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Summary. We propose a new ‘fast subset scan’ approach for accurate and computationally effi-
cient event detection in massive data sets. We treat event detection as a search over subsets
of data records, finding the subset which maximizes some score function. We prove that many
commonly used functions (e.g. Kulldorff’s spatial scan statistic and extensions) satisfy the ‘linear
time subset scanning’ property, enabling exact and efficient optimization over subsets. In the
spatial setting, we demonstrate that proximity-constrained subset scans substantially improve
the timeliness and accuracy of event detection, detecting emerging outbreaks of disease 2 days
faster than existing methods.
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1. Introduction

This work develops new methods for accurate and computationally efficient detection of emerg-
ing events in massive spatial and space-time data sets. Event detection is a ubiquitous task with
a wide variety of real world applications: for example, agencies that are responsible for pub-
lic health and safety must respond rapidly to potential threats including outbreaks of disease,
terrorist attacks and natural disasters. In the event detection task, we must identify whether
there are any interesting or anomalous patterns in the data and characterize each pattern by
pinpointing the subset of data records affected. For example, in disease surveillance, we wish
to identify whether there are any emerging outbreaks of disease, which areas have been affected
and how long the outbreak has been going on. Such events must be detected in the very early
stages, requiring identification of subtle patterns (e.g. a 20% increase in cases of fever at three
local hospitals) in noisy background data. These subtle signals may not be detectable if we
examine only a small part of the subset affected (a single hospital) or a larger subset containing
many unaffected records (the aggregate count for the entire city). As a result, both ‘bottom-up’
approaches which identify and aggregate individual anomalous records (Barnett and Lewis,
1994) and ‘top-down’ approaches which detect anomalous global trends in the data often have
low power to detect emerging events.

This suggests an alternative subset scan approach, where we search over subsets of the data
(e.g. groups of data records) and identify those subsets that correspond to potentially relevant
patterns. More precisely, we can define a score function F(S) which measures the ‘interesting-
ness’ or ‘anomalousness’ of a subset S and perform constrained or unconstrained maximization
of F(S) over all subsets of the data. This very general formulation requires us to define an appro-
priate score function F(S) and to address the computational challenge of maximizing F(S) over
subsets of the data. For spatial and space-time data, a variety of ‘spatial scan statistics’ have
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been developed. These methods, which are discussed in detail below, maximize a likelihood
ratio statistic over spatial regions (subsets of locations). Since the number of possible subsets
scales exponentially with the size of the data set, an exhaustive search over subsets is computa-
tionally infeasible. Typical spatial scan methods either restrict the search space or perform an
approximate heuristic search, resulting in reduced power of detection and lower accuracy. Here
we propose an alternative approach: new fast subset scan methods that efficiently identify the
most anomalous subsets without an exhaustive search.

We demonstrate that many useful score functions F(S) satisfy a property (‘linear time subset
scanning’ (LTSS)) which allows extremely efficient unconstrained optimization over all subsets
of the data. For score functions satisfying LTSS, the subset of data records which maximizes
F(S) can be found by ordering the records according to some ‘priority’ function and search-
ing over groups consisting of the top k highest priority records, requiring only a linear rather
than exponential number of subsets to be evaluated. In the spatial setting, we demonstrate that
many commonly used spatial scan statistics, including Kulldorff’s original spatial scan statistic
(Kulldorff, 1997) and many recently proposed variants such as the expectation-based Poisson
(Neill et al., 2005), Gaussian (Neill, 2006) and exponential (Huang et al., 2007) scan statis-
tics, satisfy the LTSS property, allowing us to find the most anomalous subset of N locations
while searching only N subsets rather than 2. However, we often wish to incorporate spatial
proximity constraints, thus identifying a spatial region (a group of nearby locations) rather
than a spatially dispersed set of locations. We show that, for score functions satisfying LTSS,
efficient spatially constrained optimization can be performed by using multiple unconstrained
optimization steps, thus enabling rapid identification of the most interesting spatial regions.

In certain cases, the unconstrained fast subset scan approach reduces to a variant of the upper
level set (ULS) scan statistic that was proposed by Patil and Taillie (2004), but the ULS also
enforces connectivity constraints on the cluster detected. However, our method is more general
than the ULS: it is applicable for optimization of a large class of score functions, can incorporate
a variety of constraints and can be extended to non-spatial and multivariate data. Moreover,
a simple counterexample (Section 3.6) shows that the ULS is not guaranteed to compute the
highest scoring connected cluster, whereas we prove that fast subset scan can efficiently find the
exact solution to constrained and unconstrained subset scan problems without an exhaustive
search.

2. Spatial event detection

Although our proposed fast subset scan framework has the potential to be applied to many
different types of data, here we focus on the problem of spatial event detection, in which we
monitor spatial time series data with the goal of rapidly detecting and identifying emerging
patterns. For example, in spatial disease surveillance, we monitor electronically available public
health data such as hospital visits and medication sales to detect emerging outbreaks of disease.
Early and accurate detection of outbreaks is of critical importance: major health threats such as
emerging infectious diseases or bioterrorist attacks require rapid and appropriate responses to
control the spread of disease, treat infected individuals and reduce the potentially catastrophic
costs to society.

In the spatial event detection problem, we monitor a set of data streams {D;...Dy} over
time at a set of spatial locations {s;...sy}. For each stream D,, and location s;, we are given a
time series of observed real-valued counts clf,m. For example, in disease surveillance, each data
stream could represent the number of hospital visits corresponding to a different category of
symptom (respiratory, fever, etc.) For data collected daily and aggregated at the zip code level,
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a given count ¢/, might represent the number of respiratory cases for zip code s; on day 7. For
cach data stream D,, and location s;, we first compute the time series of expected counts (or
‘baselines’) bim by using the historical data for that stream and location (Neill ez al., 2005),
and then we compare actual and expected counts. We wish to detect any spatial region (set of
nearby locations) where the recent counts for some subset of the data streams monitored are
significantly higher than expected: in disease surveillance, this corresponds to an abnormally
high incidence of cases of disease in an area, which may indicate an emerging outbreak. We focus
here on the univariate case, monitoring a single data stream of counts ¢} (and the corresponding
baselines b}) over multiple spatial locations s; and time steps #, but our methods generalize to
fast multivariate event detection as well. Finally, in the purely spatial case (considering only a
single time interval), we omit the superscript ¢, writing ¢; and b; respectively for the count and
baseline of location s;.

2.1. Methods for spatial event detection
The spatial and space—time scan statistics are commonly used methods for event detection
(Kulldorff and Nagarwalla, 1995; Kulldorff, 1997). They are in wide use for monitoring health
data, detecting clusters of disease cases due to chronic environmental exposures (Kulldorff ez al.,
1997; Hijalmars et al., 1996), outbreaks of infectious disease (Mostashari et al., 2003) or bio-
terrorist attacks (Neill, 2006). These methods maximize a score function F(S) over a large set
of spatial regions S, each consisting of some subset of locations s;, and thus can be considered
a special case of our general subset scan framework. Typical spatial scan methods constrain
the size and shape of the spatial region S and perform an exhaustive search over all regions
satisfying the given constraints. Kulldorft’s original method (Kulldorff, 1997) assumed circular,
purely spatial search regions, but recent variants search for elongated (Neill and Moore, 2004;
Kulldorff et al., 2006) or irregular shapes (Duczmal and Assuncao, 2004; Patil and Taillie, 2004,
Tango and Takahashi, 2005) and scan over time as an additional search dimension (Kulldorff
et al., 1998; Kulldorff, 2001). Finally, the p-value for each region is computed by randomization
testing, and any significant regions are reported to the user. Neill ez al. (2005) developed an
expectation-based scan statistic which first computes the expected count b} corresponding to
each observed count ¢} by time series analysis, and then compares actual and expected counts.
This method adjusts for spatial and temporal variability of the background data, significantly
improving the detection time.

