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ABSTRACT 

 
This paper builds a real time Programmable LDPC 
Decoder for decoding codes specified in IEEE 802.16 
standard and discusses their performance under 
various decoding algorithms. Out of the decoding 
algorithms, the modified Min-Sum SPA is selected for 
implementation and optimization on a reconfigurable 
instruction cell architecture. Different general and 
architecture specific optimization techniques are 
applied to enhance the throughput. With the 
architecture, a throughput of 20 Mbps has been 
achieved.  

I. INTRODUCTION  
In this paper, we present implementation of a real time 

programmable LDPC decoder that can support IEEE defined 
LDPC codes [1]. Each code rate and code length is 
supported by different parity check matrices that are 
computed in real time from the model matrices stored in the 
memory. The proposed architecture can be implemented in 
ASIC, FPGA or DSP. We implemented it on a reconfigurable 
instruction cell architecture [2]. This architecture belongs to 
the emerging field of Reconfigurable Computing and is an 
effort to combine the flexibility and programmability of DSP, 
performance of FPGA and low power consumption of ASIC 
in one unified core so that the core can meet the 
requirement of next generation mobile systems.  

 
Variable Node Processors:  Each variable node in LDPC 
decoder receives one message )0(

vLLR from the channel 

and one message i
cvLLR  for the corresponding check 

nodes to which it is connected. In every iteration, a variable 
node has to calculate two messages: one i

vcZ  for each 
check node and the other a-posteriory LLR estimate 
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i
vA  for the bit in the frame which it represents. Here C(v) is 

the set of neighboring check nodes of variable node v. 

   Figure 1: (LDPC Decoder) 
 

∑+=
)('

'
0

vCc

i
vcv

i
v LLRLLRA

ε
                                 (2) 

Check Node Processors: Each check node gets the LLR 
values from the variable nodes to which it is connected and 
performs parity checks. The valid codeword is the word for 
which all the parity check equations from all the check nodes 
are satisfied. The message from check node ‘c’ to a variable 
node ‘v’ is given in equation (3).  
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(The V(c) represents the set of neighboring variable nodes of a 
check node c) 

There is an approximation for (3) similar to the Max-Log-
MAP algorithm known as min-sum decoder 
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The performance of the min-sum is improved with density 
evolution of β=0.25 
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cv LLRLLRsignLLR   (5) 

 
A.  Real Time Programmable LDPC Decoder 

A real time Programmable LDPC Decoder is shown in 
Figure 1. It has two sections. The first section shown in 
Figure 1.B generates the interleaver and the maximum count 
for the check and variable nodes while the second section 
shown in Figure 1.A performs the actual decoding based on 
the information got from section 1.B. First Base Matrix is 
generated from the model matrices depending upon a 
particular code length and code rate. The base matrix is then 
applied to the interleaver generation block to generate 
interleaver as well as the maximum count for the check and 
variable nodes. They are then applied to concerned blocks in 
section 1.A for real time configuration.  
 

II. SIMULATION OF ALGORITHMS FOR DECODING IEEE 
DEFINED LDPC CODES 

The encoder and decoder are simulated for sample code 
length of 576, rate ½. The Eb/No values chosen is from 0 to 
3.5 with 10,000 frames used for a particular Eb/No value. 
The algorithms simulated include Min-Sum BPA, LLR-BPA, 
Offset BPA with density evolution factors of 0.15 and 0.25.  
The performance of decoding algorithms depends upon the 
structure of LDPC codes. Therefore, the results shown in 
Figure 2-3 provide performance figures for the irregular code 
as specified in the IEEE P802.16e/D7 specification. Figure 3 
provides BER performance of Min-Sum SPA for varying 
number of maximum decoder iterations. Four different 
values were chosen for the maximum decoder iterations and 
they are 5, 10, 15 and 50. The 10 iterations provide 
acceptable BER performance and can be selected as the 
maximum decoder iteration for implementation on either 
DSP or a reconfigurable fabric. Figure 2 provides results for 
different decoder algorithms keeping the maximum iteration 
constant at 10. The algorithm chosen for optimization is the 
Min-Sum SPA with density evolution of 0.25. 

The performance of decoding algorithm varies from one 
type of LDPC coding to another and is therefore dependent 
upon the type of coding selected. Since this is the first kind 
of implementation for this type of coding, exact comparison 
cannot be carried out due to non-availability of the previous 
work done on the LDPC coding for WiMax applications. 
However, approximate comparison can be made with the 
implementations carried out in the literature. For example, [3] 
has carried out an FPGA implementation of the Min-Sum 
SPA algorithm and its modified version. The result of the 
Min-Sum as depicted in Figure 2 is comparable with the 
result of the improved min-sum algorithm in [3] though the 
result in [3] has been obtained for 20 iterations as opposed 
to the 10 iterations.  

