
PERFORMANCE ANALYSIS OF IEEE DEFINED LDPC CODES UNDER
VARIOUS DECODING ALGORITHMS AND THEIR IMPLEMENTATION ON

A RECONFIGURABLE INSTRUCTION CELL ARCHITECTURE

ABSTRACT

This paper builds a real time Programmable LDPC
Decoder for decoding codes specified in IEEE 802.16
standard and discusses their performance under
various decoding algorithms. Out of the decoding
algorithms, the modified Min-Sum SPA is selected for
implementation and optimization on a reconfigurable
instruction cell architecture. Different general and
architecture specific optimization techniques are
applied to enhance the throughput. With the
architecture, a throughput of 20 Mbps has been
achieved.

I. INTRODUCTION
In this paper, we present implementation of a real time

programmable LDPC decoder that can support IEEE defined
LDPC codes [1]. Each code rate and code length is
supported by different parity check matrices that are
computed in real time from the model matrices stored in the
memory. The proposed architecture can be implemented in
ASIC, FPGA or DSP. We implemented it on a reconfigurable
instruction cell architecture [2]. This architecture belongs to
the emerging field of Reconfigurable Computing and is an
effort to combine the flexibility and programmability of DSP,
performance of FPGA and low power consumption of ASIC
in one unified core so that the core can meet the
requirement of next generation mobile systems.

Variable Node Processors: Each variable node in LDPC
decoder receives one message)0(

vLLR from the channel

and one message i
cvLLR for the corresponding check

nodes to which it is connected. In every iteration, a variable
node has to calculate two messages: one i

vcZ for each
check node and the other a-posteriory LLR estimate

 ∑+=

cvCc

i
vcv

i
vc LLRLLRZ

\)('
'

0

ε
 (1)

i
vA for the bit in the frame which it represents. Here C(v) is

the set of neighboring check nodes of variable node v.

 Figure 1: (LDPC Decoder)

∑+=
)('

'
0

vCc

i
vcv

i
v LLRLLRA

ε
 (2)

Check Node Processors: Each check node gets the LLR
values from the variable nodes to which it is connected and
performs parity checks. The valid codeword is the word for
which all the parity check equations from all the check nodes
are satisfied. The message from check node ‘c’ to a variable
node ‘v’ is given in equation (3).

 (3)

)
1
1log()]2/log[tanh()(

))(().(
\)(' \`

1
'

1
'

−
+=−=

= ∏ ∑ −−

x

x

vcVv iVi

i
cv

i
cv

i
cv

e
exx

ZZsignLLR
j

φ

φφ
ε ε

Zahid Khan, Tughrul Arslan, Ahmet T. Erdogan, Sami Khawam, Ioannis Nousias, Mark Milward,
Ying Yi

System Level Integration Group

School of Engineering and Electronics,
The University of Edinburgh, Scotland, UK

z.khan@ed.ac.uk, Tughrul.Arslan@ee.ed.ac.uk

131

(The V(c) represents the set of neighboring variable nodes of a
check node c)

There is an approximation for (3) similar to the Max-Log-
MAP algorithm known as min-sum decoder

∏ −− ⋅≅
vcVv

i
cv

i
cvvcVv

i
cv ZsignZLLR

\)('

1
'

1
'\)('

)(min
εε

 (4)

The performance of the min-sum is improved with density
evolution of β=0.25

)0,max()(β−⋅← i
cv

i
cv

i
cv LLRLLRsignLLR (5)

A. Real Time Programmable LDPC Decoder

A real time Programmable LDPC Decoder is shown in
Figure 1. It has two sections. The first section shown in
Figure 1.B generates the interleaver and the maximum count
for the check and variable nodes while the second section
shown in Figure 1.A performs the actual decoding based on
the information got from section 1.B. First Base Matrix is
generated from the model matrices depending upon a
particular code length and code rate. The base matrix is then
applied to the interleaver generation block to generate
interleaver as well as the maximum count for the check and
variable nodes. They are then applied to concerned blocks in
section 1.A for real time configuration.