Parametric scan statistics (Kulldorff, 1997; Neill et al., 2005; Neill, 2006, 2009) assume some
parametric model (such as Poisson- or Gaussian-distributed counts) and maximize the log-like-
lihood ratio statistic F(S) over all regions .S, where

P{data|H, (S)}}
P(data| Hy)

The null hypothesis Hy assumes no clusters (i.e. all counts are generated from the expected
distribution) and the alternative hypothesis H; (S) assumes that counts in region S are increased
by some multiplicative factor. For example, for the expectation-based Poisson (EBP) statistic
(Neill et al., 2005), the log-likelihood ratio can be derived as F(S) = C log(C/B)+ B—C,if C > B,
and F(S) =0 otherwise, where C and B are respectively the aggregate count X ¢} and aggregate
baseline ¥ 5! in region S for the given time interval. Similarly, if we assume Gaussian-distrib-
uted counts, the log-likelihood ratio for the expectation-based Gaussian (EBG) statistic (Neill,
2006) can be derived as F(S) = (C' — B)?/2B,if C’' > B', and F(S) =0 otherwise, where C’ and
B’ are respectively the aggregate weighted count X c¢!b!/(o? )2 and aggregate weighted baseline
3 (b))% /(0)? in region S for the given time interval. As before, ¢! and b! represent the count

F(S)=10g[
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and baseline for location s; at time step ¢, and o! represents the expected standard deviation,
also inferred by time series analysis of the historical data for location s;. Both of these statistics
differ from the Poisson spatial scan statistic that was originally proposed by Kulldorff (1997),
which compares the ratios of count to baseline inside and outside region S. The log-likelihood
ratio for Kulldorft’s statistic is defined as

c Ca—C Canl
F(S)=Clog( = Cai—O) log| =2—= )~y 1 ,
(S Og(B>+( al —C) Og(Ban—B) all Og<Ball)

if C/B > Cu1/Bai, and F(S) =0 otherwise, where C and B are defined as above, and Cy; and
Ban are the total aggregate count X ¢! and baseline X 4! for all spatial locations s;. Neill (2009)
demonstrated that the EBP and EBG statistics have high detection power for both small and
large affected regions, whereas Kulldorff’s statistic has high detection power for small affected
regions but low detection power for large affected regions (Neill, 2009). Other variants of the
spatial and space-time scan statistics include the non-parametric (Neill and Lingwall, 2007)
and multivariate Bayesian (Neill and Cooper, 2010) scan statistics. These methods have several
advantages over typical parametric scan statistics, including the ability to integrate informa-
tion from multiple sources, to adapt to different data distributions and to distinguish between
multiple types of event, but here we focus on the parametric case.

2.2. Accelerating spatial event detection

In the spatial event detection problem, our primary goal is to find the most anomalous spatial or
space—time regions (subsets of locations) by efficiently maximizing the score function F(S). Since
there are exponentially many subsets to consider (O(2") for a spatial data set) with N locations,
an exhaustive search over all subsets is typically computationally infeasible. Nevertheless, there
are three ways to maximize F(S) efficiently. First, we can reduce the search space, considering
only a polynomial number of subsets. For example, Kulldorff’s original spatial scan (Kulldorff,
1997) searches over only the O(N?) distinct circular regions centred at a location; other meth-
ods search over rectangles (Neill and Moore, 2004), ellipses (Kulldorff et al., 2006) or cylinders
(Kulldorff, 2001). Although such approaches reduce computational complexity, detection power
tends to be low for patterns that do not correspond well to the subsets being searched. For
example, a search over circles has high power to detect compact clusters but low power to detect
elongated or irregular clusters. A second alternative is to search over a larger set of irregular
regions, using some heuristic search method to find high scoring subsets. For example, Duczmal
and Assuncao (2004) use simulated annealing to search over the space of all connected clusters,
whereas Duczmal ez al. (2007) used a genetic algorithm to maximize a penalized likelihood ratio
statistic. The disadvantage of these heuristic search methods is that they are not guaranteed to
find a subset which is optimal (maximizes the score function) or even close to optimal.

In this work, we develop new methods which are guaranteed to find the highest scoring
subsets of locations without an exhaustive search. Neill and Moore (2004) developed a ‘fast
spatial scan’ that can efficiently maximize a score function over the set of rectangular spatial
regions, achieving speed-ups of 100-1000 times compared with exhaustive search. However,
this method can only be used to maximize Kulldorft’s statistic (Kulldorff, 1997) over rectangles,
on data aggregated to a uniform grid. The present work enables efficient global optimization of
any of a large class of functions, to detect the most interesting subsets of a massive spatial data
set. The starting point for this work is our discovery that, for many commonly used spatial scan
approaches, including Kulldorff’s statistic and many recent variants, we can solve the uncon-
strained (all subsets) search problem very efficiently. As we discuss below, this LTSS method
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also enables us to incorporate proximity constraints, efficiently detecting the most anomalous
spatial and space—time regions.

3. Linear time subset scanning

We now formally define the LTSS property and demonstrate that a large class of functions sat-
isfy this property. Let D={R;...Ry} be a set of N data records, and let F(S) be a set function
mapping a subset of data records S C D to a real number. For example, in spatial event detec-
tion, each region S represents a subset of the spatial locations {si...sy}, but our derivations
generalize to both spatial and non-spatial data. We refer to F as a ‘score function’, and F(S) as
the ‘score’ of subset S. Also, let G(R;) be a function mapping a single data record R;€ D to a
real number. We refer to G as a ‘priority function’, and G(R;) as the “priority’ of data record
R;. Next we define R(j), j=1,..., N, to be the data record R; € D with the jth highest value of
G(R;). We refer to R(;) as the ‘jth highest priority record’, and j as the ‘priority rank’ of record
R(j). Given these preliminaries, the LTSS property can be defined as follows.

For a given data set D, the score function F(S) and priority function G (R;) satisfy the LTSS
property if and only if maxscp{ F(S)} =max ;=1 y[F{Rq)...R; D]

If the LTSS property holds, we can efficiently maximize F(S) over all subsets of D by evaluating
only N of the 2V possible subsets. If the records R;...Ry are already sorted by priority, this
property allows us to maximize F(S) in O(N) time, by stepping through the records in priority
order and computing the score of each subset S ={R(1)...R(j}. Otherwise, we must first sort
the records by priority, which requires O{N log(N)} time.

As we demonstrate below, many commonly used score functions, including Kulldorff’s orig-
inal spatial scan statistic and many recently proposed variants, satisfy the LTSS property. We
have developed two general proof methods, ‘inclusion’ and ‘substitution’, which can be used to
show that a given score function F(S) and priority function G (R;) satisfy LTSS. The simpler case,
proof by substitution (which is described in Section 3.4), finds an ordering of records R(yy. . . R()
such that substituting a higher priority record R(; for a lower priority record R(;), where i < j,
is guaranteed not to decrease the score. In Section 3.1, we prove (by inclusion) that commonly
used score functions such as the EBP and EBG scan statistics satisfy the LTSS property with
priority function equal to the ratio of count to baseline, G(s;) = c¢;/b;. However, these score
functions do not satisfy the substitution property, as shown by the following two examples.

(a) Example I: consider two locations s; and s>, such that s; has a higher ratio of count to
baseline than s,, but s, has a higher count and baseline, (c1,b1) = (30, 5), and (¢p,b3) =
(100, 50). If region S has aggregate count and baseline (C, B) = (1, 1), then F(SU{s1}) >
F(SU{s>}) for both EBP and EBG statistics. However, if S has (C, B) = (100, 100), then
F(SU{s1}) < F(SU{s2}).

(b) Example2: consider two locations s; and s5, such that s; has a higher ratio of count to base-
line than s,, and also has a higher count and baseline, (¢1, b1) = (30, 5),and (¢c3,b2) = (2, 1).
For either of the two regions S that were considered in example 1, F(SU{s1}) > F(SU{s2})
for both EBP and EBG statistics. However, if region S has aggregate count and baseline
(C, B)=(100, 1), then F(SU{s1}) < F(SU{s2}).

3.1.  Proof of linear time subset scanning property by inclusion
In this section, we describe proof by inclusion and use this method to prove that several com-
monly used spatial scan statistics satisfy the LTSS property.
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(a) For a non-empty subset S C D, define R;,(S) to be the lowest priority element R; € S,
and define Roy(S) to be the highest priority element R; ¢ S. Thus, if S={R(y)...Rj)} for
some j, then G{Ri,(S)} = G{Rou(S)}, and otherwise G{Riy(S) } < G{Rout(S)}.

