t10), the set of parameters of
the model is θX = (p0, p1, t10, t01). These parameters are formally defined by:

p0 = PθX (Xn = 1|Σn = 0)

p1 = PθX (Xn = 1|Σn = 1)

t10 = PθX (Σn = 0|Σn−1 = 1)

t01 = PθX (Σn = 1|Σn−1 = 0)

(3.3)

where Σ = ΣN
1 is an N -long state sequence, and σ = σN1 = {0,1}N is its realization.

These equations lead to the following property of the source:

Property 3.1. ∀n ∈ [1, N ], given the state Σn, Xn is a memoryless
Bernoulli process of parameter pXn = PθX (Xn = 1|σn), where pXn =
p0 if σn = 0, and pXn = p1 if σn = 1.

In DSC, a second source Y with realization y is correlated to X, where the
correlation is modeled as a virtual BSC with parameter p. We assume that Y =
X ⊕ Z, with P(Y 6= X) = P(Z = 1) = p. Given the characteristics of the model,
we state the following Lemma 3.1 which characterizes the GE nature of the side-
information Y .

Lemma 3.1. Let X be a binary source drawn by a GE process of
parameter θX = (p0, p1, t10, t01). Σ denotes the underlying hidden
process generating X. Let Y be a source correlated to X according
to the additive channel model Y = X ⊕ Z, where Z is a binary
process.
If the correlation noise Z is a (memoryless) Bernoulli process of
parameter p, then Y is a GE source with the same underlying state
process Σ.
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3.2. GILBERT-ELLIOTT SOURCE MODELING 59

Proof. When conditioned on the state process Σ, the source X is memoryless accord-
ing to Property 3.1. Since Z is memoryless too, the source Y is memoryless when
conditioned on the same state process Σ. More precisely, ∀n ∈ [1, N ], given the state
Σn, Yn is a memoryless Bernoulli process of parameter pYn = pXn(1−p)+(1−pXn)p,
where pXn is described in Property 3.1. Therefore Y is a Gilbert Elliott source with
the same state process as for X.

We now turn back to the asymmetric DSC problem, where Y is available at
the decoder only. As the sources have infinite memory, X can be compressed at
its conditional entropy-rate [Cov75] H(X|Y) = lim

N→∞
1
N
H(X|Y). Here, H(X|Y) =

H(Z) − [H(Y)−H(X)]. The entropy-rates H(X) and H(Y) of the correlated GE
sources can be efficiently estimated with the statistical-based algorithm described in
[Rez05].

3.2.2 Entropy estimation for a Gilbert-Elliott source

The estimation of the entropy of a GE source X is similar to the problem of esti-
mating the capacity of the equivalent GE channel Z, having the same parameters,
which has been further investigated in the literature. This has been presented in
Section 1.4.2.2.

These algorithms only require the knowledge of the parameter θ. As the algo-
rithm in [Rez05] yields good results and remains of low complexity, we have used it
to estimate the entropy-rates of the GE sources: H(X) and H(Y).

3.2.3 Compression rate gain

Let the notation “X ∼ GE(θX)” denote a binary variable which is drawn according
to the GE process, with parameter θX . The correlation between X and Y is modeled
as a virtual (X, Y, p) additive BSC as defined is Section 3.1.1. We characterize in
Lemma 3.2 the rate gain that is expected for the compression of the GE source X
in the DSC setup, with respect to the compression rate of a uniform source.

Lemma 3.2. Let X and Y be two correlated sources, where the
correlation is modeled as a virtual (X, Y, p) additive BSC.
If the source X is not uniform, the minimum coding rate for X is
H(X|Y) = H(Z)−[H(Y)−H(X)]. Since H(Y)−H(X) ≥ 0, H(X|Y)
is reduced by H(Y) − H(X) compared to the minimum coding rate
H(X|Y) = H(Z) for a uniform source.

Proof. Since the BSC is additive, ∃ Z independent of X s.t. Y = X ⊕ Z. If X is
uniform, so is Y , and H(X|Y) = H(Z).

Now, consider the case of an arbitrary process X. On the one hand we have
H(X) = H(X ⊕ Z|Z), and on the other hand we have H(Y) = H(X ⊕ Z); this
implies H(X) ≤ H(Y). The conditional entropy-rate of the source X is computed
as H(X|Y) = H(Z) − [H(Y)−H(X)], since the noise Z is independent of X. As
H(Y)−H(X) ≥ 0 (with equality if, and only if, the source X is uniform), the lower
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60 CHAPTER 3. SOURCE AND CORRELATION MODELS FOR DSC

transmission rate bound H(X|Y) is lower than that of a uniform source, and the rate
gain is given by H(Y)−H(X).

Fig. 3.3 shows the theoretical rates H(X|Y) that can be achieved for the param-
eter θX = (t10 = 0.03, t01 = 0.01, p0 = 0.07, p1 = 0.7), when p varies in ]0, 1[, and
the BSC is additive. The achievable coding rate decreases when X is GE source,
with respect to the rate of a uniform source. Therefore, knowing the GE source
distribution, one can achieve higher compression rates using the same DSC code.

Figure 3.3: Comparison of the source conditional entropies, when X is uniform and when X is
a GE process.

The LDPC-based decoder that we present in Section 4.2 is conceived to reach
the theoretical bound in Fig. 3.3, by iterative update of the source parameters and
the states values.

3.2.4 Parameter estimation for GE sources: The Baum-Welch
algorithm

The Baum-Welch algorithm is an iterative maximization algorithm that aims at
estimating the parameters of a Hidden Markov process, when the realization symbols
of the process are observed. Here, we use it for the parameter estimation of the
Gilbert-Elliott process. The aim is to find the best estimates θ̂X and σ̂x of θX
and Σx, given the N -long realization vector x. This is a particular case of the
Expectation-Maximization (EM) algorithm [Rab89]. The maximization problem can
be formulated as:

(σ̂x, θ̂X = arg max
(σx,θX)

PθX (x, σx) (3.4)

No expression of the solution to that problem can be formally expressed, the best
solution should be found by testing all the values θX ∈ ]0, 1[4 and Σx ∈ {0,1}N ; that
exhaustive search is too complex to implement, and the solution would depend on
the step adopted to sweep the interval ]0, 1[ for θX . Instead, we make progressively
precise estimation of the parameters based on the mean log-likelihood function. Let
l be the label of the current iteration of the algorithm. Then, the new estimate θl+1

X

is produced given the previous estimates θlX and Σl
x.

θl+1
X = arg max

θX
EΣx|X,θlX

log (PθX (x, σx)) (3.5)
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3.2. GILBERT-ELLIOTT SOURCE MODELING 61

As side products, we also produce the new estimate ˆΣl+1
x for the current EM itera-

tion.
Since log(·) is a strictly increasing function, the value θ̂X that maximizes PθX (x, σx)

also maximizes log (PθX (x, σx)). The final estimates θ̂X and Σ̂x are obtained after
an arbitrary number of iterations, when the algorithm has converged, or when a
maximum number of iterations has been reached.

The algorithm is composed of two steps: the Expectation (E-step) and the Max-
imization (M-step). The E-step consists into finding the expression for the mean
log-likelihood function, and the M-step consists into updating the parameters given
the observed data and the current estimates of the parameters.

3.2.4.1 E-step: Computation of the mean log-likelihood function

We first expand the likelihood function using the Bayes rule:

PθX (x, σx) = PθX (x|σx)PθX (σx) (3.6)

Now, given that the source symbol xn only depends on the current state σn, and
given that the states are drawn from a Markov process of order one, the expression
(3.6) van be expanded to:

PθX (x, σx) = PθX (σ1)
N∏
n=1

PθX (xn|σn)
N∏
n=2

PθX (σn|σn−1) (3.7)

Substituting the expressions given by Equation (3.3) in each term of the product
in Equation (3.7), we obtain:

PθX (x, σx) = PθX (σ1)
N∏
n=1

1∏
i=0

p
δσn=i,xn=1

i (1− pi)δσn=i,xn=0

N∏
n=2

1∏
i=0

1∏
j=0

t
δσn−1=i,σn=j

ij (3.8)

where δ represents the Kroenecker’s symbol δbool =

{
1, if bool = true

0, otherwise
.

Taking the logarithm of this expression (3.8), we obtain:

log (PθX (x, σx)) = log (PθX (σ1)) +
N∑
n=1

1∑
i=0

δσn=i,xn=1 log(pi) + δσn=i,xn=0 log(1− pi)

+
N∑
n=2

1∑
i=0

1∑
j=0

δσn−1=i,σn=j log(tij)

(3.9)
Now, we take the expectation of the logarithm 3.9, to obtain the mean log-

likelihood function EΣx|X,θlX
log (PθX (x, σx)). Instead of writing down the whole ex-

pression, we just notice that we only have to express the expectation of the δ′s.
∀n ∈ [1, N ],∀i, j ∈ {0,1},∀k ∈ {0, 1}

EΣx|X,θlX
δσn=i,xn=k = δxn=kPθlX (Σn = i)

EΣx|X,θlX
δσn−1=i,σn=j = PθlX (Σn−1 = i,Σn = j)

(3.10)
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62 CHAPTER 3. SOURCE AND CORRELATION MODELS FOR DSC

3.2.4.2 M-step: Update rules for the parameters

The maximization of the mean log-likelihood function EΣx|X,θlX
log (PθX (x, σx)) has

to be performed under the following constraints. ∀i, j ∈ {0,1}:

pi ∈ [0, 1], and tij ∈ ] 0, 1 [ , and
∑

j∈{0,1}
tij = 1

Using Lagrange multipliers, we derive the update rules for the parameters. ∀i, j ∈
{0,1}:

pl+1
i =

N∑
n=1

PθlX (Σn = i|x)δxn=1

N∑
n=1

PθlX (Σn = i|x)

tl+1
ij =

N∑
n=2

PθlX (Σn−1 = i,Σn = j|x)

N∑
n=2

PθlX (Σn = i|x)

(3.11)

Here, we see that the computation for the next parameter θl+1
X needs the a

posteriori values of the states probabilities PθlX (Σn = i|x) and PθlX (Σn−1 = i,Σn =

j|x). Those quantities can be found using a forward-backward algorithm which aims
at estimating the state sequence σ given the source realization x.

3.2.4.3 Forward-Backward algorithm for the states probabilities

The choice of the forward-backward algorithm is motivated by the Markovian struc-
ture of the states Σ. Here, the probabilities of (Σ)Nn=1 are updated according to the
values of the current estimate θlX . The aim is to compute:

PθlX (Σn = i|x) =
PθlX (Σn = i,x)

PθlX (x)

PθlX (Σn−1 = i,Σn = j|x) =
PθlX (Σn−1 = i,Σn = j,x)

PθlX (x)

(3.12)

To that end, we decompose the following expression, to retrieve the equations
corresponding to the forward-backward recursions:

PθlX (Σn = i,x) =
∑

j∈{0,1}
PθlX (Σn = i,Σn+1 = j,x)

=
∑

j∈{0,1}
αni · γ

n,(n+1)
i,j · β(n+1)

j

(3.13)

The forward-backward algorithm is run on the trellis shown in Fig. 3.4, which
states are the same states 0 and 1 generating the source symbols, with two branches
between the states, labeled by the two values xn = 0 and xn = 1. We define
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3.2. GILBERT-ELLIOTT SOURCE MODELING 63

γ
n,(n+1)
i,j =PθlX (xn|Σn = i) · PθlX (Σn+1 = j|Σn = i)

αnj =
∑

i∈{0,1}
α

(n−1)
i · γ(n−1),n

i,j

βni =
∑

i∈{0,1}
γ
n,(n+1)
i,j · β(n+1)

j

(3.14)

where:

� γn,(n+1)
i,j is the transition probability between the states i at position n and j at

position (n+ 1).

� αnj is the forward probability for the source to be in state j at position n;

� βni is the backward probability for the source to be in state i at position n.

Figure 3.4: Trellis of the Markovian process Σ, on which the forward-backward algorithm is run.

Now we define the states APP:

PθlX (Σn = i,x) = αni · βni
PθlX (Σn−1 = i,Σn = j,x) = α

(n−1)
i · γ(n−1),n

i,j · βnj
(3.15)

Normalizing PθlX (σn,x) and PθlX (σn−1, σn,x), we get PθlX (σn|x) and PθlX (σn−1, σn|x).

Decision

∀n ∈ [1, N ]σ̂n =

1, if PθlX (σn = 1|x) ≥ 0.5

0, otherwise
(3.16)

3.2.4.4 Precision of the Baum-Welch algorithm

In this section, we assess the reliability of the Baum-Welch algorithm. We consider
a Gilbert-Elliott source, having the parameters θX = {t10 = 0.03, t01 = 0.01, p1 =
0.7, p0} where p0 ranges from 0 to 1. The algorithm is initialized with the values
θ0 = {t010 = 0.1, t001 = 0.1, p0

1 = 0.51, p0
0 = 0.49}, the parameters are assumed to

be well estimated when their variation is under 1
N

, and the maximum number of
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64 CHAPTER 3. SOURCE AND CORRELATION MODELS FOR DSC

iterations is 100. For each value of p0, 104 blocks of length N = 1584 are tested
(that is the same block length as the video bit planes in the DVC experiments). The
results are shown in Fig.3.5.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4
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0.7

0.8
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p0

θ

 

 

p1 = 0.7

p0∈[0,1]
t01 = 0.01
t10 = 0.03
Estimated t01
Estimated t10
Estimated p0
Estimated p1

Figure 3.5: Estimated values of the parameters, obtained with the Baum-Welch algorithm for
N = 1584 when p0 varies from 0 to 1.

As plotted in Fig. 3.5, the algorithm is stable when p0 remains low in compar-
ison to p1 (p0 ∈ ]0, 0.4[) and when p0 is big in comparison to p1 (p0 ∈ ]0.9, 1[).
The algorithm is less and less able to distinguish the states when their Bernoulli
parameters become similar (p0 ∈ [0.4, 0.9]), so the estimated values are far from the
real parameters. In particular, when p0 = p1 = 0.7, the algorithm cannot distin-
guish the states and the transitions within the source realization, so the transition
probabilities remain at their initialization values (t10 = t01 = 0.1). When p0 > p1,
the roles taken by the two states are permuted: 0 is estimated as 1, and vice versa.
This comes from the initial values of the parameters which impose that p1 > p0.

3.2.4.5 Convergence speed of the Baum-Welch estimator

Here, we want to assess the minimal number of Baum-Welch iterations to obtain
acceptably good estimates of the parameters. To that end, we show in Fig. 3.6 the
behavior of the algorithm with the iterations. We test the same parameter values
θ = {p0, p1 = 0.7, t10 = 0.03, t01 = 0.01} as in Fig. 3.5. The are attributed one color
each, and their estimates are attributed the same color in an increasingly stronger
tone for more iterations. The results for 5 steps are shown: 5 iterations, 10 iterations,
20 iterations, and 200 iterations.

What is obvious from Fig. 3.6 is the more the states are similar the more iterations
are needed to obtain good enough estimates. 10 iterations are large enough when
p0 ≤ 0.05 and 20 iterations for p0 ≤ 0.2. When p0 is in the close neighborhood of
p1, even 200 iterations are not sufficient for the algorithm to converge to the right
values.
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Figure 3.6: Convergence speed of the Baum-Welch algorithm for the estimation of the GE source
parameters. The results are shown for 5 iterations, 10 iterations, 20 iterations, and 200 iterations.

In our experimental tests, we decide to test, at each iteration, if the parameters
change in a significant way; otherwise, we decide that the algorithm has converged
to the final estimates. Practically, we fix the change threshold to be 1

N
for a source

sequence of length N bits, with 100 maximum number of iterations.

3.2.4.6 Influence of the initialization values

In this Section, we justify our choice for the initialization of the Baum-Welch al-
gorithm at the values θ0 = {p0

0 = 0.49, p0
1 = 0.51, t010 = 0.1, t001 = 0.1}. To

that end, we test several values for p0
0 and p0

1 to estimate the true parameters
θ = {p0, p1 = 0.7, t10 = 0.03, t01 = 0.01} (as the test conditions in Fig. 3.5). As the
values of t10 and t01 need to be small to observe persistence of the states, we leave
their initial values t010 and t001 at 0.1. As a principle, we decide that p1 ≥ p0, then
the same order needs to be followed by their initial values. Therefore, we assess
the performance of the estimator for the initial values {p0

0 = 0.1, p0
1 = 0.9} and

{p0
0 = 0.4, p0

1 = 0.6}; the results are respectively shown on the left and the right in
Fig. 3.7.

We observe that the two initial values incur very different performances of the
same algorithm. However, taking into account the performance in Fig. 3.5, the two
initial values tested in Fig. 3.7 are not better ones. That is why we decide to use the
initial values θ0 = {p0

0 = 0.49, p0
1 = 0.51, t010 = 0.1, t001 = 0.1} in all our experiments

with GE sources.

3.3 On the predictive Binary Symmetric Channel

In the previous Section, we presented the additive BSC, in which the noise Z that
is produced by the channel is independent of the input X, and the side-information
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Figure 3.7: Influence of the initial values of the parameters.

is obtained by Y = X ⊕ Z. We showed that considerable gain was expected when
coding the two correlated sources X and Y , with respect to the case where X and Y
are uniform. However, when it comes to coding the bit planes produced by a DVC
system, the additive correlation model is not always true. Therefore, we introduce
a novel correlation model called “predictive” correlation model.

3.3.1 Definition of the predictive BSC

Definition 3.2. An (X, Y, p) predictive BSC is a channel with bi-
nary input X, binary output Y . The noise Z ∼ B(p) is independent
of the channel output s.t. X = Y ⊕ Z.

This model corresponds to the case where Y represents a prediction of X. Z is
therefore an innovation noise independent of Y . The introduction of the predictive
channel is motivated by the DVC application. In this context, X represents the
current image to be compressed and Y represents the prediction of X based on
previous and future images obtained at the decoder. Therefore, the noise Z is an
innovation noise and is more likely to be independent of Y than of X. Unfortunately,
for a predictive channel the compression rate for X does not reduce as the non-
uniformity of X increases.

In Section 5.2.3, we will show the accuracy of this predictive correlation model
for the DVC application.

3.3.2 Achievable coding rate for non-uniform sources

Let X ∼ B(pX) and Y ∼ B(pY ) be two correlated Bernoulli sources. When the
correlation is modeled as a predictive channel, we get the following result for the
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3.3. ON THE PREDICTIVE BINARY SYMMETRIC CHANNEL 67

distributed asymmetric coding:

Claim 3.2. Let X ∼ B(pX) and Y ∼ B(pY ) be two correlated
sources, where the correlation is modeled as a virtual (X, Y, p)
predictive BSC. We consider the asymmetric distributed problem,
where Y is available at the decoder and compressed at its entropy
H(Y ) and X is compressed at its conditional entropy H(X|Y ).
The non-uniformity of X does not reduce the compression rate of
X.

Proof. Here H(X|Y ) = H(Z) since X is dependent of the correlation noise. There-
fore, the coding rate for X only depends on the noise statistics, and the non-
uniformity of X does not reduce its coding rate.

For a predictive channel, the compression rate of X does not decrease as the
non-uniformity of X increases. In the following Lemma 3.3, we show that a mis-
match between the true and the assumed correlation models always degrades the
performance of the decoder when the true correlation model is additive.

Lemma 3.3. Let X ∼ B(pX) and Y ∼ B(pY ) be two corre-
lated sources, where the correlation is modeled as a virtual additive
(X, Y, p) BSC. We consider the asymmetric distributed problem,
where Y is available at the decoder and compressed at its entropy
H(Y ), and X is compressed at its conditional entropy H(X|Y ).
A mismatch between the true correlation model and the one assumed
by the codec implies a rate loss if the sources are non-uniform.

Proof. Assume that the correlation channel model is additive. The lower rate bound
is then H(X|Y ) ≤ H(Z). If the decoding if performed with a predictive channel
model, then the lower achievable rate is H(Z). A rate loss of H(Z)−H(X|Y ) then
results from the mismatch.

When the true correlation model is predictive, a decoder mismatch also incurs
a rate loss. Actually, the role of the optimal decoder for the predictive correlation
model is to find the difference between the correlated sources, regardless of their
distribution. This is empirically shown in the experiments Section 4.1.2.2 with
synthetic sources.

3.3.3 Achievable coding rate for GE sources

We consider the problem of asymmetric DSC for GE sources X and Y , where Y
is transmitted at a rate greater than its entropy-rate H(Y), and is thus available
at the decoder; X is transmitted at a rate greater than its conditional entropy-rate
H(X|Y). When the correlation between the sources X and Y is a predictive channel,
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68 CHAPTER 3. SOURCE AND CORRELATION MODELS FOR DSC

we claim the following result:

Claim 3.3. Let X ∼ GE(θX) and Y ∼ GE(θY ) be two correlated
sources, where the correlation is modeled as a virtual (X, Y, p) pre-
dictive BSC. We consider the asymmetric DSC problem, where Y
is transmitted at a rate greater than its entropy-rate H(Y); and X
is transmitted at a rate greater than its conditional entropy-rate
H(X|Y).
The minimum transmission rate for X is not reduced, with respect
to that of a uniform source. More precisely H(X|Y) = H(Z).

Proof. Here Z is independent of Y . Therefore, the minimum coding rate for X only
depends on the noise statistics. Then the conditional entropy-rate of X is given by
H(X|Y) = H(Z); the minimum transmission rate for X is not reduced, with respect
to that of a uniform source.

