
502 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 31, NO. 4, AUGUST 2001

Neural Dynamic Optimization for Control
Systems—Part III: Applications

Chang-Yun Seong, Member, IEEE,and Bernard Widrow, Life Fellow, IEEE

Abstract—The paper presents neural dynamic optimization
(NDO) as a method of optimal feedback control for nonlinear
multi-input-multi-output (MIMO) systems. The main feature
of NDO is that it enables neural networks to approximate the
optimal feedback solution whose existence dynamic programming
(DP) justifies, thereby reducing the complexities of computation
and storage problems of the classical methods such as DP. This
paper demonstrates NDO with several applications including
control of autonomous vehicles and of a robot-arm, while the two
other companion papers of this topic describes the background
for the development of NDO and present the theory of the method,
respectively.

Index Terms—Autonomous vehicles, dynamic programming, in-
formation time shift operator, learning operator, neural dynamic
optimization, neural networks, nonlinear systems, optimal feed-
back control, robots.

I. INTRODUCTION

I N this paper, we apply neural dynamic optimization (NDO)
to several control problems: the lateral autopilot logic for a

Boeing 747, the minimum fuel control of a double integrator
plant (DIP) (e.g., a satellite) with bounded control effort, the
automatic backward steering of a truck with two trailers, and
the set-point control of a two-link robot-arm. The lateral au-
topilot logic for a Boeing 747 demonstrates that NDO closely
approximates the optimal solution to a linear quadratic problem
that dynamic programming (DP) [i.e., linear quadratic regu-
lator (LQR)] would produce. The minimum fuel control of a
DIP illustrates that NDO enables neural networks to closely ap-
proximate the optimal feedback solution of a nonlinear control
problem. The backward steering of a truck with two trailers il-
lustrates that NDO can produce a larger domain of attraction for
regulation problems than LQR because it does not suffer from
the limitations of linearization. Finally, the set-point control of
a two-link robot-arm demonstrates that NDO works for a non-
linear multi-input-multi-output (MIMO) control problem.

Manuscript received January 16, 2000; revised February 11, 2001. This work
was supported in part by the National Aeronautics and Space Administration
under Contract NCC2-1020; the Office of Naval Research under Contract
N00014-97-1-0947; and the National Science Foundation under Contract
ECS–9522085. This paper was recommended by Associate Editor L. O. Hall.

C. Y. Seong was with the Information Systems Laboratory, Department
of Electrical Engineering, Stanford University, Stanford, CA 94305 USA.
He is now with Fineground Networks, Campbell, CA 95008 USA (e-mail:
chang@fineground.com).

B. Widrow is with the Information Systems Laboratory, Department of
Electrical Engineering, Stanford University, Stanford, CA 94305 USA (e-mail:
widrow@stanford.edu)

Publisher Item Identifier S 1083-4419(01)05667-9.

The background for the development of NDO and the theory
of NDO are presented in the two other companion papers [1],
[2], respectively.

II. BOEING 747 AIRPLANE

The Boeing 747 airplane is one of the most capable transports
ever built. Because of its extensive range (resulting in pilot fa-
tigue), and a desire to minimize the crew requirements, a ca-
pable controller (e.g., autopilot) is required in the aircraft de-
sign. Along with this motivation, our autopilot design process
demonstrates that NDO closely approximates the optimal so-
lution to a linear quadratic problem that DP (i.e., LQR) would
produce.

Let us consider a linear-time-invariant MIMO model of the
Boeing 747 lateral motion obtained from [3]. The linear equa-
tions of the lateral motion are compactly represented in state-
space form. The four states and two inputs as defined as fol-
lows:

Sideslip angle in degrees

Yaw rate in degrees
second

Roll rate in degrees
second

Bank angle in degrees

and

Rudder angle in degrees
Aileron angle in degrees

Then,

where

The lateral motion of the airplane isunstablebecause its
system matrix has two stable real eigenvalues, but a pair of
unstable complex eigenvalues

1083–4419/01$10.00 ©2001 IEEE

SEONG AND WIDROW: NDO FOR CONTROL SYSTEMS—PART III: APPLICATIONS 503

Our goal is to compute a state feedback law to improve and sta-
bilize this lateral motion. We check the controllability of the
linear system so that we can guarantee the existence of a stabi-
lizing feedback control. This system turns out to be controllable.

We discretize these linear system equations from contin-
uous-time to discrete-time using the command C2DM in
MATLAB. Here are the discrete LTI-MIMO system equations
of the Boeing 747 lateral motion (for s)

where

Now we want to find the optimal weight matrix of the
linear neural network , minimizing a constant-
coefficient quadratic cost function

(1)

where the weight matrix is a matrix, the matrix is a
symmetric positive semidefinite matrix, and the matrix is
a symmetric positive definite matrix. The state weighting
matrix and control weighting matrix provide some com-
promise between the speed of response and the use of control
effort. As we increase the eigenvalues of the matrixwith re-
spect to those of the matrix, the system response gets faster.
In this case, we pick and . In addition,
we want to select a sufficiently large time horizonso that the
solution to this finite-horizon problem can converge to the so-
lution to the corresponding infinite horizon problem. Therefore,
we choose as the time horizon.

