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5.1 Introduction

Achieving consistent and high-quality color reproduction in a color imaging
system necessitates a comprehensive understanding of the color character-
istics of the various devices in the system. This understanding is achieved
through a process of device characterization. One approach for doing this is
known as closed-loop characterization, where a specific input device is opti-
mized for rendering images to a specific output device. A common example
of closed-loop systems is found in offset press printing, where a drum scan-
ner is often tuned to output CMYK signals for optimum reproduction on a
particular offset press. The tuning is often carried out manually by skilled
press operators. Another example of a closed-loop system is traditional
photography, where the characteristics of the photographic dyes, film, devel-
opment, and printing processes are co-optimized (again, often manually) for
proper reproduction. While the closed-loop paradigm works well in the
aforementioned examples, it is not an efficient means of managing color in
open digital color imaging systems where color can be exchanged among a
large and variable number of color devices. For example, a system compris-
ing three scanners and four printers would require 3 x4 = 12 closed-loop
transformations. Clearly, as more devices are added to the system, it becomes
difficult to derive and maintain characterizations for all the various combi-
nations of devices.

An alternative approach that is increasingly embraced by the digital
color imaging community is the device-independent paradigm, where trans-
lations among different device color representations are accomplished via
an intermediary device-independent color representation. This approach is
more efficient and easily managed than the closed-loop model. Taking the
same example of three scanners and four printers now requires only 3 + 4
= 7 transformations. The device-independent color space is usually based
on a colorimetric standard such as CIE XYZ or CIELAB. Hence, the visual
system is explicitly introduced into the color imaging path. The closed-loop
and device-independent approaches are compared in Figure 5.1.

The characterization techniques discussed in this chapter subscribe to
the device-independent paradigm and, as such, involve deriving transfor-
mations between device-dependent and colorimetric representations.
Indeed, a plethora of device characterization techniques have been reported
in the literature. The optimal approach depends on several factors, including
the physical color characteristics of the device, the desired quality of the
characterization, and the cost and effort that one is willing to bear to perform
the characterization. There are, however, some fundamental concepts that
are common to all these approaches. We begin this chapter with a description
of these concepts and then provide a more detailed exposition of character-
ization techniques for commonly encountered input and output devices. To
keep the chapter to a manageable size, an exhaustive treatment is given to
only a few topics. The chapter is complemented by an extensive set of
references for a more in-depth study of the remaining topics.
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Figure 5.1 Closed-loop vs. device-independent color management.

5.2 Basic concepts

It is useful to partition the transformation between device-dependent and
device-independent space into a calibration and a characterization function,
as shown in Figure 5.2.

5.2.1 Device calibration

Device calibration is the process of maintaining the device with a fixed
known characteristic color response and is a precursor to characterization.
Calibration can involve simply ensuring that the controls internal to the
device are kept at fixed nominal settings (as is often the case with scanners
and digital cameras). Often, if a specific color characteristic is desired, this
typically requires making color measurements and deriving correction func-
tions to ensure that the device maintains that desired characteristic. Some-
times the desired characteristic is defined individually for each of the device
signals; e.g., for a CRT display, each of the R, G, B channels is often linearized
with respect to luminance. This linearization can be implemented with a set
of one-dimensional tone reproduction curves (TRCs) for each of the R, G, B
signals. Sometimes, the desired characteristic is defined in terms of mixtures
of device signals. The most common form of this is gray-balanced calibration,
whereby equal amounts of device color signals (e.g, R=G=BorC=M =
Y) correspond to device-independent measurements that are neutral or gray
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Figure 5.2 Calibration and characterization for input and output devices.

(e.g., a*=b*= 0 in CIELAB coordinates). Gray-balancing of a device can also
be accomplished with a set of TRCs.

It is important to bear mind that calibration with one-dimensional TRCs
can control the characteristic response of the device only in a limited region
of color space. For example, TRCs that ensure a certain tone response along
each of the R, G, B axes do not necessarily ensure control of the gray axis,
and vice versa. However, it is hoped that this limited control is sufficient to
maintain, within a reasonable tolerance, a characteristic response within the
entire color gamut; indeed, this is true in many cases.

5.2.2 Device characterization

The characterization process derives the relationship between device-depen-
dent and device-independent color representations for a calibrated device.
For input devices, the captured device signal is first processed through a
calibration function (see Figure 5.2) while output devices are addressed
through a final calibration function. In typical color management workflows,
device characterization is a painstaking process that is done infrequently,
while the simpler calibration process is carried out relatively frequently to
compensate for temporal changes in the device’s response and maintain it
in a fixed known state. It is thus assumed that a calibrated device maintains
the validity of the characterization function at all times. Note that calibration
and characterization form a pair, so that if a new calibration alters the
characteristic color response of the device, the characterization must also be
re-derived.
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The characterization function can be defined in two directions. The for-
ward characterization transform defines the response of the device to a
known input, thus describing the color characteristics of the device. The
inverse characterization transform compensates for these characteristics and
determines the input to the device that is required to obtain a desired
response. The inverse function is used in the final imaging path to perform
color correction to images.

The sense of the forward function is different for input and output
devices. For input devices, the forward function is a mapping from a device-
independent color stimulus to the resulting device signals recorded when
the device is exposed to that stimulus. For output devices, this is a mapping
from device-dependent colors driving the device to the resulting rendered
color, in device-independent coordinates. In either case, the sense of the
inverse function is the opposite to that of the forward function.

There are two approaches to deriving the forward characterization func-
tion. One approach uses a model that describes the physical process by which
the device captures or renders color. The parameters of the model are usually
derived with a relatively small number of color samples. The second
approach is empirical, using a relatively large set of color samples in con-
junction with some type of mathematical fitting or interpolation technique
to derive the characterization function. Derivation of the inverse function
calls for an empirical or mathematical technique for inverting the forward
function. (Note that the inversion does not require additional color samples;
it is purely a computational step.)

A primary advantage to model-based approaches is that they require
fewer measurements and are thus less laborious and time consuming than
empirical methods. To some extent, a physical model can be generalized for
different image capture or rendering conditions, whereas an empirical tech-
nique is typically optimized for a restrictive set of conditions and must be re-
derived as the conditions change. Model-based approaches generate relatively
smooth characterization functions, whereas empirical techniques are subject
to additional noise from measurements and often require additional smooth-
ing on the data. However, the quality of a model-based characterization is
determined by the extent to which the model reflects the real behavior of the
device. Certain types of devices are not readily amenable to tractable physical
models; thus, one must resort to empirical approaches in these cases. Also,
most model-based approaches require access to the raw device, while empir-
ical techniques can often be applied in addition to simple calibration and
characterization functions already built into the device. Finally, hybrid tech-
niques can be employed that borrow strengths from both model-based and
empirical approaches. Examples of these will be presented later in the chapter.

