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Neural Dynamic Optimization for Control
Systems—~Part Ill: Applications
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Abstract—The paper presents neural dynamic optimization The background for the development of NDO and the theory

(NDO) as a method of optimal feedback control for nonlinear of NDO are presented in the two other companion papers [1],
multi-input-multi-output (MIMO) systems. The main feature [2], respectively.

of NDO is that it enables neural networks to approximate the
optimal feedback solution whose existence dynamic programming
(DP) justifies, thereby reducing the complexities of computation [l. BOEING 747 AIRPLANE

and storage problems of the classical methods such as DP. This . . .
paper demonstrates NDO with several applications including The Boeing 747 airplane is one of the most capable transports

control of autonomous vehicles and of a robot-arm, while the two €Ver built. Because of its extensive range (resulting in pilot fa-

other companion papers of this topic describes the background tigue), and a desire to minimize the crew requirements, a ca-
for the development of NDO and present the theory of the method, pable controller (e.g., autopilot) is required in the aircraft de-
respectively. sign. Along with this motivation, our autopilot design process

Index Terms—Autonomous vehicles, dynamic programming, in- demonstrates that NDO closely approximates the optimal so-
formation time shift operator, learning operator, neural dynamic  |ution to a linear quadratic problem that DP (i.e., LQR) would

optimization, neural networks, nonlinear systems, optimal feed- produce.

back control, robots. Let us consider a linear-time-invariant MIMO model of the
Boeing 747 lateral motion obtained from [3]. The linear equa-

|. INTRODUCTION tions of the lateral motion are compactly represented in state-

N this paper, we apply neural dynamic optimization (NDoﬁpace form. The four states and two inputs as defined as fol-

) . owWs:

to several control problems: the lateral autopilot logic for a
Boeing 747, the minimum fuel control of a double integrator Sideslip angle 3(¢), in degree
plant (DIP) (e.g., a satellite) with bounded control effort, the Yaw rate 7(t), in degre%s
automatic backward steering of a truck with two trailers, and z(t) = ) ﬁgg?ges
the set-point control of a two-link robot-arm. The lateral au- Roll rate p(t), in 5gcong
topilot logic for a Boeing 747 demonstrates that NDO closely Bank angle ¢(t), in degrees

approximates the optimal solution to a linear quadratic problegpg

that dynamic programming (DP) [i.e., linear quadratic regu-

lator (LQR)] would produce. The minimum fuel control of a u(t)
DIP illustrates that NDO enables neural networks to closely ap-
proximate the optimal feedback solution of a nonlinear contrghen,
problem. The backward steering of a truck with two trailers il-

lustrates that NDO can produce a larger domain of attraction for #(t) = Ax(t) + Bu(t)
regulation problems than LQR because it does not suffer frg

_ | Rudder angle ér(t), in degrees|
~ | Aileron angle éa(t), in degrees *

the limitations of linearization. Finally, the set-point control o¥v ere
a two-link robot-arm demonstrates that NDO works for a non- [—0.0558 —1.0000  0.0000 0.0416
linear multi-input-multi-output (MIMO) control problem. A— | 0098 -0.1150 -0.0318 0.0000
—3.0496 0.3880 —0.4650 0.0000
0.0000 0.0000 1.0000 0.0000
r 0.0073 0.0000
—0.4750 0.0077
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Our goal is to compute a state feedback law to improve and sta- TABLE |
bilize this lateral motion. We check the controllability of the COMPARISON OFNDO AND LQR ResuLTs
linear system so that we can guarantee the existence of a stabi-
lizing feedback control. This system turns out to be controllable. * NPOresle

We discretize these linear system equations from contin- wm=['Z;Z§;§ 19604 —3.4096 _1133?,3}
uous-time to discrete-time using the command C2DM in
MATLAB. Here are the discrete LTI-MIMO system equations rrems 67786 2279 13693
of the Boeing 747 lateral motion (f&f = 0.2 s) WLQ“:[ 41822 19604 -2.409 —1~7750]

» LQR result:

o[k + 1] = Agx[k] + Byulk]

2 25
where 15 - LQ»:ID(gP) 2
T 0.9769 —0.1958  0.0014  0.0082 R = % '8
A, — 0.1190 0.9652 —0.0059 0.0005 < 05 3 !
4= | —0.5722 0.1313 0.9107 —0.0024 . - 08
L —0.0585 0.0114 0.1910 0.9998 °
r 0.0108 —0.0001 % z . s %% z n
B, _ | —00935  0.0014 time (sec) fime (sec)
471 0.0234 0.0274 " os 2
L 0.0026 0.0028 0 15
Now we want to find the optimal weight matriwv of the éof §° o;
linear neural network:[k] = Wz[k], minimizing a constant- 2 by
coefficient quadratic cost function “"': 0:
1 1 i 2% 2 4 [ o 2 4
J = S INQuNT+ 5 >~ e [HQulk]+u" MRu[M) (1) time se) tme (sec)
k=0 5 s
where the weight matri¥Vv is a2 x 4 matrix, the matrix? is a ‘
symmetric positive semidefinitex 4 matrix, and the matriis ° .
a symmetric positive definite x 2 matrix. The state weighting 2 -s 2,
matrix Q@ and control weighting matrix® provide some com- 'S <,
promise between the speed of response and the use of cor ™ 0
effort. As we increase the eigenvalues of the maf}iwith re- 15 o
spect to those of the matriit, the system response gets faste ° ? e (sec) ° ¢ ? me (sec)