(b) Define pr;, (S) to be the priority rank of Ry, (S), pry,(S) to be the priority rank of Royi(S)
and dift(S) = pr;, (S) — proy: (). We also define dift(S) =—1 for S=¢ and S=D. Thus, if
S={Rq)...R(j} for some j, then diff(§) = —1, and otherwise diff(S) > 0.

(c) Define S$* to be the subset that maximizes F(S), $* =argmaxs{F(S)}. If there are
multiple subsets S* which maximize F(S), we choose an S$* which minimizes diff(S*).
Thus if F(S) and G(R;) satisfy the LTSS property then diff($*) =—1, and otherwise
diff(S*) > 0.

To prove that a score function F(S) and priority function G (R;) satisfy the LTSS property we
assume that $* cannot be expressed as { R1). .. R(j } for some j. We then show that this leads to
a contradiction, by constructing another subset S’ with F(S") > F(S*) and diff(8") < diff(5*).
In particular, we consider the subsets S} = S*\{R;n(§*)}, and $» = §* U {Roui(S*)}. Clearly,
Prin (S1) < priy (8*) and pry (S1) = pryy (5*), and thus diff(Sy) < diff($*). Similarly, pry, (S2) =
prin (S*) and pry, (S2) > proy (S*), and thus diff(Sy) < diff($*). Since both S| and S, have lower
values of diff(S) than S*, a sufficient condition for LTSS is to show that max{F(S}), F(S2)} >
F(S*). In other words, we show that, if the lower priority record R;, is included in §*, then the
higher priority record Ry must be included as well. As a specific example, we prove that LTSS
holds for a large class of score functions which includes the commonly used EBP, EBG and
Kulldorff spatial scan statistics.

Theorem 1. Let F(S)= F(X,Y) be a quasi-convex function of two additive sufficient statistics
of subset S, X(S) =Xg,esx; and Y(S) = Xg,es yi, where x; and y; depend only on record R;.
Assume that F(S) is monotonically increasing with X (S), and that all y;-values are positive.
Then F(S) satisfies the LTSS property with priority function G(R;) =x;/yi.

Proof. We prove theorem 1 by inclusion, defining $* =argmaxs{F(S)}, Ry (S) and Roy(S)
as above. Let S| = S*\{Rjn(5*)} and Sp = S* U{Rout(S™)}. We show that F(S*) < max{F(S)),
F(S>)}. Todo so, define X* =Yg g+ x; and Y* =X g g+ y;. Similarly, define x;, and yj, to be the
x;- and y;-values for record R;,(S*) respectively, and xou and yoyut to be the x;- and y;-values for
Rout (8*) respectively. Thus we must show that F(X*, Y*) <max{ F(X* — xjp, Y* — yin), F(X* +
Xout, Y* + yout)}-

The proof proceeds in two steps. First, we show that F(X*,Y*) < F(X',Y’), where

X = Yout (X* —xi) + Yin (X* ¥ Xout) = X* XoutYin — XinYout
Yin + Yout Yin + Yout Yin + Yout
and
Y= 20 () 2 (% ) =Y
Yin + Yout Yin + Yout

Second, we show that F(X’,Y’) < max{F(X* — xjn, Y* — yin), F(X™ 4+ Xout, Y * + yout) }-

The first step follows from the assumption that F(X, Y) is monotonically increasing with X,
and the facts that X’ > X* and Y’ =Y*. To see that X’ > X*, we note that G(R;;) < G(Rout), and
thus xin/¥in < Xout/Yout. This implies that xoutyin — Xin Yout 18 non-negative, and therefore X' =
X* 4+ (XoutVin — XinYout)/ Vin + Yout) = X*. The second step follows from the fact that (X', Y') is a
convex combination of (X* — xjp, Y* — yin) and (X™* + xout, Y™ + yout). More precisely, (X', Y') =
AX* = Xin, Y™ — yin) + (1 = M) (X™ + xout, Y* + your), where A = Yout/(Vin + Your). The assump-
tion that F(X,Y) is quasi-convex implies that F(X’,Y’) < max{F(X™* — xj,, Y* — yin), F(X* +
Xout, Y™ + )’Out)}~
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Corollary 1. Kulldorff’s spatial scan statistic satisfies LTSS, with G (s;) =c¢;/b;. This follows
since, for given values of the global count C, =X ¢; and global baseline By = X b;, we can
write F(S)= F{C(S), B(S)}, where C(S) =X esci and B(S) =X esb;. We know that F(S) is
monotonically increasing with the count C(S), and all baselines b; are assumed to be positive.
Finally, we prove that F(C, B) is convex (and therefore quasi-convex) by showing that it is the
sum of two convex functions, Fj,(C, B)=Clog(C/B) and

Ca—C
Fout(C, B) = (Coy — C) log [ =2—=),
out ( ) = (Canl ) Og(Ball _B
and a constant term —Cj,y log(Cay1/ Ban). The Hessian of Fj, is positive semidefinite, with eigen-
values 0 and 1/C 4 C/B? > 0. The Hessian of Foy, is also positive semidefinite, with eigenvalues
0 and 1/(Cyy — C) + (Cay — C)/(Bat — B)? >0, and thus F is convex.

3.2. Linear time subset scanning for separable exponential families
Although theorem 1 can be used directly to prove that the EBP and EBG scan statistics satisfy
the LTSS property, we now prove a stronger result which demonstrates that LTSS holds for many
exponential families. Assume that we are given a set of observed counts x;, the corresponding
expected counts y; and possibly other parameters, such as the standard deviations o;. Let
P{data|H;(S)}

P(data| Hyp) }
where the null hypothesis assumes that each observed count x; is drawn with mean y; from a
given distribution in a single-parameter exponential family. We can write this distribution in
terms of its mean p as log{ P(x|u) } = T(x) 0 (p) — p{0(w) } = T(x) () — 11 0(p) + p(1), where T(x)
is the sufficient statistic, (1) is a function mapping the mean p to the natural parameter 6, ¢ is
the log-partition function and ¢ is the convex conjugate of 1. For the expectation-based scan
statistic (Neill ez al., 2005), the alternative hypothesis H;(S) assumes that counts x; are drawn
with mean qu; inside region S and mean p; outside region S, for some constant multiplicative
factor ¢ > 1. In this case, we can write

F(S)=log[

F(S)= supq>1( >~ [log{ P(xilgpui) } — log{P(xilm)}])

S,‘ES

Plugging in the log-likelihood for the exponential family, we obtain the expression

F(S)= SUIID ( o [T {0(qu) — 0 } + i 0 (i) — qi 0(qpe) + P(qui) — ¢(ui)])- ey
q> si€S
We now define an exponential family to be separable if 6(qu;) = z; 09(q) + v;, where the func-
tion #y depends only on ¢, whereas z; and v; can depend on y; and o; but are independent of
g. We note that the Poisson, Gaussian and exponential distributions are separable (as shown
below), but not all exponential families are separable: for example, the binomial and negative
binomial distributions P(x;|N;, p;) are only separable with the additional assumption of con-
stant p;. For a separable exponential family, we can show that ¢(qu;) = uizi ¢o(q) + pivig + K;,
where ¢o(q) = [0y(q)dgq, and K; is independent of ¢. Then the expression for F(S) can be
simplified to
F(S) =Su1?[C{90(61) —0o(1)} + B{¢o(q) — o (1) +0o(1) —q0o(q) }] 2)
g>
where C and B are the sufficient statistics C=Xes T(x;)z; and B =¥ pizi. To obtain the
maximum likelihood estimate of ¢, we set dF/dg =0, obtaining g=C/B if C> B, and g=1
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otherwise. Substituting this value of ¢ into equation (2) and simplifying, we find that F(S) =
BDy,(C/B,1) if C> B, and F(S) =0 otherwise, where D, (x,y) is the Bregman divergence,
$0(x) — po(y) — (x —¥) ¢ (). Thus we can prove the following theorem.

Theorem 2. Let F(S) be the expectation-based scan statistic corresponding to a probability
distribution in a separable exponential family. Then F(S) satisfies the LTSS property with
priority function G (s;) = T(x;)/ ;.