Table I shows the NDO result. For comparison, we also show
the LQR result obtained by the command DLQR in MATLAB
with the same weighting matrices, and . Both results are
identical up to the fourth decimal digit. NDO approximates very
closely the feedback solution that the LQR (derived from DP)
produces. In addition, Fig. 1 plots the result of FOC along with
those of both NDO and DP (LQR). We apply FOC to this op-
timal control problem using the same time horizonas well as
the same weighting matrices,and . All the state trajectories
and control profiles are identical, as illustrated in Fig. 1.

This example demonstrates that NDO closely approximates
the optimal solution that both DP (LQR) and FOC produce al-
though NDO takes a different approach.

III. M INIMUM FUEL CONTROL OF A DOUBLE INTEGRATOR

PLANT WITH BOUNDED CONTROL EFFORT

This section considers a terminal control problem, where the
control effort (e.g., fuel or energy) required is the criterion of

TABLE I
COMPARISON OFNDO AND LQR RESULTS

Fig. 1. Comparison of the results of NDO, DP, and FOC.

optimality. Such problems arise frequently in aerospace appli-
cations, where there are limited control resources available for
achieving desired objectives. Suppose we wish to control a DIP
like a satellite

(2)

where is the position of the plant. In addition, its maximum
control input is limited as a physical constraint

The original system is linear, as shown in (2). However, the
overall system equation is nonlinear because of the physical
constraint.

Our control objective is to find the paths from states in the
space to in a specified final time , which

minimize fuel, i.e., one-norm of

(3)

This optimal control problem is selected from [4]. This example
demonstrates that NDO enables neural networks to closely ap-

504 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 31, NO. 4, AUGUST 2001

proximate the same optimal solution to nonlinear control prob-
lems that both DP and FOC find. It also illustrates that NDO pro-
duces the controllers that are able to reject input disturbances.

Let us discretize the DIP equation in order to apply NDO.
Here is the zero-order-hold (ZOH) equivalent of the (2) in the
state space form

(4)

where and .
Then we want to find the optimal weight vector

of the multilayer feedforward sigmoidal neural network
, minimizing

(5)

subject to

(6)

where and is a weighting matrix of the final
state. In this case, we pick the sampling time ,
which results in . Along with fuel usage, we penalize
the error of the final state with the matrix because we are
also concerned about it. Note that we slightly modify the cost
function (3) by adding the soft terminal constraint term

(7)

Without this term, the cost function would be a cost function
with a hard terminal constraint. If we pick a large enough
weighting matrix of the soft terminal constraint , the cost
function with soft terminal constraint will approximate the
cost function with hard terminal constraint because a fraction
of the cost of the soft terminal constraint is negligible com-
pared to a fraction of the cost of fuel. Therefore, we select

. Note that we allow the neural network
to have explicit time-dependency so that it can approximate
optimal time-varying feedback solutions although the system
is nonlinear-time-invariant (NTI) and the cost function has
constant coefficients. In this application, the explicit time-de-
pendency is necessary for the neural network to approximate
the optimal solution closely over a range of state space. We
discuss the matter in detail at the end of this section.

Let us consider the following range of initial states, for the
neural controller to optimize the performance of the closed-loop
system over a family of trajectories associated with different
values of initial states

(8)

where and are in units of and , respectively.
We want to drive the system from any initial state in the range to
the origin at time , consuming the minimum amount of fuel.
The neural network used in the controller consists of a two-layer
feedforward sigmoidal network with three inputs, zero hidden
units, and one output (denoted as a). Note that the neural
network has three inputs: because of its explicit time depen-
dency, it receives time from the clock as well as the current
states and . We scale the value of timeby 0 so that it
falls roughly between 0 and1 before being fed into the neural
network. We also scale the value of by while we

Fig. 2. NDO result for the range of the training set of initial statesf(x ; x) j
0:1 < jx j < 0:4; jx j < 0:05g. (a) Position. (b) Velocity.(c) Control force.
(d) Phase plane plot. The symbols� and�. represent the destination and the
directions of the trajectories, respectively.

do not scale . Thus including the bias input weights, the
total number of its weights is

, which is equal to the multiplication of the number of time
steps and the number of control inputs (FOC also requires the
same amount of storage locations to store the optimal control
sequence,). Recall Rule 1 for selecting
the number of weights discussed in Section IV-D of the coun-
terpart of this paper. It recommends that NDO should employ
at least a number of weights greater than the multiplication of
the number of time steps and the number of control inputs, to
guarantee full column rank of the learning operator and pre-
vent a loss of information in updating the weight vector. More-
over, the neural controllers with sigmoidal nonlinearities such
as at the output layer have a natural way to ac-
count for bounded control effort because their sigmoidal activa-
tions have built-in saturation limits between1 and 1. Thus the
bounded control constraint is readily handled by the neural con-
troller using a proper scaling factor. We initialize the weights
of the first layer of the network using Nguyen’s method [5]
while we set the initial weights of its second layer to uniformly
distributed random values between0.01 and 0.01. We pick a
learning rate by experiment. The total number
of iterations is . The initial state for each iteration
is chosen uniformly over the given range of initial states. Along
with the NDO results, we also present the results of both DP and
FOC to compare them. The FOC results are obtained by using
the discretized system (4) and the soft-terminal-constraint cost
function (5) with the same control design parameters that NDO
uses, while the DP solution is obtained by employing the con-
tinuous-time system (2) and the hard-terminal-constraint cost
function (3).