In this case, we pick) = 14«4 andR = 0.1 I, «». In addition,

we want to select a sufficiently large time horizdhso that the Fig. 1. Comparison of the results of NDO, DP, and FOC.

solution to this finite-horizon problem can converge to the so-

lution to the corresponding infinite horizon problem. Therefor@ptimality. Such problems arise frequently in aerospace appli-

we chooseV = 40 as the time haorizon. cations, where there are limited control resources available for
Table | shows the NDO result. For comparison, we also shaghieving desired objectives. Suppose we wish to control a DIP

the LQR result obtained by the command DLQR in MATLABlike a satellite

with the same weighting matrice§, and R. Both results are .

identical up to the fourth decimal digit. NDO approximates very b= ult) @)

closely the feedback solution that the LQR (derived from DR} are, is the position of the plant. In addition, its maximum

produces. In addition, Fig. 1 plots the result of FOC along witly, ¢ input is limited as a physical constraint
those of both NDO and DP (LQR). We apply FOC to this op-

timal control problem using the same time horiz8ras well as |u(t)] < uo.

the same weighting matrice@,andR. All the state trajectories The original system is linear, as shown in (2). However, the

and control profiles are identical, as illustrated in Fig. 1. overall system equation is nonlinear because of the physical
This example demonstrates that NDO closely approximatesnstraint.

the optimal solution that both DP (LQR) and FOC produce al- Our control objective is to find the paths from states in the

though NDO takes a different approach. (p,p) space tap = p = 0 in a specified final time ;, which
minimize fuel, i.e., one-norm af(t)
. MINIMUM FUEL CONTROL OF A DOUBLE INTEGRATOR ts
PLANT WITH BOUNDED CONTROL EFFORT J I/O lu(t)| dt. 3)

This section considers a terminal control problem, where thdis optimal control problem is selected from [4]. This example
control effort (e.g., fuel or energy) required is the criterion alemonstrates that NDO enables neural networks to closely ap-
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proximate the same optimal solution to nonlinear control prok — o2
lems that both DP and FOC find. It also illustrates that NDO pro  -oesf| 77 2 015 .
duces the controllers that are able to reject input disturbance: " .os ey \,
Let us discretize the DIP equation in order to apply NDO < _, §°‘ .
Here is the zero-order-hold (ZOH) equivalent of the (2) in the © 005
state space form o
xl[k‘ + 1] B 1 7, xl[k] 2 ) B0z o4 o8 05 1 % oz
] =lo T[] £ ] @ L
wherez; = p andzo = p. o
Then we want to find the optimal weight vectdV 05 015
of the multilayer feedforward sigmoidal neural network g . < o
u[k] = g(z[k], k; W), minimizing B 2
N—-1 -0.5 0.05
J =Y [ulk]| + 2 [N]Ssx[N] ©) , :
k=0 "o 0.2 OAt/t 0.8 08 1 —(‘i’.25 -0.2 -g;)s/u-gi -0.05
subject to o @
|U[/€]| < Ug (6) Fig.2. NDO result for the range of the training set of initial stdtes; , x2) |

0.1 < |z1| < 0.4, |x2] < 0.05}. (a) Position. (b) Velocity.(c) Control force.
whereN = tf/TS and Sf is a Weighting matrix of the final (d) Phase plane plot. The symbolsand —> represent the destination and the

state. In this case, we pick the sampling tifie = 0.02¢;, directions of the trajectories, respectively.
which results inV = 50. Along with fuel usage, we penalize

the error of the final state with the matri; because we are do not scaler,[k]. Thus including the bias input weights, the
also concerned about it. Note that we slightly modify the cogital number of its weights is,, = B+1)x10+10x 1=
function (3) by adding the soft terminal constraint term 50, which is equal to the multiplication of the number of time

xT[N]Sfx[N]. (7) steps and the number of contrpl inputs (FOC also _requires the
Without this term, the cost function would be a cost functionc e amount of storage locations to store the optimal (_:ontrol

: . . . equenceulk], £ = 0,...,49). Recall Rule 1 for selecting
with a hard terminal constraint. If we pick a large enoug e number of weights discussed in Section I1V-D of the coun-
weighting matrix of the soft terminal constraist;, the cost terpart of this pa gr It recommends that NDO should emplo
function with soft terminal constraint will approximate the IF()east a numFt;eFr) of' weiahts areater than the multi Iicatioa o);
cost function with hard terminal constraint because a fracti : gnis g Pl
e number of time steps and the number of control inputs, to

of the cost of the soft terminal constraint is negligible com- )
pared to a fraction of the cost of fuel. Therefore, we Selegyarantee full column rank of the learning operator and pre-

S; = diag{10°, 10°}. Note that we allow the neural network"€Nt & 10ss of information in updating the weight vector. More-
: : er, the neural controllers with sigmoidal nonlinearities such

to have explicit time-dependency so that it can approxima?é/
optimal time-varying feedback solutions although the systea hboxtanh(-) at the output layer have a na tu_ral way o ac-
. ) L7 . : count for bounded control effort because their sigmoidal activa-
's nonlinear-time-invariant (NTI) and the cost function hag -\ o b i in saturation limits betweert and 1. Thus the
constant coefficients. In this application, the explicit time-deD '