This result generalizes the result in Claim 3.2 for non-uniform sources to the more
general case on hidden Markov sources. More generally, exploiting the statistics of
the source does not reduce the coding rate of X, in the distributed coding setup,
when the correlation channel is predictive. The following Lemma 3.4 generalizes the
result in Lemma 3.3 for non-uniform sources, on the mismatch between the additive
and the predictive correlation channel models, when the true model is additive.

Claim 3.4. Let X ∼ GE(θX) and Y ∼ GE(θY ) be two correlated
memory sources, where the correlation is modeled as a virtual ad-
ditive (X, Y, p) BSC. We consider the asymmetric DSC problem,
where Y is available at the decoder and coded at a rate greater than
its entropy-rate H(Y), and X is coded at a rate greater than its
conditional entropy-rate H(X|Y).
A mismatch between the true correlation model and the one assumed
by the decoder always implies a coding rate loss if the sources are
not uniform.

Proof. If the decoding if performed with a predictive correlation channel model while
the true channel is additive, then the true minimum achievable rate is H(X|Y) =
H(Z)− [H(Y)−H(X)]; a coding rate loss is thus incurred by the decoder with the
predictive assumption since H(Y)−H(X) ≥ 0.

Similarly to non-uniform sources, when the true correlation model is predictive, a
decoder mismatch also incurs a rate loss, this is empirically shown in the experiments
Section 4.2.8 with synthetic sources.

Now that we have presented the two source models, i.e. non-uniform and GE
sources, as well as the two correlation channel models, i.e. additive and predictive
BSC, we turn to estimating the BSC parameter p. Our method is valid regardless
of the source distribution or the channel model.
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3.4. FAST AND OPTIMAL BSC PARAMETER ESTIMATION 69

3.4 Fast and optimal BSC parameter estimation

In this Section, we propose a novel estimation of the correlation channel parameter,
when the channel is a BSC. This estimation is simple and can be computed prior to
decoding. It exploits the information from the syndrome sx, the side-information y,
and the parity-check matrix H. The estimator uses the probability of occurrence of
ones in the sum of sx and sy. We show that this probability is a bijective function
of p, and we derive the Maximum Likelihood (ML) estimator for p with respect to sx

and sy. The estimation is performed prior to decoding, which makes it independent
of any decoding algorithm. We propose a second estimator of p with respect to sx

and y which requires the use of an Expectation-Maximization (EM) algorithm. We
show that the EM only slightly improves the previous estimate, and we conclude
that the first method already provides a good estimate. The proposed methods can
be applied to the BSC parameter estimation for channel coding.

Let Z ∼ B(p), p ∈ [0, 0.5], represent the correlation channel between two arbi-
trary binary sources X and Y . Let x and y, of length N , be two vectors of the
respective realizations of X and Y . x and y differ by some noise z, which is the
realization of Z. Here, the BSC can be additive or predictive. Let H designate the
parity check matrix of an (N,K) linear block code C, of size (N −K)×N . Let Hm

designate the m-th row of H. Let sx = Hx, of length (N −K), be the syndrome of
x and sy = Hy of length (N −K) the syndrome of y.

3.4.1 ML estimator of p with respect to the syndromes

The Turbo and LDPC decoders detailed in Sections 1.3.1.3 and 1.3.2.5 respectively
are fed with the syndrome sx and the side-information y. In the following, we derive
an estimator for p based on the knowledge of the syndromes sx and sy only, and we
show that our estimate is efficient for a large range of values of p (since it is the ML
estimator) and can be performed prior to decoding. We first consider regular block
codes.

3.4.1.1 ML estimator for regular block codes

Regular block codes have the same number of ones, noted dc, in every row of H. dc
is also called “syndrome degree”. We first enunciate a lemma that characterizes the
Bernoulli nature of the syndrome of z.

Lemma 3.4. Let H be the matrix of a linear block code in which
all the rows are linearly independent and contain the same number
of ones (dc). Let z be the realization of Z ∼ B(p), p ∈ [0, 0.5]. Let
sz = Hz.
The syndrome sz can be seen as the realization of a Bernoulli ran-
dom variable SZ of parameter q, s.t.

q(p) =
dc∑

( i=1
i odd)

pi(1− p)dc−i
(
dc
i

)
(3.17)
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70 CHAPTER 3. SOURCE AND CORRELATION MODELS FOR DSC

Proof. First, since the rows of H are linearly independent, the syndrome symbols
are independent. Now, let szm be the mth element of sz and let q be the probability
of szm being a one. Since Z is an i.i.d. process of law B(p), and since szm is the
sum of dc elements of Z, q(p) is given by Equation (3.17) and it is the same for

all the symbols (szm)
(N−K)
m=1 . Therefore, the syndrome symbols are independent and

identically distributed realizations of an (iid) binary source, i.e. a Bernoulli source,
noted SZ , of parameter q.

Now, that we have characterized the process SZ , we can derive an estimator of
its Bernoulli parameter q. This is stated in the following corollary.

Corollary 3.1. The ML estimator of q with respect to sz is the es-
timate q̂ of the mean of the i.i.d. Bernoulli process SZ.

q̂ =
1

N −K

N−K∑
m=1

szm (3.18)

Proof. Since sz is the realization of a Bernoulli variable S ∼ B(q) (from Lemma
3.4),

∑N−K
m=1 szm is a sufficient statistic for the estimation of q with respect to sz, and

the mean of SZ , in (3.18), is the ML estimator of q.

Now, we turn to the DSC problem, where sz is not observable, but only sx and y;
the following Theorem 3.1 gives the ML estimator of p with respect to the available
data.

Theorem 3.1. Let H be the matrix of a linear block code in which
all the rows are linearly independent and contain the same number
of ones. Let x be the realization of the binary source X, and let
sx = Hx be its syndrome. Let Y be another binary source which is
correlated to X in the following manner: ∃Z ∼ B(p) s.t. p ∈ [0, 0.5]
and Y = X ⊕ Z. Let y be a realization of Y , and let sy be its
syndrome. Let f : p→ q(p), where q(p) is given in (3.17).
The Maximum Likelihood estimator for p with respect to (sx, sy) is:

p̂ = f−1(q̂) (3.19)

where q̂ is given in (3.18), and f−1 is the inverse of f .

Proof. Let sx = (sxm)
(N−K)
m=1 and sy = (sym)

(N−K)
m=1 . The joint probability of sx and

sy can be factored as:

P(sx, sy) = P(sx) · P(sx ⊕ sy)

= P(sx) · q

(
N−K∑
m=1

sxm⊕sym

)
(1− q)

(
(N−K)−

N−K∑
m=1

sxm⊕sym

)
(3.20)

From [Kay93, Theorem 5.1],
N−K∑
m=1

sxm ⊕ sym is a sufficient statistic for the estima-

tion of q. The ML estimator of q, with respect to (sx, sy), is thus q̂ = 1
N−K

N−K∑
m=1

sxm ⊕ sym.

We denote f(p) = q(p) for clarity of notation.
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3.4. FAST AND OPTIMAL BSC PARAMETER ESTIMATION 71

f is a strictly increasing one-to-one function of p in [0, 0.5], and we denote f−1

its inverse, s.t. p = f−1(q). It follows from [Kay93, Theorem 7.2], that the ML
estimator of p, with respect to (sx, sy), is p̂ = f−1(q̂).

This ML estimator p̂ does not depend on the distribution of X and Y since
sx ⊕ sy only depends on the BSC modeling their correlation. There is no analytical
expression of the inverse function f−1; the inversion can be implemented numerically
(with a correspondence table for example). Note that our estimator is biased since
f is not a linear function.

3.4.1.2 ML estimator for irregular block codes

We now derive the ML estimator of p when the syndrome symbols have different
degrees. Irregular LDPC codes are characterized by their variable degree distribution
Λ(x) which is the distribution of the number of ones in the columns of H, and by
their check degree distribution Φ(x) which is the distribution of the number of ones
in the rows of H. ∀m ∈ [1, (N −K)], let dcm be the degree of szm. Let dmax be the

maximum check degree. Let fdcm(p) =
dcm∑

( i=1
i odd)

pi(1− p)dcm−i
(
dcm
i

)
.

We want to find the ML estimate p̂ with respect to sx and sy. It is the solution
of the maximization problem:

p̂ = arg max
p

P (sx, sy) (p)

where the joint probability of the syndromes symbols can be expressed in function
of p, as:

P (sx, sy) (p) =
N−K∏
m=1

fdcm(p)sxm⊕sym (1− fdcm(p))1−sxm⊕sym (3.21)

Since log(·) is a strictly increasing function, the value of p̂ that maximizes
P (sx, sy) (p), in (3.21), also maximizes log (P (sx, sy) (p)). In the expression (3.22),
the sum on the syndrome symbols has been re-organized in order to group the syn-
drome symbols having the same degrees.

d

dp

(
log

(
P
(
SN1

)
(p)
))

=
dmax∑
j=1

σj
f ′j(p)

fj(p)
− (1− σj)

f ′j(p)

1− fj(p)
(3.22)

where, ∀j ∈ [1, dmax], σj = 1
Nj

N−K∑
( m=1
dcm=j)

szm, and f ′j(p) = d
dp
fj(p), and Nj is the number

of symbols with degree j. The ML estimator p̂ is found by zeroing the derivative
(3.22) since it can be shown to satisfy the constraints p ∈ [0, 0.5].

The method can be applied to the parameter estimation for channel coding over
the BSC, since the channel decoder is a particular case of the DSC decoder, with
sx = 0 (See Section 3.4.4.2).
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72 CHAPTER 3. SOURCE AND CORRELATION MODELS FOR DSC

3.4.2 Improved estimation of p using an EM algorithm

The ML estimator presented in Section 3.4.1 only uses the information from sx and
sy, which is not optimal since the information from y is not fully exploited. In this
Section, an EM algorithm [Rab89] is used to improve the estimator p̂. The EM
is an optimization procedure that updates p̂ through the decoding iterations, the
convergence is acquired since it improves the estimator likelihood at each iteration
[Wu83]. Let l be the label of the current decoding iteration, and pl be the current
estimate. Then the next estimate is the solution to the maximization problem:

p(l+1) = arg max
p

(
EX|SX,Y,pl

[
log (Pp(sx,y,x))

])
(3.23)

and is

p(l+1) =
1

N

N∑
n=1

|yn − Pn| (3.24)

where Pn is the a posteriori probability Ppl(Xn = 1|sx,y). This update rule is the
same as presented in [GFZ01, Equation 3]. However, our EM algorithm differs from
[GFZ01] since it is initialized with our efficient estimator p0 = f−1(q̂), see (3.19).

In Section 3.1.3, we recalled the MVU parameter estimator (Equation (3.2))
for the source X, knowing its realization x. If only the syndrome of the source is
known, the ML parameter estimator presented in this Section for the BSC can also
be performed to find pX , provided that H(pX) is lower than the code rate.

3.4.3 Simulation results

3.4.3.1 Precision of the estimator

We implement a DSC system using two LDPC codes of rates 0.5 and 0.7, which
has the variable degree distribution Λ(x) = 0.483949x+ 0.294428x2 + 0.085134x5 +
0.074055x6 + 0.062433x19 and the check degree distribution Φ(x) = 0.741935x7 +
0.258065x8. Each row of the two matrices H is linearly independent of one another.
For each code rate, we consider two codes of respective lengths N = 1000 and
N = 10000.

The sources are uniform Bernoulli, and we test the estimation for different values
of p. We show the means of the initial estimators p̂ in Fig. 3.8 for the codes of size
N = 1000; we also show the parameters estimated by the EM algorithm, using
the first estimate as an initialization value. The parameter is updated, according
to (3.24), each 20 iterations of the decoding to observe convergence. Similarly, the
results for N = 10000 are shown in Fig. 3.9.

We note from Fig. 3.8 and Fig. 3.9 that the performance of the estimators im-
prove with the code length and with the code rate. To have a better view on the
performance of the estimators, we show in Fig. 3.10 the biases of the estimators for
code length N = 1000, and for the two code rates 0.5 and 0.7. Similarly, we show
in Fig. 3.11 the biases of the estimators for code length N = 10000, and for the two
code rates 0.5 and 0.7.
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Figure 3.8: Means of the estimated p̂ for the two codes of lengths N = 1000, for code rates 0.5
and 0.7.
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Figure 3.9: Means of the estimated p̂ for the two codes of lengths N = 10000, for code rates 0.5
and 0.7.

The means of the estimated parameters are very close to the true values (the
biases are small). The estimator performance improves with the code length; the
gap to the true parameter can go under 10−3 for N = 1000, and it is under 10−4

for N = 10000. The EM does not improve the performance of the estimator in a
significant amount; this means that the initial estimate of the parameter is already
very good. Note that we could assess the performance of the estimator for the whole
range of values from 0 to 0.5, but we restrain to p ≤ 0.11 for code rate 0.5 (resp.
to p ≤ 0.19 for code rate 0.7) because of the LDPC code we use; actually, for the
SW setup, the maximum value of p that can realistically be “corrected” by the code
verifies H(p) = 0.5 (resp. H(p) = 0.7), i.e. p = 0.11 (resp. p = 0.19) for the code
of rate 0.5 (resp. 0.7). For efficient estimation of higher values of p, a code allowing
lower compression rates must be used.
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74 CHAPTER 3. SOURCE AND CORRELATION MODELS FOR DSC
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Figure 3.10: Biases of the estimated p̂ for the two codes of rates 0.5 and 0.7, for code length
N = 1000.
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Figure 3.11: Biases of the estimated p̂ for the two codes of rates 0.5 and 0.7, for code length
N = 10000.

3.4.3.2 Distributed Source Coding using the estimated parameters

The performance of the decoder using the initial estimated parameter from (3.22) is
compared to the performance of the genie-aided decoder using the true parameter
for code rate 0.5. Both decoders iterate at most 100 times. The results presented in
Fig. 3.12 indicate that no degradation at all is observable when using the estimated
parameter or the true parameter. The BER of the decoder using the EM algorithm
(3.24) is not shown in Fig. 3.12 since no rate loss is observable either.
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3.4. FAST AND OPTIMAL BSC PARAMETER ESTIMATION 75

Figure 3.12: Comparison of the BER of X for the genie-aided decoder and the proposed decoder,
for N={1000,10000}.

Note that the average bias shown in Fig. 3.8 and Fig. 3.9 is always positive.
This is most important since a negative bias would prevent the DSC decoder, using
the estimated value p̂, from finding the best x̂. More precisely, remember that the
decoder finds x̂ as the vector having syndrome sx which is at “distance” p to y.
Here the distance is the number of different positions in x and y divided by N . If
the bias of the estimator is negative, then the decoder would not search x̂ in a large
enough distance to y.

3.4.3.3 Behavior of the estimator with the block length and the code degree
distribution

Now, we investigate on the impact of the degree distribution on the precision of the
initial parameter estimation. To that end, we consider the DSC of X and Y using
three different degree distributions for the LDPC codes of rate 0.5.

� aO The previous code, that yields the results in Fig. 3.8 and Fig. 3.9;

� bO Λ(x) = 0.488047x + 0.299593x2 + 0.000420x4 + 0.034791x5 + 0.125283x6 +
0.051865x19, Φ(x) = x7;

� cO Λ(x) = 0.547789x+0.063512x2+0.388698x3, Φ(x) = 0.318181x4+0.681818x5.

The average biases to the true parameters and the variances of the parameter
estimations are presented in Table 3.1 for the three codes.

From the results in Table 3.1, it is clear that the precision is better when the
syndrome degree is smaller. It is worth noting that, for the DSC setup, the gap
to the true parameters is small enough to ensure that the distance to the Slepian-
Wolf bound that is achieved using the true parameters is not impaired when using
the estimated ones (see Fig. 3.12: the BER of the two decoders for N = 1000 are
superposed together, as well as the BER of the two decoders for N = 10000).
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76 CHAPTER 3. SOURCE AND CORRELATION MODELS FOR DSC

Code N Bias Variance

aO 1000 2.71 · 10−3 4.22 · 10−4

10000 7.61 · 10−4 3.39 · 10−5

bO 1000 2.55 · 10−3 4.22 · 10−4

10000 2.22 · 10−4 2.39 · 10−5

cO 1000 1.24 · 10−3 1.47 · 10−4

10000 9.91 · 10−5 1.33 · 10−5

Table 3.1: Average variances and biases of the initial estimator, for p ∈ [0.05, 0.11]

3.4.3.4 Performance comparison with respect to the Cramer-Rao lower bound

We compare the performances of our estimators, in terms of their Mean Square Error
(MSE), with the Cramer-Rao Lower Bound (CRLB), which is the lower bound on
the estimator’s Mean Square Error (MSE). For our problem, a bound of the CRLB
can be derived by considering the MVU estimator of p knowing the realization z of
length N , of the process Z ∼ B(p). This MVU estimator, that achieves the CRLB
is given by:

p̂ =
1

N

N∑
n=1

zn (3.25)

The MSE of the estimator (3.25), which is the CRLB for this estimation problem,

is p(1−p)
N

. We show in Fig. 3.13 the MSE of the two estimators, for N = 1000 and for
two code rates 0.5 and 0.7. Similarly, the MSE of the two estimators, for N = 10000
and for two code rates 0.5 and 0.7 are also presented in Fig. 3.14. We also show the
CRLB corresponding to each value of p.
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Figure 3.13: Comparison of the MSE of our estimators with the CRLB for each value of p for
N = 1000.
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Figure 3.14: Comparison of the MSE of our estimators with the CRLB for each value of p for
N = 10000.

As seen in Fig. 3.13 and Fig. 3.14, the MSE improves with the block length. The
final gap to the CRLB for N = 10000 and for N = 1000 is very tiny, when the
EM algorithm is performed: it is under 10−6 when p ≤ 0.09 for N = 10000. When
p increases, the gap increases as well, but note that it remains small, with respect
to results presented in [ZRS07] where the results after the EM remain far from the
CRLB for the codes of rates 0.5 and 0.7.

3.4.4 Discussion

3.4.4.1 Optimality of the cost function “f”

The performance of the estimation method that we proposed closely depends on the
check degree distribution Φ(x). More precisely, for a regular code, Fig. 3.15 presents
the behavior of the function q(p) (3.17), for different values of dc, and for p ∈ ]0, 0.5].

Figure 3.15: Behavior of q(p) for different values of dc.

We see that the gradient of q(p) increases with dc. But, as the method directly
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78 CHAPTER 3. SOURCE AND CORRELATION MODELS FOR DSC

exploits the one-to-one correspondence between p and q, the greater the gradient,
the less the function is linear, and the less the resulting p̂ is precise. Clearly, the
estimation method is more efficient when dc is lower (see Table 3.1); so it seems
interesting to use a block code having lower check degrees only.

However, one must take into account that the performance of the code (in terms
of reaching the SW bound) also closely depends on the check degree distribution.
The tendency (in the sense that dc must remain relatively low for the matrix to
remain sparse) is that the DSC code is more efficient when dc is large. Therefore,
there is a trade-off to be taken into account between estimation performance and
DSC performance. This trade-off also depends on the target applications for our
estimator. Here, we chose to use the “best” DSC code; that choice is justified by the
good performance observed for the 1000 and 10000-long LDPC codes that we use.

3.4.4.2 Extension to BSC parameter estimation for channel coding

Let us consider the channel coding of binary sources. Let x be a valid codeword that
is sent over the BSC represented by the signal Z ∼ B(p), with noise realization z.
The output of the channel is y = x⊕z. The decoder uses the parity-check matrix H,
and y, to estimate the original sequence x, exploiting the fact that Hx = 0. Note
that Hy = H·(x⊕z) = Hx⊕Hz = Hz; this means that the received sequence y and
the error pattern have the same syndrome s. Using the same argument as for the
SW problem (section 3.4.1), the estimator of the mean of the Bernoulli variable, q̂,
estimated from the syndrome s can be found with the ML estimator, as in Equation
(3.18); and this leads to the ML estimation of the parameter p, as in Equation (3.19).
This initial estimate can also be refined using the EM algorithm, throughout the
channel decoding iterations.

3.5 Conclusion

In this Chapter, we presented two source models, namely non-uniform sources and
GE sources, for which we designed the appropriate parameter estimators, given
the source realization, based on the EM algorithm. We also exhibit the rate gain
for their coding, provided that the channel model of their correlation is additive.
Afterward, we made the difference between the additive and the predictive channel
models, motivated by the fact that a mismatch between the two models brings non
negligible rate loss to the SW coding system. Finally, we presented a fast and
optimal method to estimate the BSC parameter using syndrome based DSC codes.
The method yields an estimator that performs very close to the CRLB.
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Chapter 4

Tools for Distributed Source Coding

This chapter is dedicated to the design of DSC codes for both the asymmetric and the
non-asymmetric SW problems. For the asymmetric SW setup, we design DSC codes
that are able to exploit the non-uniformity (Section4.1) and the memory (Section
4.2) of the sources. Joint decoding and source parameter estimation is performed.
Then, we deal with non-asymmetric SW setup and present DSC codes that are able
to reach any point of the SW rate region; Low-Density Parity-Check (LDPC) codes
(Section 4.3.1) as well as Turbo codes (Section 4.3.2) are investigated. The error
propagation phenomenon, for the coding of uniform Bernoulli sources, is studied,
and necessary and sufficient conditions are stated to limit and even to avoid such
phenomenon. The results and the conditions are finally extended to non-asymmetric
coding of non-uniform sources in Section 4.3.3.