The output of the calibration and characterization process is a set of
mappings between device-independent and -dependent color descriptions;
these are usually implemented as some combination of power-law mapping,
3 x 3 matrix conversion, white-point normalization, and one-dimensional
and multidimensional lookup tables. This information can be stored in a
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variety of formats, of which the most widely adopted industry standard is
the International Color Consortium (ICC) profile (www.color.org). For print-
ers, the Adobe Postscript language (Level 2 and higher) also contains oper-
ators for storing characterization information.!

It is important to bear in mind that device calibration and characteriza-
tion, as described in this chapter, are functions that depend on color signals
alone and are not functions of time or the spatial location of the captured or
rendered image. The overall accuracy of a characterization is thus limited
by the ability of the device to exhibit spatial uniformity and temporal sta-
bility. Indeed, in reality, the color characteristics of any device will vary to
some degree over its spatial footprint and over time. It is generally good
practice to gather an understanding of these variances prior to or during the
characterization process. This may be accomplished by exercising the device
response with multiple sets of stimuli in different spatial orientations and
over a period of time. The variation in the device’s response to the same
stimulus across time and space is then observed. A simple way to reduce
the effects of nonuniformity and instability during the characterization pro-
cess is to average the data at different points in space and time that corre-
spond to the same input stimulus.

Another caution to keep in mind is that many devices have color-cor-
rection algorithms already built into them. This is particularly true of low-
cost devices targeted for consumers. These algorithms are based in part on
calibration and characterization done by the device manufacturer. In some
devices, particularly digital cameras, the algorithms use spatial context and
image-dependent information to perform the correction. As indicated in the
preceding paragraph, calibration or characterization by the user is best per-
formed if these built-in algorithms can be deactivated or are known to the
extent that they can be inverted. (This is especially true of the model-based
approaches.) Reverse engineering of built-in correction functions is not
always an easy task. One can also argue that, in many instances, the built-
in algorithms provide satisfactory quality for the intended market, hence not
requiring additional correction. Device calibration and characterization is
therefore recommended only when it is necessary and possible to fully
control the color characteristics of the device.

5.2.3 Input device calibration and characterization

There are two main types of digital color input devices: scanners, which
capture light reflected from or transmitted through a medium, and digital
cameras, which directly capture light from a scene. The captured light passes
through a set of color filters (most commonly, red, green, blue) and is then
sensed by an array of charge-coupled devices (CCDs). The basic model that
describes the response of an image capture device with M filters is given by

D, = j SVG (AN uM)or+n,i = 1,...,M (5.1)

reV
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www.color.org). 

where D, =sensor response
S(A) = input spectral radiance
7,(A) = spectral sensitivity of the ith sensor
u(A) = detector sensitivity
n; = measurement noise in the ith channel
V = spectral regime outside which the device sensitivity is
negligible

Digital still cameras often include an infrared (IR) filter; this would be incor-
porated into the u(A) term. Invariably, M = 3 sensors are employed with
filters sensitive to the red, green, and blue portions of the spectrum. The
spectral sensitivities of a typical set of scanner filters are shown in Figure
5.3. Scanners also contain an internal light source that illuminates the reflec-
tive or transmissive material being scanned. Figure 5.4 shows the spectral
radiance of a fluorescent scanner illuminant. Note the sharp spikes that
typify fluorescent sources. The light incident upon the detector is given by

SOV = LOVR(A) (5.2)

where R(A) = spectral reflectance (or transmittance) function of the input
stimulus
I,(A) = scanner illuminant
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Figure 5.3 Typical scanner filter sensitivities.
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Figure 5.4 Spectral radiance of typical scanner illuminant.

From the introductory chapter on colorimetry, we know that spectral radi-
ance is related to colorimetric signals by

C, = K, j S(AM)c;(Mor,i = 1,2,3 (5.3)

reV

where  C; = colorimetric signals
ci(A) = corresponding color matching functions
K; = normalizing constants

Again, if a reflective sample is viewed under an illuminant I (A), the input
spectral radiance is given by

S(\) = L(JR(\) (5.4)

Equations 5.1 through 5.4 together establish a relationship between
device-dependent and device-independent signals for an input device. To
further explore this relationship, let us represent a spectral signal by a dis-
crete L-vector comprising samples at wavelengths 2, ..., A;. Equation 5.1
can be rewritten as
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d=Als+e (5.5)

where d = M-vector of device signals
s = L-vector describing the input spectral signal

A, = L x M matrix whose columns are the input device sensor
responses
€ = noise term

If the input stimulus is reflective or transmissive, then the illuminant term

I,(A) can be combined with either the input signal vector s or the sensitivity
matrix A, In a similar fashion, Equation 5.3 can be rewritten as

c=As (5.6)

where ¢ = colorimetric three-vector

>
I

. = L x 3 matrix whose columns contain the color-matching
functions ¢,(A)

If the stimulus being viewed is a reflection print, then the viewing illuminant
I(M) can be incorporated into either s or A..

It is easily seen from Equations 5.5 and 5.6 that, in the absence of noise,
a unique mapping exists between device-dependent signals d and device-
independent signals c if there exists a transformation from the device sensor
response matrix A, to the matrix of color matching functions A_.2In the case
of three device channels, this translates to the condition that A; must be a
linear nonsingular transformation of A .3* Devices that fulfill this so-called
Luther—Ives condition are referred to as colorimetric devices.

Unfortunately, practical considerations make it difficult to design sensors
that meet this condition. For one thing, the assumption of a noise-free system
is unrealistic. It has been shown that, in the presence of noise, the Luther-Ives
condition is not optimal in general, and it guarantees colorimetric capture
only under a single viewing illuminant I,.> Furthermore, to maximize the
efficiency, or signal-to-noise ratio (SNR), most filter sets are designed to have
narrowband characteristics, as opposed to the relatively broadband color
matching functions. For scanners, the peaks of the R, G, B filter responses
are usually designed to coincide with the peaks of the spectral absorption
functions of the C, M, Y colorants that constitute the stimuli being scanned.
Such scanners are sometimes referred to as densitometric scanners. Because
photography is probably the most common source for scanned material,
scanner manufacturers often design their filters to suit the spectral charac-
teristics of photographic dyes. Similar observations hold for digital still
cameras, where filters are designed to be narrowband, equally spaced, and
independent so as to maximize efficiency and enable acceptable shutter
speeds. A potential outcome of this is scanner metamerism, where two
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stimuli that appear identical to the visual system may result in distinct
scanner responses, and vice versa.