The optimal solution to the minimum fuel control with
bounded control effort has a very interesting characteristic:
bang-off-bang, as illustrated in Fig. 2. The optimal control
applies maximum acceleration in the beginning, and then coasts
without any driving forces, and applies maximum deceleration

SEONG AND WIDROW: NDO FOR CONTROL SYSTEMS—PART III: APPLICATIONS 505

Fig. 3. NDO result for the range of the training set of initial statesf(x ; x) j
0:1 < jx j < 0:4; jx j < 0:05g. (a) Position. (b) Velocity. (c) Control force.
(d) Phase plane plot. The symbols� and�. represent the destination and the
directions of the trajectories, respectively.

Fig. 4. NDO result for the range of the training set of initial statesf(x ; x) j
0:1 < jx j < 0:4; jx j < 0:05g. (a) Position. (b) Velocity. (c) Control force.
(d) Phase plane plot. The symbols� and�. represent the destination and the
directions of the trajectories, respectively.

in the final stage to minimize the fuel usage. As the reader can
see, the results of NDO are close to those of both DP and FOC.
We particularly point out that the neural controller captures the
discontinuous characteristic—bang-off-bang—of the optimal
solution.

Figs. 3 and 4 present the results of NDO for two extreme
points of the training set: the former shows the case where

and ; the latter shows the case
where and . The neural controller
successfully drives the system from these initial states to the
destination at . In addition, the control profiles of the
neural controller as well as the trajectories of the closed-loop
system are close to the optimal solution of both DP and FOC.

What happens if the dynamical system confronts disturbances
and uncertainties in real-world applications? Controlled sys-

Fig. 5. Disturbance-rejection tests of the neural controller against constant
input disturbances. (a) Position. (b) Velocity. (c) Control force. (d) Phase plane
plot. The symbols� and�. represent the destination and the directions of the
trajectories, respectively. Note that the neural controller cancels the effect of the
input disturbance during its coasting by applying a counteracting force, thereby
enabling it to bring the system closely to the destination.

tems are often designed to minimize their effects. In order to
test the disturbance-rejection capabilities of NDO, we inten-
tionally apply to the controlled system a constant input distur-
bance of , whose magnitude is 0% of its maximum con-
trol force. Fig. 5 shows the disturbance-rejection test results of
NDO, DP, and FOC. The neural controller and DP solution drive
the system closely to the desired destination in time despite the
input disturbance. In contrast, the FOC solution fails because
it produces an open-loop solution. We point out that the neural
controller cancels the effect of the input disturbance during its
coasting by applying a counteracting force of so that
it can bring the system to the desired destination in time. In
other words, the neural controller takes into account the input
disturbance and subtracts the effect to reach the destination be-
cause the neural controller responds to feedback or changes in
the system state. The DP solution also takes advantage of the
system-state information to switch its control input from one
value to another, thereby driving the system closely to the des-
tination. However, its switching mechanism may cause a chat-
tering in the system, as illustrated in Fig. 5.

Fig. 6 shows the normalized phase-plane results for
the minimum fuel control. The horizontal axis repre-
sents the normalized position and the vertical axis repre-
sents the normalized velocity. The dotted lines represent
the trajectories of the closed-loop system whose con-
troller NDO trained over the training set of initial states

: they are accelerating in
the beginning, coasting in the middle, and decelerating to arrive
at the origin in the final stage. We also plot the results of the
neural controller for some initial states outside the training set.
Dash-dot lines represent constant contours of the normalized
optimal cost function. The solid lines are the optimal trajec-
tories DP produces. The dashed line is the optimal switching
curve. Note that all the optimal trajectories come along with

506 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 31, NO. 4, AUGUST 2001

Fig. 6. Normalized phase-plane result of NDO for the minimum fuel path
control with bounded control effort, whereu is a maximum driving force.
The dotted lines represent the trajectories of the closed-loop system whose
controller NDO trained. The solid lines represent the optimal trajectories DP
produces. The dashed line is the optimal switching curve. The dash-dot lines
are constant contours of the normalized optimal return function. Note that the
neural controller captures not only discontinuous characteristics of the optimal
control solution such as bang-off-bang but also the optimal switching curve.

the optimal switching curve, while approaching the origin.
Note also that the optimal control always applies maximum
deceleration along the optimal switching curve whenever the
optimal trajectories meet it and come along with it. These
observations imply that the optimal feedback control must have
explicit time-dependency in order to produce the family of
the optimal trajectories over the range of state space. As the
reader can see, the results of NDO are close to those of DP: the
dotted lines are on top of the solid lines. In other words, NDO
closely approximates the known optimal feedback solution.
The resulting neural controller captures not only discontinuous
characteristics such as bang-off-bang of the optimal control
solution but also the optimal switching curve.