4.1 Asymmetric SW coding of non-uniform sources

Motivated by the compression gain when exploiting the non-uniformity of the source
(see Section 3.1), we turn to adapting the existing Slepian-Wolf coding schemes
to take into account the knowledge of the source distribution. In Section 4.1.1,
we investigate the SW coding of non-uniformly distributed Bernoulli sources using
Turbo codes, and we compare the performance of the codec with that of a SW codec
based on source codes, namely distributed quasi-arithmetic codes ; both codes are
supposed to have a priori knowledge of the source distribution. In Section 4.1.2, we
turn to the SW coding of non-uniform sources using LDPC codes, when the source
distribution is unknown at the decoder; joint estimation-decoding of the source and
its parameter is then performed.

4.1.1 Exploiting the source distribution using Turbo codes

Let X and Y be two binary correlated sources, of respective probabilities P(X =
1) = pX and P(Y = 1) = pY . The correlation between X and Y is modeled
as an additive Binary Symmetric Channel (BSC) of cross-over probability p s.t.
∃Z ∼ B(p) : Y = X ⊕ Z. Let sx be the syndrome of each N -long realization of the
source, noted x = xN1 , and let y = yN1 be the realization of the source Y that is
correlated to x. The Turbo code we use in this system is composed of two identical
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80 CHAPTER 4. TOOLS FOR DISTRIBUTED SOURCE CODING

Convolutional codes, and the decoding is performed using the Turbo syndrome trellis
first described in [RLG07]. Given the matrix representation of the Turbo code, noted
H, the syndrome can be obtained by sx = Hx. More details on how to construct
syndrome-based Turbo codes can be found in Section 1.3.1.

4.1.1.1 Exploiting the source non-uniformity with Convolutional codes

The Convolutional decoder, knowing the syndrome sx, the side-information y, and
the parameter pX , looks for the sequence having that syndrome and that non-
uniformity which is the closest to y, in terms of their Hamming distance. A modified
BCJR is used to take into account the a priori information about the non-uniformity.
The recurrences for the calculation of the forward state metric, noted α in the lit-
erature, and the backward state metric, β, are the same as in Section 1.3.1.3; the
only change to bring is the calculation of the branch metric, γ.

Let (mt)t=1...τ the sequence of states of the trellis corresponding to a given block
x, where τ is the number of trellis slices. Let νn1 be the n input bits corresponding
to each slice of the trellis, and σn−k1 the (n − k) output bits labeling the transition
between the states mt−1 and mt. Let yn1 be the current side information bits and sn−k1

current syndrome bits. Let pj be the extrinsic probability P(x̂j = 1). By definition,
γ = P(mt,yt|mt−1) is computed as:

γ = δσn−k1 =sn−k1
·
n∏
j=1

(
pδνj 6=yj · (1− p)δνj=yj

· p
δνj=1

j · (1− pj)δνj=0

·p
δνj=1

X · (1− pX)δνj=0

) (4.1)

where δ is the Kronecker’s symbol (δbool = 1 if bool = true and 0 otherwise).
The first line in the product of Equation (4.1) formalizes the information from the
side information, the second line exploits the extrinsic probabilities and the last line
exploits the source probabilities. That last term effectively favors the transitions
which are labeled by inputs νn1 which distribution are statistically close to the source
distribution. Note that for the predictive BSC, there is no need to multiply by the

term p
δνj=1

X · (1− pX)δνj=0 , since the distribution of the source is not exploited.

4.1.1.2 The Turbo syndrome framework for coding of non uniform sources

The source X ∼ B(pX), having realizations x of length N , is mapped into its two
syndromes sx1 and sx2, of length (N−K) each. Then the modified BCJR is used for
each Convolutional decoder to estimate x̂, passing iteratively updated soft extrinsic
messages between them at each iteration. The Turbo decoding stops when x̂ matches
the two syndromes, or when a maximum number of iterations is reached.

4.1.1.3 Distributed Arithmetic Coding of non-uniform sources

The work that is presented in this Section includes significant contributions from
Dr Enrico Magli and Dr Gabriella Olmo, published in the collaborative paper
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4.1. ASYMMETRIC SW CODING OF NON-UNIFORM SOURCES 81

[TZMRO09].

Distributed Arithmetic Coding (DAC): encoding module

Let X ∼ B(pX) be a binary memoryless source emitting realization symbols x =
(xn)Nn=1. The classical binary arithmetic coding process for X uses the probabilities
pX and (1−pX) to partition the [0, 1) interval into sub-intervals associated to possible
occurrences of the input symbols. At initialization the current interval is set to
I0 = [0, 1). For each input symbol, the current interval In is partitioned into two
adjacent sub-intervals of lengths (1− pX)|In| and pX |In|, where |In| is the length of
In. The sub-interval corresponding to the actual value of xn is selected as the next
current interval In+1, and this procedure is repeated for the next symbol. After all
N symbols have been processed, the sequence is represented by the final interval IN .
The resulting codeword CX can consist in the binary representation of any number
inside IN .

DAC is based on the principle of inserting some ambiguity in the source descrip-
tion during the encoding process. This is obtained employing a set of intervals whose
lengths are proportional to the modified probabilities p̃0

X ≥ (1− pX) and p̃1
X ≥ pX .

In order to fit the enlarged sub-intervals into the [0, 1) interval, they are allowed
to partially overlap. The encoding procedure is exactly the same as for arithmetic
coding, but employs the modified probabilities. The codeword CX is shorter, i.e.,
the bit-rate is smaller, so much so as the interval overlap is large. The amount of
overlap is a parameter that can be selected so as to achieve the desired rate RX ,
which should be greater or equal to H(X|Y ).

In practice, the DAC encoding process has to be terminated properly in order to
avoid clusters of errors at the end of the block. This can be done in several ways,
e.g., encoding a known termination pattern or end-of-block symbol with a certain
probability or, in the case of context-based AC, driving the AC encoder in a given
context. For DAC, in this Section termination is obtained by encoding the last T
symbols of the sequence without interval overlap. As T increases, the average error
location tends to move toward the center of the block, yielding a correct decoder
behavior. However, the termination has a cost in terms of bit-rate, as the last T
symbols do not benefit from the Slepian-Wolf bit-rate saving.

DAC: decoding module

The DAC decoding process can be formulated as a symbol-driven sequential
search along a proper decoding tree, where each node represents a state of the
sequential arithmetic decoder. When the n-th input symbol xn is decoded, if the
codeword lies in overlapped region of the current interval then the decoder performs a
branching. Two alternative paths are stored in the decoding memory, corresponding
to the two alternative decoded symbols xn = 0 and xn = 1 that could be output
at this step. For each new state, the associated branch metric is updated, and the
corresponding interval is selected for next iteration. In particular, the correlated side
information Y is employed to compute the Maximum A Posteriori (MAP) branch
metric P(x|CX ,y). In order to reduce complexity, after decoding a new input symbol,
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82 CHAPTER 4. TOOLS FOR DISTRIBUTED SOURCE CODING

the decoder keeps only the M paths with the best partial metric, and prunes the
others; this is done using the M-algorithm. More details on the DAC encoding and
decoding procedures can be found in [GMO09].

The DAC decoding algorithm is suboptimal, as the M-algorithm only keeps a
limited number of likely decoding paths. If the correct path is dropped at some
point during the decoding process, decoding will be unsuccessful. Thus, one would
want to keep M very large in order to achieve the best performance, i.e., the lowest
residual error rate. On the other hand, M heavily affects the decoder complexity,
as it directly impacts on the size of the search space.

4.1.1.4 Comparison of the Turbo and the arithmetic approaches

We carry out simulations based on the following conditions. We consider X with
source distributions pX = {0.5, 0.7}, of length N = 1000. For each source distribu-
tion, we consider the compression rates 1 : 2 and 1 : 3 for source X (RX should be
greater or equal to H(X|Y ) which depends on the correlation between the sources
and on the source distribution); Y is compressed at its entropy H(Y ), which does
not depend on the correlation between the sources. Actually, given the coding rate
RX , the source probability pX and H(X|Y ), we compute the corresponding p s.t.
H(pX) +H(p)−H(pY ) = H(X|Y ), where pY = pX(1− p) + (1− pX)p. In order to
plot comparative curves, we consider different values of H(X|Y ) and measure the
bit error rate (BER) between x̂ and x. For each value of H(X|Y ), at least 107 bits
are simulated. We choose the parameters of the DAC and the Turbo codes so as to
obtain the same coding/decoding complexity.

For the system using Turbo codes, we utilize constituent Convolutional encoders
defined by a constraint length L = 4 and by their octal parity-check matrix H =(

11 15 06
15 12 17

)
(oct)

of initial compression rate 2 : 3, yielding an initial redundancy rate of

4 : 3 for the resulting Turbo code. The different compression rates 1 : 2 and 1 : 3
are obtained with regular puncturing patterns of the syndrome. The interleaver is
random and generated only once: the same interleaver is used for all the simulations.
At most 20 decoding iterations are performed for each block of length N .

For the DAC, the desired compression rate is achieved by properly selecting the
overlap factor, given the probability pX , and taking into account the additional
overhead generated by the termination. Throughout the simulations we employ
T = 20. The rate achieved by the DAC over each data block is not always identical,
but its deviation from the nominal value is very small. Over each simulation of 107

samples, the actual achieved rate is on average 0.2% smaller than the nominal rate.
The value ofM for the DAC decoder has been taken so that the complexity is roughly
the same as the Turbo code system. To measure the complexities, both programs
have been run on a Linux workstation, performing 200 rounds of encoding and
decoding and measuring the running time. Taking M = 1024 yields similar times;
this value has been used for all simulation results reported in this Section. While
this procedure only yields a rough estimate of the complexity of the two systems,
they are so different that an analytical complexity comparison is not viable.

Fig. 4.1 shows the BER achieved with the different methods, for different source
probabilities and for different compression rates.

te
l-0

05
39

04
4,

 v
er

si
on

 1
 - 

23
 N

ov
 2

01
0



4.1. ASYMMETRIC SW CODING OF NON-UNIFORM SOURCES 83

Figure 4.1: BER versus H(X|Y ) for DAC and Turbo codes. N = 1000, pX = 0.5 and pX = 0.7.

For compression rate 1 : 2, the Turbo code is consistently better, except when
the conditional entropy is very small (H(X|Y ) < 0.18). This is because the DAC
decoder is suboptimal, and this is particularly evident as the correlation decreases
(H(X|Y ) > 0.2). For compression rate 1 : 3, the DAC is consistently better. The
reason is that the heavier puncturing makes the syndrome based Turbo code less
efficient. The Turbo code is still better at low correlation (H(X|Y ) > 0.22), as the
DAC suffers from the decoder sub optimality.

From pX = 0.5 to pX = 0.7, both the Turbo code and the DAC improve their
distances to the Slepian-Wolf bounds. They clearly benefit from the prior knowledge
of the source distribution. That gain should increase as the sources become less
uniform, as expected from the theoretical rate gain shown in Fig. 3.1.

Finally, we have studied the DAC performance as the decoder complexity M
varies. In particular, values of M ranging from 256 to 4096 have been taken. Sim-
ulations have been run for pX = 0.5 and compression rate 1 : 2. The results are
shown in Fig. 4.2. As can be seen, between M = 256 and M = 4096 there is roughly
an order of magnitude of BER difference. Interestingly, the performance gain does
not tend to saturate in this range of M . This indicates that the sequential decoding
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84 CHAPTER 4. TOOLS FOR DISTRIBUTED SOURCE CODING

process is rather suboptimal, and the performance can be improved even more by
further increasing M , although the computation times become prohibitive.
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Figure 4.2: DAC performance as a function of M . n = 1000, pX = 0.5.

4.1.2 Joint estimation-decoding for asymmetric coding of non-
uniform sources using LDPC codes

We propose a modified LDPC decoder which accounts for the non-uniformity of the
sources and which is adapted to the correlation model (additive or predictive) as
well. The source distribution is iteratively estimated along with the symbol bits,
and the reliability of this estimation is assessed. For an LDPC code yielding a
compression rate N−K

N
, we modify the standard decoding proposed by Liveris et al.

([LXG02] and Section 1.3.2.5) to exploit the non-uniformity of the sources and to
deal with the type of BSC. The encoder is not modified.

4.1.2.1 LDPC decoding that accounts for the source distribution

Consider the following notation and definition of the messages that are passed in
the graph.

� xn, n ∈ [1, N ] are the source symbols, represented by the variable nodes ; their
estimates are noted x̂n

� yn, n ∈ [1, N ] are the side-information symbols, represented by the side-information
nodes ;

� sm,m ∈ [1, (N −K)] are the syndrome symbols, represented by the check nodes;

� dxn is the degree of xn;
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4.1. ASYMMETRIC SW CODING OF NON-UNIFORM SOURCES 85

� dsm is the degree of sm;

� In, n ∈ [1, N ] are the intrinsic, passed from yn to xn;

� En,e, n ∈ [1, N ], e ∈ [1, dxn] are the extrinsic information, passed from xn on their
e-th edge to the check nodes;

� Qm,e,m ∈ [1, (N − K)], e ∈ [1, dsm] are the messages passed from sm on their
e-th edge to the variable nodes;

� p̂X denotes the estimate of pX . It is updated throughout the iterations, after
each update of x̂.

All the messages are Log-Likelihood Ratio (LLR), they are labeled (in) or (out) if
they come to or from the nodes.

Intrinsic information computation The intrinsic information depends on the type
of BSC. It is defined by:

In(pX) = log

(
P(Xn = 0|yn)

P(Xn = 1|yn)

)
=


(1− 2yn) log

(
1− p
p

)
, if the BSC is predictive

(1− 2yn) log

(
1− p
p

)
+ log

(
1− pX
pX

)
, if additive

(4.2)

Since pX is not known a priori, each In is initialized to In(p̂Y ) where p̂Y is the

probability of 1’s in Y , that is the best guess on pX so far. Each E
(in)
n,k is initialized

to 0. Note that the initialization of pX can also be done using the Bernoulli parameter
estimator presented in Section 3.4, using the syndrome sx, provided that H(pX) is
lower than N−K

N
.

Messages from the variable nodes to the check nodes

E(out)
n,e = In(p̂X) +

dxn∑
k=1,k 6=e

E
(in)
n,k

where In(·) is defined in Equation (4.2). Each extrinsic message E(out)
n,e is mapped to

the corresponding Q(in)
m,e according to the connections in the graph.

Messages from the check nodes to the variable nodes

Q(out)
m,e = 2 tanh−1

(1− 2sn)
dsm∏

k=1,k 6=e
tanh

Q(in)
m,e

2


Each Q(out)

m,e is mapped to the corresponding E(in)
n,e .
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86 CHAPTER 4. TOOLS FOR DISTRIBUTED SOURCE CODING

Decision, and update of p̂X

We denote En = In(p̂X) +
dxn∑
k=1

E
(in)
n,k = log

(
1−Pn

Pn

)
where Pn is the best guess on P(Xn = 1|y, sx) so far. Then

Pn =
eEn

1− eEn
, and x̂n =

{
1, if Pn ≥ 0.5

0, otherwise

p̂X is estimated as the probability of 1’s in x̂, expressed with the soft values Pn. The
updated value of p̂X is thus given by

p̂X =

∑N
n=1 Pn
N

(4.3)

This update rule corresponds to that obtain by an EM algorithm.

Stopping criteria: syndromes check, convergence test, and maximum number
of iterations

The decoding algorithm stops either if the estimated x̂ satisfies the parity check
equation (Hx̂ = sx), or if the maximal number of iterations has been reached (100
iterations is a good compromise between performance and complexity). Moreover if
the syndrome test has failed, while no symbols of x̂ have been updated during the
current iteration, even if the maximal number of iterations has not been reached
yet, we decide that the decoder has converged to a wrong word.

4.1.2.2 Simulation results

Non-uniformity and additive BSC

We test the proposed decoding algorithm using an LDPC code of rate 1
2

created
using the Progressive Edge Growth (PEG) principle ([HEA05] and Annex B). The
non-uniform sources are drawn for two values of pX = {0.15, 0.2275}; and, for each
pX , a range of values of p is considered. The source sequences are of length N = 1584
(which corresponds to the bit planes block length in the DVC experiments). The
syndrome sx, as well as the side-information y, are transmitted to three different
decoders:

� 1O the standard decoder that views X as a uniform source;

� 2O the proposed decoder that knows that X is non-uniform and has to estimate
p̂X ;

� 3O a genie-aided decoder that knows pX (in order to quantify the sub-optimality
introduced by the parallel estimation of p̂X).

When the BSC is additive, Fig. 4.3 shows the performance of the decoding in
terms of its Bit Error Rate (BER) versus H(p).
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4.1. ASYMMETRIC SW CODING OF NON-UNIFORM SOURCES 87

Figure 4.3: Performance of the standard and the modified LDPC decoders, for non-uniform
sources with parameters pX = {0.15, 0.2275}, over an additive BSC.

The standard decoder 1O has the same performance regardless of the source
distribution. Meanwhile, the decoders 2O and 3O exploiting the non-uniformity are
able to retrieve X from considerably greater H(p); the rate gain increases with
the non-uniformity. When considering that X is uniform, decoder 1O, H(X|Y ) =
0.5 is achieved for H(p) = 0.5 (p = 0.11) regardless of the source distribution.
When exploiting the non-uniformity, decoders 2O and 3O, H(X|Y ) = 0.5 occurs for
H(p) = 0.622 (p = 0.155) when pX = 0.2275, and for H(p) = 0.79 (p = 0.239) when
pX = 0.15. The estimation of the source Bernoulli parameter, only induces a loss
lower than 0.02bit when the BER is under 10−5, which is acceptable regarding the
rate gain with respect to the standard decoder.

Effect of a mismatch between the true correlation model and the one assumed
by the decoder

Now, we assess the impact of a wrong guess of the type of BSC between the
correlated sources. Let us first consider the case where the true correlation model
is additive while the decoder assumes a predictive one. The curve 1O in Fig. 4.3
shows the performance of such a mismatched decoder while curves 2O and 3O show
the performance of the matched decoder. The mismatch induces a significant rate
loss. For the other case, we consider a predictive correlation channel model, while
the decoder is configured to take into account an additive one. We plot the BER of
that system on Fig. 4.4, along with that of the standard decoder.

The mismatched decoder performs worse than the correct decoder. This result
might seem counter-intuitive since exploiting the source non-uniformity “should”
always improve the performance of the decoder. However, consider that the best
decoder that can be implemented is the matched decoder, so a mismatched decoder
always performs worse; in that sense, this result might seem obvious.
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88 CHAPTER 4. TOOLS FOR DISTRIBUTED SOURCE CODING

Figure 4.4: Influence of a mismatch on the channel type (the BSC is assumed to be additive
while it is predictive), for two non-uniform sources having parameters pX = {0.15, 0.2275}.

Performance for the parallel parameter estimation

Fig. 4.5 shows the estimated parameters, averaged over 5 · 103 realizations of the
source.

Figure 4.5: Performance of the parameter estimator that is implemented, for non-uniform sources
of parameters pX = {0.15, 0.2275}.

When the correlation level is such that H(p) is far from the SW bound (H(p) <
0.52 for pX = 0.2275, and H(p) < 0.62 for pX = 0.15), the decoding of X is successful
(BER< 10−2) and the parameter is well estimated (the bias of the estimator is lower
than 10−3); but when the correlation is lower, the decoding of X fails and the
parameter estimation fails as well.

4.2 Asymmetric coding of Gilbert-Elliott sources

In Section 3.2, we presented the GE source model, the achievable rate bounds that
can be reached for the SW coding, when the BSC modeling the correlation is additive
or predictive, and we presented a particular implementation of the EM algorithm for
the estimation of θX when the source realization x is available (the Baum-Welch al-
gorithm, in Section 3.2.4). We also showed that the GE model is a better model than
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4.2. ASYMMETRIC CODING OF GILBERT-ELLIOTT SOURCES 89

non-uniform sources, for the bit planes generated by the DVC codec DISCOVER in
Section 5.2.1. This Section is dedicated to the task of estimating the source parame-
ters when only corrupted observations of x are available, namely its syndrome sx and
the side-information y. A Turbo decoder that takes into account the statistics of the
GE channel is presented in [GFV02] using super-trellises, the usual decoders in the
literature place a channel interleaver and do the decoding assuming that the channel
is memoryless. Later, Eckford investigated the use of LDPC codes for decoding of
Bernoulli sources over the GE channel [Eck04, Eck05].

4.2.1 Formal statement of the problem and the EM algorithm

Here, the SW decoder must estimate the source realization x from its syndrome sx

and the side-information y, knowing a priori that X is a GE source. However, the
decoder is not aware neither of the parameter θX nor of the hidden state Σ. This
estimation is carried out with an Expectation-Maximization (EM) algorithm, that
learns new parameters from the observed variables, y and sx, and from a previous
estimation of the hidden variables, x̂, σ̂x and θ̂X .

Let l be the label of the current iteration of the EM, and θlX the current estimate

of the GE source parameters. Then, the updated value θ
(l+1)
X corresponding to

the next iteration is computed so as to maximize the following mean log-likelihood
function:

θ
(l+1)
X = arg max

θX

(
EX,Σx|Y,SX,θ

l
X

[
log

(
PθX (y,x, σx, sx)

) ])
(4.4)

To simplify the notation, in the sequel we denote “P(X = x|θX)” by “PθX (x)”.