The spectral characteristics of the sensors have profound implications
on input device characterization. The narrowband sensor characteristics
result in a relationship between XYZ and device RGB that is typically more
complex than a 3 x 3 matrix, and furthermore changes as a function of
properties of the input stimulus (i.e., medium, colorants, illuminant). A
colorimetric filter set, on the other hand, results in a simple linear charac-
terization function that is media independent and that does not suffer from
metamerism. For these reasons, there has been considerable interest in
designing filters that approach colorimetric characteristics, subject to prac-
tical constraints that motivate the densitometric characteristics.® An alterna-
tive approach is to employ more than three filters to better approximate the
spectral content of the input stimulus.” These efforts are largely in the
research phase; most input devices in the market today still employ three
narrowband filters. Hence, the most accurate characterization is a nonlinear
function that varies with the input medium.

Model-based characterization techniques use the basic form of Equation
5.1 to predict device signals D; given the radiance S(A) of an arbitrary input
medium and illuminant, and the device spectral sensitivities. The latter can
sometimes be directly acquired from the manufacturer. However, due to
temporal changes in device characteristics and variations from device to
device, a more reliable method is to estimate the sensitivities from measure-
ments of suitable targets. Model-based approaches may be used in situations
where there is no way of determining a priori the characteristics of the specific
stimulus being scanned. However, the accuracy of the characterization is
directly related to the accuracy of the model and its estimated parameters.
The result is usually an M x 3 matrix that maps M (typically three) device
signals to three colorimetric signals such as XYZ.

Empirical techniques, on the other hand, directly correlate colorimetric
measurements of a color target with corresponding device values that result
when the device is exposed to the target. Empirical techniques are suitable
when the physical nature of the input stimulus is known beforehand, and a
color target with the same physical traits is available for characterizing the
input device. An example is the use of a photographic target to characterize
a scanner that is expected to scan photographic prints. The characterization
can be a complex nonlinear function chosen to achieve the desired level of
accuracy, and it is obtained through an empirical data-fitting or interpolation
procedure.

Modeling techniques are often used by researchers and device manufac-
turers to better understand and optimize device characteristics. In end user
applications, empirical approaches are often adopted, as these provide a
more accurate characterization than model-based approaches for a specific
set of image capture conditions. This is particularly true for the case of
scanners, where it is possible to classify a priori a few commonly encountered
media (e.g., photography, lithography, xerography, inkjet) and generate
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empirical characterizations for each class. In the case of digital cameras, it
is not always easy to define or classify the type of stimuli to be encountered
in a real scene. In this case, it may be necessary to revert to model-based
approaches that assume generic scene characteristics. More details will be
presented in following sections.

A generic workflow for input device characterization is shown in Figure
5.5. First, the device is calibrated, usually by ensuring that various internal
settings are in a fixed nominal state. For scanners, calibration minimally
involves normalizing the RGB responses to the measurement of a built-in
white tile, a process that is usually transparent to the user. In addition, it
may be desirable to linearize and gray-balance the device response by scan-
ning a suitable premeasured target. Next, the characterization is performed
using a target comprising a set of color patches that spans the gamut of the
input medium. Often, the same target is used for both linearization and
characterization. Industry standard targets designed for scanners are the Q60
and IT8. Device-independent color measurements are made of each patch
in the target using a spectroradiometer, spectrophotometer, or colorimeter.
Additional data processing may be necessary to extract raw colorimetric data
from the measurements generated by the instrument. Next, the input device
records an image of the target. If characterization is being performed as a
separate step after calibration, then the captured image must be processed
through the calibration functions derived in a previous step. The device-
dependent (typically RGB) coordinates for each patch on the target must
then be extracted from the image. This involves correctly identifying the
spatial extent of each patch within the scanned image. To facilitate this, it is
desirable to include reference fiducial marks at each corner of the target and
supply target layout information (e.g., number of rows, columns) to the
image-processing software. Also, it is recommended that a subset of pixels
near the center of each patch is averaged, so as to reduce the effect of spatial
noise in the device response. Once extracted, the device-dependent values
are correlated with the corresponding device-independent values to obtain
the characterization for the device.

The forward characterization is a model of how the device responds to
a known device-independent input; i.e., it is a function that maps device-

Measurement
and Data Processing

device-independent

Color Target data {c;}
[ |
| Device Calibration "
m\ / Characterization |~ Prefile
Input scanned Image device-dependent
Device image Processing data {d;}

Figure 5.5 Input device characterization workflow.
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independent measurements to the resulting device signals. The inverse func-
tion compensates for the device characteristics and maps device signals to
corresponding device-independent values. Model-based techniques esti-
mate the forward function, which is then inverted using analytic or numer-
ical approaches. Empirical techniques derive both the forward and inverse
functions.

Figure 5.6 describes how the accuracy of the resulting characterization
can be evaluated. A test target containing colors that are preferably different
from those in the initial characterization target is presented to the image-
capture device. The target should be made with the same colorants and
media as used for the characterization target. The resulting captured elec-
tronic image is mapped through the same image-processing functions per-
formed when the characterization was derived (see Figure 5.5). It is then
converted to a device-independent color space using the inverse character-
ization function. The device-independent color values of the patches are then
extracted and compared with measurements of these patches using an appro-
priate color difference formula such as AE,, or AE,, (described in more
detail in Section 5.5). To avoid redundant processing, the same target can be
used for both deriving and testing the characterization, with different por-
tions of the target being used for the two purposes.

5.2.4  Output device calibration and characterization

Output color devices can be broadly categorized into emissive display
devices and devices that produce reflective prints or transparencies. Emissive
devices produce colors via additive mixing of red, green, and blue (RGB)
lights. Examples are cathode ray tube (CRT) displays, liquid crystal displays
(LCDs), organic light emitting diodes (OLEDs), plasma displays, projection
displays, etc. The spectral radiance emitted by a display device is a function
of the input digital RGB values and is denoted Sggs(A). Two important
assumptions are usually made that greatly simplify display characterization.

e Channel independence. Each of the R, G, B channels to the display
operates independently of the others. This assumption allows us to
separate the contribution of spectral radiance from the three channels.