Proof. As shown above, F(S) =B Dy,(C/B,1) if C> B, and F(S) =0 otherwise. For C > B,
the Bregman divergence Dgy,(C/B, 1) is increasing with C/B, and thus F(S) increases mono-
tonically with C. Additionally, the Hessian of F(S) is positive semidefinite, with eigenvalues 0
and (1/B+C?/B%) 6,(C/B) >0, and thus F(S) is convex. By theorem 1, F(S) satisfies the LTSS
property with priority function G (s;) = T(x;)z;/ pizi = T(xi)/ i

Corollary 2. The EBP, EBG and exponential scan statistics all satisfy the LTSS property
with priority function G(s;) =x;/u;. To see this, we note that each distribution belongs to a
separable exponential family, with T(x;) = x;. For each distribution, Table 1 provides the expres-
sion for 0(qu;), its decomposition as z; y(g) + v;, the sufficient statistics C =X, ecs T(x;)z; and
B=1Xes pizi, po(q) and F(S) =B Dy, (C/B, 1).

Corollary 3. Assume that counts x; are drawn from a Gaussian distribution with known means
i and assumed variances q,-aiz. We wish to test the null hypothesis Hy: g; = 1 everywhere, against
the set of alternative hypotheses H;(S): ¢; =¢q inside S and ¢g; =1 outside S, for some constant
g > 1. This is an expectation-based scan statistic in a separable exponential family, with T(x;) =
(x; — u,)Z and corresponding expectation E[(x; — ,u,)z] = 02 For this dlstr1but1on 9(q02) =
—1/2qa =z; 90(q) where 0y(q) = —1/2qg and z; = 1/0 Then ¢0(q) -5 log(q) and F(S) =
BDy,(C/B,1)= 2{B log(B/C)+ C — B}, where C =%,e5 (x; — i) /al , and B=3Yjes 02/0
|S|. By theorem 2, F(S) satisfies the LTSS property with G (s;) = (x; — 1)/ a = Z2 the squared
z-score corresponding to observed count x;.

We note that theorem 2 assumes the standard, one-sided version of the expectation-based
scan statistic, where F(S) is positive if C > B and 0 otherwise. This statistic is commonly used
to detect spatial clusters of increased counts (e.g. emerging clusters of disease cases). To detect
decreased counts, we can define F(S) to be positive if C < B and 0 otherwise. In this case, we write
the statistic as F(B, C) and note that F(S) is convex and monotonically increasing with B, and
thus the statistic satisfies the LTSS property with priority function G (s;) = u; /7(x;). Finally, the
two-sided statistic (detecting either increased or decreased counts) can be efficiently optimized
by maximizing both one-sided statistics, and then taking the maximum of the two results.

The observation that exponential family score functions F(S) can be written in terms of a
Bregman divergence, and can be proven to satisfy the LTSS property, suggests the question

Table 1. Derivation of F(S) for expectation-based scan statistics in a separable exponential family

Distribution ~ 0(qu;)  6o(q) zi v; C B bo(q) F(S)
Poisson loglgu) log@ 1 logu) 3 i i alogl@)—q Clog (§)+B-c
S;i€ s;i€
Gaussi: qpi Hi Xifbi w s (C—B)?
aussian — q - 0 > 5 —= =
oj ; s;€S O; S;€S O; 2 2B
Exponential —q%ﬁ —% i 0 Z ﬁ—i =S| —log(q) Blog(g)—i—C—B
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of whether all Bregman divergences satisfy the LTSS property. The answer to this question
is no: whereas the Bregman divergences D4 (C/B, 1) are convex, general Bregman divergences
Dy(C, B) are convex in their first argument but not necessarily in their second argument, and
non-convex Bregman divergences are not guaranteed to satisfy the LTSS property. As a coun-
terexample, we consider the Bregman divergence

(C—B)
(C+DH(B+1H?¥’
corresponding to the convex function ¢(x) =1/(x+ 1). Given the three locations s1, s> and s3,
where (c1, b1) =(1.95,1.35), (ca, by) =(4.25,2.90) and (c3, b3) = (1.00, 0.65), assume that there is
a priority function G (s;) such that F(S) satisfies the LTSS property with priority function G (s;).
For the given locations and score function, the highest scoring subset of {s,s»} is {s»}, and
thus we must have G (sy) > G(s1). However, the highest scoring subset of {sy,s2,s3} is {51, 53},
and thus we must have G(s;) > G(s2). This is a contradiction, and thus no priority function
G (s;) exists such that F(S) satisfies the LTSS property.

F(S)=Dy(C,B)=

3.3. Strong linear time subset scanning

Some score functions F(S) and associated priority functions G(R;) allow us to prove a stron-
ger property, which enables efficient maximization of F(S) over all subsets S C D with a given
cardinality j. This property, ‘strong LTSS’, is defined as follows.

For a given data set D, the score function F(S) and priority function G (R;) satisfy the strong
LTSS property if and only if, for all je {1...N}, maxscps=j{ F(S)} = F{Rq)... R })-

The LTSS property that was defined in the previous section can be called ‘weak LTSS’, to
distinguish it from the strong LTSS property that is defined here. Clearly, strong LTSS implies
weak LTSS, since maxscp{F(S)} =max ;. y maxscp;si=;{F(S)}, and strong LTSS allows
efficient maximization for each value of j. Thus any score function F(S) satisfying strong LTSS
can also be efficiently maximized over all subsets of the data.

However, we note that weak LTSS does not imply strong LTSS, and that in fact the EBP,
EBG and Kulldorff spatial scan statistics (which were shown above to satisfy the weak LTSS
property) do not satisfy the strong LTSS property. As a simple counterexample, we consider
the EBP statistic, with F(S)=C log(C/B) + B — C and G(s;) =c;/b; defined as above. Given a
data set of two spatial locations where s(1) has (¢;, b;) = (10, 1) and sy has (¢;, b;) = (100, 50),
the highest scoring 1-element subset is {s(2) }, not {s(1)}, so strong LTSS does not hold. Similar
counterexamples can be constructed for the EBG and Kulldorff statistics as well.

3.4. Proof of strong linear time subset scanning property by substitution
In this section, we describe proof by substitution and use this method to prove that several com-
monly used spatial scan statistics satisfy the strong LTSS property. As above, for a non-empty
subset S C D, we define R;, (S) to be the lowest priority element contained in S, Royt(S) to be the
highest priority element not contained in S, pr;, (S) to be the priority rank of R, (S), pryy(S) to
be the priority rank of Roy¢(S) and diff(S) = pr;, (S) — pryy: (S). Additionally, we define S* to be
the subset that maximizes F(S) among all subsets of cardinality j: S3 * =arg maxg;s)=j{ F (S)} If
there are multiple subsets Sj* which maximize F(S), we choose an S* which minimizes diff(S¥*).
Thus, if F(S) and G(R;) satisfy the strong LTSS property, then dlff(S*) =—1 for all j, and
otherwise dlff(S;") >0 for some j.

To prove that a score function F(S) and priority function G (R;) satisfy the strong LTSS prop-
erty, we assume that, for some je {1... N}, S;?‘ is not equal to {R(1)... R(j}. We then show
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that this leads to a contradiction, by constructing another subset S/ with |S/ |=j, Fi (S/ Y= F(S *)
and dlff(S’) < dlff(S*) In particular, we consider the subset S’ S* U {Rout(S*)}\{Rm(S )}

Clearly, prm(S )< prm(S*) and proy (87 > pryy (S7), and thus dlff(S’) < dlff(S*) Since A\
has a lower value of dlff(S) than S* a sufﬁ01ent condltlon for strong LTSS is to show that
F(S/ ) > F(S*) In other words, we show that the score of subset S* would not be reduced if
we substztute Rout for Rj,. We prove that the strong LTSS property holds for a large class of
functions.

Theorem 3. Let F(S)= F(X,|S|) be a function of one additive sufficient statistic of subset S,
X(S)=Xpg,es xi (Where x; depends only on record R;), and the cardinality of S. Assume that
F(S) is monotonically increasing with X. Then F(S) satisfies the strong LTSS property with
priority function G(R;) =x;.