Since the logarithm is a strictly increasing function, the value θ
(l+1)
X that max-

imizes PθlX (y,x, σx, sx) also maximizes log
(
PθlX (y,x, σx, sx)

)
. The algorithm con-

verges since it increases the likelihood at each iteration [Wu83].
We now consider that the code used to compress the source X is a syndrome-

based LDPC code. For an LDPC code yielding a compression rate N−K
N

, let H =
(hmn)m∈[1,(N−K)],n∈[1,N ] be the sparse matrix of size (N −K) × N corresponding to
the relationships between the variables. Fig. 4.6 presents the factor graph [KFL01]
that describes the dependencies between the observed and the hidden variables of
the problem.

We introduce the following notation for variables and messages that are passed
on the factor graph during the estimation-decoding process:

� xn are the source symbols, represented by the variable nodes ; their estimates are
denoted by x̂n;

� yn are the side-information symbols, represented by the side-information nodes ;

� zn are the noise realization symbols, represented by the BSC nodes ;

� sm are the syndrome symbols, represented by the check nodes ;

� dxn is the degree of xn, i.e. the number of check nodes connected to it;

� dsm is the degree of sm, i.e. the number of variable nodes connected to it;
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90 CHAPTER 4. TOOLS FOR DISTRIBUTED SOURCE CODING

Figure 4.6: Factor graph describing the joint estimation-decoding EM.

� In is the intrinsic information for the node zn;

� En,e, e ∈ [1, dxn] are the messages passed from the variable nodes, on their e-th
edge, to the check nodes;

� En is the a posteriori LLR of x̂n;

� Qm,e, e ∈ [1, dsm] are the messages passed from the check nodes, on their e-th
edge, to the variable nodes;

� Bn are the messages passed from the BSC node zn to the variable node xn;

� Sn : Messages from the state node σn to the variable node xn;

� Vn : Messages from the variable node xn to the state node σn.

All the messages are Log-Likelihood Ratio (LLR), they are labeled (in) or (out) if
they come to or from the considered node. In the following, we give the update rules
for the messages that are passed.

4.2.2 Expectation step: computation of the mean log-likelihood
function

We expand the likelihood function using the Bayes rule:

PθlX (y,x, σx, sx) = P(y, sx|x, σx)PθlX (x, σx)

where P(y, sx|x, σx) is independent of θlX .
The log-likelihood function is thus expressed as:

log
(
PθlX (x, σx)

)
= log

(
PθlX (σ1)

)
+

N∑
n=2

1∑
i=0

1∑
j=0

δσn−1=i,σn=j log(tlij)

+
N∑
n=1

1∑
i=0

δσn=i,xn=1 log(pli) + δσn=i,xn=0 log(1− pli)
(4.5)
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4.2. ASYMMETRIC CODING OF GILBERT-ELLIOTT SOURCES 91

where δbool =

{
1, if bool = true

0, otherwise
is the Kroenecker’s symbol.

Finally, the mean log-likelihood function is obtained by taking the expectation
of the log-likelihood function (4.5), where

EX,Σx|Y,SX,θ
l
X

[
δσn=i,xn=k

]
= PθlX (Σn = i,Xn = k|y, sx)

= PθlX (Σn = i|y, sx)PθlX (Xn = k|Σn = i,y, sx)

EX,Σx|Y,SX,θ
l
X

[
δσn−1=i,σn=j

]
= PθlX (Σn−1 = i,Σn = j|y, sx)

(4.6)

From Equations (4.5) and (4.6), the mean log-likelihood function is thus given
by:

EX,Σx|Y,SX,θ
l
X

[
log

(
PθlX (x, σx)

) ]
= log

(
PθlX (σ1)

)

+
N∑
n=2

1∑
i=0

1∑
j=0

PθlX (Σn−1 = i,Σn = j|y, sx) log(tlij)

+
N∑
n=1

1∑
i=0

PθlX (Σn = i|y, sx)PθlX (Xn = 1|y, sx) log(pli)

+ PθlX (Σn = i|y, sx)PθlX (Xn = 0|y, sx) log(1− pli)

(4.7)

Note that this expression of EX,Σx|Y,SX,θ
l
X

[
log

(
PθlX (x, σx)

) ]
is derivable in θX .

4.2.3 Maximization step: update rules for the parameters

Here, the mean log-likelihood function is maximized versus θX , given the estimate
θlX , and under the three constraints, ∀i, j ∈ {0,1}:

pi ∈ [0, 1], and tij ∈ ] 0, 1 [ , and
∑

k∈{0,1}
tik = 1 (4.8)

The partial derivatives of the mean log-likelihood function (4.7), with respect to
the Bernoulli parameters are, ∀i ∈ {0,1}:

∂

∂pli
EX,Σx|Y,SX,θ

l
X

[
log

(
PθlX (x, σx)

) ]
=(

1

pli

)
N∑
n=1

PθlX (Σn = i|y, sx)PθlX (Xn = 1|y, sx)+

(
1

1− pli

)
N∑
n=1

PθlX (Σn = i|y, sx)PθlX (Xn = 0|y, sx)

(4.9)

Then, the derivative (4.9) is zero when, ∀i ∈ {0,1}:
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92 CHAPTER 4. TOOLS FOR DISTRIBUTED SOURCE CODING

p
(l+1)
i =

N∑
n=1

PθlX (Σn = i|y, sx)PθlX (Xn = 1|Σn = i,y, sx)

N∑
n=1

PθlX (Σn = i|y, sx)
(4.10)

For the transition parameters, given that t00 = (1 − t01) and t11 = (1 − t10)
(3.3), the partial derivatives are given by, ∀i, j ∈ {0,1}, i 6= j:

∂

∂tlij
EX,Σx|Y,SX,θ

l
X

[
log

(
PθlX (x, σx)

) ]
=(

1

tlij

)
N∑
n=2

PθlX (Σn−1 = i,Σn = j|y, sx)PθlX (Xn = 1|y, sx)+

(
1

1− tlij

)
N∑
n=2

PθlX (Σn−1 = i,Σn = i|y, sx)PθlX (Xn = 0|y, sx)

(4.11)

Then, the derivative (4.11) is zero when, ∀i, j ∈ {0,1}, i 6= j:

t
(l+1)
ij =

N∑
n=2

PθlX (Σn−1 = i,Σn = j,y, sx)

N−1∑
n=1

PθlX (Σn = i|y, sx)
(4.12)

Note that the constraints in Equation (4.8) are met by the solutions that are
exhibited, provided that the parameters are correctly normalized.

Therefore, the maximization step needs the current a posteriori probabilities
(APP) of the states Σ and the source X. Due to the cycles in the graph, these
quantities are too complex to compute, but they can efficiently be approximated by
a belief propagation algorithm run on the graph shown in Fig. 4.6. The algorithm
proceeds in two steps explained below: the soft estimates of the states result from a
forward-backward-like algorithm, and the soft estimates of the source symbols result
from an LDPC-decoding-like algorithm.

4.2.4 Forward-backward algorithm for soft estimates of the states

Here, the probabilities of Σ are updated according to the values of the estimate θlX .
The aim is to compute

PθlX (Σn = i|y, sx) =
PθlX (Σn = i,y|sx)

PθlX (y|sx)

PθlX (Σn−1 = i,Σn = j|y, sx) =
PθlX (Σn−1 = i,Σn = j,y|sx)

PθlX (y|sx)

To that end, we decompose the following expression, to retrieve the equations
corresponding to the forward-backward recursions:
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4.2. ASYMMETRIC CODING OF GILBERT-ELLIOTT SOURCES 93

PθlX (Σn = i,y|sx) =
∑

j∈{0,1}
PθlX (Σn = i,Σn+1 = j,y|sx)

=
∑

j∈{0,1}
αni · γ

n,(n+1)
i,j · β(n+1)

j

The forward-backward algorithm is run on the trellis in Fig. 4.7 defined by the
states 0 and 1 generating the source symbols, with two branches between the states,
labeled by the two possible values xn = 0 and xn = 1.

Figure 4.7: Trellis on which the forward-backward algorithm is run to estimate the underlying
states Σ of the GE process.

We define

γ
n,(n+1)
i,j =PθlX (yn|Σn = i, sx) · PθlX (Σn+1 = j|Σn = i, sx)

αnj =
∑

i∈{0,1}
α

(n−1)
i · γ(n−1),n

i,j

βni =
∑

i∈{0,1}
γ
n,(n+1)
i,j · β(n+1)

j

where:

� γn,(n+1)
i,j is the transition probability between the states i at position n and j at

position (n+ 1).

� αnj is the forward probability for the source to be in state j at position n;

� βni is the backward probability for the source to be in state i at position n.

Now we define the states APP:

PθlX (Σn = i,y|sx) = αni · βni
PθlX (Σn−1 = i,Σn = j,y|sx) = α

(n−1)
i · γ(n−1),n

i,j · βnj

Normalizing PθlX (σn,y|sx) and PθlX (σn−1, σn,y|sx), we get the desired values

PθlX (σn|y, sx) and PθlX (σn−1, σn|y, sx).
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4.2.5 LDPC decoding for the soft estimate of the source

Given the current estimate θlX and the soft estimate σlx, we find the best approxi-
mation of the a posteriori probabilities (APP) PθlX (Xn = k|σn,y, sx), n ∈ [1, N ], k ∈
{0, 1} needed for the parameters updates in Equations (4.10) and (4.12) of the max-
imization step. As side products, we also obtain the l-th estimate xl. Here, we
describe the update rules for the belief-propagation run on the graph in Fig. 4.6.

Messages from the state nodes to the variable nodes

Sn = log

PθlX (Xn = 0)

PθlX (Xn = 1)

 = log

(
1− plXn
plXn

)

where plXn is obtained from the states probabilities PθlX (σn|y, sx) (from the forward-

backward algorithm), and the current estimate θlX . More precisely, ∀n ∈ [1, N ]:

plXn =
∑
i∈[0,1]

pli · PθlX (Σn = i|y, sx) (4.13)

Intrinsic information of the BSC nodes

In = log

(
P(Zn = 0)

P(Zn = 1)

)
= log

(
1− p
p

)

Messages from the BSC nodes to the variable nodes

Bn = (1− 2yn)In (4.14)

Messages from the variable nodes to the check nodes

E(out)
n,e =


Bn +

dxn∑
k=1,k 6=e

E
(in)
n,k , if predictive BSC

Bn +
dxn∑

k=1,k 6=e
E

(in)
n,k + Sn, if additive BSC

Each E(out)
n,e is mapped to the corresponding Q(in)

m,e according to the connections in
the factor graph.

Messages from the check nodes to the variable nodes

Q(out)
m,e = 2 tanh−1

(1− 2sn)
dsm∏

k=1,k 6=e
tanh

Q(in)
m,e

2


Each Q(out)

m,e is mapped to the corresponding E
(in)
n,k .
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4.2. ASYMMETRIC CODING OF GILBERT-ELLIOTT SOURCES 95

Messages from the variable nodes to the state nodes

We compute the extrinsic LLR En for each xn, as:

En = Bn +
dxn∑
k=1

E
(in)
n,k

Then, the variable to state messages are given by:Vn(0) =
eEn

1 + eEn

Vn(1) = 1− Vn(0)

(4.15)

For this LDPC decoding, we have decided to propagate LLR, which implies their
conversion to probabilities, in (4.15), for use in the maximization step. So far,
the values of Vn(0) and Vn(1) are the best guess on the a posteriori probabilities
PθlX (Xn = 0|σn,y, sx) and PθlX (Xn = 1|σn,y, sx).

Decision After each iteration of the EM algorithm, a hard decision is made on
Vn(1) to get the estimated symbols of x(l+1).

∀n ∈ [1, N ], x(l+1)
n =

{
1, if Vn(1) ≥ 0.5

0, otherwise

4.2.6 Stopping criteria: syndrome check, convergence test, and
maximum number of iterations

The EM estimation-decoding algorithm stops either if the estimated x(l+1) satisfies
the parity check equations defined by

(
Hx(l+1) = sx

)
, or if the syndrome test has

failed while no symbol of x̂ has been updated during the current iteration (we decide
that the decoder has converged to a wrong word), or if the maximum number of iter-
ations has been reached (100 iterations is a good compromise between performance
and complexity).

4.2.7 Initialization of the EM algorithm

As exhibited in Lemma 3.1, the side-information Y is a GE source that has the
same states as the source X. Therefore, to initialize the EM algorithm, we use
the estimated GE parameters associated to y, {θ̂Y , σ̂y}; that is the best guess on
{θ0

X , σ
0
x} so far. To estimate these parameters, we use the Baum-Welch algorithm

presented in Section 3.2.4. This simplified EM algorithm is initialized with the
arbitrary values (p0

0 = 0.49, p0
1 = 0.51, t010 = 0.1, t001 = 0.1).

4.2.8 Simulation results for Distributed coding of GE sources

We consider a GE source X with parameters θX = (p0 = 0.07, p1 = 0.7, t10 =
0.03, t01 = 0.01), having realization x of length N = 1584 (same length as the video
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96 CHAPTER 4. TOOLS FOR DISTRIBUTED SOURCE CODING

bit planes, in the DVC experiments with QCIF sequences reported in Chapter 5).
We also consider a noise Z ∼ B(p) with realization z, and a second source Y , with
realization y, correlated to X s.t. Y = X ⊕ Z (the BSC is additive). To prove the
enhanced performance of the proposed DSC decoder, the syndrome of x, as well as
the side-information y, are transmitted to three different decoders:

� aO the standard decoder, which views X as a uniform source;

� bO the proposed decoder, which knows that X is a GE source and uses the EM
algorithm to iteratively estimate its parameters θX ;

� cO a genie-aided decoder, which knows the parameters θX .

The BER of X corresponding to the three decoders are plotted in Fig 4.8, the
estimated parameters from the decoder bO are plotted in Fig. 4.9. When exploiting
the memory, H(X|Y) = 0.5 occurs for H(p) = 0.88 (p = 0.299), instead of H(p) = 0.5
(p = 0.11) when considering the source as uniform.

Figure 4.8: Performances of the three decoders, for a GE source X of parameter θX =
(p0 = 0.07, p1 = 0.7, t10 = 0.03, t01 = 0.01).

First, we see in Fig. 4.8 that the proposed decoder bO performs considerably
better than the original decoder aO. In particular, the source is retrieved error-free
for H(p) = 0.5, which corresponds to the SW bound for uniform sources. Moreover,
the plots bO and cO in Fig. 4.8 show that knowing the true θX is not essential to the
decoder, since it does not improve the performance of the decoder in a significant
amount: the rate improvement from bO to cO is less than 0.02bit for any value taken
by p. The decoder presented in [GFV97] is not able to reach this bound since no
estimation of the states is performed, their decoding is done on the super trellis of a
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4.3. SYNDROME-BASED NON-ASYMMETRIC SW CODING 97

modified Turbo code, with a number of states that is equal to the number of states
of the code times the number of states in the memory source. If a Turbo code was
used for our scheme, the number of states would be the number of states of the code
plus the number of states in the memory source.

Figure 4.9: Performance of the parameter estimation, for a GE source X of parameter θX =
(p0 = 0.07, p1 = 0.7, t10 = 0.03, t01 = 0.01).

It is shown in Fig. 4.9 that the EM algorithm manages to closely retrieve the pa-
rameters ofX if the correlation is high (H(p) < 0.65). The more the side-information
y is noisy (with respect to x), the less the algorithm is able to estimate the parame-
ters of X: our guess is that the corresponding estimated states of y differ too much
from the actual states of x.

Now we consider the case where the correlation channel is predictive, i.e. X =
Y ⊕ Z, and the decoders are the same aO and bO as before. In such a configu-
ration, the predictive BSC modeling the correlation involves a mismatch between
the true model and the one (additive) assumed at the decoder bO. The BER of X
corresponding to the two decoders are plotted in Fig. 4.10.

We see in Fig. 4.10 that the mismatch degrades the performance of the decoder
bO while exploiting the memory in X. In this configuration, the best decoder is the
standard one, i.e. aO, which assumes that the source is uniform, that is equivalent
to assuming that the channel is predictive.

4.3 Syndrome-based non-asymmetric SW coding

In this Section, we design SW codes for the whole achievable rate region. Both
sources are compressed in order to reach any rate on the segment between A and
B (Fig. 1.1), for a given cross-over probability p. Syndrome-based approaches are
known to be optimal, however maybe less amenable to rate adaptation. Yet, rate-
adaptive non-asymmetric codes may be beneficial for applications such as multi-
view light field coding [GD05] or for joint optimization of the rate and power of
transmission in a sensor network application [RG07]. For example, in a wireless
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98 CHAPTER 4. TOOLS FOR DISTRIBUTED SOURCE CODING

Figure 4.10: Performances of the standard decoder aO and the proposed decoder bO exploiting
the source memory.

sensor network, spatially distributed sensors gather data and send them to a common
center. It is shown in [RG07] that the optimal rate allocation depends on the
transmission conditions and can therefore be any point in the SW region. It is
therefore of interest to construct DSC codes that can achieve any point in the SW
region. Moreover to meet the low cost constraint, each single sensor must be designed
so as to handle any correlation between the sources.

In Section 4.3.1, we first consider the rate-adaptive and non-asymmetric SW
coding of uniform Bernoulli sources, and exhibit a unique codec based on LDPC
codes to achieve the whole SW bound. The approach is based on the asymmetric
rate-adaptive framework developed by Varodayan et. al in [VAG06], and on the
solution for non-asymmetric coding developed by Gehrig et. al in [GD05]. In Section
4.3.2, we investigate the error propagation phenomenon (that is induced by non-
asymmetric system) by determining its causes, and we propose two solutions by
modifying the matrix of the code. We finally end this study of non-asymmetric in
Section 4.3.3, by adapting the codec so as to take into account the non-uniformity
of the source.

4.3.1 Non-asymmetric and Rate-adaptive coding of uniform sources

To address the rate-adaptive SW problem, the authors in [VAG06] suggested to
accumulate the syndrome bits of a DSC code before the puncturing step, thus main-
taining the performance of the code. The proposed approach however is appropriate
for the asymmetric setup only. In the sequel, the approach is extended in order
to cover the entire Slepian-Wolf rate region, that is not limited to the asymmetric
setup.
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4.3. SYNDROME-BASED NON-ASYMMETRIC SW CODING 99

4.3.1.1 Non-asymmetric SW coding for a given correlation

Let X and Y be two Bernoulli sources which correlation is defined by the cross-
over probability p. Let x and y be their respective realizations of length N . Let
us consider an (N,K) LDPC code defined by its parity-check matrix H(N−K)×N =
[A(N−K)×K B(N−K)×(N−K)]. The syndromes sx = Hx and sy = Hy, of length
(N − K), are computed for both sequences and transmitted to the decoder. In
addition, the k′ first bits of x (xk

′
1 ) and the K − k′ next bits of y (yKk′+1), are also

transmitted to the decoder as systematic bits, where k′ is an integer s.t. k′ ∈ [0, K].
The total rates for the two sources X and Y are respectively RX = N−K+k′

N
and

RY = N−k′
N

bits. The structure of the coders is depicted in Fig. 4.11. Note that the
particular cases k′ = 0 and k′ = K correspond to the two asymmetric setups with
rates corresponding to the corner points A and B of the SW region.

Figure 4.11: The non-asymmetric coders.

The decoder first computes sz = sx ⊕ sy, which turns out to be the syndrome of
the error pattern z between x and y, since Hx⊕Hy = H(x⊕y) = Hz. A modified
LDPC decoder estimates ẑ = x̂⊕ ŷ from the syndrome sz and the all-zero word of
size N as side-information. More precisely, z corresponds to the vector of smallest
Hamming weight with syndrome sz, or in other words, z is the vector closest to the
all-zero word among the vectors with syndrome sz.

Once the difference pattern is found, xKk′+1 and yk
′

1 can be estimated thanks
to the relation z = x ⊕ y, i.e. x̂Kk′+1 = yKk′+1 ⊕ ẑKk′+1 and ŷk

′
1 = xk

′
1 ⊕ ẑk

′
1 . The

estimates of the subsequences xNK+1 and yNK+1 then remain to be computed. Since,
sx = [A B]x = Axk1 ⊕ BxNK+1, then x̂NK+1 = B−1 [sx ⊕ Ax̂K1 ], where B−1 denotes
the inverse of the matrix B [GD05, TL05b]. Similarly, ŷNK+1 can be calculated from
sy, yKk′+1, ẑ and x̂k

′
1 . The following equations are a summary of these calculations:
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100 CHAPTER 4. TOOLS FOR DISTRIBUTED SOURCE CODING

x̂ =


x̂k
′

1 = xk
′

1

x̂Kk′+1 = yKk′+1 ⊕ ẑKk′+1

x̂NK+1 = B−1
(
Ax̂K1 ⊕ sx

)


ŷ =


ŷk
′

1 = xk
′

1 ⊕ ẑk
′

1

ŷKk′+1 = yKk′+1

ŷNK+1 = B−1
(
AŷK1 ⊕ sy

)


(4.16)

At this stage, we can see why a full-rank matrix B is mandatory for this algorithm
to work. Note that for a rate K/N channel code, the parity check matrix H is of
rank (N−K), which insures that there exists a subset of (N−K) columns of H that
are linearly independenti; then a permutation matrix is found so that the matrix H
has the desired form H = [A B].