. .~ bounded control constraint is readily handled by the neural con-
pendency is necessary for the neural network to approximate,

the optimal solution closely over a range of state space. or Itlr?; l:if'srﬁaa grrc;pfi;:cr?g?vgofichosri.nweNInl:tlaél:'i(se mzt\;\v:ég[hstls
discuss the matter in detail at the end of this section. Y g Nguy

Let us consider the following range of initial states, for thwh|le we set the initial weights of its second layer to uniformly

S gistributed random values betweei®.01 and 0.01. We pick a
neural controller to optimize the performance of the closed—lo? rning rates — 2 x 10~ by experiment. The total number

system over a family of trajectories associated with different . 4 ' - 2 . .
values of initial states of iterations is2 x 10”. The initial stater[0] for each iteration

is chosen uniformly over the given range of initial states. Along

{0.1 < |z1[0]| < 0.4, |22[0]| < 0.05} (8)  with the NDO results, we also present the results of both DP and
wherexz; andz, are in units ofuotfc/Q andut s, respectively. FOC to compare them. The FOC results are obtained by using
We want to drive the system from any initial state in the range tbe discretized system (4) and the soft-terminal-constraint cost
the origin at timet ¢, consuming the minimum amount of fuel.function (5) with the same control design parameters that NDO
The neural network used in the controller consists of a two-laye@ses, while the DP solution is obtained by employing the con-
feedforward sigmoidal network with three inputs, zero hiddeinuous-time system (2) and the hard-terminal-constraint cost
units, and one output (denoted a¥@;0.1). Note that the neural function (3).
network has three inputs: because of its explicit time depen-The optimal solution to the minimum fuel control with
dency, it receives timé& from the clock as well as the currentbounded control effort has a very interesting characteristic:
statese; [k] andz[k]. We scale the value of timieby 0 so thatit bang-off-bang, as illustrated in Fig. 2. The optimal control
falls roughly between 0 ang1 before being fed into the neuralapplies maximum acceleration in the beginning, and then coasts
network. We also scale the valuewf{%] by 0.2 uotfc while we  without any driving forces, and applies maximum deceleration
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Fig. 3. NDO result for the range of the training set of initial stetes; . x2) |
0.1 < |a1] < 0.4, ]|x2] < 0.05}. (a) Position. (b) Velocity. (c) Control force.
(d) Phase plane plot. The symbelaand — represent the destination and the
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Fig. 5. Disturbance-rejection tests of the neural controller against constant
input disturbances. (a) Position. (b) Velocity. (c) Control force. (d) Phase plane
plot. The symbol® and—> represent the destination and the directions of the

trajectories, respectively. Note that the neural controller cancels the effect of the
input disturbance during its coasting by applying a counteracting force, thereby

e — 0.08 enabling it to bring the system closely to the destination.
-- DP 0.05F 1
" Re .i
“‘:é?_m ‘i;:: \| tems are often designed to minimize their effects. In order to
B Roo ] test the disturbance-rejection capabilities of NDO, we inten-
oot tionally apply to the controlled system a constant input distur-
o . bance of-0.2u,, whose magnitude is 0% of its maximum con-
2 %%t o oz 04,0 % ' trol force. Fig. 5 shows the disturbance-rejection test results of
@ b NDO, DP, and FOC. The neural controller and DP solution drive
! o0 N the system closely to the desired destination in time despite the
05 oo S input disturbance. In contrast, the FOC solution fails because
s ,§°'°‘ it produces an open-loop solution. We point out that the neural
> \: §°'°3 controller cancels the effect of the input disturbance during its
05 ; 002 coasting by applying a counteracting force-g6.2x, so that
! oo it can bring the system to the desired destination in time. In
o oz 04 08 08 y i other words, the neural controller takes into account the input
of Pl disturbance and subtracts the effect to reach the destination be-

cause the neural controller responds to feedback or changes in

Fig.4. NDO result for the range of the training set of inifial stdtes,. z2) | the system state. The DP solution also takes advantage of the
0.1 < |o1] < 0.4, ]|x2] < 0.05}. (a) Position. (b) Velocity. (c) Control force.

(d) Phase plane plot. The symbolsaind— represent the destination and theSyStem-state information to switch its control input from one
directions of the trajectories, respectively. value to another, thereby driving the system closely to the des-
tination. However, its switching mechanism may cause a chat-
in the final stage to minimize the fuel usage. As the reader ctgfing in the system, as illustrated in Fig. 5.
see, the results of NDO are close to those of both DP and FOCFig. 6 shows the normalized phase-plane results for
We patrticularly point out that the neural controller captures thibe minimum fuel control. The horizontal axis repre-
discontinuous characteristic—bang-off-bang—of the optimaénts the normalized position and the vertical axis repre-
solution. sents the normalized velocity. The dotted lines represent
Figs. 3 and 4 present the results of NDO for two extrentbe trajectories of the closed-loop system whose con-
points of the training set: the former shows the case whereller NDO trained over the training set of initial states
21[0] = —0.4 andz;[0] = —0.05; the latter shows the case{0.1 < |z1[0]| < 0.4, |x2[0]| < 0.05}: they are accelerating in
wherez;[0] = —0.1 andxz2[0] = 0.05. The neural controller the beginning, coasting in the middle, and decelerating to arrive
successfully drives the system from these initial states to taethe origin in the final stage. We also plot the results of the
destination at = ¢;. In addition, the control profiles of the neural controller for some initial states outside the training set.
neural controller as well as the trajectories of the closed-lo@msh-dot lines represent constant contours of the normalized
system are close to the optimal solution of both DP and FOCoptimal cost function. The solid lines are the optimal trajec-
What happens if the dynamical system confronts disturbandesies DP produces. The dashed line is the optimal switching
and uncertainties in real-world applications? Controlled sysurve. Note that all the optimal trajectories come along with
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Fig. 7. Truck with two trailers (top and side views).
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Fig. 8. Geometry of a truck with two trailers.
Fig. 6. Normalized phase-plane result of NDO for the minimum fuel path