II. SIMULATION OF ALGORITHMS FOR DECODING IEEE
DEFINED LDPC CODES

The encoder and decoder are simulated for sample code
length of 576, rate ½. The Eb/No values chosen is from 0 to
3.5 with 10,000 frames used for a particular Eb/No value.
The algorithms simulated include Min-Sum BPA, LLR-BPA,
Offset BPA with density evolution factors of 0.15 and 0.25.
The performance of decoding algorithms depends upon the
structure of LDPC codes. Therefore, the results shown in
Figure 2-3 provide performance figures for the irregular code
as specified in the IEEE P802.16e/D7 specification. Figure 3
provides BER performance of Min-Sum SPA for varying
number of maximum decoder iterations. Four different
values were chosen for the maximum decoder iterations and
they are 5, 10, 15 and 50. The 10 iterations provide
acceptable BER performance and can be selected as the
maximum decoder iteration for implementation on either
DSP or a reconfigurable fabric. Figure 2 provides results for
different decoder algorithms keeping the maximum iteration
constant at 10. The algorithm chosen for optimization is the
Min-Sum SPA with density evolution of 0.25.

The performance of decoding algorithm varies from one
type of LDPC coding to another and is therefore dependent
upon the type of coding selected. Since this is the first kind
of implementation for this type of coding, exact comparison
cannot be carried out due to non-availability of the previous
work done on the LDPC coding for WiMax applications.
However, approximate comparison can be made with the
implementations carried out in the literature. For example, [3]
has carried out an FPGA implementation of the Min-Sum
SPA algorithm and its modified version. The result of the
Min-Sum as depicted in Figure 2 is comparable with the
result of the improved min-sum algorithm in [3] though the
result in [3] has been obtained for 20 iterations as opposed
to the 10 iterations.

Another implementation of the Min-Sum algorithm for

0 0.5 1 1.5 2 2.5 3 3.5 4
10

-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

Eb/No

B
E

R

Performance of decoding algorithms for Rate=1/2, length=576, 10 Iterations

Min Sum SPA
LLR-SPA
Offset BPA (b=0.15)
Offset BPA (b=0.25)

Figure 2: (Performance of different decoding algorithms)

0 0.5 1 1.5 2 2.5 3 3.5 4
10

-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

Eb/No

B
E

R

Performance of Min Sum SPA for Code Rate=1/2 and Length=576

5 Iterations
10 Iterations
15 Iterations
50 Iterations

Figure 3: (BER Performance of Min-Sum Algorithm under different

decoding iterations)

irregular LDPC code with code length 1268 is done in [4].
The results presented in this report are much better than the
result of the ideal min-sum implementation presented in [4].
The same is true with the result shown in [5]. With [6] the
results are comparable. The implementation in [7] results in
better performance compared to this implementation. This
can be the result of density evolution function which is most
suited for that particular type of LDPC coding.

Overall there are merits and demerits of this
implementation compared to the work in the literature. As far
as the ideal Min-Sum is concerned the performance is either
better or comparable to that in the literature. However,
certain implementations of the modified Min-Sum are better
than this implementation but this should not be taken as the
argument to question this implementation as it is targeted for
different types of LDPC coding.

III. OPTIMIZATION ON THE RECONFIGURABLE
ARCHITECTURE (RA)

The simulation results for the un-optimized ‘C’ code on the

RA are presented below:

132

Time for calculating H matrix and Interleaver = 14925.8 µsec
Steps taken = 2141433
Initial execution time for the decoder = 15062.7 µsec
Steps taken = 2165765
Execution Time per iteration for the decoding
blocks used in actual decoding = 135 µsec
Throughput per iteration = 572/135 = 4.3Mbps
Total number of iterations = 10
Net throughput = 0.43 Mbps
Throughput per iteration of StarCore = 9 Mbps
Net throughput on StarCore (10 iterations) = 0.9 Mbps

The straightforward implementation of decoder on the RA

proved to be 52% slower than StarCore. The throughput is
improved through optimizing check and variable node
decoders and using packed computation.

IV. OPTIMIZATION OF VARIABLE NODE DECODER

Optimization is carried out using the following techniques.

Loop distribution: The initial implementation of variable

node decoder contains only one major loop and the code
inside the loop supports all code rates and code lengths.
Different number of memory read and write operations are
associated with each code rate as well as with different
variable nodes which are separated using ‘if’ statements.
This type of coding style though very compact is highly
complex for the architecture compiler to optimize due to a
large number of conditional ‘if’ statements and read/ write
memory operations. Separate code is written to support a
specific code rate. Inside the ‘C’ code that supports only one
code rate, the major loop has been broken into several sub-
loops. For the case of ½ code rate, the major loop that
iterates a maximum of 576 times, has been broken into three
sub-loops: These support processing of 4, 7 and 3
messages. Loop distribution has facilitated further
optimization and reduced some redundant statements and
branching.