4.3.1.2 Non-asymmetric SW coding for varying correlation

We now consider the problem of adapting the rate of the above coding/decoding sys-
tem to varying correlation, by puncturing some syndrome bits. To avoid degrading
the performance of the LDPC code, the syndrome bits are first accumulated before
being punctured, as suggested in [VAG06]. This accumulation allows to protect the
punctured syndrome bits to avoid degrading the performance of the original code.
The effect of this accumulator code is equivalent to merging some rows of the parity
check matrix by adding them modulo-2.

Let us consider a set of M matrices (Hm)m=1...M of respective sizes (N −Ki)×
N, i = 1 . . .M corresponding to M LDPC codes is considered. These matrices
are built according to [VAG06]. Without loss of generality, assume that ∀m, q ∈
[1,M ],m < q ⇒ (N − Km) < (N − Kq), meaning that the M matrices have a
growing number of rows. Also consider the set of permutation matrices (Pm)m=1...M

of size N×N so that ∀m ∈ [1,M ],HmPm has the requested invertible B part at the
right place. These permutation matrices are not all the same because merging the
rows of the original matrix H moves the location of the free columns. The coding
and decoding structures are depicted in Fig. 4.12.

The coders send a first set of accumulated syndromes bits and systematic bits.
With that information, the decoder tries to find a first estimate of the error pattern z.
If the decoded word ẑ does not fulfill the parity-check equations defined by Hẑ = sz,
more syndrome bits are requested from the encoder via a one-bit feedback channel,
and this goes on until ẑ has syndrome sz.

Let Hi be the matrix of rate N : (N −Ki) corresponding stage i at which z is
correctly decoded. Both the coder and the decoder know which (N −Ki) columns
of Hi are free. Let k′ be an integer so that k′ ∈ [0, Ki]. The systematic bits for
both sources can then be sent. The source X transmits the k′ bits corresponding to
the k′ first columns of the Ki columns of Hi which are not free. Y transmits the
Ki − k′ bits corresponding to the Ki − k′ remaining non-free columns of Hi. Then
RX = N−Ki+k′

N
and RY = N−k′

N
. In other words, the parameter i first determines the

iThe search for a subset of (N −K) free columns of H is formally described in Annex A
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4.3. SYNDROME-BASED NON-ASYMMETRIC SW CODING 101

Figure 4.12: The single rate-adaptive codec.

global rate of the system, and k′ fixes the specific rates of X and Y . These rates
can be optimized each time a new sequence of length N is to be coded.

4.3.1.3 Simulations and results

Achieving the SW bound for any correlation parameter p

The simulation tests have been conducted with a set of matrices generated in
the same way as in [VAG06]. We consider input sequences of length N = 8052
and generate 65 matrices having sizes ranging from 62× 8052 to 8052× 8052. The
sources X and Y are i.i.d. random variables with uniform binary distribution. The
correlation between X and Y is modeled as a BSC with crossover probability p. In
our tests, p varies from 0.01 to 0.21, with a step of 0.05. For each correlation factor
p, different compression rates are tested in order to achieve any point of the SW
bound. This degree of freedom is obtained by tuning k′, the number of input bits
sent by source X. More precisely, 11 different values of k′ are considered, varying
from 0 to K, with a step of 0.1 ·K; for each k′, 2 · 104 words are tested.

Our system has zero bit error rateii and we are only 0.0677 bits away from the
SW bound, in average, which is among the best results reported so far for a code of
that size. The results and the corresponding theoretical bounds in the Slepian-Wolf
region are reported in Fig. 4.13.

Behaviour of the rate-adaptive codec

iiThe rate-adaptive decoding is run until the decoded words are error-free
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102 CHAPTER 4. TOOLS FOR DISTRIBUTED SOURCE CODING

Figure 4.13: Performance of the single rate-adaptive codec.

Now, we investigate the percentage of use of each one of the M codes (Hm)Mm=1

in function of the correlation factor p. This is to optimize the design of each inter-
mediate code. For example, for p = 0.11, we see in Fig. 4.14 that the codes of rates
lower than 0.5 are rarely used, so as the codes having rates greater than 0.6; the code
that is mostly used is the code of rate 0.54. Therefore, the design of rate-adaptive
codes for the particular p = 0.11 should optimize the performance of the code of
rate 0.54.

Figure 4.14: Performance of the single rate adaptive codec.

The non-asymmetric scheme presented in this Section has two drawbacks. First,
if Turbo or LDPC codes are used, the inverse sub-matrix of the code, B−1, has no
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4.3. SYNDROME-BASED NON-ASYMMETRIC SW CODING 103

periodic structure s.t. the whole matrix B−1 has to be stored, and the complexity
of the multiplication grows quadratically with the block length. Second, from the
construction of the decoder, we notice that the three parts of the estimated sequences
x̂ and ŷ have different characteristics. Since the subsequences xk

′
1 and yKk′+1 are

available at the decoder, their estimates have no error. The next subsequences
(xKk′+1 and yk

′
1 ) are recovered thanks to the estimated error pattern (4.16), therefore

their estimates have the same BER as the estimated error pattern. The most critical
issue that we address in the next Section 4.3.2 is the BER of the (N −K) unknown
bits of the sequence x̂ (and similarly for ŷ). Actually, multiplication by the matrix
B−1 may enhance the number of errors. We call this effect the error propagation
phenomenon. In the following, we show this effect for Convolutional and Turbo codes
and we propose two solutions to limit it. Moreover, we show that the designed robust
scheme is also fast in the sense that the complexity grows only linearly with the block
length.

4.3.2 Error-resilient non-asymmetric SW coding of uniform sources

In this Section, we investigate the conditions under which the non-asymmetric dis-
tributed coding of uniform Bernoulli sources may prevent the error propagation
phenomenon. We give results on the particular case of Convolution codes in Section
4.3.2.1, which gives an insight on how to implement the decoder for Turbo codes. We
propose two solutions for Turbo codes. The first one, described in Section 4.3.2.2,
consists in sending more systematic bits from both sources to help the decoder. This
has the main drawbacks of increasing the coding rate of the code. The second so-
lution relies on modifying the very structure of the code, to match the conditions
formulated in Section 4.3.2.3, which practically consists in implementing a Turbo
code having an identity matrix as the subpart B.

4.3.2.1 Non-asymmetric SW coding using Convolutional codes

In the following, we consider a (N,K) Convolutional code. First, we note that the
unknown positions in the vector x are design parameters. More precisely, these
positions (or equivalently the columns of the matrix H to be extracted in order to
build the matrix B) are chosen at the encoder and known at the decoder. Therefore,
the estimation of the subsequences xNK+1 and yNK+1 is an easier task than channel
decoding over a binary erasure channel (BEC), since, in our case, the erased positions
are known at the encoder.

Figure 4.15 shows the BER of the error pattern z (continuous line) and its effect
on the estimation of the source sequence x. The Convolutional code is defined by
its parity check matrix H =

(
11 15 06
15 12 17

)
and is punctured over a period of four trellis

sections in order to get a 1 : 2 compression rate for the source. Its performance is
shown for three possible estimators.

First, we use the original method (Section 4.3.1.1). The dotted curve represents
the BER, when Equation (4.16) is performed with an arbitrary invertible matrix
B. As expected, the BER is drastically increased. Since the linear code chosen
is a Convolutional code, its parity check matrix has a natural periodic structure.
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Figure 4.15: Error propagation in the estimation of the source X using a Convolutional code.

Therefore, there exists a sliding window implementation for the decoding, which
reduces the required storage (a whole matrix B−1 does not need to be stored).

In a second method, we optimize the matrix B in order to limit the error propa-
gation. More precisely, we choose a matrix B which inverse is as sparse as possible.
Fig. 4.15 shows that if the matrix is chosen to be as sparse as possible, then the
BER can be lowered from the dotted curve to the dashed curve. Here, an exhaustive
search over all possible B matrices has been performediii.

Finally, we use a modified ML decoder to solve the problem. Let us first assume
that the error pattern z is perfectly known at the decoder. Therefore the K first bits
of x, xK1 , are also known. If the matrix B is invertible, the original source sequence
is the unique sequence of the coset Csx that has the first K bits equal to xK1 (recall
that the syndrome sx is also known at the decoder). Therefore, one can build a ML
decoder (Viterbi for the Convolutional decoder) that performs a search in the coset
Csx and that is matched to a channel combining a perfect channel (for xK1 ) and an
erasure channel (for xNK+1). The practical effect of knowing some bits perfectly is
that many wrong paths are deleted in the trellis, and, if B is invertible, there might
be a single path that remains.

We now go back to our original problem of error propagation. If the difference
pattern z contains errors, the decoder is matched to a channel combining a perfect
channel (for xk

′
1 ), a BSC (for x̂Kk′+1 with cross over probability “the BER of z”) and

an erasure channel (for xNK+1). Now, Fig. 4.15 shows that the BER for the estimation

iiiThe search for a subset of (N −K) free columns of H is formally described in Annex A. The
Annex also shows how to choose the optimized B so as to work with an inverse B−1 as sparse as
possible
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4.3. SYNDROME-BASED NON-ASYMMETRIC SW CODING 105

Figure 4.16: Equivalent channels for the decoding of the two sources.

of x is further reduced (dot-dash curve). Interestingly, with this decoder the BER
of x̂ remains almost the same as that of ẑ. The proposed Convolutional decoder
can therefore limit the error propagation. Moreover, the complexity of the proposed
algorithm grows only linearly with the block length.

4.3.2.2 Non-asymmetric SW coding with Turbo codes

In this section, we use a Turbo code composed of two identical (N,K) Convolutional
codes separated by a random interleaver of size N , as shown in Fig. 4.17. Each source
transmits two syndromes of length (N −K) one of the source: sx1 (resp. sy1), and
one of the interleaved version of the source: sx2 (resp. sy2).

Figure 4.17: The Turbo-syndrome scheme for non-asymmetric SW coding of two sources: the
encoder (left) and the estimation of the error pattern (right).

The first step of the decoding consists in estimating the error pattern z. There-
fore, we compute the two syndromes of z: szi = sxi⊕syi, i ∈ {1, 2} and search for the
closest sequence to 0 in Csz1 ∩Csz2 , where ∀i ∈ {1, 2},Cszi is the ensemble of vectors
having syndrome svzi. To perform this search, we use the modified BCJR algorithm
[RLG07] for the decoding of each Convolutional code, with extrinsic message passing

te
l-0

05
39

04
4,

 v
er

si
on

 1
 - 

23
 N

ov
 2

01
0



106 CHAPTER 4. TOOLS FOR DISTRIBUTED SOURCE CODING

between the Convolutional decoders, as depicted in Fig. 4.17. The Turbo decoding
stops when the estimated ẑ matches the two syndromes sz1, sz2 or when a maximum
number of Turbo decoding iterations is reached (in the sequel, we perform a max-
imum of 20 decoding iterations, which is a good trade-off between complexity and
performance).

Once ẑ is estimated, the estimates of the source sequences x̂ and ŷ have to be
recovered. The first method considered here consist in computing the parity check
matrix of the Turbo code. Let H1 be the (N −K)×N parity check matrix defining
the first Convolutional code. The parity check matrix of the second code H2 results
from a permutation of the columns of H1. Thus, the Turbo code is completely deter-
mined by the 2(N −K)×N matrix H =

(
H1

H2

)
. Given a decomposition H = (A B)

with an invertible part B, we apply operations described in the Equations (4.16) to
estimate x̂NK+1 and ŷNK+1. Due to the presence of the interleaver, there exists no slid-
ing window implementation of this estimator, contrarily to the case of Convolutional
codes (unless a constrained interleaver is designed, which may degrade the perfor-
mance of the Turbo code). Moreover, as expected, the error propagates drastically.
Therefore, we propose a novel method that can both reduce the error propagation
and have a sliding window implementation (to have an estimator complexity that
grows linearly with N).

The estimation of the remaining subsequences proposed for Convolutional codes
rely on the hypothesis that an exact MAP decoding can be used. However, for
Turbo codes such a decoder is of great complexity and we consider here the usual
suboptimal MAP decoder, i.e. the BCJR algorithm. As for the case of Convolutional
codes, we first assume that the error pattern z has been perfectly estimated. Each
constituent Convolutional decoder has to solve a linear system of (N−K) equations
with 2(N−K) unknowns and the solution is “at best” a vector subspace of dimension

(N −K). Let B be decomposed into the sub-matrices B =

(
B11 B12

B21 B22

)
. To insure

that the dimension of each solution subspace is only (N −K), the matrices B11 and
B22 must be invertible. Finally, to insure that the intersection of the two solution
subspaces reduces to a single sequence, the whole matrix B has also to be invertible.

These three new constraints (existence of B−1,B−1
11 and B−1

22 ) are enough if the
two decoders communicate their solution subspaces to each other. However, to im-
plement a low complexity decoder, we rely on the bitwise MAP decoding procedure
that may loose some information on the solution subspace. More precisely, no in-
formation is lost if all the erased bits of a solution subspace are located in the same
position, or, in other words, if a solution subspace is generated by coordinate vectors
(the i-th coordinate vector has a single 1 at the i-th position and 0 everywhere else
ei = (0...010...0)). If such a condition is not satisfied, then the Turbo decoder has
to be helped by introducing some known bits at the decoder.

Figure 4.18 shows the BER of the error pattern z (continuous line) and its effect
on the estimation of the source sequence x. The Turbo code that we consider has
a global compression rate of 1 : 2. However, some unknown bits of the source are
directly sent to the decoder (for both estimators of the source X). Therefore, the
global coding rate (and thus the SW bound in the figure) increases to 0.54. In a
nutshell, first the matrix inversion technique is used and the dashed curve shows that
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4.3. SYNDROME-BASED NON-ASYMMETRIC SW CODING 107

the BER has been increased; then the source X is estimated with the soft decoder
described above and the dot-dash curve shows that the BER has been reduced.
Interestingly, our robust scheme is also fast since the complexity grows linearly with
the interleaver size.

Figure 4.18: Error propagation and estimation of the source X. Each constituent code of the
Turbo code is defined by H =

(
11 15 06
15 12 17

)
and is punctured over a period of 4 trellis sections in order

to get a 1 : 2 compression rate. The block size is N = 2000.

In the following Section 4.3.2.3, we lead deeper studies to exhibit under which
conditions a maximum a posteriori (MAP) bitwise decoder can recover an erased
bit.

4.3.2.3 Conditions on the parity-check matrix for erasure recovery under MAP
decoding

¨
We take the same notation as in the previous Section. The aim is to find necessary

and sufficient conditions to allow recovery of X and Y for the non-asymmetric SW
coding using Turbo codes, but without adding some redundant information about
the trellis states (this prevents the increase of the transmission rate), as in Section
4.3.2.2. To that end, we note that over the BEC, each bit-wise MAP Convolutional
decoding has only two issues with respect to the recovery of each bit; namely, the
bit is perfectly recovered (its APP is 1 or 0) or no additional information is brought
after the decoding ends (its APP indefinitely remains to 0.5). Therefore, under the
sub-optimal bit-wise MAP decoding of a syndrome-based Turbo code, the erased
bits xN2K−N and yN2K−N can be recovered if, and only if, each matrix representation
of the two Convolutional codes have a part of size (N −K)× (N −K) that is equal
to 0, and the corresponding part in the matrix, of the other Convolutional code,
form a basis of the subspace generated by its columns. This columns disposition is
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108 CHAPTER 4. TOOLS FOR DISTRIBUTED SOURCE CODING

the only possibility to insure that the bit-wise MAP decoding will output the right
values of x and y.

To assess the performance of the Turbo code designed according to this condi-
tion, we propose to lead some simulations using the constituent Convolutional codes
defined by the party-check polynomials

(
15/17 1 0
15/17 0 1

)
. Note that the resulting matrix

of size 2(N −K)×N has a part B of size 2(N −K)× 2(N −K) that is the identity
matrix. The performance, in terms of the BER of the system is shown in Fig. 4.19;
it is compared to the performance of the codec using the matrix inversion based
method for the recovery of xN2K−N and yN2K−N .

0.4 0.45 0.5 0.55 0.6 0.65
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Figure 4.19: Error propagation in the estimation of the source X.

The results in Fig. 4.19 demonstrate that the designed codec limits the error
propagation in the source X, and when the correlation is high enough (H(p) < 0.42),
the remaining errors in X̂ are even fewer than the remaining errors in Ẑ.

4.3.3 Non-asymmetric SW coding of non-uniform sources

The Bernoulli sources that are usually simulated in the literature are uniformly
drawn. However, experimental sources are better described by non-uniformly drawn
Bernoulli sources (see Section 5.1.1 for the modeling of the bit planes generated by a
DVC system), which have a lower entropy than uniform sources. We raise the prob-
lem of asymmetry of the respective minimum achievable rates in the non-asymmetric
SW coding of the correlated sources, due to their non-uniformity. Actually if the
considered correlation channel is described by Y = X ⊕ Z, where Z is indepen-
dent of X, then the noise is additive for X and predictive for Y (see Section 3.3
for the difference between the additive and the predictive channels). This implies
that H(Y ) ≥ H(X), and a fortiori H(X|Y ) ≤ H(Y |X). In Section 4.3.2, we
presented the non-asymmetric coding of uniform sources using Convolutional and
Turbo codes, and we derived necessary and sufficient conditions to recover the two
sources under sub-optimal bitwise Turbo decoding. Here, we consider non-uniform
Bernoulli sources, and we derive a necessary and sufficient condition to recover the
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4.3. SYNDROME-BASED NON-ASYMMETRIC SW CODING 109

two sources under sub-optimal Message-Passing (MP) decoding of an LDPC code.
The DSC decoder that we propose in this Section accounts for the non-uniformity
of the sources, while being able to reach any point in the SW rate region.

4.3.3.1 Channel asymmetry in the non-asymmetric SW setup

In the non-asymmetric SW problem, neither X nor Y is available at the decoder:
the two sources are compressed at rates RX and RY fulfilling the constraints RX ∈
[H(X|Y ), H(X)], RY ∈ [H(Y |X), H(Y )], and RX +RY ≥ H(X, Y ); they have to be
decoded jointly. In the literature, two non-asymmetric schemes have been proposed:
in [PR00, SLXG04], the asymmetric code is partitioned into two sub-codes, one for
each source, whereas the original code is used in [GD05, TL05b]. In both approaches,
first the difference pattern, z = x⊕ y, is estimated, then the sources are recovered.
In this two step procedure, error propagation can occur if the error pattern z is not
correctly estimated [HTZR09].

Since X is independent of Z, and Y = X ⊕ Z, the BSC is additive for X and
predictive for Y . Consequently, the problem is not symmetric in the two sources.
When coding non-uniform Bernoulli sources, this asymmetry implies that the non-
uniformity of X decreases H(X|Y ), but the non-uniformity of Y does not decrease
H(Y |X), with respect to the case where X and Y are uniform.

For the “matrix-inversion”-based non-asymmetric decoding (see Section 4.3.2), if
the decoding of z is successful, the matrix-inversion-based decoding is able to retrieve
the original values of the sources since B is invertible. Anyhow, this matrix-inversion
method has some limitations. More precisely:

� It does not exploit the non-uniformity of the sources, so the SW bound of X is
not reached;

� It suffers from the error propagation phenomenon reported in Section 4.3.2, since
the decoding cannot take into account the uncertainty from the decoding of z;

� It does not allow to take into account the BSC type (additive or predictive)
between the two sources .

The proposed LDPC-based non-asymmetric decoder is described in the following
Section. We have designed it so as to take into account the non-uniformity of the
sources. The error propagation phenomena is also dealt with, since the decoding is
not dependent on the decoding of the error pattern z. Finally, the type of the BSC
between the sources is also taken into account.

4.3.3.2 The proposed non-asymmetric decoding

The decoder must find the best estimates x̂ and ŷ given their syndromes sx, sy, their
systematic parts xk

′
1 , yKk′+1, and knowing a priori that X and Y are non-uniform

binary sources with respective parameters pX and pY . This amounts to solving the
joint bitwise maximization problem: ∀n ∈ [1, N ]

x̂n = arg max
x∈{0,1}

P(Xn = x|xk′1 , yKk′+1, sx, sy)

ŷn = arg max
y∈{0,1}

P(Yn = y|xk′1 , yKk′+1, sx, sy)
(4.17)
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110 CHAPTER 4. TOOLS FOR DISTRIBUTED SOURCE CODING

The computation of the a posteriori probabilities (APP) for this problem is too
complex, but it can be approached with a sub-optimal MP algorithm. We now
present the graph that shows the factorization of the APP from the decoding.

Graph for the decoding algorithm

In the context of DSC, an (N,K)-LDPC code C can be represented either by
its parity-check matrix H = (hmn) of size (N − K) × N or by a bipartite graph.
The bipartite graph is composed of (N − K) check nodes and N variable nodes,
representing respectively the syndrome symbols and the source symbols. hmn =
1 if the m-th check node is connected to the n-th variable node. Moreover, the
correlation between the sources X and Y is modeled by a check node called the BSC
node and represents the modulo-2 sum Y = X ⊕ Z. The graph that describes all
the dependencies among the variables is shown in Fig. 4.20.

Figure 4.20: Joint graph describing the joint Slepian-Wolf decoding.

Definition of the messages

Consider the following notation and definition for the messages that are passed
in the graph for the decoding procedure.