control with bounded control effort, where, is a maximum driving force. | . .
The dotted lines represent the trajectories of the closed-loop system whi@h for regulation problems than LQR because NDO requires

controller NDO trained. The solid lines represent the optimal trajectories Qb |inearization around an equilibrium point.

produces. The dashed line is the optimal switching curve. The dash-dot line . .
are constant contours of the normalized optimal return function. Note that t.hesIn fact, a different kind of truck backup problem has been

neural controller captures not only discontinuous characteristics of the optitavestigated by Nguyen and Widrow [6]. Their goal is to back
control solution such as bang-off-bang but also the optimal switching curve.up a truck with one trailer to a Ioading dock at a final time.

They care about a position error only at the final time where the

the optimal switching curve, while approaching the origirﬂ'es"ed state of the truck-trailer system is known. Once the end
Note also that the optimal control always applies maximuff its trailer reaches the loading dock, the control task is over.

deceleration along the optimal switching curve whenever t&at is & terminal control problem. They successfully trained a
optimal trajectories meet it and come along with it. Thedagural network to achieve their goal using the backpropagation-

observations imply that the optimal feedback control must haffgough-time algorithm. o _ _
explicit time-dependency in order to produce the family of Our proposed problem is an infinite-horizon problem while

the optimal trajectories over the range of state space. As {§gUyen’s problem is a finite-horizon problem. In addition, we
reader can see, the results of NDO are close to those of DP: aqld another trailer in order to increase the complexities of the
dotted lines are on top of the solid lines. In other words, ND&Uck-trailer system; backing up the truck with two trailers is
closely approximates the known optimal feedback solutioft.narder task than backing up the truck with one trailer. The
The resulting neural controller captures not only discontinuo@§°metry of the truck with two trailers appears in Fig. 8; the

characteristics such as bang-off-bang of the optimal cont@19/efs represents the steering angle, the arfigleepresents
solution but also the optimal switching curve. the orientation of the cab with respect to an inertial framage,

This example demonstrates that NDO enables neural nigpresents the joint angle between the cab and the first trailer,
works to closely approximate the optimal feedback So|utid}p_repre3ents the joint angle between the first and the second
to nonlinear control problems. It also shows that neural coff@iler, L. represents the length of the cah, represents the
trollers NDO produces are able to reject the input disturband€8§9th of the first trailer, and.,, represents the length of the

ubiquitous in applications. second trailer. _ _
Here are the system equations for the truck backup to a line

(y = 0) with two trailers

IV. BACKING A TRUCK WITH TWO TRAILERS dy
d_ = —sin 9(3 (9)
S

This section considers the automatic backward steering of a
truck (cab) with two trailers. Its top and side views are depicted df. - _ % (10)
in Fig. 7, where the truck and trailers are all connected to each ds Le

other by joints. Our control goal is to back up the truck with two day :Sin a1 tand, (11)
trailers to a line{ = 0) and keep it moving backward along the ds Ly L.

line. The controller is required to steer the truck back to the de- dory _cos sinap  sinog (12)
sired steady state in a timely and robust fashion. This is a regu- ds Ly Ly

lation control, i.e., an infinite-horizon problem. The applicatiowherey representg-component of the position of the joint be-
will illustrate that NDO can produce a larger domain of attradween the cab and the first trailer in the inertial frame. Let us
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denoter 2 [y 6, oy ao]™, andu 2 6,. In this application, we 10°
setL. = 0.625 Ly; andL;> = L. Note that the independent
variable is not time but the distance traveled, thereby allowing ¢
controller to back up the truck withonconstanspeed. That's

why the speed of the truck does not appear in the equations ¢ 1
motion.