This example demonstrates that NDO enables neural net-
works to closely approximate the optimal feedback solution
to nonlinear control problems. It also shows that neural con-
trollers NDO produces are able to reject the input disturbances
ubiquitous in applications.

IV. BACKING A TRUCK WITH TWO TRAILERS

This section considers the automatic backward steering of a
truck (cab) with two trailers. Its top and side views are depicted
in Fig. 7, where the truck and trailers are all connected to each
other by joints. Our control goal is to back up the truck with two
trailers to a line () and keep it moving backward along the
line. The controller is required to steer the truck back to the de-
sired steady state in a timely and robust fashion. This is a regu-
lation control, i.e., an infinite-horizon problem. The application
will illustrate that NDO can produce a larger domain of attrac-

Fig. 7. Truck with two trailers (top and side views).

Fig. 8. Geometry of a truck with two trailers.

tion for regulation problems than LQR because NDO requires
no linearization around an equilibrium point.

In fact, a different kind of truck backup problem has been
investigated by Nguyen and Widrow [6]. Their goal is to back
up a truck with one trailer to a loading dock at a final time.
They care about a position error only at the final time where the
desired state of the truck-trailer system is known. Once the end
of its trailer reaches the loading dock, the control task is over.
That is a terminal control problem. They successfully trained a
neural network to achieve their goal using the backpropagation-
through-time algorithm.

Our proposed problem is an infinite-horizon problem while
Nguyen’s problem is a finite-horizon problem. In addition, we
add another trailer in order to increase the complexities of the
truck-trailer system; backing up the truck with two trailers is
a harder task than backing up the truck with one trailer. The
geometry of the truck with two trailers appears in Fig. 8; the
angle represents the steering angle, the anglerepresents
the orientation of the cab with respect to an inertial frame,
represents the joint angle between the cab and the first trailer,

represents the joint angle between the first and the second
trailer, represents the length of the cab, represents the
length of the first trailer, and represents the length of the
second trailer.

Here are the system equations for the truck backup to a line
() with two trailers

(9)

(10)

(11)

(12)

where represents-component of the position of the joint be-
tween the cab and the first trailer in the inertial frame. Let us

SEONG AND WIDROW: NDO FOR CONTROL SYSTEMS—PART III: APPLICATIONS 507

denote , and . In this application, we
set and . Note that the independent
variable is not time but the distance traveled, thereby allowing a
controller to back up the truck withnonconstantspeed. That’s
why the speed of the truck does not appear in the equations of
motion.

As physical constraints, joint angles, and , cannot ex-
ceed 60. The truck with two trailers cannot move backward
anymore whenever either joint angle reaches 60. We call this
angle a jackknife. In addition, the maximum steering angle is
30 . The system equations are highly nonlinear because of jack-
knives, the saturation of the steering angle, and the nonlinear
terms like . In this application, particularly, we pre-
tend that the mathematical model of the system does not exist
(we can be confronted by such situations in practice) but the data
of the system are available. The truck and trailer system can
therefore be computer-simulated. We train another neural net-
work, the so-calledsystem emulator,1 to model (or approximate)
the simulated system using the data produced by numerical inte-
gration (Runge-Kutta method) of the differential (9)–(12) with
integration interval . For each numerical integra-
tion, the next state is determined by the present state and the
steering angle, which is fixed during the integration interval. The
emulator has five inputs corresponding to the four state variables

and the steering angle , and four outputs corresponding
to the four next state variables . The training set for the
emulator is

rad rad rad

In particular, we scale the values of and so that they
fall between and 1 before being fed into the emulator. The
neural network used in the emulator is . The architecture
of this network is determined by experiment. The initial weights
are set to uniformly distributed random values between0.01
and 0.01.

During the emulator training, the truck backs up randomly,
going through many cycles with randomly selected steering an-
gles. The emulator learns to generate the next state when given
the present state and steering angle, doing so for a wide variety
of the states and steering angles. This neural emulator is trained
by the backpropagation algorithm [7], [8]. By this process, the
emulator eventually learns how the truck-trailer system behaves.
Fig. 9 shows the learning curve of the emulator with a learning
rate , which indicates the reduction of square error
during the iterative process. Once the emulator is trained, it can
be used to train the neural controller.

Then, we want to find the optimal weight vector
of the multilayer feedforward sigmoidal neural network

, minimizing a constant-coefficient
quadratic cost function

subject to

1The process of training a system emulator corresponds to system identifica-
tion in the control literature.