Measurement Data

Instrument [ Processing
Test Target {c}
- Error
Metric L AE
—s  Calculation
Inverse {ci}
\ Input ] Image —1 Characterization

Device Processing

Transform

Figure 5.6 Testing of input device characterization.
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SRGB(X) = SR(A‘) + SG(A‘) + 53(7\‘) (57)

o Chromaticity constancy. The spectral radiance due to a given channel
has the same basic shape and is only scaled as a function of the device
signal driving the display. This assumption further simplifies Equa-
tion 5.7 to

SreeM) = fr (D) Sgyuex™) + f6 (D) SguaxM) + f5 (Dp) Sppn(X) - (5.8)

where Sg,..(A) = the spectral radiance emitted when the red channel is at
its maximum intensity
Dy, = the digital input to the display
fr() = a linearization function (discussed further in Section 5.8)

The terms for green and blue are similarly defined. Note that a constant
scaling of a spectral radiance function does not change its chromaticity (x-v)
coordinates, hence the term “chromaticity constancy.”

These assumptions hold fairly well for many display technologies and
result in a simple linear characterization function. Figure 5.7 shows the
spectral radiance functions for a typical CRT phosphor set. Sections 5.8 and
5.9 contain more details on CRT and LCD characterization, respectively.
Recent research has shown that OLEDs can also be accurately characterized
with techniques similar to those described in these sections.?
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Figure 5.7 Spectral radiance of typical CRT phosphors.
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Printing devices produce color via subtractive color mixing in which a
base medium for the colorants (usually paper or transparency) reflects or
transmits most of the light at all visible wavelengths, and different spectral
distributions are produced by combining cyan, magenta, and yellow (CMY)
colorants to selectively remove energy from the red, green, and blue portions
of the electromagnetic spectrum of a light source. Often, a black colorant (K)
is used both to increase the capability to produce dark colors and to reduce
the use of expensive color inks. Photographic prints and transparencies and
offset, laser, and inkjet printing use subtractive color.

Printers can be broadly classified as being continuous-tone or halftone
devices. A continuous-tone process generates uniform colorant layers and
modulates the concentration of each colorant to produce different intensity
levels. A halftone process generates dots at a small fixed number of concen-
tration levels and modulates the size, shape, and frequency of the dots to
produces different intensity levels. (Color halftoning is covered in detail in
another chapter.) Both types of processes exhibit complex nonlinear color
characteristics, making them more challenging to model and characterize.
For one thing, the spectral absorption characteristics of printed colorants do
not fulfill the ideal “block dye” assumption, which states that the C, M, Y
colorants absorb light in nonoverlapping bands in the long, medium, and
short wavelengths, respectively. Such an ideal behavior would result in a
simple linear characterization function. Instead, in reality, each of these col-
orants exhibits unwanted absorptions in other bands, as shown in Figure
5.8, giving rise to complex intercolorant interactions and nonlinear charac-
terization functions. Halftoning introduces additional optical and spatial
interactions and thus lends complexity to the characterization function. Nev-
ertheless, much effort has been devoted toward the modeling of continuous
and halftone printers as well as toward empirical techniques. A few of these
techniques will be explored in further detail in Section 5.10.

A generic workflow for output device calibration and characterization
is given in Figure 5.9. A digital target of color patches with known device
values is sent to the device. The resulting displayed or printed colors are
measured in device-independent (or colorimetric) color coordinates, and a
relationship is established between device-dependent and device-
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Figure 5.8 Spectral absorption functions of typical C, M, Y colorants.
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Figure 5.9 Output device characterization workflow.

independent color representations. This can be used to generate both cali-
bration and characterization functions, in that order. For characterization,
we once again derive a forward and an inverse function. The forward func-
tion describes the colorimetric response of the (calibrated) device to a certain
device-dependent input. The inverse characterization function determines
the device-dependent values that should be presented to a (calibrated) device
to reproduce a certain colorimetric input.

As with input devices, the calibration and characterization should then
be evaluated with an independent test target. The flow diagram for doing this
is shown in Figure 5.10. The test target comprises a set of patches with known
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Figure 5.10 Testing of (a) forward and (b) inverse output device characterization.
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device-independent coordinates. If calibration is being tested, this target is
processed through the calibration functions and rendered to the device. If
characterization is being evaluated, the target is processed through both the
characterization and calibration function and rendered to the device. The
resulting output is measured in device-independent coordinates and com-
pared with the original target values. Once again, the comparison is to be
carried out with an appropriate color difference formula such as AE a » or AE ;4.

An important component of the color characteristics of an output device
is its color gamut, namely the volume of colors in three-dimensional colori-
metric space that is physically achievable by the device. Of particular impor-
tance is the gamut surface, as this is used in gamut mapping algorithms.
This information can easily be derived from the characterization process.
Details of gamut surface calculation are provided in the chapter on gamut

mapping.

5.3 Characterization targets and measurement techniques

The generation and measurement of color targets is an important component
of device characterization. Hence, a separate section is devoted to this topic.

5.3.1 Color target design

The design of a color target involves several factors. First is the set of colo-
rants and underlying medium of the target. In the case of input devices, the
characterization target is created offline (i.e., it is not part of the character-
ization process) with colorants and media that are representative of what
the device is likely to capture. For example, for scanner characterization,
photographic and offset lithographic processes are commonly used to create
targets on reflective or transmissive media. In the case of output devices,
target generation is part of the characterization process and should be carried
out using the same colorants and media that will be used for final color
rendition.

The second factor is the choice of color patches. Typically, the patches
are chosen to span the desired range of the colors to be captured (in the
case of input devices) or rendered (in the case of output devices). Often,
critical memory colors are included, such as flesh tones and neutrals. The
optimal choice of patches is logically a function of the particular algorithm
or model that will be used to generate the calibration or characterization
function. Nevertheless, a few targets have been adopted as industry stan-
dards, and they accommodate a variety of characterization techniques. For
input device characterization, these include the CGATS/ANSI IT8.7/1 and
IT8.7/2 targets for transmission and reflection media respectively
(http:/ /webstore.ansi.org/ansidocstore); the Kodak photographic Q60 tar-
get, which is based on the IT8 standards and is made with Ektachrome dyes
on Ektacolor paper (www.kodak.com); the GretagMacbeth ColorChecker
chart (www.munsell.com); and ColorChecker DC version for digital cam-
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eras (www.gretagmacbeth.com). For output device characterization, the
common standard is the IT8.7/3 CMYK target (http://webstore.ansi.org/
ansidocstore). The Q60 and IT8.7/3 targets are shown in Plates 5A and 5B.
A third factor is the spatial layout of the patches. If a device is known
to exhibit spatial nonuniformity, it may be desirable to generate targets with
the same set of color patches but rendered in different spatial layouts. The
measurements from the multiple targets are then averaged to reduce the
effect of the nonuniformity. In general, this approach is advised so as to
reduce the overall effect of various imperfections and noise in the character-
ization process. In the case of input devices, target creation is often not within
the practitioner’s control; rather, the targets are supplied by a third-party
vendor such as Eastman Kodak or Fuji Film. Generally, however, these
vendors do use similar principles to generate reliable measurement data.
Another motivation for a specific spatial layout is visual inspection of
the target. The Kodak Q60 target, for example, is designed with a gray ramp
at the bottom and neutral colors all collected in one area. This allows for
convenient visual inspection of these colors, to which we are more sensitive.