Hardware Multiplexing: The use of ‘if’ statement causes
jumps which not only time but also power consuming in the
cell based architecture. The ‘if’ conditional statements are
reduced to as much as possible and the irreducible ones are
replaced with multiplexers.

Memory Access Reduction: In variable node decoder,
four different memory arrays are used. They are
PtrtoexplicitVnDist, Ptrtoy, Message_Memory and PtrtoLQi.
The first stores the number of check nodes that are
connected to a particular variable node. The second stores
the channel symbols. The third stores LLR messages from
variable to check nodes and vice versa. The fourth stores
the LLR for the code bits. Out of the four, two arrays
PtrtoexplicitVnDist, Ptrtoy are always read, PtrtoLQi is
always written while Message_Memory is read as well as
written in any iteration. The array PtrtoexplicitVnDist can be
removed by using the Loop distribution. Since separate sub-
loops are used. These sub-loops have the priori information
about the number of messages to be read or written into the
Message_Memory, hence the array can be avoided. The
removal causes significant reduction in execution time.

Parallel execution of Variable node processors: The
architecture has 16 memory read and write interfaces that
can support 16 bytes of data to be read as well as written in

one memory access time. This allows us to implement
several variable node processors in parallel by unrolling the
sub-loops. E.g. we can unroll the sub-loop that reads two
messages from the Message_Memory as well as one from
the Ptrtoy array by 5 and can read the 10 bytes from
Message_Memory in one memory access time and the 5
bytes from the Ptrtoy array in another memory access time.
Thus, 5 two-message variable node processor (Figure 3)
can be executed in parallel. The number of
adders/subtractors, shift registers and temporary registers
are also increased to accommodate the parallel execution of
the variable nodes. This caused tremendous reduction in
execution time.

With these optimizations, the execution time for
processing 576 variable node processors (frame size is 576)
came out to be 12.124 µsec per iteration.

Pipelining the code: Each variable node processor has
three operations: memory read, computation and memory
write. If they are pipelined, the architecture can be clocked at
a frequency higher than the frequency used by the
combinational counterpart. This will reduce the execution
time by almost 3 times. All it needs is to bring the loop inside
one step. Within one step, the loop jumps to itself and can
be pipelined. The number of resources is increased to bring
the loop inside one step. Another necessary condition
observed with the RA compiler for bringing the code to one
step is to make the limit of the loop a constant. This is done
by writing separate functions for each code length. This
increased the size of the code but also made it possible to
bring the code inside one step which is necessary for
throughput enhancement.

The step is pipelined by inserting registers between
memory read, computation and memory wirte blocks. The
pipelined ‘C’ code runs three times faster. With pipelining, a
reduction of 2.5 times has been achieved. The execution
time for the VNode_Decoder came out to be 4.85 µsec per
iteration. The Check Node Decoder is similarly optimized.

Pipelining is also used in the initial memory setup and
code write up. The overall execution time is is given below

C Node Decoder = 3.5 µsec per iteration
V Node Decoder = 4.85 µsec per iteration
Interleaver = 0.72 µsec
Initial Memory Setup = 4.84 µsec
Code Write Up = 1.28 µsec

The overall execution time for 10 iterations is

(3.5+4.85+0.72)*10+4.84+1.28=96.82µsec.This corresponds
to a 5.94Mbps. This is now 6.6 times the speed achieved
with SC140 and equivalent to the speed achieved in [7].

V. THE IDEA OF PACKED COMPUTATION

The RA is using bus width of 32 bits for each of its cell. In
ASIC implementation of LDPC decoding the data width
normally used is 6 bits with 1-bit for sign, 2 bits for whole
number and 3 bits for precision. In DSP applications, 8 bits
can be used instead. This implies that with a 32-bit cell only
the first 8 bits will be doing useful operation while the
remaining 24 bits will be idle. If the configuration is chosen
such that the 32-bit cell can act as a single 32-bit cell or two
independent 16-bit cells or four independent 8-bit cells, then
a single cell can be used for up to four same operations
which would otherwise require the use of four 32-bit cells.