Fig. 9. Learning curve of the neural emulator:N is employed. Its
learning rate is� = 10 .

and

where the state weighting matrix is a symmetric positive
semidefinite matrix, and the input weighting matrix
is a symmetric positive definite matrix. Note that we par-
ticularly employ the quadratic cost function because we want to
compare the results of NDO and those of LQR while applying
the same cost function, thereby allowing us to compare their per-
formances. In this case, we pick diag ,
as control design parameters. We penalize only the-position
of the truck and the second joint angle from through

in order to achieve our goal, which is to back up the truck
to the line and keep it moving along the line. We se-
lect a sufficiently large time horizon so that the solu-
tion to this problem can approximate the solution to the corre-
sponding infinite-horizon problem. Note also that we do not in-
clude explicit time-dependency in the neural controller because
we are working on the regulation problem involved with the NTI
system and the constant-coefficient quadratic cost function.

The neural network employed in the controller is with
sigmoidal activation functions because we have four states and
one control input of the controlled system. In particular, we set
zero bias input to all the neurons of the neural network instead
of 1. Therefore, the total number of the weights of the network
is . Note that we employ a number of
weights much smaller than Rule 1, discussed in Section IV-D of
the counterpart of this paper, recommends. It suggests that the
total number of weights should be at least zero because we have
zero time steps and one control input. Instead of it, we follow
Rule 2, which suggests that we need not increase the number
of weights as the time horizon increases when NDO handles an
infinite-horizon problem. It will be instructive to see how this
neural controller performs, despite its possessing a number of
weights even smaller than Rule 1 suggests. In addition, before
feeding the state into the controller, we scale the values of

by the same scaling factors that we employed in the training
of the neural emulator. Moreover, the neural controllers with

508 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 31, NO. 4, AUGUST 2001

Fig. 10. NDO and LQR results for a small deviation from the equilibrium
point, which is the origin. The LQR controller works better than the neural
controller for small deviations from the equilibrium point.

sigmoidal nonlinearities such as at the output layer can
readily handle bounded control efforts because the sigmoidal
activations have built-in saturation limits between1 and 1.
Therefore, we can confine , the output of the neural con-
troller, to the desired saturation limit by using the scaling factor

.
The initial state for each iteration is drawn with a uniform

probability distribution over the range of state space

We set the initial weights of the first layer of the neural controller
using Nguyen’s method [5] while we set those of the second
layer to uniformly distributed random values between0.01
and 0.01. The learning rate and the total number of iterations are
10 and , respectively. We train the neural controller
using theemulatorrather than the exact system equations.

In fact, Nguyen also used a neural emulator as part of training
his neural controller. However, he used a system equation as
well during his controller’s training: he backs up the real truck
(i.e., system equation) to get thetrue final state error, while he
uses the neural emulator to adjust the weights of the neural con-
troller using the error. Note that during its training his neural
controller receives thetrue states of the system.

In contrast, our neural controller’s training in this example
completelyexcludesuse of the real truck or system equation: we
not only run our neural emulator to feed its states to the neural
controller and evaluate the cost function but also use the em-
ulator to adjust the controller’s weights. Therefore, during its

Fig. 11. NDO and LQR results for an intermidate deviation from the
equilibrium point, which is the origin. As the deviations increase, the LQR
controller fails because of the limitations of linearization. In contrast, the neural
controller works because it doesn’t suffer the limitations.

training our neural controller does not receive the true states of
the system but theapproximatedstates because the emulator is
an approximated model of the system. The evaluation of the cost
function is alsoapproximatedbut not accurate. Once we finish
training the neural controller by using the emulator, we obtain
the NDO results by applying the trained controller to the real
truck (i.e., system equation). Therefore, our trained neural con-
troller must overcomemodel uncertaintiesresulting from the
discrepancy between the true system and the neural emulator.

Along with the NDO results, we show the LQR results
for comparison. When applying LQR, we use alinear
model obtained by linearizing and discretizing the nonlinear
system (9)–(12) around an equilibrium, which is the origin,

. We obtain the LQR results by using
the command DLQR in MATLAB with the same weighting
matrices and . The NDO and LQR results for small
deviations from the equilibrium point appear in Fig. 10. For
small deviations, the LQR controller works better than the
neural controller. However, as the deviations increase the LQR
controller fails because of the limitations of linearization, as
illustrated in Fig. 11. In contrast, the neural controller works
because it does not suffer the limitations.

Fig. 12 shows the NDO result for the largest vertical deviation
among the initial states in the the training set. Initially, the truck
with two trailers is set at the vertical distance and
parallel to the line . The neural controller successfully
backs up the truck to the line and keeps it moving backward
along the line. The neural controller works well for the large
deviation from the equilibrium point.

SEONG AND WIDROW: NDO FOR CONTROL SYSTEMS—PART III: APPLICATIONS 509

Fig. 12. NDO result for an large deviation from the equilibrium point, which
is the origin. The neural controller successfully backs up the truck to the line
and keeps it moving backward along the line.