5.3.2  Color measurement techniques

5.3.2.1 Visual approaches

Most visual approaches rely on observers making color matching judgments.
Typically, a varying stimulus produced by a given device is compared against
a reference stimulus of known measurement. When a visual match is
reported, this effectively provides a measurement for the varying stimulus
and can be correlated with the device value that produced the stimulus. The
major advantage of a visual approach is that it does not require expensive
measurement instrumentation. Proponents also argue that the best color
measurement device is the human visual system, because, after all, this is
the basis for colorimetry. However, these approaches have their limitations.
First, to achieve reliable results, the visual task must be easy to execute. This
imposes severe limits on the number and nature of measurements that can
be made. Second, observer-to-observer variation will produce measurements
and a characterization that may not be satisfactory to all observers. Never-
theless, visual techniques are appealing in cases where the characterization
can be described by a simple model and thus derived with a few simple
measurements. The most common application of visual approaches is thus
found in CRT characterization, discussed further in Section 5.8.3.

5.3.2.2 Instrument-based approaches

Color measurement instruments fall into two general categories, broadband
and narrowband. A broadband measurement instrument reports up to three
color signals obtained by optically processing the input light through broad-
band filters. Photometers are the simplest example, providing a measure-
ment only of the luminance of a stimulus. Their primary use is in determin-
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Figure 5A (See color insert following page 430) Q60 input characterization target.
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Figure 5B (See color insert) IT87/3 output characterization target.
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ing the nonlinear calibration function of displays (discussed in Section 5.8).
Densitometers are an example of broadband instruments that measure opti-
cal density of light filtered through red, green, and blue filters. Colorimeters
are another example of broadband instruments that directly report tristim-
ulus (XYZ) values and their derivatives such as CIELAB. In the narrowband
category fall instruments that report spectral data of dimensionality signif-
icantly larger than three. Spectrophotometers and spectroradiometers are
examples of narrowband instruments. These instruments typically record
spectral reflectance and radiance, respectively, within the visible spectrum
in increments ranging from 1 to 10 nm, resulting in 30 to 300 channels. They
also have the ability to internally calculate and report tristimulus coordinates
from the narrowband spectral data. Spectroradiometers can measure both
emissive and reflective stimuli, while spectrophotometers can measure only
reflective stimuli.

The main advantages of broadband instruments such as densitometers
and colorimeters are that they are inexpensive and can read out data at very
high rates. However, the resulting measurement is only an approximation
of the true tristimulus signal, and the quality of this approximation varies
widely, depending on the nature of the stimulus being measured. Accurate
colorimetric measurement of arbitrary stimuli under arbitrary illumination
and viewing conditions requires spectral measurements afforded by the
more expensive narrowband instruments. Traditionally, the printing indus-
try has satisfactorily relied on densitometers to make color measurements
of prints made by offset ink. However, given the larger variety of colorants,
printing technologies, and viewing conditions likely to be encountered in
today’s digital color imaging business, the use of spectral measurement
instruments is strongly recommended for device characterization. Fortu-
nately, the steadily declining cost of spectral instrumentation makes this a
realistic prospect.

Instruments measuring reflective or transmissive samples possess an
internal light source that illuminates the sample. Common choices for
sources are tungsten-halogen bulbs as well as xenon and pulsed-xenon
sources. An important consideration in reflective color measurement is the
optical geometry used to illuminate the sample and capture the reflected
light. A common choice is the 45/0 geometry, shown in Figure 5.11. (The
two numbers are the angles with respect to the surface normal of the incident
illumination and detector respectively.) This geometry is intended to mini-
mize the effect of specular reflection and is also fairly representative of the
conditions under which reflection prints are viewed. Another consideration
is the measurement aperture, typically set between 3 and 5 mm. Another
feature, usually offered at extra cost with the spectrophotometer, is a filter
that blocks out ultraviolet (UV) light emanated by the internal source. The
filter serves to reduce the amount of fluorescence in the prints that is caused
by the UV light. Before using such a filter, however, it must be remembered
that common viewing environments are illuminated by light sources (e.g.,
sunlight, fluorescent lamps) that also exhibit a significant amount of UV
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Figure 5.11 45/0 measurement geometry.

energy. Hence, blocking out UV energy may provide color measurements
that are less germane to realistic viewing conditions.

For reflective targets, another important factor to consider is the color
of the backing surface on which the target is placed for measurement. The
two common options are black and white backing, both of which have
advantages and disadvantages. A black backing will reduce the effect of
show-through from the image on the backside of a duplex print. However,
it will also expose variations in substrate transmittance, thus resulting in
noisier measurements. A white backing, on the other hand, is not as effective
at attenuating show-through; however, the resulting measurements are less
noisy, because the effect of substrate variations is reduced. Generally, a white
backing is recommended if the target is not duplex (which is typically the
case.) Further details are provided by Rich.’

Color measurement instruments must themselves be calibrated to output
reliable and repeatable data. Instrument calibration entails understanding
and specifying many of the aforementioned parameters and, in some cases,
needs to be carried out frequently. Details are provided by Zwinkel .1

Because color measurement can be a labor-intensive task, much has been
done in the color management industry to automate this process. The Gretag
Spectrolino™ product enables the target to be placed on a stage and auto-
matically measured by the instrument. These measurements are then stored
on a computer to be retrieved for deriving the characterization. In a similar
vein, X-Rite Corporation has developed the DTP-41 scanning spectropho-
tometer. The target is placed within a slot in the “strip reader” and is auto-
matically moved through the device as color measurements are made of each
patch.

5.3.3 Absolute and relative colorimetry

An important concept that underlies device calibration and characterization
is normalization of the measurement data by a reference white point. Recall
from an earlier chapter that the computation of tristimulus XYZ values from
spectral radiance data is given by
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where X(A), y(x),E(X) = color matching functions
V = set of visible wavelengths
K = a normalization constant

In absolute colorimetry, K is a constant, expressed in terms of the maximum
efficacy of radiant power, equal to 683 lumens/W. In relative colorimetry, K
is chosen such that Y = 100 for a chosen reference white point.

_ 100
[ SuMp(1)on

AV

K (5.10)

where S, (A) = the spectral radiance of the reference white stimulus.

For reflective stimuli, radiance S,(A) is a product of incident illumination
I(A) and spectral reflectance R,(A) of a white sample. The latter is usually
chosen to be a perfect diffuse reflector (i.e., R,(A) = 1) so that S,,(A) = I(A) in
Equation 5.10.

