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Abstract—Firewalls are critical security devices handling all
traffic in and out of a network. Firewalls, like other software
and hardware network devices, have vulnerabilities, which can
be exploited by motivated attackers. However, because firewalls
are usually placed in the network such that they are transparent
to the end users, it is very hard to identify them and use
their corresponding vulnerabilities to attack them. In this paper,
we study firewall fingerprinting, in which one can use firewall
decisions on TCP packets with unusual flags and machine
learning techniques for inferring firewall implementation.

I. INTRODUCTION
A. Motivation

The security and reliability of firewalls are critical because

they serve as the first line of defense in examining all traffic in

and out of a network and they have been widely deployed for

protecting both enterprize and backbone networks. However,

just like any other networking and computing devices, firewalls

often have vulnerabilities that can be exploited by attackers

[1], [2]. To exploit firewall vulnerabilities, the first step that

attackers need to do is firewall fingerprinting, i.e., identifying

the particular implementation of a firewall including brand

name, software/firmware version number, etc. On the defense

side, we need to know how attackers possibly can fingerprint

a firewall so that we can design countermeasures accord-

ingly. In this paper, for the first time, we investigate firewall

fingerprinting methods with quite high accuracy. Designing

countermeasures for firewall fingerprinting is out of the scope

of this paper, but is the next step of this line of research.

B. Limitation of Prior Art
Prior art mostly focused on operating system fingerprinting

[3]–[8]. Many tools such as NMAP [3] has been developed

to identify a target host’s operating system using TCP and

UDP response characteristics. There are several approaches to

finding out the operating system ranging from simple banner

observation to highly complicated TCP, UDP and ICMP-

header analysis. However, none of these methods can be used

for firewall fingerprinting because firewalls, like other network

middleboxes, forwards the traffic and cannot be targeted

directly. For security purposes, some firewalls are configured

in bridge mode with no IP address to be remotely accessible by

the administrator. Hence, such approaches cannot be effective

for firewall fingerprinting.

C. Technical Challenges
Firewall fingerprinting has two major technical challenges.

First, finding the firewall implementation characteristics that

we can use for fingerprinting is difficult because firewalls are

mostly closed source and it is difficult to infer any implemen-

tation details from them. Moreover, there are many parameters

and configuration details that can affect the performance of a

firewall. Second, inferring the type of a target firewall is hard

for attackers as they have no remote access to the firewall.
D. Our Approach

In this paper, for the first time, we propose a set techniques

that can collect some information about each firewall using

packet processing time of probe packets and be used to identify

firewall implementation. For our study, we build a testbed

consisting of three popular firewalls (including an open-source

firewall and two enterprize firewalls [9]), two computers host-

ing eight virtual machines for generating traffic to the firewalls,

and one computer for sending probe packets and measuring

the firewall processing time of the probe packets. Because

firewalls are very expensive and our budget was limited, we

could only support three firewalls in our testbed. Moreover,

due to privacy and legal reasons, we are obligated to keep the

brand and model of firewalls confidential.

We address the two technical challenges as follows. To

address the first challenge, we measure packet processing time

to identify the type of packet classification algorithms in use

by the three firewalls, sensitivity of firewall performance to

traffic load, and other characteristics. We use four different

techniques to send probe packets to identify the type of

caching mechanism that a firewall uses in both stateful and

stateless modes. We also examine the sensitivity of firewall

performance to transport protocol types (i.e., TCP or UDP)

and packet payload size. To address the second challenge, we

first study firewall decisions for TCP packets with unusual

flags to find fingerprints for different firewalls. We also use

machine learning techniques to identify firewalls using features

extracted from probe packet processing time.
E. Key Contributions

We made two key contributions in this paper. First, we

identified firewall implementation characteristics that one can

evaluate for black box firewalls. Second, we proposed methods

for inferring the implementation of a target remote firewall.
II. RELATED WORK

To best of our knowledge, there has been no work on fire-

wall fingerprinting. Yet, there have been many tools developed

for operating system fingerprinting tools including NMAP

[3], xprobe2++ [4], and p0f [5]. NMAP and other similar

tools have a database of heuristics for identifying different

operating systems based on the operating system response

to TCP and UDP probe packets. Medeiros et al. [6] uses

TCP SYN packets to collect TCP Initial Sequence Number

(ISN) samples and classifies operating systems accordingly.

Snacktime [7] exploits TCP window, IP time-to-live, and

the length and number of retransmissions of the SYN-ACK

during TCP handshakes to identify the operating systems.



Interestingly, Smart et al. [8] proposed fingerprint scrubber as

a module of a firewall to defeat the remote OS fingerprinting.

Work has also been done on firewall performance evaluation

[10], [11]. Lyu and Lau measured the performance of a firewall

under seven different policies, where each policy is for one

security level [10]. In a similar vein, Funke et al. evaluated

the firewall performance (mostly firewall throughput) under

policies with differing number of rules [11]. They also show

that more rules do not necessarily imply poorer firewall

performance.

III. BACKGROUND
A. Firewall Policies

For each incoming or outgoing packet, a firewall decides to

accept or discard it based on its policy. A firewall policy is

composed of a sequence of rules, where each rule specifies a

predicate over fivefields: source and destination ports, source

and destination IP addresses, and IP protocol. Typically, fire-

wall policies do not check the source port field. The rules in

a firewall policy may overlap and even conflict. To resolve

conflicts, firewalls follow the first-match semantic, i.e., the

decision of the first rule that a packet matches is the decision

for the packet. An example firewall policy is in Table I.