Proof. We prove theorem 3 by substitution, defining S* Rin(S) and Ry (S) as above.
Assume that, for some je{l... N}, ST #{Rq)... R(j}. Let =87 U{Rout(SHI\{Rin(SP}
as above. We show that F(S’) F(S*) To do so, define X* = ER cs* Xi, and deﬁne Xin and
Xout to be the x;-values for records ln(S*) and Rout(S ) respectlveiy Thus we must show
that F(X* — x;p + Xout) = F(X*). This follows from the assumptlon that F(X) is monotonically
increasing with X', and the fact that G(Rout) = xout 18 greater than or equal to G(R;,) = xijn, and
therefore X* — x;, + xout > X*.

Corollary 4. The expectation-based scan statistics for the exponential distribution (corol-
lary 2) and variance of a Gaussian distribution (corollary 3) satisfy the strong LTSS property.
In each case, we can write F(S) is proportional to |S]| log(|S|/C)+ C —|S| if C > |S| and 0
otherwise, where C is an additive sufficient statistic of subset S. For C > |S|, we observe that
dF/0C=1—|§|/C > 0. Thus F(S) is monotonically increasing with C and satisfies the strong
LTSS property.

For score functions F(S) satisfying the strong LTSS property by theorem 3, we can include
a penalty term that is a function of |S|, and the resulting penalized score function F(S) —
H(|S|) also satisfies the strong LTSS property. This is useful because multiplicity considerations
suggest that the unpenalized subset scan is biased towards detecting subsets with |S|~ N/2,
since N!/|S|!(N —|S|)! subsets of cardinality |S| are considered. However, many score functions
F(S)= F(C, B) do not satisfy the strong LTSS property unless the baselines b; are constant, in
which case B=1X,c5b; o< |S|. If F(S) satisfies only the weak LTSS property, then F(S) — H(|S])
is not guaranteed to satisfy the LTSS property. Below, we propose an alternative approach
(penalizing the neighbourhood size) which implicitly penalizes the cardinality of S as well as
penalizing spatially dispersed clusters.

3.5. Extensions to space—time and multivariate data
Since the parametric scan statistics are functions of the additive sufficient statistics of region S,
we can easily extend our proofs of the LTSS property to the space-time case (Kulldorff, 2001),
where we scan over varying temporal windows consisting of the most recent ¥ time steps,
for W=1...Wnax. Let F(S) =maxwy—1. w,., {Fw(S)}, where Fy (S) assumes a fixed temporal
window size W. Then Fw (S) = F(Cw, Bw), where Cy (S) = Xyes X=0.. w—1¢; = Xges ci,w and
Bw(S) =X5es Y=o, w—1b! =Xyes bi,w. We can efficiently maximize Fy (S) for each temporal
window size W, by computing the aggregate count ¢; w and baseline b; w for each location, and
then prioritizing the locations by G (s;) =c;, w/bi,w.

Extension of the LTSS property to the multivariate case is likewise straightforward in cases
when the multivariate statistic is a function of one or more additive sufficient statistics, aggre-
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gated over all locations, time steps and data streams. In this case, we can efficiently optimize
the score function F(S) for a fixed set of data streams D C {Dj...Dy} and a fixed temporal
window W. For multiple subsets of streams, or varying temporal window sizes, we can perform
a separate optimization for each, and then maximize over all subsets of streams and temporal
window sizes under consideration. Here we consider the original multivariate formulation of the
spatial scan statistic that was proposed by Burkom (2003), which aggregates counts and base-
lines across the multiple data streams being monitored and applies the univariate scan statistic
to these aggregates. This approach is distinct from Kulldorff’s multivariate spatial scan statistic
(Kulldorff et al., 2007), which assumes that data streams are conditionally independent and
thus adds the log-likelihood ratio scores across the multiple streams. For Burkom’s method, the
parametric scan statistic is a function of the aggregate count and aggregate baseline of region
S for the given data streams and temporal window, and thus the LTSS property holds with
G(si) =ci/bi, where c;=¥p, ep ¥i=0..w—1¢} , and b; =%p, ep Xi=o..w—1b} .

Whereas LTSS allows efficient optimization over subsets of locations for each subset of
streams, optimization of the scan statistic over all subsets of M streams requires time pro-
portional to 2™ and thus is computationally infeasible when the number of streams is large.
However, an alternative approach is to consider a relatively small number of spatial regions
(e.g. searching over circles rather than all subsets of locations). For any given spatial region
S (and a fixed temporal window W), we can efficiently optimize over all subsets of streams.
To do so, we can order the M data streams D,, by a priority function G(D,,) and consider
only the k highest priority streams for each k=1, ..., M. Then we have G(D,;) = ¢, /b, where
cm = Bges Y=o, w-1¢t,, and by, =XgesX—0. w—1b} ,,. Thus we can use the LTSS property
either to optimize efﬁcfently over subsets of locations for a given subset of streams, or to opti-
mize efficiently over subsets of streams for a given subset of locations. Further investigation of
the multivariate case is beyond the scope of this paper, and we focus on the univariate case for
the remainder of our discussion.

3.6. Comparison with related methods

As noted in Section 1, our unconstrained fast subset scan approach, based on the LTSS prop-
erty, is similar to the ULS scan statistic that was proposed by Patil and Taillie (2004), which
has been widely applied to graph and network data. The ULS approach also orders the spatial
locations by priority, where the priority function is defined as G(s;) = ¢;/b;, and considers the
top k highest priority locations for each k=1, ..., N. Rather than considering the subset con-
sisting of all k locations, however, the ULS enforces a connectivity constraint, considering the
connected components of the subgraph formed by the top k locations for each k. Thus, for a
fully connected graph, the ULS reduces to the unconstrained fast subset scan approach.

The contributions of this paper, compared with the original ULS approach, are twofold. First,
whereas Patil and Taillie (2004) focused on the specific case of optimizing Kulldorff’s univariate
spatial scan statistic with connectivity constraints, our fast subset scan approach can optimize
a large class of score functions for multivariate spatial, space-time and non-spatial data. More-
over, the unconstrained fast subset scan can be used as a building block to solve a wide variety
of constrained subset scan problems, e.g. incorporating hard or soft constraints on spatial
proximity. Second, we prove that the fast subset scan is guaranteed to optimize efficiently and
exactly any score function which satisfies the LTSS property. Patil and Taillie neither proved nor
claimed that the ULS is guaranteed to maximize Kulldorff’s statistic over the set of connected
regions and, in fact, a simple counterexample demonstrates that the ULS may find a subopti-
mal region. Consider a four-node “Y-junction’ graph, with nodes s1, s and s3 each connected to
the centre node s4. Let (c1,b1) = (c2,b2) = (10, 1), (¢3,b3) = (10,10) and (c4, b4) = (0, 1). Then
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the ULS would consider only the subsets {s;}, {s2}, {s3} and {s},s2,53,s4}, failing to iden-
tify the highest scoring connected subset {s1, 52, 54 }. We have recently developed the GraphScan
method (Speakman and Neill, 2010), which incorporates connectivity constraints into the LTSS
framework and is guaranteed to find the highest scoring connected subset. However, a detailed
discussion of GraphScan is beyond the scope of this paper.

We also note that the LTSS property is distinct from prior work in submodular function
optimization. Submodular functions have an intuitive ‘diminishing marginal returns’ prop-
erty and can be approximately maximized by greedy search (Nemhauser et al., 1978), enabling
near optimal solutions to problems such as feature selection and sensor placement (Leskovec
et al., 2007). However, LTSS enables us to find efficiently an exact, rather than approximate,
solution. Moreover, a simple example demonstrates that LTSS can be applied to functions
that are neither submodular nor supermodular. Consider the EBP statistic, given three spatial
locations sy, s» and s3 where (c1,b1) = (3, 1) and (c2,b2) = (¢3,b3) = (2,1). Then F({s1,s3}) —
F({s1}) < F({s1,52,83}) — F({s1,52}), so F is not submodular. However, F({s2,s3}) — F({s2}) >
F({s1,52,83}) — F({s1,52}), so F is not supermodular. We can also consider the variant of EBP
which assumes uniform baselines, F(S) equals C log(C/|S|)+|S| — C if C > |S|, and 0 otherwise.
This function satisfies the strong LTSS property, but identical calculations demonstrate that it
is neither submodular nor supermodular.