133

Figure 4: (Variable Node Message Distribution)

The packed computation will be used to execute four
variable node processors in parallel. The idea is to pack the
four 8-bit soft values from the channel in one integer and
store the integer in four consecutive memory banks through
a one 32-bit memory interface. When the integer value is
read, it will have soft values for the four consecutive variable
nodes. These integer values will automatically get divided
among four 8-bit values and will be processed in the logic
independently. The distribution of the messages inside the
four banked Message Memory for the variable node decoder
is given in Figure 4. Here vi,j represents the messages from
variable to check nodes with ‘i’ being the number of the
variable node and ‘j’ the number of the messages required to
read or write by the i-th variable node. With this
arrangement, it is possible to read 4 messages for 4 variable
node decoders in just one memory read cycle. If we use 8
memory read/write interfaces, then the code inside each
sub-loop can be brought inside one step for possible
pipelining. The speed of the variable node processing can be
increased four times due to parallel execution of four nodes.
This implies that variable node processing can be completed
in 4.85/4 = 1.2 µsec per iteration.

After processing the variable node, interleaver is used to
rearrange the messages inside the Message Memory. After
interleaving the messages, the Message Memory looks like
as shown in Figure 5. Here ck,m represents the messages to
check node decoder with k being the number of the check
node decoder and m being the messages that the kth check
node decoder are reading from or writing to the Message
Memory. Since the check node decoder is divided into two
sub-loops: one processes six while the other processes
seven messages at a time. The execution time previously
calculated is 3.5 µsec. With packed computation, it can be
reduced to 3.5/4 = 0.875 µsec per iteration. The memory
initialization and code write up would ideally take
4.84/4=1.21 µsec and 1.28/4=0.32 µsec. The new execution
time would be

C Node Decoder = 0.875 µsec per iteration
V Node Decoder = 1.21 µsec per iteration
Interleaver = 0.72 µsec per iteration
Initial Memory Setup = 1.21 µsec
Code Write Up = 0.32 µsec

The overall execution time will be 29.58 µsec. This is
equivalent to 20 Mbps.

Figure 5: (Check Node Message Distribution)

VI. CONCLUSION
A real time LDPC decoder for Mobile WiMax applications

as stated in IEEE P802.16E standard has been implemented
and optimized on the reconfigurable instruction cell
architecture. Several general purpose and architecture
specific optimization techniques have been applied for
throughput improvement. We have been able to achieve
20Mbps throughput with these optimizations. This is
preliminary work on optimizing ‘C’ code on the architecture.
The architecture can provide a throughput of as much as
100Mbps subject to putting enough resources on the
reconfigurable fabric.

VII. REFERENCES

[1] IEEE P802.16E/D7 Specification published in 2006
[2] Ying Yi; Nousias, I.; Milward, M.; Khawam, S.; Arslan, T.;

Lindsay, I.”System-level Scheduling on Instruction Cell Based
Reconfigurable Systems”, Design, Automation and Test in
Europe, 2006. DATE '06. Proceedings, Volume 1, 6-10 March
2006 Page(s):1 - 6

[3] Shimizu, K., Ishikawa, T., Ikenaga, T., Goto, S., Togawa,
N.,”Partially-Parallel LDPC Decoder Based on High-Efficiency
Message-Passing Algorithm”, Computer Design, 2005.
Proceedings. 2005 International Conference on 02-05 Oct.
2005 Page(s):503 - 510

[4] Zarkeshvari, F., Banihashemi, A.H.,”On implementation of
min-sum algorithm for decoding low-density parity-check
(LDPC) codes”, Global Telecommunications Conference,
2002. GLOBECOM '02. IEEE Volume 2, 17-21 Nov. 2002
Page(s):1349 - 1353 vol.2

[5] Anastasopoulos, A., “A comparison between the sum-product
and the min-sum iterative detection algorithms based on
density evolution”, Global Telecommunications Conference,
2001. GLOBECOM '01. IEEE Volume 2, 25-29 Nov. 2001
Page(s):1021 - 1025 vol.2

[6] Ryan-crc-ldpc-chap.pdf
[7] Lechner, G.; Sayir, J.; Rupp, M.;,”Efficient DSP

implementation of an LDPC decoder”, Acoustics, Speech, and
Signal Processing, 2004. Proceedings. (ICASSP '04). IEEE
International Conference on Volume 4, 17-21 May 2004
Page(s):iv-665 - iv-668 vol.4

134