As physical constraints, joint angles; and -, cannot ex-
ceed 60. The truck with two trailers cannot move backward
anymore whenever either joint angle reaches. 80 call this
angle a jackknife. In addition, the maximum steering angle is
30°. The system equations are highly nonlinear because of jack 1
knives, the saturation of the steering angle, and the nonline
terms likecos a1 sin «o. Inthis application, particularly, we pre-  10*
tend that the mathematical model of the system does not exit
(we can be confronted by such situations in practice) butthe dat  ”"—pborn—t——r ——— L0
of the system are available. The truck and trailer system ca Iterations x 10"
therefore be computer-simulated. We train another neural net- ) . )
work, the so-calledystem emulatgrto model (or approximate) I';'g;n?r;g r';f:ri;'tng: s of the neural emulato’s.o.q is employed. Its
the simulated system using the data produced by numerical inte-
gration (Runge-Kutta method) of the differential (9)—(12) with
> ~o N and
integration intervall’, = 0.1 L;;. For each numerical integra-
tion, the next state is determined by the present state and the lu| < T rad
steering angle, which s fixed during the integration interval. The

emulator has five inputs corresponding to the four state variablgBere the state weighting matrig is a symmetric positive

z[k] and the steering anglgk], and four outputs correspondingsemidefinite4 x 4 matrix, and the input weighting matrik

to the four next state variablesk + 1]. The training set for the js a symmetric positive definite x 1 matrix. Note that we par-

emulator is ticularly employ the quadratic cost function because we want to
{|z1] < 15 Ly, |22| < 7 rad |as| < g rad |z4| < % radj. ~ compare the results of NDO and those of LQR while applying

) the same cost function, thereby allowing us to compare their per-
In particular, we scale the values o] andu[k] so that they (5 ances. In this case. we pick = diag{1,0,0,1}, R = 0.1

fall betweent1 and—; before being fgd into the emullator. Thess control design parameters. We penalize onlystipesition
neural network used in the emulaton§.»o... The architecture of the truck and the second joint angte from k = 1 through

of this network is determined by experiment. The initial weightg; in order to achieve our goal, which is to back up the truck
are set to uniformly distributed random values betwe€01 , the line(y = 0) and keep it r,noving along the line. We se-

and 0',01' . lect a sufficiently large time horizofV = 240 so that the solu-
During the emulator training, the truck backs up randomlyi,, ¢ this problem can approximate the solution to the corre-
going through many cycles with randomly selected steering agsoning infinite-horizon problem. Note also that we do not in-

gles. The emulator learns to generate the next state when gixgye explicit time-dependency in the neural controller because

the present state and steering angle, doing so for a wide varighy 5re working on the regulation problem involved with the NTI

of the states and steering angles. This neural emulator is trai%gtem and the constant-coefficient quadratic cost function.
by the backpropagation algorithm [7], [8]. By this process, the The neural network employed in the controlleNis 1o, with
emulator eventually learns how the truck-trailer system behaveg, 1 oidal activation functions because we have four states and
Fig. 9 shows the learning curve of the emulator with & leaminge control input of the controlled system. In particular, we set
rate . = 19_3’ which indicates the reduction of square erroye g hias input to all the neurons of the neural network instead
during the |tergt|ve process. Once the emulator is trained, it C8'1-1. Therefore, the total number of the weights of the network
be used to train the neural controller. _ isn., = 4x10+10x 1 = 50. Note that we employ a number of
Then, we want to find the optimal weight vectd# \yeights much smaller than Rule 1, discussed in Section IV-D of
of the multilayer feedforward sigmoidal neural networkpe counterpart of this paper, recommends. It suggests that the
ulk] = g(«[k;W), minimizing a constant-coefficient 5| humber of weights should be at least zero because we have
quadratic cost function zero time steps and one control input. Instead of it, we follow
1 T 1 T T Rule 2, which suggests that we need not increase the number
J= §$[N] Qz[N]+ 3 Z {e[k]" QK] +u”[F]Rulk]}  of weights as the time horizon increases when NDO handles an
k=0 infinite-horizon problem. It will be instructive to see how this
neural controller performs, despite its possessing a number of
weights even smaller than Rule 1 suggests. In addition, before
feeding the state[k] into the controller, we scale the values of

IThe process of training a system emulator corresponds to system identificak] PY the same scaling factors that we employed in the training
tion in the control literature. of the neural emulator. Moreover, the neural controllers with

-2

5
"‘4

Square error
Qo
IS

N—-1

subject to

w
|.T374| < 5 rad
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5 10 15 B 10 15
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Fig. 10. NDO and LQR results for a small deviation from the equilibriunfig. 11. NDO and LQR results for an intermidate deviation from the

point, which is the origin. The LQR controller works better than the neurg&quilibrium point, which is the origin. As the deviations increase, the LQR
controller for small deviations from the equilibrium point. controller fails because of the limitations of linearization. In contrast, the neural

controller works because it doesn't suffer the limitations.

sigmoidal nonlinearities such asuh(-) at the output layer can y4ining our neural controller does not receive the true states of
readily handle bounded control efforts because the sigmoigigl system but thepproximatedstates because the emulator is
activations have built-in saturation limits betweed and+1. 51 approximated model of the system. The evaluation of the cost
Therefore, we can confing[k], the output of the neural con-fnction is alscapproximatedut not accurate. Once we finish
troller, to the desired saturation limit by using the scaling faCt?Faining the neural controller by using the emulator, we obtain