The demonstration of the truck backing up to the line
may reveal an aspect of optimal control. Suppose that the truck
with two trailers is initially parallel to the line and located at

, which is 40% larger than the largest vertical devia-
tion among the initial states in the training set. Note that the line

is the position of the truck in steady state. It is interesting
to see how NDO backs up the truck to the line in Fig. 13. In the
beginning it makes a sharp turn and then drives straight down
and makes another sharp turn to the line , thereby backing
up the truck to the line as soon as possible. It is amazing that
the turning angle is bigger than 90. The trajectory looks like a
cobra—not the trajectory that common sense would have pre-
dicted.

The example illustrates that NDO can produce a larger
domain of attraction for regulation problems than LQR because
NDO does not require linearization. It also illustrates that NDO
is applicable by using a neural emulator (an approximated
system model) if the mathematical model of a controlled
system is not available. It shows that the neural controllers
NDO produces can overcome model uncertainties resulting
from the discrepancy between the true system and the neural
emulator.

V. TWO-LINK ROBOT-ARM MANIPULATOR

As a nonlinear MIMO control problem, this section considers
a two-link planar robot-arm manipulator depicted in Fig. 14.
Robot manipulators are familiar examples of trajectory-control-
lable mechanical systems. However, their nonlinear dynamics

Fig. 13. Demonstration of the truck with two trailers backing up to the line
y = 0. It is curious to see how the neural controller backs up the truck to the
line. In the beginning it makes a sharp turn and then drives straight down and
makes another sharp turn to the liney = 0, thereby backing up the truck to the
line as soon as possible. The trajectory looks like a cobra—not the trajectory
that common sense would have predicted.

Fig. 14. Two-link planar robot-arm manipulator.

and highly coupled multiple inputs present a challenging con-
trol problem, since traditional linear control approaches do not
easily apply.

For this manipulator, we define the angle of the first link
with respect to an inertial frame, as depicted in Fig. 14. We
also define the angle of the second linkwith respect to the
orientation of the first link. We apply the torques and to
control the angles and , respectively. Here are the system
equations for this manipulator [9], [10]

where

510 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 31, NO. 4, AUGUST 2001

and

is the -component of the inertial tensor of theth link
around its center of mass, is the link mass, is the dis-
tance from the joint to the center of mass of the link, andis
the length of the link.

The values of the parameters are as follows:

kg

kg

m

m

m

m

kg m

kg m

The third mass is a point-mass load at the end of the second
link. It is considered to have a value of 0 kg under normal cir-
cumstances.

This manipulator is a highly nonlinear MIMO system, whose
system equations include all highly nonlinear joint coupling
terms (Coriolis and centripetal forces, variable effective mo-
ments of inertia, etc.). In addition, there exist the physical con-
straints for control inputs

Nm

Nm

Therefore, in order to achieve high performance such as high ac-
curacy and speed, we cannot ignore the nonlinear forces through
the linearization. We must take into account these nonlinear
forces and deal with them properly.

We may apply NDO in order to fully compensate for the
nonlinear dynamics as well as the physical constraints. First of
all, we discretize the system equations by the Euler difference
method using a sampling time s. Then we want to
find the optimal weight vector of the multilayer feedforward
sigmoidal neural network minimizing

subject to

Nm

Nm

where , , ,
and . In this case, we select

diag and . Note that
we penalize the joint angles, and , much more strongly
than the control inputs, and , to achieve high speed and
accuracy. In particular, we exclude explicit time-dependency

in the neural controller. We choose the final time horizon
.

The neural network used in the controller is with sig-
moidal activation functions. Including the bias input weights,
the total number of its weights is

. Note that we employ a number of weights much smaller
than Rule 1, discussed in Section IV-D of the counterpart of this
paper, recommends. It suggests that the total number of weights
should be at least zero because we have zero time steps and two
control inputs. Instead, we follow Rule 2, which suggests that
we need not increase the number of weights as the time horizon

increases when NDO handles an infinite-horizon problem.
Moreover, the neural networks (or neural controllers) with the
sigmoidal nonlinearities such as at the output layer have
a natural way to account for bounded control effort because the
sigmoidal activation functions have built-in saturation limits be-
tween 1 and 1. Therefore, we can readily confineand , the
outputs of the neural controller, to the desired saturation limits
by using proper scaling factors. However, we feed the state
into the controller without scaling the values of .

The initial state and the desired steady statefor each
iteration are chosen independently and uniformly over the range
of the state space

where the angles , are in units of degrees, and the angular
rates , are in units of degrees/seconds. The initial weights
of the neural controller are set to uniformly distributed random
values between 0.01 and 0.01. We pick a learning rate

. The total number of iterations is .
We present three groups of the NDO results for this manipu-

lator. The first group shows how the neural controller works for
the initial states inside the training set (note that all the initial
velocities in the training set are zeros). The second group illus-
trates how the neural controller handles the initial states outside
the training set. The third group tests the robustness of the con-
troller by applying it to another two-link robot-arm possessing
different system parameters.