Rule Src IP Dest IP Src Port Dest Port Protocol Action

r1 1.2.3.0/24 * * * TCP discard
r2 * 1.2.3.0/28 * 80 * accept
r3 * * * * * discard

TABLE I
AN EXAMPLE FIREWALL POLICY

B. Caching and Statefulness
One method of increasing firewall performance is to cache

rules or flows based on temporal locality. Rule caching stores

the four-tuple of source IP, destination IP, destination port,

and protocol type for packets that a firewall has performed

a full lookup on its policy for. The decision associated with

each entry is stored in the cache. When a firewall with rule

caching receives a packet, it first checks whether the four-tuple

header of the packet is in its cache; if found, the decision for

the packet can be made without checking the packet against

the main firewall rules; if not found, the firewall checks the

packet against its policy and then caches the four-tuple of

the packet with the decision. Flow caching stores the five-

tuple, which includes the source port field in addition to the

four fields used in rule caching. The lookup process for flow

caching is similar to that for rule caching. The purpose of flow

caching is to have a fine-grained access control beyond firewall

policies. For example, to protect against SYN flooding attacks,

some firewall products stop accepting new SYN packets with

new source ports when they see too many open flows from a

specific source address with different source ports.

Commercial firewalls often support both stateful or stateless

modes. A stateful firewall tracks TCP sessions in a state table

by examining the TCP flags of incoming TCP packets. This

ensures that the packet in a TCP session follows the correct

order that includes a proper handshake and tear-down. The

firewall drops any packet with an illegitimate flag. After a

correct handshake, an entry is made in the state table. The

packets that match the session entries bypass the firewall. Once

a session goes through the correct termination procedure, its

table entry is removed.

C. Packet Classification Solutions
The process of checking a packet against a firewall policy

is called packet classification. Packet classification solutions

fall into two main categories: software based solutions and

Ternary Content Addressable Memory (TCAM) based solu-

tions. Software based packet classification solutions include

the simple sequential search algorithm and other algorithms

based on complex data structures (e.g.,, [12]–[16]). The se-

quential search algorithm compares a packet with each rule in

a firewall policy sequentially until a match is found. Complex

data-structure-based packet classification algorithms include

Recursive Flow Classification (RFC) [14], Aggregated Bit-

Vector [15], Tuple space [16], HiCut [12], and HyperCut [13],

etc. For TCAM based packet classification, firewall rules are

stored in a special memory chip; for any given packet, the

hardware circuit of the chip compares the packet with every

stored rule in parallel and returns the decision of the first rule

that matched the packet. TCAM based packet classification is

widely used in high performance routers and firewalls because

the lookup is done in constant time.
IV. OVERVIEW

A. Roadmap
To study firewall fingerprinting, we design a testbed with

three popular firewalls for conducting extensive experiments

and performance measurements. Of the three firewalls tested,

two are software firewalls while the other is hardware based. A

software firewall is implemented fully in software and may re-

side on a multipurpose machine as one of many services being

provided. Typically, software firewalls are highly configurable

and offer more customization and services than their hardware

counterparts. Hardware firewalls are made specifically tailored

for packet classification. Generally, they are more limited in

capabilities than software firewalls but are usually very fast in

classification as they are purpose built.

Our measurements are mostly based on probe packet pro-

cessing time taken on remote hosts before and after a firewall.

In our initial experiment we study firewall characteristics

induced by their implementation. We examine firewall packet

classification algorithms to understand whether or not they

use sequential search for packet filtering. We then measure

the sensitivity of firewall packet classification algorithms to

firewall background traffic load. We continue our studies by

inspecting the firewall caching techniques and specifying their

caching effectiveness. We finalize our study by looking at

firewall processing time with respect to probe packet payload

size to understand if they have an impact on the firewall packet

processing time (PPT).

The second experiment is to determine if an attacker can

infer the implementation of a firewall remotely by sending

probe packets through the firewall. The firewall implementa-

tion inference process is studied from two perspectives. First,

we try to find a signature for each firewall based on the

decision of a sequence of TCP packets with an unusual set

of flags. The results show that the three firewalls, especially if

they are in stateful mode, discard TCP packet sequences with

unusual TCP flags. As administrators rarely define policies

on TCP flags, the obtained signature usually has a close

association with the firewall implementation. An attacker can

use this signature to infer firewall implementation remotely



with high confidence. Second, as a complementary method, we

use PPT of a sequence of probe packets to train a classification

model for each firewall and use it accordingly to infer the

implementation of a target firewall. Note that in the attacking

scenario, the attacker needs to build simple testbeds including

all speculated firewall brands to acquire signatures and the

classification model. He then needs to (1) install a bot (or

a trojan) on a machine or compromise a host inside the

network, (2) use security scanner tools such as nmap [3] to

find the packets that can go through the target firewall and

reach the compromised host and (3) generate and send probe

packets to measure their PPT. An attacker can also obtain more

information using other monitoring tools (e.g., traceroute)

to understand the number of hops and the extra delay between

the probe packet sender and receiver to create more accurate

models for firewall implementation inference.

B. Measurement Environment
Figure 1 shows the testbed topology for our testing of

three different firewalls. Firewalls FW1 and FW2 are software

firewalls running on a Linux machine with SMP kernel 2.6.