/6. o ] o ) ) the NDO results by applying the trained controller to the real
The initial stater[0] for each iteration is drawn with a uniform ¢y (i e., system equation). Therefore, our trained neural con-
probability distribution over the range of state space troller must overcomenodel uncertaintiesesulting from the
discrepancy between the true system and the neural emulator.
{lz1] < 10 Ly, 52 = Orad,x3 = 0 rad, x4 = 0 rad}. Along with the NDO results, we show the LQR results

for comparison. When applying LOQR, we use lmear

We set the initial weights of the first layer of the neural controllemodel obtained by linearizing and discretizing the nonlinear
using Nguyen’s method [5] while we set those of the secomsgstem (9)—(12) around an equilibrium, which is the origin,
layer to uniformly distributed random values betwee0.01 [y 6. o; a2]t = 0. We obtain the LQR results by using
and 0.01. The learning rate and the total number of iterations éine command DLQR in MATLAB with the same weighting
10~° and?2 x 109, respectively. We train the neural controllematrices Q and k. The NDO and LQR results for small
using theemulatorrather than the exact system equations. deviations from the equilibrium point appear in Fig. 10. For

In fact, Nguyen also used a neural emulator as part of trainismall deviations, the LQR controller works better than the
his neural controller. However, he used a system equationresiral controller. However, as the deviations increase the LQR
well during his controller’s training: he backs up the real truckontroller fails because of the limitations of linearization, as
(i.e., system equation) to get threie final state error, while he illustrated in Fig. 11. In contrast, the neural controller works
uses the neural emulator to adjust the weights of the neural cbecause it does not suffer the limitations.
troller using the error. Note that during its training his neural Fig. 12 shows the NDO result for the largest vertical deviation
controller receives thzue states of the system. among the initial states in the the training set. Initially, the truck

In contrast, our neural controller’s training in this examplevith two trailers is set at the vertical distange= 10 L,; and
completelyexcludesise of the real truck or system equation: wearallel to the liney = 0. The neural controller successfully
not only run our neural emulator to feed its states to the neukslcks up the truck to the line and keeps it moving backward
controller and evaluate the cost function but also use the eateng the line. The neural controller works well for the large
ulator to adjust the controller’'s weights. Therefore, during ideviation from the equilibrium point.
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Fig. 13. Demonstration of the truck with two trailers backing up to the line
y = 0. Itis curious to see how the neural controller backs up the truck to the
line. In the beginning it makes a sharp turn and then drives straight down and
makes another sharp turn to the lime= 0, thereby backing up the truck to the
line as soon as possible. The trajectory looks like a cobra—not the trajectory
that common sense would have predicted.

04 (deg)

1.0 éo
distance traveled (s/L¢1)

Fig. 12. NDO result for an large deviation from the equilibrium point, which
is the origin. The neural controller successfully backs up the truck to the line
and keeps it moving backward along the line.

The demonstration of the truck backing up to the line 0
may reveal an aspect of optimal control. Suppose that the truck
with two trailers is initially parallel to the line and located at
y = 14L,;, which is 40% larger than the largest vertical devia-
tion among the initial states in the training set. Note that the line
y = 0is the position of the truck in steady state. It is interesting
to see how NDO backs up the truck to the line in Fig. 13. In the
beginning it makes a sharp turn and'then drives straigh't dowia 14, Two-link planar robot-arm manipulator.
and makes another sharp turn to the line 0, thereby backing
up the truck to the line as soon as possible. It is amazing that
the turning angle is bigger than @0The trajectory looks like a and highly coupled multiple inputs present a challenging con-
cobra—not the trajectory that common sense would have pteel problem, since traditional linear control approaches do not
dicted. easily apply.

The example illustrates that NDO can produce a largerFor this manipulator, we define the angle of the first Ithk
domain of attraction for regulation problems than LQR becauéth respect to an inertial frame, as depicted in Fig. 14. We
NDO does not require linearization. It also illustrates that ND@Iso define the angle of the second litkwith respect to the
is applicable by using a neural emulator (an approximaté@gientation of the first link. We apply the torques andr to
system model) if the mathematical model of a controllegontrol the angleg; andé,, respectively. Here are the system
system is not available. It shows that the neural controllegguations for this manipulator [9], [10]
NDO produces can overcome model uncertainties resulting
from the discrepancy between the true system and the neural [ﬁ} [a +28cs S+ /jcﬂ [él}

emulator. Ty 6+ feo 6 0
—[38292 —[382(91 + 92) 9:1
V. TwO-LINK ROBOT-ARM MANIPULATOR Bs201 0 6

As a nonlinear MIMO control problem, this section considers
a two-link planar robot-arm manipulator depicted in Fig. 14vhere
Robot manipulators are familiar examples of trajectory-control-
lable mechanical systems. However, their nonlinear dynamics ¢y = cos(fz2), sg = sin(fz)
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and in the neural controller. We choose the final time horizon
2 2, .2 N = 140.
; ;i;:;;b Fmury+ma(l] 4 ) The neu_ral petwork qsed in the cpntrollev\i.’g:mfg with sig—
moidal activation functions. Including the bias input weights,

§ =Ly +mar3. the total number of its weightsis, = (6+1) x 154+15x 2 =
L, is the z-component of the inertial tensor of tiigth link ~ 135. Note that we employ a number of weights much smaller
around its center of masm(.) is the link maSST(.) is the dis- than Rule 1, discussed in Section IV-D of the counterpart of Fhls
tance from the joint to the center of mass of the link, &nds ~Paper, recommends. It suggests that the total number of weights

the length of the link. should be at least zero because we have zero time steps and two
The values of the parameters are as follows: control inputS. Instead, we follow Rule 2, which SuggeStS that
we need not increase the number of weights as the time horizon

m1 =1kg N increases when NDO handles an infinite-horizon problem.

m2 =2kg Moreover, the neural networks (or neural controllers) with the
li=1m sigmoidal nonlinearities such &snh(-) at the output layer have
ly=12m a natural way to account for bounded control effort because the
L =05m sigmoidal activation functions have built-in saturation limits be-

tween—1and 1. Therefore, we can readily confineandr,, the
outputs of the neural controller, to the desired saturation limits
by using proper scaling factors. However, we feed the sffgfe
into the controller without scaling the valuesdf].