Figs. 15–17 show some results of NDO for the initial states
inside the training set. In particular, Figs. 15 and 16 demonstrate
some important features of the results. Fig. 15 shows a full swing
of the robot-arm over the trained state space. We set the initial
state to , /s, , and

/s. Then the neural controller drives the state to
, /s, , and /s. NDO works

well for those big rotations that the linear methods would be very
difficult to solve for. In contrast, Fig. 16 shows how NDO han-
dles directionality and dynamic coupling of a nonlinear MIMO
system like the two-link robot-arm. For MIMO systems, es-
pecially, directionality is important because control inputs are
coupled to each other through the system dynamics. In order
to check how the neural controller deals with directionality, we
apply the out-of-phase motions to the manipulator. We initially
set the state to , /s, ,
and /s. Then we drive the state to ,

/s, , and /s. As Fig. 16 illustrates,
NDO handles well directionality and two-way interactions of
the manipulator.

SEONG AND WIDROW: NDO FOR CONTROL SYSTEMS—PART III: APPLICATIONS 511

Fig. 15. Result for the initial state inside the training set. The state is initially
� [0] = �120 , _� [0] = 0 /s,� [0] = �120 , and� [0] = 0 . The dotted
lines represent the reference inputs� and� to the controller.

Fig. 16. Result for the initial state inside the training set, with respect to the
directionalities and dynamic couplings. The state is initially� [0] = 120 ,
_� [0] = 0 /s,� [0] = �120 , and� [0] = 0 /s. The dotted lines represent

the reference inputs� and� to the controller.

Fig. 17. Result for the initial state inside the training set. The state is initially
� [0] = 0 , _� [0] = 0 /s,� [0] = 0 , and _� [0] = 0 /s. The dotted lines
represent the reference inputs� and� to the controller.

Figs. 18 and 19 show how the neural controller works for
the initial states outside the training set. Fig. 18 shows a big
swing of the robot-arm around the state space. We initially set
the state to , /s, , and

/s. Then the controller successfully drives the states
to , /s, , and

/s, obeying the system’s command. Fig. 19 illustrates how
the controller handles nonzero initial velocities of the robot-arm.
We set the initial state to , /s,

, /s. In other words, the robot-arm
initially swings around with 0 rpm. Then the controller brings
the state to the origin, as we command.

Fig. 20 shows robustness test results of the neural controller.
We apply the controller to another two-link robot-arm pos-
sessing the following system parameters:

kg

kg

kg

m

m

m

m

kg m

kg m

All the parameter values of the new (or perturbed) robot-arm
are at least 20% larger than the corresponding parameter values

512 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 31, NO. 4, AUGUST 2001

Fig. 18. Result for the initial state outside the training set. The state is initially
� [0] = 150 , _� [0] = 0 /s,� [0] = 150 , and _� [0] = 0 /s. The dotted
lines represent the reference inputs� and� to the controller.

Fig. 19. Result for the initial state outside the training set. The state is initially
� [0] = �45 , _� [0] = �60 /s,� [0] = �45 , and _� [0] = �60 /s. The
dotted lines represent the reference inputs� and� to the controller.

of the original one that the neural controller is trained for (note
that inertial tensors vary with the square of the lengths of links).

Fig. 20. Robustness tests of the neural controller against model uncertainties.
The states are initially� [0] = �120 , _� [0] = 0 /s,� [0] = �120 , and
_� [0] = 0 /s. The dotted lines represent the reference inputs,� and� , to
the controller for both robot-arms.

In other words, the neural controller has at least 20% parametric
model uncertainties with respect to the perturbed robot-arm. We
initially set the state of the perturbed system to ,

/s, , and /s. Then we
command the controller to drive the state to ,

/s, , and /s. Fig. 20 shows
the state trajectories of the perturbed system, in comparison with
those of the the original (or nominal) system; the solid and the
dash-dotted lines represent the trajectories of the perturbed and
the nominal robot-arms, respectively. Although the perturbed
robot-arm responds slower and employs more control efforts
than the nominal one because the former is larger and heavier,
the controller successfully drives the perturbed robot-arm from
given initial states to desired steady states, as it is commanded.

This example demonstrates that NDO works well for non-
linear MIMO control problems. NDO properly handles the di-
rectionalities as well as the nonlinearities of nonlinear MIMO
systems such as a two-link robot. The example also illustrates
that neural controllers NDO produces can berobustto the model
uncertainties arising in applications.

VI. CONCLUSION

We present NDO as a practical method for solving dynamic
programming problems. NDO enables neural networks to ap-
proximate the optimal feedback solutions whose existences DP
justifies. Combining the positive features of both methodolo-
gies, NDO inherits its practicality from neural networks and its
generality from optimal control theory. NDO, however, has two

SEONG AND WIDROW: NDO FOR CONTROL SYSTEMS—PART III: APPLICATIONS 513

potential drawbacks. First, the NDO solution is not a complete
DP solution: it approximates the optimal solution. Local as well
as global optima are possible. Its domain of attraction can be
limited. Second, the stability of the weight update cannot be
guaranteed because its analytical condition has not been devel-
oped. In practice, however, these two drawbacks can be over-
come by retraining the neural network with different values of
its update (i.e., learning) rate or initial weights.