There is an additional white-point normalization to be considered. The
conversion from tristimulus values to appearance coordinates such as
CIELAB or CIELUV requires the measurement of a reference white stimulus
and an appropriate scaling of all tristimulus values by this white point. In
the case of emissive display devices, the white point is the measurement of
the light emanated by the display device when the driving RGB signals are
at their maximal values (e.g., Dy = D = Dy = 255 for 8-bit input). In the case
of reflective samples, the white point is obtained by measuring the light
emanating from a reference white sample illuminated by a specified light
source. If an ideal diffuse reflector is used as the white sample, we refer to
the measurements as being in media absolute colorimetric coordinates. If a par-
ticular medium (e.g., paper) is used as the stimulus, we refer to the mea-
surements as being in media relative colorimetric coordinates. Conversions
between media absolute and relative colorimetry are achieved with a white-
point normalization model such as the von Kries formula.

To get an intuitive understanding of the effect of media absolute vs.
relative colorimetry, consider an example of scan-to-print reproduction of a
color image. Suppose the image being scanned is a photograph whose
medium typically exhibits a yellowish cast. This image is to be printed on
a xerographic printer, which typically uses a paper with fluorescent whit-
eners and is thus lighter and bluer than the photographic medium. The
image is scanned, processed through both scanner and printer characteriza-
tion functions, and printed. If the characterizations are built using media
absolute colorimetry, the yellowish cast of the photographic medium is
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preserved in the xerographic reproduction. On the other hand, with media
relative colorimetry, the “yellowish white” of the photographic medium
maps directly to the “bluish white” of the xerographic medium under the
premise that the human visual system adapts and perceives each medium
as “white” when viewed in isolation. Arguments can be made for both
modes, depending on the application. Side-by-side comparisons of original
and reproduction may call for media absolute characterization. If the repro-
duction is to be viewed in isolation, it is probably preferable to exploit visual
white-point adaptation and employ relative colorimetry. To this end, the
ICC specification supports both media absolute and media relative modes
in its characterization tables.

Finally, we remark that, while a wide variety of standard illuminants
can be selected for deriving the device characterization function, the most
common choices are CIE daylight illuminants D5000 (typically used for
reflection prints) and D6500 (typically used for the white point of displays).

5.4 Multidimensional data fitting and interpolation

Another critical component underlying device characterization is multidi-
mensional data fitting and interpolation. This topic is treated in general
mathematical terms in this section. Application to specific devices will be
discussed in ensuing sections.

Generally, the data samples generated by the characterization process in
both device-dependent and device-independent spaces will constitute only
a small subset of all possible digital values that could be encountered in
either space. One reason for this is that the total number of possible samples
in a color space is usually prohibitively large for direct measurement of the
characterization function. As an example, for R, G, B signals represented
with 8-bit precision, the total number of possible colors is 22 = 16,777,216;
clearly an unreasonable amount of data to be acquired manually. However,
because the final characterization function will be used for transforming
arbitrary image data, it needs to be defined for all possible inputs within
some expected domain. To accomplish this, some form of data fitting or
interpolation must be performed on the characterization samples. In model-
based characterization, the underlying physical model serves to perform the
fitting or interpolation for the forward characterization function. With empir-
ical approaches, mathematical techniques may be used to perform data
fitting or interpolation. Some of the common mathematical approaches are
discussed in this section.

The fitting or interpolation concept can be formalized as follows. Define
a set of T m-dimensional device-dependent color samples {d;} € R", i =1,
..., T generated by the characterization process. Define the corresponding
set of n-dimensional device-independent samples {¢;} € R*, i =1, ..., T. For
the majority of characterization functions, n = 3, and m = 3 or 4. We will
often refer to the pair ({d;}, {c;}) as the set of training samples. From this set,
we wish to evaluate one or both of the following functions:
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* f F e R"— R", mapping device-dependent data within a domain F
to device-independent color space

* ¢:G e R"— R", mapping device-independent data within a domain
G to device-dependent color space

In interpolation schemes, the error of the functional approximation is
identically zero at all the training samples, i.e., fld) = ¢, and g(c) = d;, i =
1,...,T.

In fitting schemes, this condition need not hold. Rather, the fitting func-
tion is designed to minimize an error criterion between the training samples
and the functional approximations at these samples. Formally,

)5 Sopt = argminE,(|d;,g(¢;)|;-q,
g (5.11)

fopt = argm}nEl(\Ci,f(df)‘izl

where E, and E, are suitably chosen error criteria.
A common approach is to pick a parametric form for f (or g) and mini-
mize the mean squared error metric, given by

T 2
Eo= 7Y le-fd)] (5.12)
i=1

An analogous expression holds for E,. The minimization is performed with
respect to the parameters of the function f or g.

Unfortunately, most of the data fitting and interpolation approaches to
be discussed shortly are too computationally expensive for the processing of
large amounts of image pixel data in real time. The most common way to
address this problem is to first evaluate the complex fitting or interpolation
functions at a regular lattice of points in the input space and build a multi-
dimensional lookup table (LUT). A fast interpolation technique such as tri-
linear or tetrahedral interpolation is then used to transform image data using
this LUT. The subject of fast LUT interpolation on regular lattices is treated
in a later chapter. Here, we will focus on the fitting and interpolation methods
used to initially approximate the characterization function and build the LUT.

Often, it is necessary to evaluate the functions f and g within domains F
and G that are outside of the volumes spanned by the training data {d;} and
{c;}. An example is shown in Figure 5.12 for printer characterization mapping
CIELAB to CMY. A two-dimensional projection of CIELAB space is shown,
with a set of training samples {c;} indicated by “x.” Device-dependent CMY
values {d,} are known at each of these points. The shaded area enclosed by
these samples is the range of colors achievable by the printer, namely its color
gamut. From these data, the inverse printer characterization function from
CIELAB to CMY is to be evaluated at each of the lattice points lying on the
three-dimensional lookup table grid (projected as a two-dimensional grid in
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Figure 5.12 Multidimensional lattice in CIELAB, overlaying printer gamut.

Figure 5.12). Hence, the domain G in this case is the entire CIELAB cube.
Observe that a fraction of these lattice points lie within the printer gamut
(shown as black circles). Interpolation or data fitting of these points is usually
well defined and mathematically robust, since a sufficient amount of training
data is available in the vicinity of each lattice point. However, a substantial
fraction of lattice points also lie outside the gamut, and there are no training
samples in the vicinity of these points. One of two approaches can be used
to determine the characterization function at these points.