7 b 2 oI K 2 The initial statex[0] and the desired steady statgfor each

2712 tma (72 2 +ms (r2 —12)" kg-m. iteration are chosen independently and uniformly over the range

The third massn is a point-mass load at the end of the secorff the state space
link. It is considered to have a value of 0 kg under normal cir- {161] < 120,86, = 0,165 < 120,6, = 0}
cumstances.

This manipulator is a highly nonlinear MIMO system, whos#here the angleg,, 6> are in units of degrees, and the angular
system equations include all highly nonlinear joint couplingates:, 6> are in units of degrees/seconds. The initial weights
terms (Coriolis and centripetal forces, variable effective m@f the neural controller are set to uniformly distributed random
ments of inertia, etc.). In addition, there exist the physical coMalues between-0.01 and 0.01. We pick a learning raie=
straints for control inputs 5 x 107%. The total number of iterations &x 10°.

. We present three groups of the NDO results for this manipu-

|71(t)] <15 Nm )

lator. The first group shows how the neural controller works for

[72(#)] <10 Nm. the initial states inside the training set (note that all the initial
Therefore, in order to achieve high performance such as high selocities in the training set are zeros). The second group illus-
curacy and speed, we cannot ignore the nonlinear forces throtigites how the neural controller handles the initial states outside
the linearization. We must take into account these nonlinethe training set. The third group tests the robustness of the con-

forces and deal with them properly. troller by applying it to another two-link robot-arm possessing

We may apply NDO in order to fully compensate for thelifferent system parameters.
nonlinear dynamics as well as the physical constraints. First ofFigs. 15-17 show some results of NDO for the initial states
all, we discretize the system equations by the Euler differeniteside the training set. In particular, Figs. 15 and 16 demonstrate
method using a sampling tiniE, = 0.05 s. Then we want to some important features of the results. Fig. 15 shows a full swing
find the optimal weight vectoW of the multilayer feedforward of the robot-arm over the trained state space. We set the initial

12 0.5m312
o= — 4+ ——
2 2 mo + ms3
I, =0.12kg-m?

mglg

sigmoidal neural network[k] = g(z[k], [k]; W) minimizing  state tof;[0] = —120 °, 6,[0] = 0°/s,62[0] = —120 °, and

1 T 6>[0] = 0°/s. Then the neural controller drives the staté;te=

J =5 (@N] = 24)” @[N] — 2a) 120 °, 6,[0] = 0°/s, 82 = 120 °, andés = 0 °/s. NDO works
N-1 well for those big rotations that the linear methods would be very

41 > {@[M - 20)" QK] — 2a)" + u"[FRu[k]}  difficult to solve for. In contrast, Fig. 16 shows how NDO han-
2 k=0 dles directionality and dynamic coupling of a nonlinear MIMO

subject to system like the two-link robot-arm. For MIMO systems, es-
- pecially, directionality is important because control inputs are
|71(t)| <15 Nm .
coupled to each other through the system dynamics. In order
] |T2(t)| <10Nm to check how the neural controller deals with directionality, we
wherez = [6; 61 62 62]", u = [r1 72]", r = [61a 624]", apply the out-of-phase motions to the manipulator. We initially
and xg = [f1a O 624 O]F. In this case, we selectset the state t6;[0] = 120 °, 6:[0] = 0 °/s,6,[0] = —120 °,
Q = diag{1,0.1,1,0.1} and R = 0.005/>x>. Note that andf,[0] = 0 °/s. Then we drive the state t9 = —120 °,

we penalize the joint angleg; andé., much more strongly 6:[0] = 0°/s,6; = 120°, andf, = 0 °/s. As Fig. 16 illustrates,
than the control inputs;; and 7, to achieve high speed andNDO handles well directionality and two-way interactions of
accuracy. In particular, we exclude explicit time-dependentlye manipulator.
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) o o . . .. Fig.17. Result for the initial state inside the training set. The state is initially
Fig. 15. Result for the initial state inside the training set. The state is |n|t|a|[9/1[0] =0°,6,[0] = 0°/s,8:[0] = 0 °, andé,[0] = 0 °/s. The dotted lines
61[0] = 120 °,6,[0] = 0 °/s,62[0] = —120 °, andf,[0] = 0 °. The dotted epresent the reference inpéts; andés to the controller.
lines represent the reference inpéts andé., to the controller.