Each firewall has 2 quad-core Intel Xeon 2.66GHz CPUs and

16GB of RAM. FW3 is a hardware firewall that runs on a

routing engine board with a 850MHz processor, 1,536MB

DRAM, and 256MB compact flash. Each firewall is configured

with the same policy comprised of 375 rules. The first 374

rules are set to accept traffic with the final rule discarding

all traffic that is not specified previously. The firewall policy

is chosen from real-life firewall policies used in a university

campus network. The rules are defined over four packet header

fields: source IP, destination IP, destination port number, and

protocol. As with most real-life firewall policies, only a few

rules overlap. Moreover, there is no rule hidden by another rule

(i.e., there is no rule with lower index that completely covers

a rule with higher index). Furthermore, the firewalls are only

configured for packet filtering; other services such as VPN or

NAT are disabled. Note that the rules are known for the first

experiment where we study firewall characteristics induced

by their implementation. However, for the second experiment,

in which we propose algorithms to fingerprint firewalls, an

attacker does not know the rules.

In addition to the firewalls, the testbed has two machines,

VM1 and VM2, running VMWare ESX 3.5.0 on a similar

machine with 2 quad-core Intel Xeon 2.66GHz CPUs and

16GB of RAM Each VMWare instance has four Linux virtual

machines connected to each other by virtual switches. These

virtual switches are connected directly (without an intermedi-

ary switch) to each firewall (FW1, FW2, and FW3). The virtual

machines on VM1 and VM2 are used to place background

traffic load on the firewalls by sending a substantial amount

of packets to different interfaces of the firewall. The traffic is

generated by Mausezahn network traffic generators (aka mz)

[17], an open-source traffic generator. Using both VM1 and

VM2, we are able to sustain a traffic rate of up to 300Mbps.

Based on the design of experiments and attacks, the generated

traffic can be accepted or discarded by the firewall to which it

is sent. To put maximum load on the firewalls, the generated

traffic has no packet payload. This maximizes the number

of packets that a firewall needs to process. If packets have

payloads, firewall throughput will increase, but traffic packet

rate (i.e., packets per second) will decrease. As mentioned, the

virtual switches are directly connected to the firewalls. This

is to separate the generated traffic for each firewall and make

firewall experiments independent from each other.

The last portion of the testbed is the Probe Machine &

Traffic Analyzer (PMTA): a Linux machine with Dual Quad-

core Intel Xeon 2.66GHz CPUs and 16GB of RAM. We send

probe packets by PMTA directly (i.e., no switch in between) to

each firewall using an open-source packet generator hping2

[18]. If the probe packets are accepted by the target firewall

they are routed back to PMTA through another interface

(as it is shown in Figure 1). In order to measure firewall

packet processing time, we use packet trace time-stamps. We

use tcpdump [19] to dump packets with time-stamps with

microsecond resolution. For the software firewalls (FW1 and

FW2), we can analyze the packet traces and calculate the PPT

based on the difference of packet trace time-stamps of outgo-

ing and incoming interfaces. However, the hardware firewall

(FW3) does not support tcpdump or any traffic monitoring

(i.e., packet dumping) feature. Therefore, since we cannot

measure the packet processing locally on the firewalls, the

probe packets are forwarded to PMTA and we calculate the

time-stamp difference of the packet traces on PMTA. The time-

stamp differences calculated on PMTA comprise the firewall

PPT plus probe packet round trip time (RTT) which in turn

reduces the accuracy of firewall PPT.

FW2

FW1

FW3

Probe Machine & 

Traffic Analyzer

SW

VM1

VM2

Packet trace collection

Fig. 1. The testbed

V. FIREWALL CHARACTERISTICS

To study firewall characteristics, we first give an overview

on the methodology basics such as how the probe packets

are sent and how the PPT is measured by PMTA. We then

show the results for different firewall features containing

firewall packet classification algorithm, firewall statefulness

and caching, and packets protocol and payload size impact.

A. Methodology Basics
The probe packets are sent by the PMTA in four modes as

follows:

• TCP Fix: A sequence of TCP packets with the same

packet header.

• TCP Vary: A sequence of TCP packets with the same

packet header except the source port which is chosen

randomly for each probe packet.



• UDP Fix: A sequence of UDP packets with the same

packet header.

• UDP Vary: A sequence of UDP packets with the same

packet header except the source port which is chosen

randomly for each probe packet.

We conduct two sets of experiments with and without

background traffic load in the testbed. The first set of exper-

iments are performed under no background traffic load, i.e.,

the probe packets are the only packets that are transmitted in

the testbed during the experiments. In contrast, the second

set of experiments are performed under background traffic

load. In this case, all virtual machines send dummy packets

with no payload to the target firewall as the background

traffic. The header of dummy packets are chosen such that

they are discarded by the rule configured in the firewall, i.e.,

these dummy packets never pass through the firewall. The

dummy packet rate varies from 870,000 packets to 1,875,000

packets per second. Since packets have no payload, the dummy

traffic varies from 250Mbps to 300Mbps. Because the firewalls

are installed on powerful machines, they are not under any

type of resource constraints in terms of CPU and memory

when the firewalls are under the background traffic load. This

indicates that the experimental results for the firewalls under

the background traffic load may not be affected by hardware

resource constraints.

We use two methods for measuring PPT: (1) Local mea-

surements are based on packet traces collected from the

incoming and outgoing interfaces of the firewall. (2) Remote

measurements are based on the packet traces collected from

the PMTA’s incoming and outgoing interfaces. The local

measurements of PPT are more accurate than the remote

measurements of PPT, but they require (1) local access to the

firewalls and (2) the firewall interface must support packet

analyzers which dump packets passing through the firewall’s

interfaces. In contrast to local, the remote measurement of

PPT includes the packet transmission time, which reduces the

accuracy. Because FW3 does not support any packet analyzers,

we use local measurement for FW1 and FW2 as well as remote

measurement for all three firewalls to compare between them.
B. Packet Classification Algorithm