1. Apply a preprocessing step that first maps all out-of-gamut colors to
the gamut, then perform data fitting or interpolation to estimate
output values.

2. Extrapolate the fitting or interpolation function to these out-of-gamut
regions.

Some of the techniques described herewith allow for data extrapolation. The
latter will invariably generate output data that lie outside the allowable range
in the output space. Hence, some additional processing is needed to limit
the data to this range. Often, a hard-limiting or clipping function is employed
to each of the components of the output data.

Two additional comments are noteworthy. First, while the techniques
described in this section focus on fitting and interpolation of multidimen-
sional data, most of them apply in a straightforward manner to one-dimen-
sional data typically encountered in device calibration. Linear and polyno-
mial regression and splines are especially popular choices for fitting one-
dimensional data. Lattice-based interpolation reduces trivially to piecewise
linear interpolation, and it can be used when the data are well behaved and
exhibit low noise. Secondly, the reader is strongly encouraged, where pos-
sible, to plot the raw data along with the fitting or interpolation function to
obtain insight on both the characteristics of the data and the functional
approximation. Often, data fitting involves a delicate balance between accu-
rately approximating the function and smoothing out the noise. This balance
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is difficult to achieve by examining only a single numerical error metric and
is significantly aided by visualizing the entire dataset in combination with
the fitting functions.

5.4.1 Linear least-squares regression

This very common data fitting approach is used widely in color imaging,
particularly in device characterization and modeling. The problem is formu-
lated as follows. Denote d and c¢ to be the input and output color vectors,
respectively, for a characterization function. Specifically, d is a 1 x m vector,
and cis a 1 x n vector. We wish to approximate the characterization function
by the linear relationship ¢ = d - A.

The matrix A is of dimension m x n and is derived by minimizing the
mean squared error of the linear fit to a set of training samples, {d; ¢}, i =
1, ..., T. Mathematically, the optimal A is given by

T 2
!
At = argzm{j—ﬂ z le;—d;Al }
=1 (5.13)

To continue the formulation, it is convenient to collect the samples {c;} into
a T x nmatrix C = [¢y, ..., ¢;], and {d;} into a T x m matrix D = [d,, ..., d;].
The linear relationship is given by C = D - A. The optimal A is given by A
= Dt C, where Dt is the generalized inverse (sometimes known as the
Moore-Penrose pseudo-inverse) of D. In the case where D'D is invertible,
the optimum A is given by

A = (D'D)' D'C (5.14)

See Appendix 5.A for the derivation and numerical computation of this
least-squares solution. It is important to understand the conditions for which
the solution to Equation 5.14 exists. If T < m, we have an underdetermined
system of equations with no unique solution. The mathematical consequence
of this is that the matrix D'D is of insufficient rank and is thus not invertible.
Thus, we need at least as many samples as the dimensionality of the input
data. If T = m, we have an exact solution for A that results in the squared
error metric being identically zero. If T > m (the preferred case), Equation
5.14 provides a least-squares solution to an overdetermined system of equa-
tions. Note that linear regression affords a natural means of extrapolation
for input data d lying outside the domain of the training samples. As men-
tioned earlier, some form of clipping will be needed to limit such extrapo-
lated outputs to their allowable range.

5.4.2  Weighted least-squares regression

The standard least-squares regression can be extended to minimize a
weighted error criterion,
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T
A, = argmin{%Zwici—diAz} (5.15)

i=1

where w, = positive-valued weights that indicate the relative importance
of the ith data point, {d; c;}.

Adopting the notation in Section 5.4.1, a straightforward extension of Appen-
dix 5.A results in the following optimum solution:

A = (D'WD)~' D! WC (5.16)

where W is a T x T diagonal matrix with diagonal entries w;.

The resulting fit will be biased toward achieving greater accuracy at the
more heavily weighted samples. This can be a useful feature in device char-
acterization when, for example, we wish to assign greater importance to
colors in certain regions of color space (e.g., neutrals, fleshtones, etc.). As
another example, in spectral regression, it may be desirable to assign greater
importance to certain wavelengths than others.

5.4.3 Polynomial regression

This is a special form of least-squares fitting wherein the characterization
function is approximated by a polynomial. We will describe the formulation
using, as an example, a scanner characterization mapping device RGB space
to XYZ tristimulus space. The formulation is conceptually identical for input
and output devices and for the forward and inverse functions.

The third-order polynomial approximation for a transformation from
RGB to XYZ space is given by

3 3

3 3 3 3
Y Y we RGBS Y =YY Y w, RGB;

i=0j=0k=0 i=0j=0k=0

>
I

3 3 3
z=Y%Yw,, RGB

i=0j=0k=0 (5.17)

where wy, etc. = polynomial weights
I = a unique index for each combination of i, j, k

In practice, several of the terms in Equation 5.17 are eliminated (i.e., the weights

w are set to zero) so as to control the number of degrees of freedom in the
polynomial. Two common examples, a linear and third-order approximation,

© 2003 by CRC Press LLC



are given below. For brevity, only the X term is defined; analogous definitions
hold for Y and Z.

X = wy R + wy ;G + wy,B (5.18a)

X =wyo + Wy R + Wy ,G + wy ;B + wy RG + wy ;GB
+ Wy RB + Wy ;R? + wy sG? + wy oB? + wy ;(RGB (5.18b)

In matrix-vector notation, Equation 5.17 can be written as

Wx,0 Wy, Wzpo

xvz = [1 RG..RG Bﬂ Wxa Wra Was (5.19)

Wx,63 Wy,e3 Wz,63
or more compactly,
c=p-A (5.20)

where ¢ = output XYZ vector
p = 1 x Q vector of Q polynomial terms derived from the input RGB
vector d
A = Q x 3 matrix of polynomial weights to be optimized

In the complete form, Q = 64. However, with the more common simplified
approximations in Equation 5.18, this number is significantly smaller; i.e., Q
=3 and Q = 11, respectively.

Note from Equation 5.20 that the polynomial regression problem has
been cast into a linear least-squares problem with suitable preprocessing of
the input data d into the polynomial vector p. The optimal A is now given by

T
)1
Aapt = argmjin{fzci_piAz}
=1 (5.21)

Collecting the samples {¢;} into a T x 3 matrix C = [¢, ..., ¢7], and {p;} into
a T x Q matrix P = [p;, ..., py], we have the relationship C =P - A. Following
the formulation in Section 5.4.1, the optimal solution for A is given by

A = (P'P)1PIC (5.22)
For the Q x Q matrix (P'P) to be invertible, we now require that T > Q.
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Polynomial regression can be summarized as follows:

1. Select a set of T training samples, where T > Q, the number of terms
in the polynomial approximation. It is recommended that the sam-
ples adequately span the input color space.