3.7. Initial evaluation for spatial and space—time data

As a concrete example of the utility of LTSS in practice, we considered a spatial disease sur-
veillance data set consisting of the daily counts of emergency department visits with respiratory
symptoms (cough and shortness of breath) in 97 Allegheny County zip codes. This data set is
described in detail in Section 5.1 below. An exhaustive search over the 2°7 possible subsets of zip
codes would be computationally infeasible, requiring over 10%° years of computation time for
a single day of data. However, LTSS enabled efficient maximization of F(S) for the EBP, EBG
and exponential scan statistics, as well as Kulldorff’s spatial scan statistic, requiring approxi-
mately 0.04 s per day of data for spatial and space-time scans with temporal window sizes up
to W=28.

Although these results demonstrate the potential of LTSS to enable efficient unconstrained
maximization of the score function for real world spatial and space-time data, we note that
unconstrained maximization over subsets is typically not sufficient to solve practical spa-
tial detection problems. Since our search over subsets does not take the spatial proximity of
locations into consideration, the highest scoring ‘region’ may consist of a dispersed set of loca-
tions, e.g. one zip code in the north-west corner and one zip code in the south-east corner of
the county. In the following section, we consider how spatial constraints can be incorporated
into LTSS to enable efficient maximization over regions that are constrained by spatial
proximity.

4. Incorporating spatial constraints

To incorporate spatial information in the subset scan framework, assume that we are given
a metric which specifies the distance d(s;,s;) between any two spatial locations s; and s;. We
then maximize F(S) over only those subsets which satisfy some constraint on proximity, e.g.
an upper bound on the maximum distance between locations. Here we propose an efficient
proximity-constrained subset scan method which we call ‘fast localized scan’. The fast localized
scan approach considers each spatial location s;,i=1, ..., N, as a possible ‘centre’ of the region.
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For each centre location s;, we consider its ‘local neighbourhood’ S; and use LTSS to maximize
efficiently over all subsets S C S;.

(a) For the ‘“fixed neighbourhood’ (fixed k) approach to the fast localized scan, we define the
local neighbourhood S; to consist of the centre location s; and its k — 1 nearest neighbours.

(b) For the ‘fixed radius’ (fixed r) approach, we define S; to consist of the centre location s;
and all other locations within distance  of the centre.

In either case, assuming that the local neighbourhood of a given centre s; contains k locations,
LTSS allows us to maximize F(S) for the given neighbourhood by evaluating only O(k) of the
0(2%) subsets. Assuming that the k locations have already been sorted by priority, we need only
to evaluate the subsets consisting of the j highest priority locations, for j=1, ..., k. This results
in a total run time of O{ Nk + N log(N)} for the fixed k approach, and O{ Nk + N log(N)} for the
fixed r approach, where k is the average neighbourhood size corresponding to the fixed radius
r. In these expressions, the additional O{N log(N)} term results from sorting the N locations
by priority, which needs only to be done once (rather than once per centre). This analysis also
assumes that the & nearest neighbours have been precomputed for each location.

We note that the fixed k fast localized scan is very similar to the flexible spatial scan statistic
(FlexScan) that was proposed by Tango and Takahashi (2005), in that it searches over subsets
of neighbourhoods defined by a centre location and its k — 1 nearest neighbours. The two fun-
damental differences are that FlexScan requires the resulting region to be connected, whereas
the fast localized scan can return a disconnected region if it satisfies the proximity constraints,
and that the run time of FlexScan scales exponentially rather than linearly with k, making it
computationally infeasible for £ > 30 (Tango and Takahashi, 2005).

In Fig. 1, we show the total computation time required to optimize the EBP statistic over
proximity-constrained subsets (as a function of the neighbourhood size k) for 100 days of data.
We compare the LTSS-enabled fast localized scan with a ‘naive localized scan’ which does not
use LTSS; the run time of FlexScan is also shown for comparison. With LTSS, the run time
increased linearly with neighbourhood size, up to a maximum of 5.0 s. Without LTSS, the run
time increased exponentially with neighbourhood size, requiring approximately 50 h for 100
days of data at k =25 and nearly 2 years for a single day of data at k =40. The run time of
FlexScan also increased exponentially with neighbourhood size, since it performs a separate
connectivity check for each of the O(2¥) regions centred at each location (Tango and Taka-
hashi, 2005). Similarly, in the fixed radius case, performing a localized scan without LTSS
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Fig. 1. Performance results for the fixed k fast localized scan, as a function of the neighbourhood size k:

total run times for 100 days of data, for the EBP statistic with (¢) and without (H) LTSS; run times for Tango
and Takahashi’s (2005) flexible scan statistic FlexScan (A) are also shown for comparison
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required approximately 6 min of run time for 100 days of data at »r =0.10 (with distances mea-
sured in degrees latitude and degrees longitude) and was computationally infeasible for r =0.20,
whereas LTSS enabled computation for any value of r in under 5 s for 100 days of data. These
experiments were repeated using the EBG and Kulldorff scan statistics, and the run times were
nearly identical.

4.1. Fast localized multiscan

Although the fixed neighbourhood and fixed radius scans enable efficient maximization of the
score function F(S) subject to proximity constraints, these methods have two distinct disadvan-
tages. First, because they enforce a hard constraint on the maximum size of region (neighbour-
hood k or radius r), they are likely to lose detection power and spatial accuracy whenever the
size of the affected region is larger than this constraint. Second, because all subsets satisfying
the proximity constraint are considered ‘equally likely’ (i.e. larger subsets are not penalized), a
large value of the maximum neighbourhood size k or radius r can cause the method to report
spatially dispersed subsets that we would not typically consider to be a single spatial region. An
alternative approach is to choose a region which maximizes some function of the score F(S) and
the size of region S. Unfortunately, as noted above, most arbitrarily chosen functions of score
and size may not satisfy the LTSS property. However, we can separately compute the highest
scoring subset for each neighbourhood size k=1,..., N, and then choose the subset which
optimizes the trade-off between score and size. Since LTSS allows us to compute the highest
scoring subset very quickly for each value of k, it makes this ‘fast localized multiscan’ approach
computationally feasible.

More precisely, the fast localized multiscan consists of the following steps. For each centre
location s; and each neighbourhood size k=1,..., N, we define Sj; to be the set of locations
consisting of s; and its kK — 1 nearest neighbours, and we use LTSS to maximize F(S) effi-
ciently over all subsets of S;; in O(k) time. For each S, we record the highest scoring subset
§* =argmaxgcs,{ F(S)}, its score F* = F(S§*), the neighbourhood size k and the radius r (the
distance from s; to its (k — 1)th nearest neighbour). Given this set of O(N?) regions, we then
form the Pareto set consisting of all regions which optimize the trade-off between score and
neighbourhood size. We exclude any region S which is dominated by another smaller and higher
scoring region.

(a) For the ‘multiscan &’ approach, the Pareto set consists of all subsets S such that no other
subset S’ has either F(S") > F(S) and k(S") <k(S), or F(S") = F(S) and k(S") <k(S).

(b) For the ‘multiscan r” approach, the Pareto set consists of all subsets S such that no other
subset S’ has either F(S") > F(S) and r(S") <r(S), or F(S") = F(S) and r(S§") <r(S).

Finally, we can choose a single region S from the Pareto set, on the basis of the desired
trade-off between score and neighbourhood size. For example, for the multiscan k approach,
we can choose the region that maximizes F(S) — Lk and, for the multiscan » approach, we can
choose the region that maximizes F(S) — Lr, for some constant L. The run time of the fast
multiscan is O(N?3), since we must evaluate N centres and N neighbourhood sizesk=1,..., N,
and each optimization can be performed in O(k) time. If we restrict the maximum neighbour-
hood size to some constant ky,x, then the run time is reduced to O{Nkrznax + N log(N)}, where
the O{N log(N)} term results from the initial sorting of locations by priority.

Performance results for the fast multiscan, as a function of the maximum neighbourhood
size kmax, are shown in Fig. 2. For the EBP statistic, the fast multiscan required a total run
time up to 76.5 s for 100 days of emergency department data. Similar results were seen for the
EBG statistic (87.7 s) and Kulldorff’s statistic (88.8 s), demonstrating that the fast multiscan can
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Fig. 2. Performance results for the fast multiscan, as a function of the maximum neighbourhood size kmax:
total run time for 100 days of data for the EBP (¢), EBG (a) and Kulldorff (H) statistics with LTSS

find the spatial region which optimizes the trade-off between likelihood ratio score and spatial
proximity in less than 1 s per day of data.