Identifying the exact packet classification algorithm that the

firewall uses is very difficult if we treat the firewall as a black

box. However, we can design experiments to test (1) whether a

firewall adopts a sequential search based algorithm for packet

classification, (2) whether the performance of a firewall is

sensitive to its traffic load; and (3) how a firewall performs

in terms of the PPT.
1) Using Sequential Search: To test if a firewall uses

sequential search for packet classification, we generate a

sequence of probe packets where each packet matches exactly

one of the rules in the firewall policy. We then measure the

PPT for the probe packets. If the PPT increases linearly as

we progress further down the rule list, it is likely that the

firewall uses a sequential-search-based approach for packet

classification. If the PPT exhibits a different change pattern

or lack of change (i.e., remains flat), the packet classification

algorithm used by the firewall is not sequential-search-based

and could be any of other algorithms described in Section

III-C. We repeat this test 10 times and compute the median

value of the PPT. The median value is preferred over mean

value because it is less sensitive to outliers, which can be

caused by the variability of network congestion and interface

packet buffering, especially when the firewalls are under load.

Figure 2 shows the median value of the PPT.

Figures 2 (a) and (b) show the median value of PPT

measurements with and without background traffic load for

FW1. Using the remote measurement method, we observe

that the median PPT increases as the rule index when there

is no background traffic load. A similar increasing trend is

also observed on median PPT under background traffic load

when the local measurement method is used. The slopes for the

regression lines for PPT of FW1 using remote measurement

in Figure 2(a) for with-load and no-load curves are 0.1176

and 0.1645, respectively. Similarly, the corresponding slopes

for curves in Figure 2(b) are 0.1411 and -0.0317, respectively.

This observation implies that FW1 is likely to use a sequential-

search-based packet classification algorithm. The very small

negative slope of the median PPT using local measurement

under no background traffic load may indicate that FW1 uses

some type of rule pre-fetching or caching, yet as the slope is

very small the effect is not significant.

The results for FW2 (shown in Figures 2 (c) and (d)) suggest

similar sequential-search-based classification algorithms, espe-

cially when the firewall is under load. The slopes for regression

lines for PPT curves for with and without background traffic

load in Figure 2(c) are 0.1339 and 0.0208, respectively.

Similarly, the corresponding slopes for PPT curves in Figure

2(d) are 0.3809 and -0.0073, respectively. We can also observe

that FW1 and FW2 has considerably different transmission

delay especially when FW1 is under load by comparing

the differences between graphs in remote measurement (i.e.,

Figures 2(a) and (c)) with their corresponding ones in local

measurement (i.e., Figures 2(b) and (d)). Since the experiment

environment is the same for FW1 and FW2, it seems that such

difference is due to the different queuing implementation in

FW1 and FW2, yet because we do not have access to both

firewalls source codes, it is difficult to ensure.

We have different observations on median PPT for FW3.

The slopes for regression lines for PPT curves for with and
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Fig. 2. The PPT for probe packets that match against a rule in the firewall policy



without background traffic load in Figure 2(e) are 0.0033 and

0.0082, respectively. The fairly flat regression lines for FW3

implies that FW3 likely uses some other techniques rather

than sequential search for packet classification. As FW3 is

a hardware firewall using TCAM-based packet classification

methods, we believe it uses parallel exhaustive search.
2) Sensitivity to Traffic Load: Using the same experimental

settings, we also evaluated the sensitivity of firewall perfor-

mance to traffic load. We observe that, among all firewalls,

FW1 is the most sensitive and FW3 is the least sensitive to

the traffic load. Considering remote measurements shown in

Figures 2 (a), (c), and (e), the median PPT of firewalls with

background traffic load is 4.6034, 2.7385, and 0.9874 times

larger than the median PPT of firewalls with no background

traffic load for FW1, FW2, and FW3, respectively.
We observe that the PPT curves for FW1 and FW2 have

sharper slopes when the firewalls are under the load. This

implies that the packet classification mechanism, including

packet classification algorithm and possible caching scheme,

depends on the current traffic and load on the firewall.
We also find that the traffic load on the firewall has an

impact on the variance and dispersion of the PPT of probe

packets, which directly relate to the stability of the firewall

and firewall packet reordering. Figure 3 shows the standard

deviation (STD) of the PPT for probe packets. We observe in

Figure 3(a) that on average the STD of the PPT for FW2 has

52.4749 times larger than that for FW1 in local measurements.
To show the relation between the STD of the PPT of

probe packets in local and remote measurement, let SL
i and

SR
i denote the vector of PPTs obtained in local and remote

measurements for the i-th firewall, respectively. Let T denote

the transmission delay from PMTA to the firewall and from

the firewall to PMTA. Therefore, SR
i = SL

i + T . The STD

of the PPT for local measurement can be calculated from the

STD of the PPT for remote measurement as follows:

STD(SR

i
) = STD(SL

i
+ T ) =

√

STD(SL

i
)2 + STD(T )2 + COV (SL

i
, T )

As PPT and transmission time are independent,

COV (SL
i , T ) = 0. Also, STD of transmission time

can be represented by a constant vector c . Hence,

STD(SL
i ) =

√

STD(SR
i )

2 − c2. Note that the transmission

time and its standard deviation can be different based on the

load on the firewalls and the way the firewalls handle queuing

and packet forwarding. With that in mind, Figure 3(b) shows

the STD of the firewall PPT calculated from the remote

measurements. We observe that, on average the STD of PPT

on FW2 is 1.7910 and 33.3 times larger than those on FW1

and FW3, respectively. In conclusion, the hardware firewall

(FW3) shows less sensitivity to the traffic load and seems

to be more stable in terms of performance under different

network traffic loads.
3) Average PPT: In general, Figure 2 shows that FW3

yields the lowest PPT regardless of the background traffic load

on the firewall. The average PPTs without background traffic

load on FW1, FW2, and FW3 are 151.7891, 77.5470, and

60.3360 microseconds in the remote measurements (shown in

Figures 2 (a), (c), and (e)), respectively. Similarly, the corre-

sponding figures with traffic load on FW1, FW2, and FW3 are
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Fig. 3. The STD of the PPT for probe packets that match against a rule in
the firewall policy

672.8522, 98.7970, and 57.8777 microseconds, respectively.