� I(xn) (resp. I(yn), I(zn)): intrinsic information for the node xn (resp. yn, zn);

� En,e, e ∈ [1, dxn]: messages passed from the variable nodes, on their e-th edge, to
the check nodes;

� Qm,e, e ∈ [1, dsm]: messages passed from the check nodes, on their e-th edge, to
the variable nodes;
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4.3. SYNDROME-BASED NON-ASYMMETRIC SW CODING 111

� V (xn): messages passed from the variable nodes to the BSC nodes;

� B(xn) (resp. B(yn)): messages passed from the BSC nodes to the variable nodes
xn (resp. yn).

All the messages are Log-Likelihood Ratio (LLR). They are labeled (in) or (out)
if they respectively come to or from the considered node.

Update rules Now, we describe the messages that are passed between the nodes of
the graph, and show how they are updated through the joint sum-product decoding,
for the particular case of non-uniform sources. The factorization of the probabilities
in Equation (4.17) shows that:

Intrinsic information computation

I(xn) =


(1− 2xn) · ∞,∀n ∈ [1, k′]

log

(
1− pX
pX

)
,∀n ∈ [(k′ + 1), N ]

I(yn) =

{
0,∀n ∈ [1, k′] ∪ [(K + 1), N ]

(1− 2yn) · ∞,∀n ∈ [(k′ + 1), K]

I(zn) = log

(
1− p
p

)

Messages from the variable nodes to the check nodes

E(out)
n,e = I(xn) +

dxn∑
k=1,k 6=e

E
(in)
n,k +B(xn) (4.18)

Messages from the check nodes to the variable nodes

Q(out)
m,e = 2 tanh−1

(1− 2sn)
dsm∏

k=1,k 6=e
tanh

Q(in)
m,e

2

 (4.19)

Messages from the variable nodes to the BSC nodes

V (xn) = I(xn) +
dxn∑
k=1

E
(in)
n,k (4.20)

Messages from the BSC nodes to the variable nodes

B(xn) = 2 tanh−1

[
tanh

(
V (yn)

2

)
tanh

(
I(zn)

2

)]

B(yn) = 2 tanh−1

[
tanh

(
V (xn)

2

)
tanh

(
I(zn)

2

)]
As the expressions of E, Q and V are similar for X and Y , only the update rules

for X have been described in the equations (4.18), (4.19), (4.20) above.
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112 CHAPTER 4. TOOLS FOR DISTRIBUTED SOURCE CODING

4.3.3.3 Condition for the recovery of both sources

The soft decoding algorithm presented in Section 4.3.3.2 above does not perform ex-
act computation of the APP of x̂. Instead, the proposed sub-optimal MP algorithm
may not be able to perfectly recover the source symbols. In the following, we derive
necessary and sufficient conditions to recover the sources.

Let us first consider the asymmetric case. K symbols of a source (say X) as well
as its (N −K) syndrome bits and the (N −K) syndrome bits of the source Y , are
available. First, the remaining (N −K) symbols of X, corresponding to the part B
of H, have to be decoded by a BEC MP algorithm. This is similar to the problem
of solving a linear system of (N −K) equations with (N −K) unknowns. In that
case, the following Lemma stands:

Lemma 4.1. Let x ∈ FN2 satisfy a set of (N −K) linear equations
defined by a matrix H of size (N −K)×N s.t. Hx = sx. Assume
that the first K bits of x (denoted xK1 ) are known and that the last
(N −K) bits (xNK+1) are unknown. The system of linear equations
can be rewritten as Hx = [A B][xK1 xNK+1]T where B is assumed to
be an invertible square matrix. A necessary and sufficient condition
to recover the unknowns, with the BEC message-passing (MP) algo-
rithm, is that B is triangular (up to a permutation of its columns).

Proof. First, recall that the BEC MP algorithm is equivalent to greedily checking
whether any of the parity-constraints can solve an yet unknown value from already
known ones. It follows that the condition is sufficient. Conversely, assume that
we can recover the unknowns under the BEC MP algorithm. To start the process,
there must be at least one equation with only one unknown. Moreover there is at
most one equation with the same unknown (if not, B would not be invertible). This
unknown can therefore be recovered and we now have to solve a system of (N−K−1)
equations with (N −K− 1) unknowns. The rest of proof follows by induction since,
at each step of the algorithm, the number of equations and the number of unknowns
are simultaneously reduced by one. Therefore, the condition is also necessary.

Lemma 4.1 derives a necessary and sufficient condition for the exact recovery
of the source X. The second source Y can now be recovered since its syndrome
is known and since the source X is available. Therefore Lemma 4.1 derives the
necessary and sufficient condition for the estimation of the sources X and Y in the
asymmetric case, when decoded with the proposed algorithm presented in Section
4.3.3.2.

We now consider the non-asymmetric SW problem. Note that the asymmetric
case is the best case scenario of the non-asymmetric one. Thus, the condition in
Lemma 4.1 becomes a necessary condition for the recovery of the two sources.

4.3.3.4 Experimental setup and simulation results

Code design
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4.3. SYNDROME-BASED NON-ASYMMETRIC SW CODING 113

According to Lemma 4.1, the invertible part B of the channel code’s parity-
check matrix has to be triangular in order to ensure the decoding. To design our
LDPC code, we take ideas from the design of Irregular Repeat-Accumulate (IRA)
codes [JKM00], and we follow the design rules presented in [JW05]. It imposes the
shape in Fig. 4.21 to the parity-check matrix, with a pattern of weight-two columns
forming two diagonal lines of ones, and a pattern of weight-three columns ensuring
a good degree distribution for the code. The columns forming the weight-two and
weight-three columns are chosen as the triangular part B.

Figure 4.21: Shape of the designed LDPC code’s parity-check matrix, inspired by the structure
of IRA codes.

That structure is the best way to impose structured weight-two and weight-
three columns without adding cycles of short lengths amongst the variable nodes.
We take the concatenation of these columns as our part B. We generate a rate-1

2

LDPC code of block length 1000. More precisely, we first find the optimal variable
degree distribution Λ(x), and the optimal check degree distribution Φ(x), of a rate-1

2

LDPC code by density evolution [RSU01]. Then, the LDPC code is obtained using
the Progressive Edge Growth (PEG) principle [HEA05] by imposing the structure
shown in Fig.4.21 to the generated parity-check matrix (such a code generation is
described with more details in Annex B).

The code we have generated has the following variable degree distribution: Λ(x) =
0.483949x + 0.294428x2 + 0.085134x5 + 0.074055x6 + 0.062433x19. Note that for
this rate-1

2
LDPC code, the proportion of variable nodes of degree two and three

Λ2 + Λ3 = 0.7784 ≥ 0.5 ensures that there are enough weight-two and weight-
three columns to form the part B that we need. The check degree distribution is
Φ(x) = 0.741935x7 + 0.258065x8. Note that the choice of these degree distributions
do not depend on the source statistics. The same code is used for all the simulations
presented in the present Section.

Performance of the non-asymmetric SW codec

Now, we turn to comparing the performance of our codec and the matrix-
inversion-based codec for different values of p. The source X is non-uniform, with
pX = 0.12, Z is a BSC of cross-over probability p, and Y is obtained by Y = X⊕Z.
For each value of p, 10 values of k′ are considered, and for each value of k′, 2 · 104

realizations x are tested, the obtained BER have been averaged over all the values
of k′.
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114 CHAPTER 4. TOOLS FOR DISTRIBUTED SOURCE CODING

For a non-uniform source X ∼ B(pX = 0.12), H(X|Y ) = 0.5 occurs for H(p) =
0.93, whereas H(Y |X) = 0.5 occurs for H(p) = 0.5. This difference comes from
the BSC between the sources which is not symmetric in the two sources. The
performance of four systems are presented in Fig. 4.22:

� 1O Asymmetric codec, for the decoding of X, with additive BSC as correlation
channel.

� 2O Asymmetric codec, for the decoding of Y , with predictive BSC.

� 3O Non-asymmetric codec, with the matrix inversion [GD05]; 3aO for the decoding
of X and 3bO for the decoding of Y .

� 4O Non-asymmetric codec, proposed in this Section; 4aO for the decoding of X
and 4bO for the decoding of Y .

Figure 4.22: Performance of the non-asymmetric SW codec, for a non-uniform source X ∼
B(pX = 0.12).

The decoding involving the matrix inversion is the worst solution, since no mea-
sures are taken to prevent the error propagation between the step of estimating Ẑ
and the decoding of the sources, that is why its BER in the non-asymmetric setup
is worse than the BER in the asymmetric one. The joint method that we propose,
with cross message passing during the decoding of the two sources, outperforms the
matrix-inversion based method. The statistics of the sources are taken into account
for the decoding, as well as the BSC models between the sources.

Behavior analysis of the non-asymmetric SW codec in function of k′

te
l-0

05
39

04
4,

 v
er

si
on

 1
 - 

23
 N

ov
 2

01
0



4.4. CONCLUSION 115

In this section, we compare the behavior of our codec and the behavior of the
matrix-based codec in function of k′, for a given value of H(p) = 0.62 (p = 0.1541).
10 values of k′, varying from 0 to K, are considered; and, for each value taken by
k′, 2 · 104 realizations of X are tested. The obtained BER are plotted in Fig. 4.23
in function of the ratio k′

K
.

Figure 4.23: Performance of the non-asymmetric SW codec in function of k′

K , for a non-uniform
source X ∼ B(pX = 0.12) at H(p) = 0.62.

The results presented in Fig. 4.23 confirm that the joint decoding of the non-
uniform sources X and Y is not symmetric in the two sources, as claimed in Section
4.3. Indeed, if the source X is decoded with a very low BER for all the values
of k′, but the source Y is only well decoded when k′ = 0 (which corresponds to
the asymmetric case). Besides, the decoding of the two sources is not symmetric
in k′, and their BER is not equal even when k′

K
= 0.5. That comes from the non-

uniformities of the sources that are not equal: if pX = 0.12 is constant, pY depends
on p and is given by pY = pX(1− p) + p(1− pX). Finally, we note that the matrix-
inversion based decoding is symmetric in the two sources and in k′, since it does
not take into account the source probabilities nor the type of BSC (additive or
predictive).

4.4 Conclusion

As pinpointed in Chapter 3, the achievable SW bound for the coding of binary
sources which distribution is not uniform is lower than that of uniform sources.
Namely, for the asymmetric SW coding problem, we have designed some novel tools,
presented in this Chapter, that allow to achieve the asymmetric SW bounds for non-
uniform Bernoulli sources and Gilbert-Elliott sources. We showed that the changes
to add to the existing Turbo and LDPC decoders are minimal, with respect to the
rate gain that is expected, compared to the rate of uniform sources. Also presented
in this Chapter are the single codecs that allow to reach the whole non-asymmetric
SW bound, for any correlation p. Finally, we combine the two concepts to reach
any point on the SW bound, for a source that is non-uniformly distributed. The
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116 CHAPTER 4. TOOLS FOR DISTRIBUTED SOURCE CODING

main issue that we encountered is the asymmetry of the achievable rates for the
two sources, which comes form the BSC model that can be additive or predictive
depending on the source; this issue has been solved by adapting the message update
rules for the joint decoding.
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Chapter 5

Contributions to Distributed video
coding

In this Chapter, the models and tools, that we presented in Chapters 3 and 4 and
validated for theoretical and synthetic sources, are integrated in a transform-domain
Distributed Video Coding (DVC) system. They are shown to enhance the codec by
improving its rate-distortion performance. First, in Section 5.1, the non-uniform
source model is shown to be a better model than the uniform one for the bit planes
generated by the DVC codec. The integration of the LDPC-based estimation-
decoding algorithm of Section 4.1.2 is then shown to improve the rate-distortion
performance of the codec by up to 5.7% with respect to the standard one. Then,
in Section 5.2, the bit planes are modeled as GE memory sources. This model is
shown to be an even better model than the non-uniform one, and we present experi-
mental results that prove the efficiency of the proposed method. The rate-distortion
performance of the codec is improved by up to 10.14%. The two models are finally
compared to the Markov source model, which is revealed to be unadapted for the
video bit planes. For these three source models, one has to deal with an intrinsic
problem, that is the correlation model between the WZ bit planes and the side-
information (additive or predictive). In this Chapter, we give the rules to choose
between these two correlation models.

5.1 Non-uniform source model for DVC

In Section 3.1, we have investigated the non-uniform Bernoulli source model and we
established that a considerable gain was expected for the coding, when the channel
between the source and the side-information is additive and when the source dis-
tribution is correctly exploited. In this Section, we model the Wyner-Ziv (WZ) bit
planes that are generated by the DVC codec DISCOVER as non-uniform sources
which parameters must be estimated on-line. First, we investigate the accuracy of
the modeling, and we describe how to use the decoding described in Section 4.1.2 in
the DISCOVER codec. Finally, we show some experimental results for the coding
of video sequences that prove the pertinence of the modeling.

117
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118 CHAPTER 5. CONTRIBUTIONS TO DISTRIBUTED VIDEO CODING

5.1.1 Accuracy of the non-uniform source modeling

We investigate the distributions of the bit planes coded by the DISCOVER codec,
by assessing off line their Bernoulli parameters. We show in Fig. 5.1 the probability
of 1’s in some WZ bit planes from the five QCIF video sequences Hall monitor,
Foreman, Coastguard, Flower, and Soccer i.

Figure 5.1: Probability of 1’s in the bit planes taken individually.

The results on Fig. 5.1 confirm that the bit planes of the five video sequences
are non-uniformly distributed, besides their distribution varies from bit plane to
bit plane. This justifies that the non-uniform modeling is a better model than
the uniform one, and that we have to estimate the parameter of each bit plane
individually.

5.1.2 Implementation and experimental results

5.1.2.1 Upgrade of the LDPC decoding for non-uniform sources

To use the decoding presented in Section 4.1.2, we modify the intrinsic computation
(4.2) to take into account the correlation channel in DISCOVER. The Laplacian
channel models the correlation between the generated WZ DCT coefficients Xk and
the SI DCT coefficients Yk, i.e. Yk = Xk + Zk, where Zk stands for the Laplacian
noise, and k designates the frequency band. The density function of the noise is
given by pZk(z) = αk

2
e−αk|z|, where αk is the Laplacian parameter estimated from

each frequency band of the SI. That channel comprises the information from the
previously decoded bit planes in the current frame. More precisely, ∀n ∈ [1, N ],

iOne picture of these five video sequences are shown in Annex C

te
l-0

05
39

04
4,

 v
er

si
on

 1
 - 

23
 N

ov
 2

01
0



5.1. NON-UNIFORM SOURCE MODEL FOR DVC 119

for each bit xbk,n, of each bit plane b, of each DCT frequency band k, the channel
“cross-over” probability pbk,n is computed as:

pbk,n = P
(
Xb
k,n = 1|yk,n, x1

k,n, . . . , x
b−1
k,n

)

=

∫
x∈Q(1)

αk
2
e−αk|yk,n−x|dx∫

x∈Q(1)∪Q(0)

αk
2
e−αk|yk,n−x|dx

where

� yk,n is the n-th DCT coefficient of the frequency band k;

� Q(m) = Q(m,x1
k,n, . . . , x

b−1
k,n ) is the set of all the quantization intervals corre-

sponding to the quantized symbols, which bmost significant bits are (x1
k,n, . . . , x

b−1
k,n ,m).

To use the adapted LDPC decoder in the DISCOVER codec, Equation (4.2) of
the original decoding becomes:

In(pX) = log

(
P(Xn = 0|yn)

P(Xn = 1|yn)

)
=


log

(
1− pbk,n
pbk,n

)
, if the BSC is predictive

log

(
1− pbk,n
pbk,n

)
+ log

(
1− p̂WZ

p̂WZ

)
, if additive

(5.1)
where p̂WZ is initialized with p̂bSI , the probability of 1’s in the binarized version of
the SI. The estimate p̂WZ is updated through the iterations according to the update
rule of the EM algorithm given by Equation 4.3.

5.1.2.2 Minimum rate estimation for rate-adaptive decoding of non-uniform
sources

The minimum rate for the rate-adaptive decoding needs to account for the non-
uniformity of the source, given that the correlation channel can be additive or pre-
dictive. First, if the correlation is predictive, then the minimum rate is given by
Equation (2.7) which is also the minimum rate for uniform sources. Now, consider
that ∀b,∀i,∀k, xbk,i is the realization of a non-uniform Bernoulli source of parameter
pX . Therefore, ∀t ∈ {0, 1}, the crossover event in Equation (2.5) becomes:

P
(
xbk,i = t|ybk,i, x1

k,i, x
b−1
k,i

)
= P

(
ybk,i, x

1
k,i, x

b−1
k,i |xbk,i = t

)
P
(
xbk,i = t

)
(5.2)

In Equation (5.2), the term P
(
ybk,i, x

1
k,i, x

b−1
k,i |xbk,i = t

)
has the same value as the

term P
(
xbk,i = t|ybk,i, x1

k,i, x
b−1
k,i

)
in Equation (2.5) for uniform sources, and the term

P
(
xbk,i = t

)
is equal to pX if t = 1, and (1− pX) if t = 0. This expression brings to

an equivalent crossover probability pNUcr that is further from 0.5 than the original pcr
in Equation 2.6 (NU stands for “Non-Uniform”). Thus the minimal achievable rate
RNU
min = H(pNUcr ) is lower than the original H(pcr corresponding to uniform sources.
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120 CHAPTER 5. CONTRIBUTIONS TO DISTRIBUTED VIDEO CODING

Since the channel between the WZ bit plane and the side-information (SI) is
modeled by a complex channel, we cannot assess on-line the additive or predictive
nature of the correlation. Namely, we cannot establish a relation between the en-
tropies of the WZ bit planes and the SI as needed in Claim (3.1). Therefore, we
make two decodings using both channel models, and we choose a posteriori the one
(additive or predictive) that yields the best result.

5.1.2.3 The channel is assumed to be additive

We first assume that the channel between the WZ bit planes and the SI is only
additive. The improvement brought by non-uniform source modeling is presented in
Fig. 5.2 and in Table 5.1 (for the highest PSNR only) for the five video sequences
Hall monitor, Foreman, Coastguard, Flower, and Soccer.

The rate gain occurs only for the sequence Soccer ; it is 1.88kbps (0.65%). This
low rate gain contrasts with the huge non-uniformity of the bit planes (Fig. 5.1).
In view of these results, we admit that the channel modeling the correlation is not
always additive and has to be dynamically determined by the decoder.

Sequence Rate loss (kbps) Rate loss (%)

Hall Monitor −9.58 −10.28

Foreman −7.86 −3.59

Coastguard −14.85 −8.35

Flower −17.79 −8.81

Soccer 1.88 0.65

Table 5.1: Rate gain for the five video sequences, when the correlation is assumed to be only
additive.

5.1.2.4 The channel is unknown and assessed by the decoder

As the correlation model between the WZ and SI frames is sometimes predictive
and sometimes additive, we first perform the decoding of each WZ bit plane with
the predictive assumption (here, this corresponds to the decoding that is already
performed by the standard decoder). If this decoding process fails (the criteria
used are presented in Section 4.2.6), then we perform a new decoding with the
additive assumption to exploit the non-uniformity. Our a posteriori criterion to
choose between the predictive and the additive model is the decoding failure under
the predictive assumption, while the decoding under the additive assumption is
successful. The decoder improvement corresponding to this adaptive approach is
shown in Fig. 5.3.

Our decoder improves the rate of the WZ frames by an interesting amount; the
decrease is up to 16.57kbps (5.7%) for the sequence Soccer at the highest PSNR.
The rate gain is presented in Table 5.2. That decrease proves that it is worth taking
into account the non-uniformity of the bit planes, as long as the channel model is
additive.
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5.1. NON-UNIFORM SOURCE MODEL FOR DVC 121

Figure 5.2: Over an additive channel, the proposed decoder is sometimes worse than the standard
one to render the videos at the same PSNR.

One may wonder why we have not used the Bernoulli parameter estimator of
Section 3.4 to guess the WZ bit planes distribution before the decoding. The answer
lies in the rate-adaptive framework tat is adopted in the DISCOVER codec: when
the syndrome bit number is too small, the parameter estimation may give false
values since there is not enough syndrome realization for the estimator described in
Equation (3.18) to be trusted in the first place.

As a conclusion to this Section, we stress the fact that the non-uniformity of the
bit planes is not a sufficient condition to decrease their compression rates. Actually,
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122 CHAPTER 5. CONTRIBUTIONS TO DISTRIBUTED VIDEO CODING

Figure 5.3: The proposed decoder that exploits the non-uniformity, while assessing the type of
channel, needs less rate than the standard one to render the videos at the same PSNR.

if the true correlation model between the WZ bit planes and the side-information is
predictive then the achievable rate remains that of uniform bit planes.

5.2 Gilbert-Elliott source model for DVC

The expected rate gain for the distributed coding of Gilbert-Elliott (GE) sources has
been presented in Section 3.2 for synthetic sources. Here, we model the WZ bit planes
as GE sources which parameters have to be estimated on-line. First, we investigate
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5.2. GILBERT-ELLIOTT SOURCE MODEL FOR DVC 123

Sequence Rate gain (kbps) Rate gain (%)

Hall Monitor 0.94 1

Foreman 5.88 2.68

Coastguard 2.04 1.15

Flower 2.97 1.47

Soccer 16.57 5.7

Table 5.2: Rate gain for the five video sequences, when the correlation is assessed a posteriori
by the decoder.

the accuracy of the modeling, and we describe how to use the joint estimation-
decoding EM algorithm described in Section 4.2 in the DISCOVER codec. Finally,
we show some results for the coding of video sequences that prove the rate gain
obtained with the GE source modeling, which therefore reveals to be a better model
for the WZ bit planes than uniform or non-uniform sources models.