Another implementation of the Min-Sum algorithm for 
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Figure 2: (Performance of different decoding algorithms) 
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Figure 3: (BER Performance of Min-Sum Algorithm under different 

decoding iterations) 
 

irregular LDPC code with code length 1268 is done in [4]. 
The results presented in this report are much better than the 
result of the ideal min-sum implementation presented in [4]. 
The same is true with the result shown in [5]. With [6] the 
results are comparable. The implementation in [7] results in 
better performance compared to this implementation. This 
can be the result of density evolution function which is most 
suited for that particular type of LDPC coding. 

Overall there are merits and demerits of this 
implementation compared to the work in the literature. As far 
as the ideal Min-Sum is concerned the performance is either 
better or comparable to that in the literature. However, 
certain implementations of the modified Min-Sum are better 
than this implementation but this should not be taken as the 
argument to question this implementation as it is targeted for 
different types of LDPC coding. 

 

III. OPTIMIZATION ON THE RECONFIGURABLE 
ARCHITECTURE (RA) 

 
The simulation results for the un-optimized ‘C’ code on the 

RA are presented below: 
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Time for calculating H matrix and Interleaver    = 14925.8 µsec 
Steps taken                                           =  2141433 
Initial execution time for the decoder                =  15062.7 µsec 
Steps taken                                           =  2165765 
Execution Time per iteration for the decoding  
blocks used in actual decoding                         =  135  µsec 
Throughput per iteration           =  572/135 = 4.3Mbps 
Total number of iterations                          =   10 
Net throughput            =   0.43 Mbps 
Throughput per iteration of StarCore                =   9 Mbps 
Net throughput on StarCore (10 iterations)       =   0.9 Mbps 

 
The straightforward implementation of decoder on the RA 

proved to be 52% slower than StarCore. The throughput is 
improved through optimizing check and variable node 
decoders and using packed computation. 

 
IV. OPTIMIZATION OF VARIABLE NODE DECODER  

 
Optimization is carried out using the following techniques. 
 
Loop distribution: The initial implementation of variable 

node decoder contains only one major loop and the code 
inside the loop supports all code rates and code lengths. 
Different number of memory read and write operations are 
associated with each code rate as well as with different 
variable nodes which are separated using ‘if’ statements. 
This type of coding style though very compact is highly 
complex for the architecture compiler to optimize due to a 
large number of conditional ‘if’ statements and read/ write 
memory operations. Separate code is written to support a 
specific code rate. Inside the ‘C’ code that supports only one 
code rate, the major loop has been broken into several sub-
loops. For the case of ½ code rate, the major loop that 
iterates a maximum of 576 times, has been broken into three 
sub-loops: These support processing of 4, 7 and 3 
messages. Loop distribution has facilitated further 
optimization and reduced some redundant statements and 
branching. 

Hardware Multiplexing: The use of ‘if’ statement causes 
jumps which not only time but also power consuming in the 
cell based architecture. The ‘if’ conditional statements are 
reduced to as much as possible and the irreducible ones are 
replaced with multiplexers. 

Memory Access Reduction: In variable node decoder, 
four different memory arrays are used. They are 
PtrtoexplicitVnDist, Ptrtoy, Message_Memory and PtrtoLQi. 
The first stores the number of check nodes that are 
connected to a particular variable node. The second stores 
the channel symbols. The third stores LLR messages from 
variable to check nodes and vice versa. The fourth stores 
the LLR for the code bits. Out of the four, two arrays 
PtrtoexplicitVnDist, Ptrtoy are always read, PtrtoLQi is 
always written while Message_Memory is read as well as 
written in any iteration. The array PtrtoexplicitVnDist can be 
removed by using the Loop distribution. Since separate sub-
loops are used. These sub-loops have the priori information 
about the number of messages to be read or written into the 
Message_Memory, hence the array can be avoided. The 
removal causes significant reduction in execution time.  

Parallel execution of Variable node processors: The 
architecture has 16 memory read and write interfaces that 
can support 16 bytes of data to be read as well as written in 

one memory access time. This allows us to implement 
several variable node processors in parallel by unrolling the 
sub-loops. E.g. we can unroll the sub-loop that reads two 
messages from the Message_Memory as well as one from 
the Ptrtoy array by 5 and can read the 10 bytes from 
Message_Memory in one memory access time and the 5 
bytes from the Ptrtoy array in another memory access time. 
Thus, 5 two-message variable node processor (Figure 3) 
can be executed in parallel. The number of 
adders/subtractors, shift registers and temporary registers 
are also increased to accommodate the parallel execution of 
the variable nodes. This caused tremendous reduction in 
execution time. 

With these optimizations, the execution time for 
processing 576 variable node processors (frame size is 576) 
came out to be 12.124 µsec per iteration. 