However, in the local measurements (shown in Figures 2 (b)

and (d)), FW1 and FW2 have similar average PPTs (50.3710

and 49.7796 microseconds, respectively) when there is no

background traffic load on the firewalls. On the other hand,

when there is background traffic load on the firewall, the aver-

age PPTs for FW1 and FW2 are in turn 126.7352 and 92.8078

microseconds. This result again indicates the high sensitivity

of FW1 to the traffic load. Overall, FW3 outperforms FW1 and

FW2 with the lowest average and minimum STD of PPTs, and

the least sensitivity to the traffic load.

C. Caching and Statefulness
As explained, modern firewalls often use different caching

mechanisms for rule and flow caching to reduce the per-

formance overhead of packet classification. To identify if a

firewall uses caching and how effective the caching is, we

define cache effectiveness (C) as the ratio of the PPT for the

first probe packet in a sequence of probe packets, whose header

is not in the cache table, to the median PPT of the rest of

the probe packets in the same sequence, whose headers are

supposedly in the cache. If C > 1, the firewall uses caching

effectively. If C ≃ 1, the firewall either does not use caching,

or the caching that the firewall uses is not effective.

In our experiments, we measure the firewall’s C value as

follows. For each experiment we first send 10 probe packets

and measure the PPT for each probe packet and calculate C

value accordingly. The C value reported in this paper is the

median C values for 10 repeated experiments. To determine

the effectiveness of a firewall caching in stateless and stateful

modes, we conduct experiments using four types of probe

packet modes: TCP Fix, TCP Vary, UDP Fix, and UDP Vary.

If the firewall has effective caching in TCP Fix and UDP Fix

probe packets, it means that the firewall caches all 5 packet

header fields in its cache table, i.e., it performs flow caching.

However, if a firewall has effective caching in TCP Vary and

UDP vary probe packets, it means the firewall caches only 4

packet header fields (excluding source port) in its cache table.

i.e., it performs rule caching.

Table II presents the C values calculated based on local

and remote measurements for experiments on three firewalls

FW1, FW2 and FW3. In the local measurements, the results

show that FW1 performs very effective flow caching on

UDP packets as the cache effectivenesses for UDP Fix are

significantly more than 1 (7.4931 < C < 16.75). However,
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Fig. 4. The remote PPT for probe packets with different packet payload sizes

FW1 flow caching on TCP packets is not as effective since

the cache effectivenesses for TCP Fix are variable around 2

(1.9038 < C < 2.3411). In addition, the results imply that

FW1 does not support rule caching because the cache effec-

tivenesses for UDP Vary and TCP Vary are around 1. However,

there is one exception case where the cache effectiveness for

TCP Vary probe packets when FW1 is under the background

traffic load and configured in stateless mode is 3.2020. This

could be an indication of some caching mechanisms that are

enabled when FW1 is under load.

For FW2, the caching effectivenesses for UDP Fix and TCP

Fix experiments range from 5.4214 to 9.8167, while the cor-

responding figures for UDP Vary and TCP Vary experiments

range from 2.8588 to 4.6833. Because the cache effectiveness

values for FW2 are much larger than 1 for all experiments,

it seems that FW2 uses rule caching. In addition, because the

cache effectivenesses for UDP Fix and TCP Fix experiments

are larger than those for UDP Vary and TCP Vary experi-

ments, seemingly the FW2 uses separate flow caching and

rule caching mechanisms. Comparing the cache effectiveness

results for FW1 and FW2, the flow caching mechanism on

FW1 is more effective on UDP packets, whereas the flow

caching mechanism on FW2 is more effective on TCP flows.

In the remote measurements, the transmission delay is quite

larger than the actual PPT. Therefore, the cache effectiveness

calculated based on remote measurement are not as expressive.

However, there is one exception where FW3 has a cache

effectiveness of larger than 2 in UDP Fix probe packets when

FW3 is in the stateful mode. The result indicates that FW3

performs flow caching in this typical case. In addition, we

find a unique feature on FW3. When FW3 is in stateful mode,

once PMTA sends the first TCP SYN packet, FW3 does not

accept any other TCP packet with the same packet header

for a while until it receives a TCP ACK packet from the

packet destination. Thus, calculating C for TCP Fix for FW3

in stateful mode is not applicable.

Another observation that we can make from the results is

that in most of the cases, the cache effectivenesses when a

firewall does not have background traffic load are slightly

higher than those when a firewall has background traffic load.

One possible explanation is that when a firewall is under load,

the cache table has a large number of entries. This results

in longer search time (and PPT) for the rest of the probe

packets. This makes the cache less effective compared to no-

load experiments, where the firewall’s cache table has a small

number of entries.