5.2.1 Accuracy of the GE source modeling

The question we deal with here is whether the bit planes are better approximated by
the proposed GE source model or by a the non-uniform source model. To that end,
we investigate the distribution of the bursts of 1’s, i.e. the number of consecutive
1’s, in the WZ bit planes.

First, consider a binary source X without memory. It can be modeled as a
Bernoulli process with parameter pX = P(X = 1). In this case, the burst length
distribution, (Pk)k≥1, is defined as the probability of having a sequence with k con-
secutive 1’s, given that the sequence starts with a 0 (i.e. 0 1 . . . 1︸ ︷︷ ︸

k

0). For the Bernoulli

process,

Pk = (1− pX)pk−1
X (5.3)

Therefore, for Bernoulli sequences, the log-scale burst distribution log(Pk) is linear
in the burst length.

Now, consider a GE source. Let Π = 1
t10+t01

[t10 t01] be the steady-state distri-

bution of the source. Let B =
(
p0 0
0 p1

)
be the matrix which diagonal values are the

Bernoulli parameters. Let P =
(

(1−t01) t01
t10 (1−t10)

)
be the state transition probability ma-

trix. Let I =
(

1 0
0 1

)
be the identity matrix. We also introduce the following notation

C =
(

1−p0
1−p1

)
and I =

(
1
1

)
. The burst length distribution is thus given by:

Pk =
Π (I −B) (PB)k C

Π (I −B) (PB)2I
(5.4)

Let us consider the bit plane sequences obtained within the DISCOVER codec
for the sequence Soccer. For those sequences, we plot the empirical burst length
distributions and the theoretical ones. The empirical distribution is obtained by
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124 CHAPTER 5. CONTRIBUTIONS TO DISTRIBUTED VIDEO CODING

counting the occurrence of each burst length directly from the bit plane. Given
the GE parameters estimated from a given bit plane, the theoretical burst length
distribution is computed from Equation (5.4). Fig. 5.4 shows the comparison of the
empirical distribution of a given bit plane (bold line) with two theoretical distribu-
tions (dot lines): one obtained by assuming that the bit plane has no memory, from
Equation (5.3), and the other is obtained from Equation (5.4) by taking into account
the memory. Interestingly, the empirical distribution of the bit plane matches well
with the memory-aware theoretical distribution.

Figure 5.4: Distribution of the bursts of 1’s for a selected bit plane of the video sequence Soccer,
at the highest PSNR.

The plots in Fig. 5.4 only prove that the GE model is accurate for this particular
bit plane that is analyzed. To quantify the memory in a broader number of bit
planes, we look at the behavior of the parameter θX in the 100 first bit planes of
the five video sequences. More precisely, for each bit plane, we observe t10, t01, and
the ratio p1

p0
. The presence of memory in the bit planes being conditioned by the

combination of the three following criteria:

(a)t10 � 0.5, and (b)t01 � 0.5, and (c)
p1

p0

� 1 (5.5)

The criteria (a) and (b) imposing low transition probabilities mean that the
memory is persistent. The criterion (c) imposing a high ratio of the two Bernoulli
parameters means that the two states are clearly distinguishable; otherwise, the two
states are similar and the EM algorithm is not able to differentiate them.

The estimated transition parameters are shown in Fig. 5.5 for the five video
sequences Hall Monitor, Foreman, Coastguard, Flower, and Soccer. Note that the
transition probabilities can be very low, mainly for the sequence Soccer ; this does
account for a huge persistence of the states of the bit planes. The ratio of the
estimated Bernoulli parameters are shown in Fig. 5.6 for the same video sequences,
and the same 100 first bit planes. Here, we note that the ratio can be greater than
5 in some of the bit planes.

The combination of the low transition probabilities (Fig. 5.5) and the huge
Bernoulli parameters ratio(Fig. 5.6) accounts for the presence of persistent mem-
ory in the WZ bit planes.
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5.2. GILBERT-ELLIOTT SOURCE MODEL FOR DVC 125

Figure 5.5: The estimated transition parameters from the 100 first bit planes from the five video
sequences Hall monitor, Foreman, Coastguard, Flower, and Soccer.

5.2.2 Exploitation of the bit planes memory and the Laplacian
correlation channel

For use with the EM algorithm presented in Section 4.2, one must take into account
the fact that the intrinsic LLR is dependent on the nature of the correlation channel,
and is computed as:

log

P
(
Xb
k,n = 1|yk,n, x1

k,n, . . . , x
b−1
k,n

)
P
(
Xb
k,n = 0|yk,n, x1

k,n, . . . , x
b−1
k,n

)


=



log


∫

x∈Q(1)

αk
2
e−αk|yk,n−x|dx∫

x∈Q(0)

αk
2
e−αk|yk,n−x|dx

 , if the channel is predictive

log


∫

x∈Q(1)

αk
2
e−αk|yk,n−x|dx∫

x∈Q(0)

αk
2
e−αk|yk,n−x|dx

+ log

(
1− plXn
plXn

)
, if the channel is additive

where plXn is the instantaneous Bernoulli parameter estimated at iteration l of the
EM algorithm. It is updated thanks to the update rule given in Equation (4.13).
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126 CHAPTER 5. CONTRIBUTIONS TO DISTRIBUTED VIDEO CODING

Figure 5.6: The ratio of the estimated Bernoulli parameters from the five video sequences Hall
monitor, Foreman, Coastguard, Flower, and Soccer.

Practically, for the message-passing algorithm in Section 4.2.5, the channel-to-
variable message, Bn in the Equation (4.14), is replaced by

∀n ∈ [1, N ], Bn = log

(
1− pbk,n
pbk,n

)
(5.6)

The definitions of the other messages for the LDPC decoding are not modified.
The minimum rate needed for the rate-adaptive decoding is not assessed here,

since the effects of the memory on the original minimum rate in Equation (2.6) has
not been solved yet. For the decoding, we use the minimum rate computed for
non-uniform sources in Section 5.1.2.2, which is a lower bound on the minimum rate
needed for memory sources.

5.2.3 Implementation and experimental results

In order to assess the performance achieved by the proposed Slepian-Wolf decoder
that exploits the memory in the bit planes, we integrate the LDPC-based estimation-
decoding EM algorithm in the DISCOVER codec. All the bit planes do not have
memory: some can be i.i.d. binary sources. But this model is a particular case of the
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5.2. GILBERT-ELLIOTT SOURCE MODEL FOR DVC 127

GE model, so the decoder adapts by itself to any of the source models. The channel
modeling the correlation between the WZ bit planes and the SI can be additive or
predictive, and we cannot know the true channel model a priori, since we do not
have access to the true WZ data. Therefore, the BSC model has to be estimated
dynamically on-line as for the non-uniform source modeling. In order to prove and
to exploit the existence of the predictive channel, we first carry out the decoding
assuming that the channel is only additive.

5.2.3.1 The channel is assumed to be only additive

We show in Fig. 5.7 the performance of the modified decoder if the noise between
the WZ bit planes and the SI is assumed to be additive. For the sequence Soccer,
the rate gain is almost 10% at the highest PSNR, with respect to the standard
SW decoder of the DISCOVER codec. However, we see that there is not always a
rate gain for the exploitation of the GE model for the bit planes; for the sequence
Foreman, the standard and the proposed decoder have the same performance; for
the sequence Hall Monitor, the performance of the proposed decoder is degraded
compared to that of the standard decoder.

The rate gain is detailed in Table 5.3 when the correlation is assumed to be only
additive and the video PSNR is the highest.

Sequence Rate gain (kbps) Rate gain (%)

Hall Monitor −1.84 −1.98

Foreman −0.87 −0.4

Coastguard −2.79 −1.57

Flower 3.15 1.56

Soccer 26.72 9.17

Table 5.3: Rate gain for the five video sequences, when the correlation is assumed to be additive
only.

From these figures, we can note that modeling the bit planes as GE sources,
instead of non-uniform sources, makes the mismatched decoder less vulnerable to
rate loss, since the loss is small for all the video sequences with respect to the loss
observed in Table 5.1 for non-uniform source modeling.

5.2.3.2 The channel is unknown and assessed by the decoder

Now, we do not make any a priori guess on the correlation channel, and we estimate
it on the fly at the decoder. To that end, for each additional syndrome request made
by the decoder, the decoding is first performed with the additive channel assumption;
if this first decoding fails, (see the failure criteria in Section 4.2.6), another decoding
is carried out, assuming that the channel is predictive. The results presented in
Fig. 5.8 are obtained for all the WZ frames of the video sequences Hall Monitor,
Foreman and Soccer.
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128 CHAPTER 5. CONTRIBUTIONS TO DISTRIBUTED VIDEO CODING

Figure 5.7: Behaviour of the proposed DVC decoder when the Laplacian channel is assumed
to be always additive. Exploiting the memory that is present in the bit planes does not always
improve the performance of the codec.

While the model remains relatively simple (only two states are needed to model
an infinite memory in the bit planes), the gain, in terms of decreasing the rate
allocated to the WZ frames, is significant. The decrease of rate for the sequence
Soccer is 29.55kbps (10.14%) at the highest PSNR. This proves that it is worth
taking into account the memory estimated from the bit planes, and that the additive
channel is not sufficient to model the correlation between the WZ bit planes and
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5.2. GILBERT-ELLIOTT SOURCE MODEL FOR DVC 129

Figure 5.8: The decoder that exploits the bit planes memory needs less rate to render the videos
at the same PSNR.

the SI generated by the DVC codec. The rate gain is given in Table 5.4 for the five
video sequences at the highest PSNR.

These figures can be compared with those for non-uniform source modeling in
Table 5.2. Therefore, we can quantify the rate gain obtain from the GE source
modeling, with respect to the non-uniform source modeling. More precisely, the GE
source modeling is 2.7 times better for the coding of the sequence Hall Monitor,
1.49 times better for the coding of Foreman, 2.1 times better for Coastguard, 2 times
better for Flower, and it is 1.78 times better for the sequence Soccer.
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130 CHAPTER 5. CONTRIBUTIONS TO DISTRIBUTED VIDEO CODING

Sequence Rate gain (kbps) Rate gain (%)

Hall Monitor 2.54 2.73

Foreman 8.76 4

Coastguard 4.28 2.41

Flower 5.96 2.95

Soccer 29.55 10.14

Table 5.4: Rate gain for the five video sequences, when the correlation is assessed a posteriori
by the decoder.

5.3 Markov chain modeling: particular case of Hidden
Markov modeling

The Markov source model is the simplest representation of the memory that lies
in the binary bit planes. The Markov source is a particular instance of the two-
state hidden Markov source, since it corresponds to the case where p0 = 0 and
p1 = 1, regardless of the state transition probabilities. This implies that the states
are directly observable from the source realization itself; i.e. ∀n ∈ [1, N ], σn =
1xn + 0(1− xn). The transition parameters can also be directly computed from the
observed source realization.

We modify the estimation-decoding EM algorithm to estimate the states and the
transition probabilities for this Markov modeling. Then, we place the modified SW
decoder in the DISCOVER codec. The results that we obtained show that there
is practically no rate gain for the coding of the WZ bit planes, with respect to the
standard DISCOVER codec, even if the channel model (additive or predictive) is
dynamically assessed on-line. More precisely the rate improvement is only 0.27kbps
for the sequence Hall Monitor at the highest PSNR; it is 0.18kbps for Foreman and
1.15kbps for Soccer. It is worth noting that the non-uniform source model (Section
3.1.1) brings more improvement than the Markov one, in terms of the PSNR versus
rate performance of the DISCOVER codec. This might be contra-intuitive, but
note also for two correlated Markov sources X and Y , the states of X and Y do not
correspond (more precisely, Lemma 3.1 do not stand for Markov sources); we can
say that the knowledge of the states of Y is misleading for the decoding of X.

Therefore, the Markov source model is not suited to model the memory that lies
in the WZ bit planes generated by the DVC codec.

5.4 Performance comparison with State-Of-The-Art
codecs

Throughout this Chapter, we have presented the improvement that we brought to
the distributed video codec DISCOVER, by comparing the outcome of our contri-
butions to the last version known of the codec (implemented in 2007). Here, we
compare the actual performance with two codecs that are known in the literature,
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5.4. PERFORMANCE COMPARISON WITH STATE-OF-THE-ART CODECS131

namely H264/AVC in the Intra mode and H264/AVC in the Inter mode without
motion estimation (to make a fair comparison with the low-complexity encoder of
DISCOVER). The results are presented in Fig. 5.9 for the five video sequences Hall
monitor, Foreman, Coastguard, Flower, and Soccer.

Figure 5.9: Performance comparison of three versions of DISCOVER with State-Of-The-Art
codecs for the five video sequences.

Three versions of DISCOVER are presented:

� The first version, that was implemented at the launch of the European Project,
in 2005;

� The last known version of the codec, implemented in 2007, before we brought
the improvement described in this Thesis;
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132 CHAPTER 5. CONTRIBUTIONS TO DISTRIBUTED VIDEO CODING

� The actual version of the codec, with the modeling of the bit planes as Hidden
Markov Models (HMM, 2010).

Our version of the DISCOVER codec performs always better than the two pre-
vious versions, thanks to the HMM modeling of the bit planes. When we compare
to the performance of H264 codec, the results are mitigated since they depend on
the sequence that is analyzed. As can be seen on the pictures in Fig. 5.9, the per-
formance of the two versions of H264 differ very much from video sequence to video
sequence: the DISCOVER codec outperforms the Intra mode for the sequences Hall
monitor and Coastguard, but it is far behind for the sequence Soccer, and it has com-
parable results for Foreman. The H264 in Inter mode without motion estimation
is far better than the DISCOVER codec for the sequences Hall Monitor, Foreman
and Soccer, but it performs worse for the sequence Flower, and it has comparable
results for Coastguard.

5.5 Conclusion

The models and tools introduced in the two previous Chapters have been used so as
to improve the rate-distortion performance of the DISCOVER codec. The idea has
been to analyze the binary versions of the WZ frames (the so-called WZ bit planes)
to exhibit a more pertinent model than the usual uniform model assumed by the
standard SW decoder. At first look, a better model is the non-uniform Bernoulli
source model, which remains memoryless but insures a rate gain that increases with
the non-uniformity. The resulting rate gain is up to 5.7% for the coding of the WZ
frames without any loss of quality, provided that the correlation model (additive or
predictive) is not mismatched. If we consider a memory source model, Gilbert-Elliott
sources in our case, the rate gain is even greater and allows a rate gain up to 10.14%
for the coding of the WZ frames, again provided that the correlation model is well
assessed.te
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Conclusion and perspectives 135

Conclusion

This thesis presented the work on Distributed Source Coding (DSC) and Distributed
Video Coding (DVC) that I carried out during my PhD. Three main contributions
were developed:

1. The investigation of pertinent models for distributed coding of binary sources,
with the aim to apply these models to DVC. Two source models were exhibited,
namely non-uniform sources and hidden Markov sources. If the former is a
special case of hidden Markov sources, the two models imply very different
achievable SW bounds, when compared to the traditional distributed coding
of uniform sources. Both models are well suited for the bit planes generated by
a DVC codec and they let the codec be improved consequently. Whatsoever,
rate gain for DVC is not always observable when applying both models. This
is due to the underlying correlation channel that is not symmetric with the
correlated sources when they are not uniform. Therefore, we had to take into
account that asymmetry by distinguishing between the additive correlation
channel (which is actually the traditional channel model) and the predictive
correlation channel. We emphasized on the drastically different achievable
bounds for both channel models, and we designed practical syndrome-based
Turbo and LDPC codes that are able to account for the distributions of the
sources and adapt to the correlation model as well. When the correlation is
modeled as a BSC, we proposed an estimation algorithm of its parameter,
based on the EM algorithm. The most important part of our contribution to
BSC parameter estimation is the initialization of the EM; more precisely, we
showed that there is a direct one-to-one correspondence between the Bernoulli
parameter of the BSC and the Bernoulli parameter of its syndrome. An ML
algorithm was thus developed to approach the parameter before the decoding.

2. The development of several practical DSC tool, based on syndrome-based
Turbo and LDPC codes, that achieve the asymmetric SW bounds as well
as the non-asymmetric one. For asymmetric coding, we presented DSC codes
that are able to take into account the source distribution and the model of
the correlation channel. The work on LDPC codes is presented, but the same
results could also be exhibited for Turbo codes. The EM algorithm is used
for the parameter estimation. When combined with iterative decoding algo-
rithms, the EM becomes an efficient joint estimation-decoding algorithm. For
non-asymmetric coding, we first presented a novel DSC code, based on linear
block codes, that is able to reach the non-asymmetric SW bound for a given
correlation and for uniform sources; when the correlation varies, accumulat-
ing the syndrome yields a rate-adaptive DSC code. Nonetheless, this system
is subject to the error propagation phenomenon. Therefore, we investigated
the conditions under which the errors do not propagate, and we implemented
practical DSC codes to avoid the error propagation. When the sources are uni-
form, the compression problem is symmetric with the sources. However, when
dealing with non-uniform and memory sources, the channel can be additive or
predictive, and it must carefully be taken into account in the decoding.
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136 Conclusion

3. The integration of these models and tools to a DVC codec, which SW part
is based on rate-adaptive LDPC codes. The SW decoder of the DISCOVER
codec was substituted with the EM algorithm to exploit the non-uniformity
of the generated bit planes, but also their memory when they are modeled
as hidden Markov sources. The source parameters are initialized to that of
the side-information bit planes. We empirically showed that the distribution
of the bit planes can reasonably be modeled as non-uniform sources as well
as hidden Markov sources. We also presented experimental results that prove
that the channel between the source video bit stream and the side-information
can be additive as well as predictive, for both non-uniform sources and hidden
Markov. As the correlation model cannot be estimated prior to decoding, the
SW decoding must test both possibilities and choose the one that provides the
best rate-distortion performance.

If the hidden Markov source modeling is better for DVC, in terms of improving
its rate-distortion performance, it is also the most expensive solution, in terms of
increasing the decoder’s complexity. Therefore, a clever trade-off must be found;
if the decoder is powerful enough, then the hidden Markov model could be used;
however if the decoder must render the video at a high frame rate then the non-
uniform source model is far acceptable, even if real time playing remains unreachable.

Perspectives

Non-asymmetric SW coding of GE sources

We can extend the results exhibited in Section 4.3.3 for non-asymmetric SW coding
of non-uniform sources. The problem of channel asymmetry is similar to the case of
non-uniform sources. Suppose we want to compress two GE sources X and Y s.t.
X ∼ B(θX), and Y = X ⊕ Z, where Z is some correlation noise that is modeled
as a BSC of parameter p. Therefore, the correlation channel is additive for the
coding of X and it is predictive for the coding of Y , meaning that the theoretical
achievable bounds for each source are not the same: exploiting the memory in X
will increase its conditional entropy-rate, i.e. H(X|Y) = H(Z) − [H(Y) − H(X)],
while the memory in Y is not exploitable, i.e. H(Y|X) = H(Z).

The decoding has also to take into account that the states of the source are
not known, so a modified EM algorithm has to be implemented so as to jointly
exploit the memories in X and Y . Actually, even if the memory does not bring any
rate improvement for the decoding of Y , the states of X and Y are still strongly
correlated. Therefore, the basis of the joint factor graph of the problem is the same
as in Fig. 4.20, but the state nodes have also to be taken into account, as in the
factor graph in Fig. 4.6. Thus, the message passing algorithm is modified so as to
make an estimation of the states (and the parameters of the sources, if they are
unknown) at each iteration. The knowledge of the systematic source bits is an asset
to the decoding since reliable estimation of the sources parameters can be done, prior
to the decoding itself. The challenge here is to estimate the states in the unknown
parts xNK+1 and yNK+1 since no side-information is available for both sources.
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Conclusion and perspectives 137

Non-asymmetric and rate-adaptive SW coding of non-uniform and
memory sources

The idea is to combine the results presented in Section 4.3.3 for efficient non-
asymmetric SW coding of non-uniform sources, and in Section 4.3.1 for efficient
rate-adaptive SW coding of uniform sources, to create a unique codec that is able
to reach any point in the SW rate region, for the case where the sources are non-
uniform or have memory. The main issue that we have noted is that, in the scheme
proposed in Section 4.3.1, both sources send the same amount of syndrome informa-
tion for any code rate under consideration; and the same issue is observed in Section
4.3.3, since given the code chosen for the non-asymmetric coding, the two sources
also send the same amount of syndrome bits. Meanwhile, the conditional entropies
of the correlated sources are not equal if they are not uniform. So the proposed
schemes need to be adapted to the coding of sources that are not uniform.

Non-binary channel parameter estimation

We want to generalize the scheme adopted in Section 3.4, for the BSC parameter es-
timation, to the estimation of the parameters of non-binary channels. For example,
we place ourselves in the case of a binary input Gaussian channel, and we want to
estimate the Gaussian parameters when we only observe the syndrome of the binary
source X and the continuous-valued side-information Y , given the parity-check ma-
trix of the code. In this case, we can compute a continuous-valued “syndrome” of
the realization y by a multiplication with H. Then, combining the syndromes of the
realization x and that of y, we should find a function of the Gaussian parameter.
This is based on the fact that the result of the sum of independent Gaussian random
variables is also a Gaussian random variable.