NDO has been demonstrated with several applications
including control of autonomous vehicles and of a robot-arm.
These applications show that NDO finds — with a reasonable
amount of computation and storage — optimal feedback solu-
tions to nonlinear MIMO control problems that would be very
difficult to implement in real time with DP. In addition, NDO is
applicable by using a neural emulator (an approximate system
model) if the mathematical model of a controlled system is not
available. NDO can overcome model uncertainties resulting
from the discrepancy between a true system and the neural
emulator. Moreover, the applications show that the neural
controllers NDO produces are able to minimize the effects
of disturbances and uncertainties that may arise in real-world
applications.

REFERENCES

[1] C. Y. Seong and B. Widrow, “Neural dynamic optimization for control
systems—Part I: Background,”IEEE Trans. Syst., Man, Cybern. B, vol.
31, pp. 482–489, Aug. 2001.

[2] , “Neural dynamic optimization for control systems—Part II:
Theory,” IEEE Trans. Syst., Man, Cybern. B, vol. 31, pp. 490–501,
Aug. 2001.

[3] A. E. Bryson, Control of Spacecraft and Aircraft. Princeton, NJ:
Princeton Univ. Press, 1994.

[4] , Dynamic Optimization. Menlo Park, CA: Addison-Wesley-
Longman, 1999.

[5] D. Nguyen and B. Widrow, “Improving the learning speed of 2-layer
neural networks by choosing initial values of the adaptive weights,” in
Proc. Int. Joint Conf. Neural Networks, vol. 2, New York, June 1990, pp.
21–6.

[6] , “The truck backer-upper: An example of self-learning in neural
networks,” in Proc. Int. Joint Conf. Neural Networks, vol. II, Wash-
ington, D.C, June 1989, pp. 357–363.

[7] P. Werbos, “Beyond regression: New tools for prediction and analysis in
the behavioral sciences,” Ph.D. dissertation, Harvard Univ., Cambridge,
MA, 1974.

[8] D. Rumelhart and J. McClell, Eds.,Parallel Distributed Processing: Ex-
plorations in the Microstructure of Cognition. Cambridge, MA: MIT
Press, 1986, vol. 1.

[9] J. E. Slotine and W. Li,Applied Nonlinear Control. Englewood Cliffs,
NJ: Prentice-Hall, 1991.

[10] G. L. Plett, “Adaptive inverse control of plants with disturbances,” Ph.D.
dissertation, Stanford Univ., Stanford, CA, 1998.

Chang-Yun Seongreceived the B.S. and M.S. de-
grees in aerospace engineering from Seoul National
University, Seoul, Korea, in 1990 and 1992, respec-
tively, and the M.S. degree in electrical engineering
and the Ph.D. degree in aeronautics and astronautics
from Stanford University, Stanford, CA, in 1998 and
2000, respectively.

He was a Research Engineer with the Systems
Engineering Research Institute (SERI/KIST),
Taejon, Korea, before he pursued his graduate
studies at Stanford University. He is currently a

Research Engineer with Fineground Networks, Campbell, CA. His research
interests include neural networks, optimization, control systems, and digital
signal processing.

Dr. Seong is a member of AIAA. He was a recipient of the Outstanding
Teaching Assistant Award from the AIAA Stanford Chapter in 1997.

Bernard Widrow (M’58–SM’75–F’76–LF’95) re-
ceived the S.B., S.M., and Sc.D. degrees in electrical
engineering from the Massachusetts Institute of
Technology (MIT), Cambridge, in 1951, 1953, and
1956, respectively.

He joined the MIT faculty and taught there from
1956 to 1959. In 1959, he joined the faculty of Stan-
ford University, Stanford, CA, where he is currently
Professor of Electrical Engineering. He is Associate
Editor of several journals, and is the author of about
100 technical papers and 15 patents. He is coauthor

of Adaptive Signal Processing(Englewood Cliffs, NJ: Prentice-Hall, 1985) and
Adaptive Inverse Control(Englewood Cliffs, NJ: Prentice-Hall, 1996). A new
book,Quantization Noise, is in preparation.

Dr. Widrow is a Fellow of AAAS. He received the IEEE Centennial Medal
in 1984, the IEEE Alexander Graham Bell Medal in 1986, the IEEE Neural
Networks Pioneer Medal in 1991, the IEEE Signal Processing Society Medal in
1998, the IEEE Millennium Medal in 2000, and the Benjamin Franklin Medal
of the Franklin Institute in 2001. He was inducted into the National Academy
of Engineering in 1995, and into the Silicon Valley Engineering Council Hall of
Fame in 1999. He is a Past President and currently a Member of the Governing
Board of the International Neural Network Society.