5. Evaluation

We now present an empirical comparison of detection time and spatial accuracy for our fast
localized scan and multiscan methods, using a large set of simulated respiratory disease out-
breaks injected into real world emergency department data from Allegheny County, Pennsyl-
vania. We compared six variants of spatial scan: ‘circles’ (the traditional Kulldorff approach,
searching over the set of circular regions centred at each spatial location), ‘all subsets’ (using
LTSS without proximity constraints), fixed k& and fixed r fast localized scans, and multiscan &
and multiscan r fast localized multiscans. For each method (except for circles and all subsets),
we considered 12 distinct parameter settings. For the fixed £ method, we used neighbourhood
sizes of k=5,10,...,60. For the fixed r method, we used radii of r=0.02,0.04,...,0.24 (all
spatial co-ordinates were given in degrees latitude and degrees longitude). For the multiscan k
method, we used weights L =0.1,0.2,...,1.2 to choose a region from the Pareto set and, for
the multiscan r method, we used weights L =20, 40, ...,240. The range of parameters for each
method was chosen to cover the entire continuum from very strong proximity constraints (where
large neighbourhoods are disallowed or severely penalized) to very weak proximity constraints
(approximating an unconstrained subset scan). For each method, we used the EBP space-time
scan statistic, with a maximum temporal window size of Wy,x = 3. We now describe the data,
outbreak simulations, evaluation metrics and results in detail.

5.1. Description of emergency department data

We obtained a data set of 612713 deidentified emergency department visit records collected
from 10 Allegheny County hospitals from January 1st, 2004, to December 31st, 2005. Each
record contains fields for the patient’s date of admission to the emergency department, home
zip code, chief complaint (free text) and international classification of diseases, version 9, code
(numeric). We removed records where the home zip code or admission date was missing, or
where the home zip code was outside Allegheny County, leaving 397 134 records (64.8%). The
free-text chief complaint was present for all remaining records, and the international classifi-
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Fig. 3. Daily counts of Allegheny County emergency department cases with respiratory symptoms from
January 1st, 2004, to December 31st, 2005

cation of diseases code was present for 336338 (84.7%) of the remaining records. From these
data, we created a count data set by recording the number of patient records with respiratory
symptoms in each zip code for each day. A patient record was determined to exhibit respiratory
symptoms if its chief complaint string contained the substrings ‘cough’, ‘dyspnoea’, ‘shortness’
or ‘sob’, or if its international classification of diseases code was equal to 786.2 (cough) or
786.05 (shortness of breath). The set of records was then manually refined to remove spurious
substring matches. The resulting respiratory emergency department count data set had a mean
daily count of 44.0 cases, with a standard deviation of 12.1 cases. The time series of daily counts
(aggregated over all Allegheny County zip codes) is shown in Fig. 3. Since cases were spread
over 97 zip codes, many zip codes had zero counts on any given day. The data exhibited slight
but statistically significant day-of-week trends, with counts peaking on Mondays, and clear
seasonal trends, with counts peaking in February.

We note that the use of real rather than simulated background data has several advantages.
The real world data incorporate seasonal and day-of-week trends, as well as spatial heterogene-
ity, which would not be present in typical simulated data sets. A successful disease surveillance
system should be able to detect outbreaks reliably without producing an excessive number of
false positive alarms due to the variability in the background data, and thus we believe that our
semisynthetic simulation approach will produce more relevant evaluation results than typical
fully synthetic simulations. However, one drawback to our approach is the possible presence of
true disease outbreaks in the background data, which could skew our evaluation results. Thus,
as a check of robustness, we performed all simulations twice: once by using the original count
data, and once by using simulated counts redrawn from a Poisson distribution which preserved
the spatial and temporal trends in the data, but assumed independence of space and time. More
precisely, each simulated count ¢! was redrawn from a Poisson distribution with mean

uﬁ:Zcfzt:cf/Z;cf,
] ]

where the sums were taken over all locations s; and all time steps ¢. Overall performance results
were very similar for the two background count distributions, suggesting that the presence of true
outbreaks or other sources of space—time interaction in the real world data did not substantially
affect the results. Thus we focus on the real world data set for the remainder of our discussion.

5.2. Simulation of outbreaks

We used a semisynthetic testing framework (injecting simulated respiratory outbreaks into the
real world emergency department data) to compare the detection power and spatial accuracy
of our methods. We considered a simple class of simulated outbreaks with a linear increase
in the expected number of cases over the duration of the outbreak. More precisely, our out-
break simulator takes three parameters: the duration of outbreak 7', the severity of outbreak A
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and the subset of affected zip codes Sipject. For each injected outbreak, the outbreak simulator
chooses the start date of the outbreak #,,¢ uniformly at random. On each day ¢ of the outbreak,
t=1,...,T, the outbreak simulator injects Poisson(sw;A) cases into each affected zip code,
where w; is the ‘weight’ of that zip code,

w,<=Zcf/ZZc§.
t i t

We considered 10 differently shaped outbreak regions Siyject, including approximately equal
numbers of circular, elongated and irregular regions, as shown in Fig. 4. All outbreaks were
assumed to be 2 weeks in duration (7 = 14), and we assumed A = 1. For each region, we created
200 different, randomly generated outbreaks, giving a total of 2000 outbreaks for evaluation.

We note that simulation of outbreaks is an active area of on-going research in biosurveillance.
The creation of realistic outbreak scenarios is important because of the difficulty of obtaining
sufficient labelled data from real outbreaks, but it is also very challenging. State of the art out-
break simulations such as those of Buckeridge et al. (2004), Wallstrom et al. (2005) and Hogan
et al. (2007) combine disease trends observed from past outbreaks with information about the
current background data into which the outbreak is being injected, as well as allowing the user
to adjust parameters such as the duration of outbreak and severity. Although the simple linear
outbreak model that we use here is not a realistic model of the temporal progression of an
outbreak, it enables precise comparison of the detection power of different methods, gradually
ramping up the severity of the outbreak until it is detected.

5.3. Compatrison of detection power

For each method, we computed the method’s proportion of outbreaks detected and average
number of days to detect as a function of the allowable false positive rate. To do this, we first
computed the maximum region score F* =maxg{F(S)} for each day of the original data set
with no outbreaks injected. Then, for each of the 2000 injected outbreaks, we computed the
maximum region score for each outbreak day. For a given false positive rate r, the ‘days to detect’
for a given outbreak are computed as the first day of outbreak (r=1,..., 14) with maximum
region score higher than the 100(1 — ) percentile of the maximum region scores for the original
data set. If no day of the outbreak has score higher than this threshold, the method has failed
to detect that outbreak: for the purposes of our days-to-detect calculation, these are counted as
14 days to detect but could also be penalized further.

Fig. 5 shows the average time to detect for each method, at a fixed false positive rate of 1 per
month. Results were averaged over all 2000 outbreaks. Searching over circular regions, as in the
original spatial scan approach (Kulldorff, 1997), required an average of 9.43 days to detect, with
79.3% of outbreaks detected. Searching over all subsets (without spatial proximity constraints)
required an average of 10.25 days to detect, with 70.8% of outbreaks detected. The fixed k fast
localized scan achieved faster detection than the circles approach for all values of k between 5 and
45, requiring a minimum of 7.60 days to detect for k= 10. The fixed r fast localized scan achieved
faster detection than the circles approach for all values of r between 0.02 and 0.14, requiring a
minimum of 7.64 days to detect for » =0.06. The fast multiscan k£ method achieved faster detec-
tion than the circles approach for all values of the L-parameter between 0.2 and 1.2, requiring
a minimum of 7.54 days to detect for L =0.8. Finally, the fast multiscan » method achieved
faster detection than the circles approach for all values of the L-parameter between 120 and
240, requiring a minimum of 7.59 days to detect for L =220. All four methods could detect over
90% of outbreaks for the given parameters. These results demonstrate improved performance
of all four LTSS-based spatial scan methods compared with Kulldorff’s circular scan, across a
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wide range of parameter values. For well-chosen parameters, each of these methods could detect
nearly 2 days faster than searching over circles, with fewer than half as many missed outbreaks.