On-line assessment of the BSC model (additive/predictive)

In this Thesis, we showed the difference between the additive BSC and the predictive
BSC, in terms of exhibiting achievable SW bounds for the correlated sources and in
terms of demonstrating how to adapt the DSC codes to reach these bounds, knowing
the model. However, given the side-information Y ∼ B(pY ) and the syndrome
of X ∼ B(pX), we have not shown how to guess the BSC model. This on-line
assessment would avoid to decode the data two times for both non-uniform and GE
source modeling, for distributed video compression. Our idea is to use the BSC
parameter estimator presented in Section 3.4, to guess pX and pY and to deduce
if the model is additive or predictive (if pX and pY are both different from 0.5).
Actually, a simple test is the sort pY with respect to pX and decide: if pY is closer
to 0.5 than pX , then H(pY ) ≥ H(pX), then the model should be additive; and it
should be predictive otherwise. However, such a method would not work if X and
Y are drawn according to a distribution different from the non-uniform one.
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138 Conclusion

Robust video coding using ideas from WZ coding

When video sequences are transmitted through an error-prone transmission channel,
for example the Internet, the video quality is degraded because of packets losses or
other errors. The idea here is to use the results from Distributed Source Coding
(DSC) to protect the video frames against the degradations. Traditionally, the
scheme for video compression and transmission is composed of an inner channel
codec and an outer video codec. At the encoder, the video is first compressed,
then some redundant information is added to the data flow to fight against channel
transmission errors. At the decoder, the data flow is first channel decoded, and then
the video is decompressed. This traditional scheme is subject to drift effects and
to Cliff effects, when the channel error rate is above the channel code’s correction
capability.

Using DSC, one can transmit the compressed video over the channel, along with a
coarser description that takes the form of a syndrome. The idea is to use the received
erroneous version of the decompressed video as side-information for WZ decoding
exploiting the additional information from the syndrome. This novel scheme is called
“Systematic Lossy Error Protection” (SLEP), and it is presented in the literature
[RAG04, RBG08] by Rane et. al. Our aim is to apply the models that we presented
in Chapter 3, and the estimation-decoding tools presented in Chapter 4 to improve
the decoding performance of the SW decoder.
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Annexes

139

te
l-0

05
39

04
4,

 v
er

si
on

 1
 - 

23
 N

ov
 2

01
0



te
l-0

05
39

04
4,

 v
er

si
on

 1
 - 

23
 N

ov
 2

01
0



Appendix A

Row echelon form of a binary matrix
for efficient non-asymmetric
syndrome-based SW coding

This chapter formally describes the theory behind the search for a subset of linearly
independent columns of a binary matrix. The algorithm for such a search is also
properly exhibited.

Let H be a binary matrix of size M × N s.t. M ≤ N . The rank of H, noted
Rank(H), is the number of linearly independent column vectors composing it (also
called free columns). Rank(H) ≤ M . Formally, the free columns form a basis for
the subspace generated by the columns of H.

A.1 Prerequisite

The algorithm consists into putting the binary matrix in an echelon form, by apply-
ing only elementary row operations. This treatment does not modify the rank of the
matrix and, more importantly for the application, it does not change the position
of the free columns (see Theorem A.1). The resulting Row Echelon Form (REF) of
the binary matrix satisfies the following simple rule:

⊕ ∀m ∈ [1,M ] The first non-zero element of row m, a “1” at the n-th position
in the row, is the last non-zero element of the column n. This “1” is called the
pivot of the row m and the column n.

Note that in the Gauss pivot algorithm, the pivot is the only non-zero element
of the row and the column, and the pivots are echeloned so as to form the identity
matrix. The REF algorithm stops before arriving to the Gauss-pivot form: in each
row, we find the pivot as the first 1 in the row, and we zero only the elements in
the corresponding column that have a larger label than the pivot; no permutation
between the columns is performed.

Note also that zeroing the elements in the column that come before the pivot
brings to the Reduced Row Echelon Form (RREF) of the matrix H.
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142APPENDIX A. ROW ECHELON FORM OF A BINARY MATRIX FOR EFFICIENT NON-ASYMMETRIC SYNDROME-BASED SW CODING

Example of row echelon form of a matrix:
In the following, H is put to its REF H′:

H =



0 1 1 0 0 1 1 1 0 0 0 0
1 0 1 0 1 1 1 0 1 0 0 0
1 1 0 0 1 1 0 0 1 1 1 0
1 1 1 1 0 1 0 1 1 1 0 1
0 0 0 0 1 0 0 1 1 1 0 1
0 1 0 1 0 0 0 1 0 1 1 1
1 1 0 1 0 1 0 0 1 1 1 0
1 0 1 1 1 0 1 0 1 1 1 1


⇒ H ′ =



0 1 1 0 0 1 1 1 0 0 0 0
1 0 1 0 1 1 1 0 1 0 0 0
0 0 0 0 0 1 0 1 0 1 1 0
0 0 1 1 1 0 0 1 0 0 1 1
0 0 0 0 1 0 0 1 1 1 0 1
0 0 0 0 0 0 1 1 1 1 1 1
0 0 0 1 0 0 0 1 1 1 0 1
0 0 0 0 0 0 0 0 1 1 0 0


The pivots are put in bold face in H′.

In the sequel, we call echeloned column a column containing a pivot.

Lemma A.1. When H is put under the row echelon form, the ech-
eloned columns are linearly independent.

Proof. Suppose that the matrix H is put under its REF. Then, within a permutation
of the columns, the echeloned columns can be ordered according to the increasing
value of the label of the pivot in the column. The echeloned columns of the obtained
matrix form an upper triangular square matrix; thus these columns are linearly
independent.

Definition A.1. Two matrices are row-equivalent if they can be ob-
tained from one another by applying only elementary row opera-
tions.

Theorem A.1. Let H and H′ be two row-equivalent matrices. A
subset of the columns of H is linearly independent if, and only if, the
corresponding subset of columns of H′ is also linearly independent.

Proof. Consider these two following free columns of H:

Ca =



Ca1

Ca2

. . .
Caj
. . .
Cak
. . .
Cam


, and Cb =



Cb1
Cb2
. . .
Cbj
. . .
Cbk
. . .
Cbm


Suppose that H′ is obtained from the elementary operation on the row m of H:

Lm ← Lm + αLk. Then the corresponding columns of H′ are:

te
l-0

05
39

04
4,

 v
er

si
on

 1
 - 

23
 N

ov
 2

01
0



A.2. STATEMENT OF THE REF ALGORITHM 143

C ′a =



Ca1

Ca2

. . .
C ′am = Cam + αCak
. . .
Cak
. . .
Cam


, and C ′b =



Cb1
Cb2
. . .
C ′bm = Cbm + αCbk
. . .
Cbk
. . .
Cbm


Since the two columns Ca and Cb are free, ∀λ, µ, λCa + λCb = 0⇒ λ = 0, µ = 0;

without loss of generality, suppose that:{
λCam + µCbm = 0
λCak + µCbk = 0

⇒ λ = 0, µ = 0

Now, consider the corresponding system in H′:{
λC ′am + µC ′bm = 0
λCak + µCbk = 0

⇔
{
λ(Cam + αCak) + µ(Cbm + αCbk) = 0
λCak + µCbk = 0

⇔
{
λCam + µCbm + α(λCak + µCbk) = 0
λCak + µCbk = 0

⇔
{
λCam + µCbm = 0
λCak + µCbk = 0

⇒ λ = 0, µ = 0

Thus the two corresponding columns in H′ are also free.
All the elementary row operations are invertible. Then, the converse of Theo-

rem A.1 is demonstrated using the same argument, by noting that H is obtained
from H′ by applying elementary row operations. Thus the linear independence of a
subset of columns of the REF matrix H′ also implies the linear independence of the
corresponding columns of the original H.

A.2 Statement of the REF algorithm

Given the results in the previous Section, the algorithm for the search of free columns
in H is formulated as:

1. By applying only elementary row operations, reduce H under its row echelon
form H′;

2. Locate the columns of H′ that contain the pivots, they are free columns of H′;

3. The positions of the free columns of H are the same as those of H′.
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144APPENDIX A. ROW ECHELON FORM OF A BINARY MATRIX FOR EFFICIENT NON-ASYMMETRIC SYNDROME-BASED SW CODING

Note that these three steps are performed simultaneously in the practical imple-
mentation that we designed.

A.3 Optimizing the search

In the case where the matrix H is of rank M , let B denote the square matrix
composed of a subset of free columns of H. Now, note that the algorithm that we
describe in the previous Section only shows the existence of one such B. This comes
from the fact that only one possibility is available for the choice of the pivot: it is the
first “1” in the row. However, we can obtain all the subsets of M free columns of H
by randomly choosing the pivots among all the non-zero elements of each row under
consideration. Therefore, we can choose the “best” matrix B that fulfill arbitrary
conditions. For example, we can choose the one that minimizes the weight of the
inverse B−1 (for use with the non-asymmetric Slepian-Wolf setup in Sections 4.3,
4.3.2, and 4.3.3, to reduce the error propagation phenomenon).
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Appendix B

Progressive edge growth algorithm
for fast and efficient non-asymmetric
SW coding

In this Annex, we present the Progressive Edge Growth (PEG) [HEA05] adapted
to the construction of LDPC codes that fulfill the condition enumerated in Section
4.3.3.3 for efficient non-asymmetric coding of Bernoulli sources. Remind that the
condition imposes that the matrix H contains an invertible square sub-matrix B that
is triangular (given some permutation of its columns). However, the construction
must not deteriorate the performance of the code, in the sense that the resulting
matrix must respect the variable and check degree distributions found via density
evolution [RSU01]. Therefore, we must modify the original PEG so as to obtain
the best matrix. Our solution is to exploit the results presented in [JW05] for the
construction of IRA codes. First, we review the original PEG, and then we deduce
the algorithm adapted to our problem.

B.1 The original Progressive Edge Growth algorithm

B.1.1 Notation and definition

An (N,K) syndrome-based LDPC code can be interchangeably represented by an
(N − K) × N sparse matrix H = (hij)i∈[1,N−K],j∈[1,N ], or by a Tanner graph G
with (N − K) check nodes s = (si)

N−K
i=1 , representing the syndrome symbols, and

N variable nodes x = (xj)
N
j=1, representing the source symbols. Check nodes are

connected to variable nodes by edges, s.t. si is connected to xj iff hij = 1; hij = 0
otherwise.

Traditionally, an ensemble of LDPC codes is characterized by its variable degree

distribution Λ(x) =
dmaxv∑
i=1

λix
i−1 and its check degree distribution Φ(x) =

dmaxc∑
i=1

φix
i−1,

where dmaxv is the maximum variable degree, and dmaxc is the maximum check degree.

This couple of degree distributions verify
dmaxv∑
i=1

λi = 1, and
dmaxc∑
i=1

φi = 1. Each vari-

able node x has degree dv, meaning that it is connected to exactly dv check nodes;
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146APPENDIX B. PROGRESSIVE EDGE GROWTH ALGORITHM FOR FAST AND EFFICIENT NON-ASYMMETRIC SW CODING

similarly, each check node s has degree dc, meaning that its connected to exactly dc
variable nodes. ∀i ∈ [dminv , dmaxv ], λi is the proportion of variable nodes having degree
i; similarly, ∀i ∈ [dminc , dmaxc ], φi is the proportion of check nodes having degree i.

A subgraph of G is a graph whose nodes and edges sets are subsets of those of G.
For a given variable node xj, we define its neighborhood within depth l, noted Nl

xj
,

as the set formed by all the check nodes reached by a subgraph spreading from xj

within depth l. Its complementary set is noted N
l

xj
.

The girth of xj is the minimum depth at which a subgraph spreading from xj
loops back to xj. The girth of the code (or of the graph) is the minimum girth
among all its variable nodes.

B.1.2 Presentation of the algorithm

The PEG algorithm is a suboptimal algorithm to construct a Tanner graph with a
relatively large girth. The local girth of each variable node is maximized whenever
a new edge is added to the node. The resulting graph grows in an edge-by-edge
manner, optimizing each local girth.

The principle of the algorithm is to find the most distant check node from the
current variable, in terms of the subgraph depth, and then to connect the two
nodes together. This principle is described in more details in the sequel. Whenever
a subgraph from symbol node xj is expanded before an edge is established, two
situations can occur:

1. The cardinality of Nl
xj

stops increasing but is smaller than (N − K); not
all check nodes are reachable from xj, so the PEG algorithm chooses the
check node to connect to among the ones that are not reachable, thus not
creating any additional cycle. This often occurs in the initial phase of graph
construction.

2. Nl
xj
6= ∅, but Nl+1

xj
= ∅; all check nodes are reachable from xj, so the algorithm

chooses the one that is at the largest distance from xj, say at depth (l + 1),
so that the cycle created by establishing such an edge is of the largest possible
length 2(l + 2).

The Progressive Edge Growth algorithm can be summarized as follows:

for j = 0 to (N − 1) do
for k = 0 to djv − 1 do

if k = 0 then
Find si, a check node which has the lowest check-node degree under the
current graph setting (respecting the check degree distribution).
Establish the first edge incident to xj: E

0
sj
← edge(si, xj).

else
Expand a subgraph from xj, up to the depth l, under the current graph
setting, s.t. the cardinality of Nl

xj
stops increasing, but is less than (N−K),

or Nl
xj
6= ∅ but Nl+1

xj
= ∅.

Pick si from Nl
xj

, a check node that has the lowest check-node degree
(respecting the check degree distribution).
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B.2. PROPOSED PEG SUITED TO NON-ASYMMETRIC SW PROBLEM 147

Establish the k-th edge incident to xj: E
k
sj
← edge(si, xj).

end if
end for

end for

Me may face a situation in which multiple choices exist because multiple check
nodes in Nl

xj
might have the same lowest degree, particularly in the initial phase of

PEG construction. There are two main approaches to solve this problem. The first
one is to randomly select one of these check nodes; the second is to always select
one according to its position in an arbitrary sorted order. In our implementation,
we decide to randomly pick the check nodes.

B.2 Proposed PEG suited to non-asymmetric SW prob-
lem

We use the same notation as for the original PEG. Our task of constructing a good
DSC LDPC code is coupled with the aim to construct an optimal code for the non-
asymmetric SW problem. As Lemma 4.1 imposes a triangular B part to the matrix
H, we first explain how to match that condition.

B.2.1 Construction of the required triangular part

This triangular part is of size (N − K) × (N − K). First, we work on the matrix
representation and fill the B part with two diagonal lines of 1’s, s.t. the (N−K−1)
first variable nodes corresponding to the square matrix have degree two, and the last
variable node has degree one. If λ2 ≥ N−K

N
, then the matrix B is set. Otherwise,

suppose that we have λ2 +λ3 ≥ N−K
N

. Then we fill the (N −K)−λ2N first columns
of B with a diagonal line of 1’s, s.t. the corresponding variable nodes have degree
three. If λ2 + λ3 <

N−K
N

, then we complete B with degree four columns taking into
account λ4. However, in practice, there should be no need to go further than λ3.

As an example, consider the rate-1
2

LDPC code of variable degree distribution
Λ(x) = 0.483949x + 0.294428x2 + 0.085134x5 + 0.074055x6 + 0.062433x19 (used in
Section 4.3.3.4). As Λ2 + Λ3 = 0.7784 ≥ 0.5, the proportion of variable nodes of
degree two and three is large enough to form the B part. Practically, for a 1000-long
code, there are 484 columns with two 1’s and 16 columns with three 1’s forming the
B part (see Fig. B.1). The remaining columns of the matrix include 278 columns
with three 1’s, 85 columns with six, 75 columns with seven and 62 columns with
twenty.

Now that the B part of the matrix is set, we build the graph G taking into
account that the variable node xj is connected the check node si in the graph if, and
only if, hij = 1 in the matrix.

B.2.2 Building the graph with complementary edges

Once the edges corresponding to the correct B part of the matrix are set, we apply
the PEG algorithm, making sure that the existing edges are never modified. Only
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148APPENDIX B. PROGRESSIVE EDGE GROWTH ALGORITHM FOR FAST AND EFFICIENT NON-ASYMMETRIC SW CODING

Figure B.1: Shape of the designed LDPC code’s parity-check matrix.

the (N −K) variable nodes corresponding to the columns of H not part of B need
to be processed. The new algorithm is summarized as follows:

for j = 0 to (N −K − 1) do
for k = 0 to djv − 1 do

if k = 0 then
Find si, a check node which has the lowest check-node degree under the
current graph setting (respecting the check degree distribution).
Connect the first edge incident to xj: E

0
sj
← edge(si, xj).

else
Expand a subgraph from xj, up to the depth l, under the current graph
setting, s.t. the cardinality of Nl

xj
stops increasing, but is less than (N−K),

or Nl
xj
6= ∅ but Nl+1

xj
= ∅.

Pick si from Nl
xj

, a check node that has the lowest check-node degree
(respecting the check degree distribution).
Connect the k-th edge incident to xj: E

k
sj
← edge(si, xj).

end if
end for

end for

As we impose a deterministic structure for the part B of the matrix, some variable
nodes may not be connected to enough check nodes at the end of the algorithm, with
respect to their theoretical degree. In such case, it might be preferable to leave the
degree distribution unmatched, instead of adding extra edges that could deteriorate
the performance of the code, by decreasing the global girth of the graph.

Note that the only degree-one variable node, imposed by the construction of
the part B leaves the graph with a sub-optimality that we must accept, as part of
the trade-off between optimality for DSC and for the non-asymmetric problem. If
needed, the source bits corresponding to this position can be sent directly to the
decoder as systematic bit.
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Appendix C

The five video sequences

These pictures are shown in Fig. C.1 to help the reader have a visual on each video
sequence. Since we improve their compression rates, but we do not improve their
quality, in all the contributions of this Thesis, we do not show them after each test
of Chapter 5.

The sequences are Hall Monitor, Foreman (with the Siemens logo), CoastGuard,
Flower, and Soccer. They have QCIF spatial resolution (176 × 144 pixels), 15Hz
temporal resolution, which means 7.5Hz for the WZ frames when a GOP size of 2
is used (which we choose for all our tests).
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150 APPENDIX C. THE FIVE VIDEO SEQUENCES

Figure C.1: A visual of the five video sequences. From top to bottom, and from left to right:
Hall Monitor, Foreman (with the Siemens logo), CoastGuard, Flower, and Soccer.
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Résumé

Le codage de sources distribuées est une technique permettant de compresser plusieurs
sources corrélées sans aucune coopération entre les encodeurs, et sans perte de débit
si leur décodage s’effectue conjointement. Fort de ce principe, le codage de vidéo dis-
tribué exploite la corrélation entre les images successives d’une vidéo, en simplifiant
au maximum l’encodeur et en laissant le décodeur exploiter la corrélation.

Parmi les contributions de cette thèse, nous nous intéressons dans une première
partie au codage asymétrique de sources binaires dont la distribution n’est pas
uniforme, puis au codage des sources à états de Markov cachés. Nous montrons
d’abord que, pour ces deux types de sources, exploiter la distribution au décodeur
permet d’augmenter le taux de compression. En ce qui concerne le canal binaire
symétrique modélisant la corrélation entre les sources, nous proposons un outil,
basé sur l’algorithme EM, pour en estimer le paramètre. Nous montrons que cet
outil permet d’obtenir une estimation rapide du paramètre, tout en assurant une
précision proche de la borne de Cramer-Rao.

Dans une deuxième partie, nous développons des outils permettant de décoder
avec succès les sources précédemment étudiées. Pour cela, nous utilisons des codes
Turbo et LDPC basés syndrome, ainsi que l’algorithme EM. Cette partie a été
l’occasion de développer des nouveaux outils pour atteindre les bornes des codages
asymétrique et non-asymétrique. Nous montrons aussi que, pour les sources non-
uniformes, le rôle des sources corrélées n’est pas symétrique.

Enfin, nous montrons que les modèles de sources proposés modélisent bien les
distributions des plans de bits des vidéos; nous montrons des résultats prouvant
l’efficacité des outils développés. Ces derniers permettent d’améliorer de façon no-
table la performance débit-distorsion d’un codeur vidéo distribué, mais sous certaines
conditions d’additivité du canal de corrélation.
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Abstract

Distributed source coding is a technique that allows to compress several correlated
sources, without any cooperation between the encoders, and without rate loss pro-
vided that the decoding is joint. Motivated by this principle, distributed video cod-
ing has emerged, exploiting the correlation between the consecutive video frames,
tremendously simplifying the encoder, and leaving the task of exploiting the corre-
lation to the decoder.

The first part of our contributions in this thesis presents the asymmetric coding
of binary sources that are not uniform. We analyze the coding of non-uniform
Bernoulli sources, and that of hidden Markov sources. For both sources, we first
show that exploiting the distribution at the decoder clearly increases the decoding
capabilities of a given channel code. For the binary symmetric channel modeling the
correlation between the sources, we propose a tool to estimate its parameter, thanks
to an EM algorithm. We show that this tool allows to obtain fast estimation of the
parameter, while having a precision that is close to the Cramer-Rao lower bound.

In the second part, we develop some tools that facilitate the coding of the previous
sources. This is done by the use of syndrome-based Turbo and LDPC codes, and the
EM algorithm. This part also presents new tools that we have developed to achieve
the bounds of asymmetric and non-asymmetric distributed source coding. We also
show that, when it comes to non-uniform sources, the roles of the correlated sources
are not symmetric.

Finally, we show that the proposed source models are well suited for the video bit
planes distributions, and we present results that proof the efficiency of the developed
tools. The latter tools improve the rate-distortion performance of the video codec
in an interesting amount, provided that the correlation channel is additive.
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