D. Impact of Packet Protocol and Payload Size
Firewalls usually perform queuing management techniques

to improve their PPT. Such techniques can be made to be

aware of the protocol and payload size of packets. In order to

evaluate the impact of packet protocol and payload size, we

Local Measurement
Stateful Stateless Stateful Stateless

UDP Fix UDP Vary UDP Fix UDP Vary TCP Fix TCP Vary TCP Fix TCP Vary

FW1
no load 10.4000 1.0315 16.7500 1.1943 1.9038 0.8723 2.3043 0.8000

with load 7.4931 0.9690 10.7955 0.9725 2.3411 0.9050 2.2195 3.2020

FW2
no load 8.2333 4.9444 8.6000 4.9500 9.8167 4.6833 8.2727 4.5424

with load 5.4214 4.4446 5.9857 4.0451 8.0074 2.8588 9.0727 3.7576

Remote Measurement
Stateful Stateless Stateful Stateless

UDP Fix UDP Vary UDP Fix UDP Vary TCP Fix TCP Vary TCP Fix TCP Vary

FW1
no load 1.7246 0.9455 1.6800 0.9334 1.3957 0.9692 1.4286 0.9870

with load 0.9999 1.1088 1.2151 1.0010 1.2243 0.9883 1.1185 1.1378

FW2
no load 1.0103 0.9393 0.9825 0.9576 1.1181 0.9240 0.9560 0.8733

with load 0.9938 0.9141 1.3036 0.8373 1.1909 0.5466 1.0971 0.9068

FW3
no load 2.3172 0.9442 0.8090 0.8148 – 0.9756 0.7975 0.8062

with load 2.1525 0.9318 0.8692 0.8354 – 0.9841 0.7725 0.8540

TABLE II
CACHE EFFECTIVENESS BASED ON LOCAL AND REMOTE MEASUREMENTS



configure all three firewalls in the stateless mode and repeat

the same set of experiments while varying the packet payload

size. Figure 4 shows the median PPT results for packet payload

size of 0, 500, 1000, 1400 bytes.

We have three main observations from the results. First,

Figures 4(a), (b), (d) and (e) show that software firewalls FW1

and FW2 have different PPT in TCP Fix, TCP Vary, UDP Fix,

and UDP Vary experiments. We observe that the PPTs are

smaller in TCP Fix and UDP Fix probe packets than those in

TCP Vary and UDP Vary probe packets. This can be a result

of effective flow caching on FW1 and FW2. More specifically,

this observation on FW2 seems to indicate that flow caching is

more effective than rule caching on FW2. Note that the above

observations are made regardless of the packet payload size.

However, Figures 4(c) and (f) shows that FW3 has the same

PPT for all of the TCP Fix, TCP Vary, UDP Fix, and UDP

Vary packets. This indicates that if FW3 has the same rule

caching mechanism for all TCP and UDP packets (when it is

in stateless mode). Second, the results in Figures 4(a), (b), (d)

and (e) indicate that the packet payload size does not impact

the PPT on FW1 and FW2. However, Figures 4 (c) and (f)

show that the PPT increases linearly with regression slope of

0.1945± 0.0014 as the packet payload size increases. Finally,

we observe from Figure 4 that the impact of packet protocol

and payload size on PPT is independent from whether the

firewall has background traffic load.

VI. FIREWALL INFERENCE
The first step toward defeating an opponent is to know

them – the same principle applies when it comes to attacking

a firewall. If attackers can successfully infer the type (e.g.,,

vendor/version) and the characteristics (e.g.,, statefulness) of

the target firewalls, they can potentially render a much more

effective attack. In this section, we examine the feasibility of

firewall implementation inference using probe packets.

Our approach is motivated by the wide range of so-called

operating system (OS) fingerprinting [20]–[22] techniques.

The idea is that different OSes respond to non-conforming pro-

tocol (such as TCP, HTTP) interactions differently. By tracking

the error-handling responses, one may uniquely identify the

OS of the target host. In our case, we study the decision of

firewalls for sequences of TCP probe packets with varying

TCP header flags – the decision of the firewall is limited

to a binary sequence of whether the corresponding packet

is accepted or discarded by the firewall. To distinguish the

firewall’s accept/discard decision due to its configured policy,

we force all probe packets in the same sequence to share

the same source IP, destination IP and destination port. This

ensures that these probe packets hit the same firewall rule

in the typical firewall settings. However, in some uncommon

cases, certain types of firewalls support policies that are

based on TCP flags in addition to the other common TCP

header information. This makes our binary sequence decision

unreliable. Hence, we further supplement the decision binary

sequence with the PPT of the probe packets and use them

to infer the target firewall implementation. Note that in the

remainder of the paper, all PPTs are measured remotely.

To extract the firewall behavior fingerprints and construct

classifiers, we first establish a controlled environment, which

includes various candidate firewalls of interest, devices outside

the firewall that can be used to launch probe packets and

devices behind the firewall that can be used to receive the

probe packets and measure the delays. The testbed network

shown in Figure 1 is an example of such a set up. The

signatures and classifiers identified herein can then be applied

in the “battlefield”. We next describe in detail the methodology

we applied for firewall implementation inference and present

the result for the three firewalls in our testbed. While our

testbed is limited to the three different firewalls available to us,

we believe that our methodology is more generally applicable

for fingerprinting other firewalls in the market.

A. Firewall inference using TCP Probe Packets
As there are eight different TCP flags defined in a TCP

header, one can construct 28 different combinations in each

probe packet. This can be further compounded by the per-

mutations of different probe packet sequences. In our limited

testbed case, we find that it is sufficient to use two consecutive

probe packets to distinguish the behavior of different firewalls

(and different modes – stateful and stateless). We show the

results when we enable the TCP SYN flag along with one other

TCP flag in each of the two packets. Table III and Table IV

present the results for the stateful and the stateless firewalls,

respectively. For the ease of presentation, we condense the

information in the table such that the columns represent the

different TCP flags enabled in the first probe packet (besides

the TCP SYN flag) and the rows represent the different TCP

flags enabled in the second probe packet (besides SYN flag).