5.4. Comparison of spatial accuracy

In addition to the comparison of detection times that was described above, we also computed
the average spatial accuracy (the degree of overlap between true and detected clusters) for each
method for each day of outbreak (r=1,..., 14). Results were averaged over all 2000 outbreaks.
Letting S* represent the detected region S* =arg maxg{ F(S)}, and Sy represent the true inject
region (the subset of locations for which simulated cases were actually injected), the overlap
coefficient is defined as Overlap = X, c s=ns, Wi/ 2, es*us, Wi, where w; is the weight of location
s;. Similarly, we define Precision =X, cg+ns, Wi /Xy, es+wi and Recall =3, e s+ s, Wi/ Eg;esp Wi In
each case, we define w; = ¢} /%;3,c!, where the sums are taken over all time steps and all loca-
tions. Each evaluation metric varies between 0 and 1, with Overlap=1 if $* = S7, Precision=1
if $* C St and Recall=1 if S7 € §*. Each spatial location was weighted proportionally to the
total number of cases observed in that location, which can also be thought of as a proxy for the
at-risk population. In our simulations, the expected number of cases injected into each affected
location was also chosen proportionally to its weight. We believe that the weighted metrics are
preferable to the unweighted metrics (w; =1 for all locations) since the total number of injected
cases was small: many locations did not receive any injects on a given day, and some low weight
locations (despite being considered part of the outbreak region) may not have received any
injected cases over the entire duration of outbreak.

We first compared the overlap coefficient for each method on the last outbreak day (1 =14).
The circular scan achieved an average overlap of 50.4% averaged over all 10 types of outbreak,
whereas the all-subsets method had a much lower overlap of 32.0%. The fixed k fast localized
scan achieved highest spatial accuracy for k =10, with an overlap coefficient of 51.1%. The fixed
r fast localized scan achieved highest accuracy for r =0.06, with an overlap coefficient of 47.4%.
The fast multiscan & method achieved highest accuracy for parameter L =0.5, with an overlap
coefficient of 49.8%, and the fast multiscan » method achieved highest accuracy for parameter
L =100, with an overlap coefficient of 41.7%.
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Fig. 6. Comparison of detection methods: trade-off between spatial precision and recall on the last day
of outbreak for the fixed k (------- , k=5,...,60), fixed r (—-—-, r=0.02,...,0.24), multiscan k ( ,
L =01,...,1.2) and multiscan r (- — —, L =20,...,240) methods, compared with the circles (¢) and all-

subsets () approaches
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Although these results suggest that the fast localized scan, fast multiscan and circular scan
methods have similar spatial accuracy for well-chosen parameter values, in fact we see substantial
differences in the size and shape of the regions detected. Fig. 6 shows the trade-off between spa-
tial precision and recall for the fast localized scan and fast multiscan methods, compared with
the circular scan and unconstrained subset scan. Increasing the neighbourhood size k or radius r
for the fast localized scans, or decreasing the penalty L for the fast multiscans, tended to increase
the size of clusters detected, thus increasing recall and decreasing precision. For the parameter
values given above, the fast localized scan and fast multiscan methods had higher precision and
lower recall than the circular scan. Also, as shown in Fig. 7, the relative performance of meth-
ods was highly dependent on the shape of outbreak: the fast localized scan and fast multiscan
methods had higher precision and recall than the circular scan for elongated outbreaks, but
lower recall for compact shapes of outbreak. This suggests that our methods tend to pick out
the subset of locations that have been most affected by an outbreak, whereas the circular scan
identifies a larger region which may contain both slightly affected and unaffected locations.
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Fig. 7. Comparison of detection methods: trade-off between spatial precision and recall on the last day
of outbreak for the fixed k (------- , k=5,...,60), fixed r (—- -+, r=0.02,...,0.24), multiscan k ( ,
L=041,...,1.2) and multiscan r (———, L =20,...,240) methods, compared with the circles (o) and all-subsets

(A) approaches, on elongated clusters (5, 9 and 10) and compact clusters (1, 2 and 7): (a) elongated clusters;
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6. Conclusions

This paper has presented three main contributions to the growing literature on event detection.
First, we proposed a general framework for computationally efficient pattern detection based
on the LTSS property, enabling rapid computation of the highest scoring subset of records
in massive data sets. Although this paper focused primarily on pattern detection in univariate
spatial and space-time data, LTSS can be applied to multivariate and non-spatial data sets as
well. Second, we demonstrated that many commonly used spatial and space—time scan statistics
satisfy the LTSS property, including Kulldorft’s original spatial scan statistic and many recent
variants including the EBP and EPG scan statistics. LTSS enables us to compute efficiently the
highest scoring unconstrained subset of spatial locations for any of these statistics. However,
an unconstrained search over subsets can return dispersed sets of locations that we would not
consider to be ‘spatial clusters’ and typically underperforms the circular scan statistic for spatial
event detection tasks. Thus we considered how spatial proximity constraints can be incorporated
in the LTSS framework, either by placing hard constraints on the neighbourhood size or radius
(in our fast localized scan methods) or by penalizing large neighbourhoods (in our fast multi-
scan methods). We demonstrated both theoretically and empirically that these methods can
efficiently maximize the likelihood ratio statistic subject to proximity constraints. Finally, our
semisynthetic evaluation (using simulated respiratory outbreaks injected into real emergency
department data) demonstrated that the resulting methods can substantially improve the power
of detection, enabling 2 days faster detection of emerging outbreaks of disecase with fewer than
half as many missed outbreaks. Spatial accuracy (as measured by the degree of overlap between
true and detected clusters) was improved for elongated and irregularly shaped outbreaks. For
subtle outbreaks with a small number of injected cases, our methods tended to pick out the
most affected zip codes, whereas the circular scan tended to identify a larger circular region
which also contained slightly affected and unaffected zip codes.

Our current work focuses on extending the LTSS framework in several directions. First,
although we have focused here on detecting patterns in univariate space—time data, LTSS can
also be extended to the multivariate case, as discussed above. In Neill ez al. (2010), we demon-
strated that two variants of the multivariate space—time scan statistic (Burkom, 2003; Kulldorff
et al., 2007) can each be efficiently optimized over proximity-constrained subsets of locations
and all subsets of the monitored data streams, even when the numbers of locations and streams
are both very large. Similarly, in McFowland et al. (2011), we extend LTSS to general non-
spatial data sets, efficiently optimizing a non-parametric scan statistic over subsets of records
and attributes. This ‘fast generalized subset scan’ approach enables us to detect self-similar
groups of data records which have anomalous values for some subset of attributes, with appli-
cations including customs monitoring (identifying patterns of illicit container shipments) and
network intrusion detection (McFowland et al., 2011).

Finally, LTSS can be used to accelerate spatial scans with other constraints, including shape
constraints (maximizing the score function over all regions of a given shape) and connectiv-
ity constraints (maximizing the score function over all connected subgraphs). In each case,
we have integrated LTSS into a ‘branch-and-bound’ framework, using the unconstrained all-
subsets score of a group of locations as an upper bound on the constrained score, and ruling out
subsets of locations which are provably non-optimal. We have recently developed GraphScan, a
method for detection of arbitrary-shaped connected clusters in graph or network data (Speak-
man and Neill, 2010). GraphScan enables efficient, exact computation of the highest scoring
connected clusters, with or without proximity constraints. Whereas Tango and Takahashi’s flex-
ible scan statistic (Tango and Takahashi, 2005) scales exponentially with neighbourhood size
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and is computationally infeasible for neighbourhoods that are larger than 30 locations, Graph-
Scan can easily scale up to over 100 locations, computing the highest scoring connected cluster
in seconds. Similarly, in Neill (2008), we showed that LTSS can be used to scan over all distinct
rectangular regions between 57 and 534 times faster than a naive search, requiring between 16
s and 2 min per day of data compared with over 2 h for a naive search. Unlike our original fast
spatial scan method (Neill and Moore, 2004), which also searches over rectangular regions, the
LTSS-enabled fast spatial scan can be used for any scan statistic satisfying the LTSS property
(not just Kulldorft’s statistic) and does not require locations to be mapped to a uniform grid.
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