Pipelining the code:  Each variable node processor has 
three operations: memory read, computation and memory 
write. If they are pipelined, the architecture can be clocked at 
a frequency higher than the frequency used by the 
combinational counterpart. This will reduce the execution 
time by almost 3 times. All it needs is to bring the loop inside 
one step. Within one step, the loop jumps to itself and can 
be pipelined. The number of resources is increased to bring 
the loop inside one step. Another necessary condition 
observed with the RA compiler for bringing the code to one 
step is to make the limit of the loop a constant. This is done 
by writing separate functions for each code length. This 
increased the size of the code but also made it possible to 
bring the code inside one step which is necessary for 
throughput enhancement.    

The step is pipelined by inserting registers between 
memory read, computation and memory wirte blocks. The 
pipelined ‘C’ code runs three times faster. With pipelining, a 
reduction of 2.5 times has been achieved. The execution 
time for the VNode_Decoder came out to be 4.85 µsec per 
iteration. The Check Node Decoder is similarly optimized. 

Pipelining is also used in the initial memory setup and  
code write up. The overall execution time is is given below 

 
C Node Decoder                =  3.5  µsec per iteration 
V Node Decoder                =  4.85  µsec per iteration 
Interleaver                          =  0.72      µsec 
Initial Memory Setup          =  4.84       µsec 
Code Write Up                   =  1.28   µsec  
 
The overall execution time for 10 iterations is 

(3.5+4.85+0.72)*10+4.84+1.28=96.82µsec.This corresponds 
to a 5.94Mbps. This is now 6.6 times the speed achieved 
with SC140 and equivalent to the speed achieved in [7].  

 
V. THE IDEA OF PACKED COMPUTATION  

The RA is using bus width of 32 bits for each of its cell. In 
ASIC implementation of LDPC decoding the data width 
normally used is 6 bits with 1-bit for sign, 2 bits for whole 
number and 3 bits for precision. In DSP applications, 8 bits 
can be used instead. This implies that with a 32-bit cell only 
the first 8 bits will be doing useful operation while the 
remaining 24 bits will be idle. If the configuration is chosen 
such that the 32-bit cell can act as a single 32-bit cell or two 
independent 16-bit cells or four independent 8-bit cells, then 
a single cell can be used for up to four same operations 
which would otherwise require the use of four 32-bit cells.  
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Figure 4: (Variable Node Message Distribution) 

 
The packed computation will be used to execute four 
variable node processors in parallel. The idea is to pack the 
four 8-bit soft values from the channel in one integer and 
store the integer in four consecutive memory banks through 
a one 32-bit memory interface. When the integer value is 
read, it will have soft values for the four consecutive variable 
nodes. These integer values will automatically get divided 
among four 8-bit values and will be processed in the logic 
independently. The distribution of the messages inside the 
four banked Message Memory for the variable node decoder 
is given in Figure 4. Here vi,j  represents the messages from 
variable to check nodes with ‘i’ being the number of the 
variable node and ‘j’ the number of the messages required to 
read or write by the i-th variable node. With this 
arrangement, it is possible to read 4 messages for 4 variable 
node decoders in just one memory read cycle. If we use 8 
memory read/write interfaces, then the code inside each 
sub-loop can be brought inside one step for possible 
pipelining. The speed of the variable node processing can be 
increased four times due to parallel execution of four nodes. 
This implies that variable node processing can be completed 
in 4.85/4 = 1.2 µsec per iteration. 

After processing the variable node, interleaver is used to 
rearrange the messages inside the Message Memory. After 
interleaving the messages, the Message Memory looks like 
as shown in Figure 5. Here ck,m  represents the messages to 
check node decoder with k being the number of the check 
node decoder and m being the messages that the kth check 
node decoder are reading from or writing to the Message 
Memory. Since the check node decoder is divided into two 
sub-loops: one processes six while the other processes 
seven messages at a time. The execution time previously 
calculated is 3.5 µsec. With packed computation, it can be 
reduced to 3.5/4 = 0.875 µsec per iteration. The memory 
initialization and code write up would ideally take 
4.84/4=1.21 µsec and 1.28/4=0.32 µsec. The new execution 
time would be 

 
C Node Decoder   =  0.875  µsec per iteration 
V Node Decoder   =  1.21    µsec per iteration 
Interleaver                            =  0.72    µsec per iteration 
Initial Memory Setup  =  1.21    µsec 
Code Write Up                     =  0.32    µsec  

The overall execution time will be 29.58 µsec. This is 
equivalent to 20 Mbps.  

 

 
 

Figure 5: (Check Node Message Distribution) 
 

VI. CONCLUSION 
A real time LDPC decoder for Mobile WiMax applications 

as stated in IEEE P802.16E standard has been implemented 
and optimized on the reconfigurable instruction cell 
architecture. Several general purpose and architecture 
specific optimization techniques have been applied for 
throughput improvement. We have been able to achieve 
20Mbps throughput with these optimizations. This is 
preliminary work on optimizing ‘C’ code on the architecture. 
The architecture can provide a throughput of as much as 
100Mbps subject to putting enough resources on the 
reconfigurable fabric. 
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