In each cell, there are three indicators representing the firewall

decision from the firewall FW1, FW2 and FW3 respectively.

Indicator “*” means that both probe packets are accepted by

the firewall and successfully received at the device behind the

firewall; indicator “-” means that one or both probe packets are

discarded, or more strictly speaking, missed by the receiver.

URG FIN RST PSH ACK ECE CWR

URG **- **- -*- **- -*- **- **-
FIN **- -*- **- **- **- **- **-
RST -*- **- **- **- -*- -*- -*-
PSH **- **- **- **- -*- -*- ***
ACK -*- **- -*- -*- -*- -*- -*-
ECE **- **- -*- -*- -*- **- ***
CWR **- **- -*- *** -*- *** **-

TABLE III
STATEFUL FIREWALL

URG FIN RST PSH ACK ECE CWR

URG *** *** -** *** *** *** ***
FIN *** -** *** *** -** *** ***
RST -** *** *** -** *** *** ***
PSH *** *** -** *** *** *** ***
ACK *** -** *** *** -** *** ***
ECE *** *** *** *** *** *** ***
CWR *** *** *** *** *** *** ***

TABLE IV
STATELESS FIREWALLS

The result in Table III and IV demonstrates that tracking

the firewalls’ feedback to well-crafted TCP probe packets can

be effective in obtaining valuable information to distinguish

different firewalls. Unlike FW1 and FW3 that filter out some

probe packets, for the stateful and stateless setting of FW2,

both probe packets have passed through the firewall in all

98 cases. While our example uses certain combinations of

TCP flags, other combinations can prove useful for other



firewall types and settings. We next demonstrate that one can

use supplement information from the PPTs for better firewall

implementation inference.
B. Firewall inference using Packet Processing Time

Although firewall fingerprinting using a sequence of TCP

packets is a deterministic method used to infer firewall imple-

mentation, firewall rules on TCP flags can change the default

decision of the firewall and cause misidentification of the

firewall implementation. Thus, we propose an alternate method

to use implementation characteristics including PPT and cache

effectiveness to infer firewall implementation and its stateful-

ness. In this method, we build a classification model for each

firewall and for their statefulness modes based on their median

PPT, STD of the PPTs, and cache effectiveness. We then use

this classification model to infer firewall implementation.

To build a classification model and analyze its accuracy,

we first create a dataset containing 3,600 data points. For

each data point, we send 11 consecutive probe packets in

four different modes (TCP Fix, TCP Vary, UDP fix and UDP

vary) with and without payload (total of 8 times). Each data

point is represented by x = 〈x1, · · · , x24〉 that has 24 features

where x3i−2 is the median of the PPTs, x3i−1 is the STD

of the PPTs, and x3i is the cache effectiveness for the 11

probe packets. The data points are collected when the firewalls

are under three different load levels: no load, medium load,

and full load. We also use three set of labels: the labels for

the firewall type (Y1 ={‘FW1’,‘FW2’,‘FW3’}), the labels for

the firewall statefulness (Y2 ={’stateful’, ’stateless’}), and

the labels for firewall type and statefulness (Y3 ={‘FW1-

SF’,‘FW2-SF’,‘FW3-SF’,‘FW1-SL’,‘FW2-SL’,‘FW3-SL’}).

For the classification, we use multi-class Support Vector

Machines (SVMs) with Radial Basis Function (RBF) kernel

with parameters, (γ=0.01, C=500). Note that the value for RBF

kernel parameters have been chosen by model selection algo-

rithms that we used to maximize the classification accuracy.

We conduct classification separately for each set of labels,

under two conditions (1) if the attacker somehow knows the

firewall load and (2) if the attacker does not know the firewall

load when he tries to infer firewall implementation.

The classification problem under first condition is a classic

one, where the data point is x with an additional feature of

firewall load level, denoted by z. However, the classification

problem under the second condition is not as straightforward.

When we train the classifier we know the firewall load level,

but when we use it for testing we do not know the load

level. To solve this problem, we first formulize the problem

as follows:

P (Y |x) =
∑

z

P (Y, z|x) =
∑

z

P (Y |z, x)P (z|x) (1)

Formula 1 indicates that we need two probabilistic classi-

fiers: the first one is to speculate the firewall load level (z)

given test data point (x), and the second classifier is to predict

the firewall label, given the test data point and the speculated

load level. Using the probabilistic classifiers, we first calculate

the probability of each label for a given data point and then

choose the label with the highest probability as the final label

of the data point. For the probabilistic classifier, we use multi-

class libsvm with probability estimates [23].

Before classification, we use feature selection to maximize

classification accuracy rates. By using feature selection, we

not only alleviate the curse of dimensionality, but also find

the most important and distinctive features in our feature set.

Thus, we use Sequential Forward Searching (SFS) algorithm

[24] for feature selection for each set of labels. The results

indicate that: (1) To infer the firewall implementation, we only

need 6 features that contain median of PPTs for probe packets

in TCP Fix and TCP Vary modes with payload, and cache

effectiveness for all probe modes with payload. (2) To infer the

statefulness, we need 16 features that contain all probe packets

with payload features as well as cache effectiveness of probe

packets with no payload features. (3) To infer the firewall

implementation and statefulness, we need 7 features that

contain the cache effectiveness for all probe test modes with

payload, median of PPTs for probe packets in TCP Fix and

UDP Vary modes with payload, and cache effectiveness for

probe packets in UDP Vary mode with no payload. Note that

when using different methods of classification, the important

features may be different. However, our results show that the

most distinctive features are the cache effectiveness for the

probe packets with payload, which complies with Figure 4.