Figs. 18 and 19 show how the neural controller works for
100 the initial states outside the training set. Fig. 18 shows a big
swing of the robot-arm around the state space. We initially set

0
8wl / the state ta@; [0] = 150 °, 61]0] = 0 °/s, 6,[0] = 150 °, and
g 62[0] = 0 °/s. Then the controller successfully drives the states
.E-zoo to 8, = —150 °, 91[0] = 0°s,0, = —150 °, andf, =
~300 0 °/s, obeying the system’s command. Fig. 19 illustrates how
. - - - . 400 . - - ! the controller handles nonzero initial velocities of the robot-arm.
time (sec) time (sec) We set the initial state t6,[0] = —45 °, 6;[0] = —60 °/s,

6,]0] = —45 °, 65[0] = —60 °/s. In other words, the robot-arm
initially swings around with O rpm. Then the controller brings
the state to the origin, as we command.

Fig. 20 shows robustness test results of the neural controller.
We apply the controller to another two-link robot-arm pos-
sessing the following system parameters:

62 (degfsec)
nN » (=3
- 8 & 8

200 m; =1.2 kg
° time4(sec) ¢ ° time4(sec) ¢ ¢ ms =2.4 kg
10 10 m3 =0Kkg
5 . l{1=12m
o A > =1.44m
Z Z o
o5 a T1T = 0.6 m
-5 12 0.5m312
-10 ro=—"+——""m
2 ma+m3
) 2 4 ) 8 1% 2 4 ) 8 I =0.114 kg - m?
time (sec) time (sec) 2zl =Y. g

2
12 2 2
Fig. 16. Result for the initial state inside the training set, with respect to the Iz = 12 +m2 <T2 ) +ma (r2 —l2)” kg-m=.
directionalities and dynamic couplings. The state is initi@ly0] = 120 °,
6.[0] = 0 °/s,65[0] = —120 °, anddz[0] = 0 °/s. The dotted lines represent All the parameter values of the new (or perturbed) robot-arm

the reference input$; , andé., to the controller. are at least 20% larger than the corresponding parameter values
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Fig. 20. Robustness tests of the neural controller against model uncertainties.
Fig. 18. Result for the initial state outside the training set. The state is initialj’® States are initiallg [0] = —120 °, #,[0] = 0 °/s,6,[0] = —120 °, and
6.[0] = 150 °, §,[0] = 0 °/s,8,]0] = 150 °, andé[0] = 0 °/s. The dotted ?2[0] = 0 °/s. The dotted lines represent the reference inputsandé:.q, to
lines represent the reference inpAts andé.4 to the controller. the controller for both robot-arms.

3

In other words, the neural controller has at least 20% parametric

40
2 model uncertainties with respect to the perturbed robot-arm. We
0 initially set the state of the perturbed systenff9] = —120 °,
== 6.[0] = 0 °/s, §2[0] = —120 °, andfs[0] = 0 °/s. Then we
0 command the controller to drive the statetd0] = 120 °,
0 2 8 1

pa— 61[0] = 0 °/s,62[0] = 120 °, andf,[0] = 0 °/s. Fig. 20 shows

time (sec) the state trajectories of the perturbed system, in comparison with
those of the the original (or nominal) system; the solid and the
dash-dotted lines represent the trajectories of the perturbed and
the nominal robot-arms, respectively. Although the perturbed
robot-arm responds slower and employs more control efforts
than the nominal one because the former is larger and heavier,
the controller successfully drives the perturbed robot-arm from

8 o

9 (deg)
5

4 [
time (sec)

| 02 (degtsec)
8 8§ 8 o8 8 8

o R 10 e I N given initial states to desired steady states, as it is commanded.
time (sec) time (sec) .
This example demonstrates that NDO works well for non-

15 8 linear MIMO control problems. NDO properly handles the di-

o s rectionalities as well as the nonlinearities of nonlinear MIMO
G £« systems such as a two-link robot. The example also illustrates
%; s % 2 that neural controllers NDO produces candigustto the model

0 . uncertainties arising in applications.

-5 -2

time (sec) * °* time (seo) ° VI. CONCLUSION

. - . - ... We present NDO as a practical method for solving dynamic
Fig. 19. Result for the initial state outside the training set. The state is initiall .
8,[0] = —45 °, 6,[0] = —60 °/s, 82[0] = —45 °, andé,[0] = —60 °/s. The Programming problems. NDO enables neural networks to ap-
dotted lines represent the reference ingytsandés, to the controller. proximate the optimal feedback solutions whose existences DP
justifies. Combining the positive features of both methodolo-
of the original one that the neural controller is trained for (notgies, NDO inherits its practicality from neural networks and its
that inertial tensors vary with the square of the lengths of linkg)enerality from optimal control theory. NDO, however, has two
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potential drawbacks. First, the NDO solution is not a complete[8] D.Rumelhartand J. McClell, Ed€arallel Distributed Processing: Ex-

DP solution: it approximates the optimal solution. Local as well
as global optima are possible. Its domain of attraction can be[gl
limited. Second, the stability of the weight update cannot be
guaranteed because its analytical condition has not been devéi9]
oped. In practice, however, these two drawbacks can be over-
come by retraining the neural network with different values of
its update (i.e., learning) rate or initial weights.

NDO has been demonstrated with several applicatio
including control of autonomous vehicles and of a robot-ar
These applications show that NDO finds — with a reasona
amount of computation and storage — optimal feedback so
tions to nonlinear MIMO control problems that would be ver
difficult to implement in real time with DP. In addition, NDO is
applicable by using a neural emulator (an approximate syst
model) if the mathematical model of a controlled system is n
available. NDO can overcome model uncertainties resultingc..cn Engineer wit
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