Y1: Firewall Type - Known Load
Accuracy Misclassification

Total 94.56% FW1 FW2 FW3

FW1 100% - 12.13% 0.54%
FW2 84.36% 0% - 0.35%
FW3 99.11% 0% 3.51% -

Y1: Firewall Type - Unknown Load
Accuracy Misclassification

Total 94.61% FW1 FW2 FW3

FW1 100% - 12.41% 0.63%
FW2 84.58% 0% - 0.30%
FW3 99% 0% 3.01% -

TABLE V
ACCURACY AND MISCLASSIFICATION FOR FIREWALL TYPE LABELS

The accuracy results for the classification under two condi-

tions for each set of labels are reported in Tables V, VI, and

VII. The results are the mean of 10 cross-validation accuracy

and misclassification results for the dataset.

The results in Table V indicate that we can predict the

firewall implementation with 94.56% and 94.61% accuracy

for known and unknown load, respectively. The results also

show that while the accuracy of predicting FW1 is 100%,

the accuracy of predicting FW2 is 84.36% (and 84.58% for

unknown load) because in 12.13% (and 12.41% for unknown

load) of the time it is misclassified by FW1. The closeness of

the accuracy rates for known and unknown load assumptions

show that the firewall load level plays an insignificant role in

classification. Yet for other classification methods or other set

of firewalls, the firewall load level may be an important factor

in classification. Thus, it should not be overlooked.

The results in Table VI show that we can predict the state-

fulness of the firewall with 85.79% and 85.72% of accuracy

for known load and unknown load, respectively. Surprisingly,

the accuracy rate is very good knowing that the statefulness

of a firewall has a trivial impact on the PPT.

The results in Table VII show that we can predict the type

of a firewall and its statefulness with 74.04% and 74.06%

of accuracy for known load and unknown load, respectively,



Y2: Statefulness - Known Load
Accuracy Misclassification

Total 85.79% Stateful Stateless
Stateful 89.49% - 17.76%
Stateless 82.24% 10.51% -

Y2: Statefulness - Unknown Load
Accuracy Misclassification

Total 85.72% Stateful Stateless
Stateful 89.60% - 18.01%
Stateless 81.99% 10.40% -

TABLE VI
ACCURACY AND MISCLASSIFICATION FOR

STATEFULNESS LABELS

Y3: Firewall Type and Statefulness - Known Load
Accuracy Misclassification

Total 74.04% FW1-SF FW2-SF FW3-SF FW1-SL FW2-SL FW3-SL
FW1-SF 69.39% - 2.17% 0.92% 20.55% 5.19% 0%
FW2-SF 59.68% 0% - 1.62% 15.02% 44.54% 1.87%
FW3-SF 97.48% 0% 0% - 0% 0% 0%
FW1-SL 79.03% 30.61% 6.77% 1.60% - 7.82% 0%
FW2-SL 41.30% 0% 28.16% 0% 0.42% - 0%
FW3-SL 98.13% 0% 3.22% 0% 0 % 1.16% -

Y3: Firewall Type and Statefulness - Unknown Load
Accuracy Misclassification

Total 74.06% FW1-SF FW2-SF FW3-SF FW1-SL FW2-SL FW3-SL

FW1-SF 69.39% - 2.32% 0.92% 20.62% 5.27% 0%
FW2-SF 59.53% 0% - 0% 0% 44.31% 1.96%
FW3-SF 97.39% 0% 0% - 0% 0% 0%
FW1-SL 78.95% 30.61% 6.77% 1.69% - 7.82% 0%
FW2-SL 41.76% 0% 28.35% 0% 0.42% - 0%
FW3-SL 98.04% 0% 3.03% 0% 0% 0.84% -

TABLE VII
ACCURACY AND MISCLASSIFICATION FOR FIREWALL TYPE AND STATEFULNESS LABELS

which is relatively good as we have six classes and random

classification accuracy rate is 16.67%. As show in Table V,

FW1 is classified with high accuracy, while FW2 is classified

with relatively low accuracy. Inferring FW3, on the other hand,

can be done with very good accuracy. The misclassification

rates also suggest that both stateful FW1 and FW2 are mis-

classified as stateless FW1 and FW2 with high probability of

30.61%.

If we use a different set of firewalls we may have different

results for accuracy and misclassification rates. However, the

results for this set of firewalls indicate that an attacker can

effectively use these two methods to predict a network firewall

and design attacks accordingly to either seriously impact

performance or exploit possible vulnerabilities. Nevertheless,

in practice, the accuracy results will be lower because of the

impact of the transmission delay induced by other middleboxes

along the probe path. Yet, the attacker can obtain the number of

routers in the probe path (using tools such as traceroute)

and build a similar testbed for learning to reduce such impact.

VII. CONCLUSION AND FUTURE WORK

In this paper, we present methods for finding the firewall

characteristics that are introduced by firewall implementations.

Such characteristics can be exploited by attackers to identify

black box firewalls with high accuracy and launch effective

attacks on firewalls. We show two methods for inferring

firewall implementation using these characteristics. The first

method is based on the firewall decision on a sequence of TCP

packets with unusual flags, which could be used as a firewall

fingerprint for identification. The second method is based on

machine learning techniques. As future work we are willing

to propose defense mechanisms from the firewall adminis-

trators’ perspective, particularly in preventing attackers from

gaining information about the deployed firewall and hence

forcing attackers to use less-effective and blind attacks. Such

mechanisms are designed to increase the chance of incorrect

firewall implementation inference by concealing firewall TCP

flag fingerprints and obscuring the pattern in probe PPT. To

evaluate the effectiveness of these defense mechanisms and

measure their impact on firewall performance, we need to

conduct extensive experiments, for which we will need to

expand our testbed.
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