2. Use the assumed polynomial model to generate the polynomial terms
p; from the input data d;. Collect ¢; and p; into matrices C and P,
respectively.

3. Use Equation (5.22 to derive the optimal A.

4. For a given input color d, use the same polynomial model to generate
the polynomial terms p.

5. Use Equation 5.20 to compute the output color c.

Figure 5.13 is a graphical one-dimensional example of different polynomial
approximations to a set of training samples. The straight line is a linear fit
(Q = 3) and is clearly inadequate for the given data. The solid curve is a
second-order polynomial function (Q = 7) and offers a much superior fit.
The dash—dot curve closely following the solid curve is a third-order poly-
nomial approximation (Q = 11). Clearly, this offers no significant advantage
over the second-order polynomial. In general, we recommend using the
smallest number of polynomial terms that adequately fits the curvature of
the function while still smoothing out the noise. This choice is dependent
on the particular device characteristics and is obtained by experimentation,
intuition, and experience. Finally, it is noted that polynomial regression
affords a natural means of extrapolation for input data lying outside the
domain of the training samples.

250 * raw data
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200p N — - cubicfit | ]
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Figure 5.13 One-dimensional example of different polynomial approximations.
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5.4.4 Distance-weighted techniques

The previous section described the use of a global polynomial function that
results in the best overall fit to the training samples. In this section, we
describe a class of techniques that also employ simple parametric functions;
however, the parameters vary across color space to best fit the local charac-
teristics of the training samples.

5.4.4.1 Shepard’s interpolation

This is a technique that can be applied to cases in which the input and output
spaces of the characterization function are of the same dimensionality. First,
a crude approximation of the characterization function is defined: ¢ =
fapprox(d). The main purpose of f,,,,() is to bring the input data into the
orientation of the output color space. (By “orientation,” it is meant that all
RGB spaces are of the same orientation, as are all luminance—chrominance
spaces, etc.) If both color spaces are already of the same orientation, e.g.,
printer RGB and sRGB, we can simply let f,,,..() be an identity function so
that ¢ = d. If, for example, the input and output spaces are scanner RGB
and CIELAB, an analytic transformation from any colorimetric RGB (e.g.,
sRGB) to CIELAB could serve as the crude approximation.

Next, given the training samples {d;} and {c;} in the input and output
space, respectively, we define error vectors between the crude approximation
and true output values of these samples: ¢; = ¢;—¢; =1, ...,T. Shepard’s
interpolation for an arbitrary input color vector d is then given by

T
c=c+K,Y w(d-d)e (5.23)

i=1

where w() = weights
K, = a normalizing factor that ensures that these weights sum to
unity as follows:

K, = — 1 (5.24)

-
Yy w(d-d)
i=1

The second term in Equation 5.23 is a correction for the residual error
between c and c, and it is given by a weighted average of the error vectors
e; at the training samples. The weighting function w() is chosen to be
inversely proportional to the Euclidean distance between d and d; so that
training samples that are nearer the input point exhibit a stronger influence
than those that are further away. There are numerous candidates for w().
One form that has been successfully used for printer and scanner character-
ization is given by!?
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1
wd-d) = —— (5.25)
ld-d" +e

where ||d —d,| denotes Euclidean distance between vectors d and d;, and p
and € are parameters that dictate the relative influence of the training samples
as a function of their distance from the input point. As p increases, the
influence of a training sample decays more rapidly as a function of its
distance from the input point. As € increases, the weights become less sen-
sitive to distance, and the approach migrates from a local to a global approx-
imation.

Note that, in the special case where € = 0, the function in Equation 5.25
has a singularity at d = d;. This can be accommodated by adding a special
condition to Equation 5.23.

T
c+K,Y w(d-d)e, if(|[d-dj =t
i=1

c ifld-d <t

(5.26)

where w() = given by Equation 5.25 with € = 0
t = asuitably chosen distance threshold that avoids the singularity

Other choices of w() include the Gaussian and exponential functions."! Note
that, depending on how the weights are chosen, Shepard’s algorithm can be
used for both data fitting (i.e., Equation 5.23 and Equation 5.25 with € > 0),
and data interpolation, wherein the characterization function coincides
exactly at the training samples (i.e., Equation 5.26). Note also that this tech-
nique allows for data extrapolation. As one moves farther away from the
volume spanned by the training samples, the distances ||d — d,| and hence
the weights w() approach a constant. In the limit, the overall error correction
in Equation 5.23 is an unweighted average of the error vectors e;.

5.4.4.2 Local linear regression

In this approach, the form of the characterization function that maps input
colors d to output colors c is given by

c=d-A, (5.27)

This looks very similar to the standard linear transformation, the important
difference being that the matrix A, now varies as a function of the input
color d (hence the term local linear regression). The optimal A, is obtained by
a distance-weighted least-squares regression,
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T
opt . 1 2
AV = argmm{Tgc,»— d;A | w(d - di)} (5.28)

As with Shepard’s interpolation, the weighting function w() is inversely
proportional to the Euclidean distance |d —d| , so training samples d; that
are farther away from the input point d are assigned a smaller weight than
nearby points. A form such as Equation 5.25 may be used.!? The solution is
given by Equation 5.16 in Section 4.2, where the weights w(d — d;) constitute
the diagonal terms of W. Note that because w() is a function of the input
vector d, Equation 5.16 must be recalculated for every input vector d. Hence,
this is a computationally intensive algorithm. Fortunately, as noted earlier,
this type of data fitting is not applied to image pixels in real time. Instead,
it is used offline to create a multidimensional lookup table.

Figure 5.14 is a one-dimensional example of the locally linear transform
using the inverse-distance weighting function, Equation 5.25. As with Shep-
ard’s interpolation, p and ¢ affect the relative influence of the training sam-
ples as a function of distance. The plots in Figure 5.14 were generated with
p =4 and compare two values of €. For € = 0.001, the function closely follows
the data. As € increases to 0.01, the fit averages the fine detail while preserv-
ing the gross curvature. In the limit as € increases, w() in Equation 5.25
approaches a constant, the technique approaches global linear regression,
and the fit approaches a straight line. Similar trends hold for p. These param-
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Figure 5.14 Local linear regression for different values of €.
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eters thus offer direct control on the amount of curvature and smoothing
that occurs in the data fitting process and should be chosen based on a priori
knowledge about the device and noise characteristics.

As with Shepard’s algorithm, this approach also allows for data extrap-
olation. As the input point moves farther away from the volume spanned
by the training samples, the weights w() approach a constant, and we are
again in the regime of global linear extrapolation.

5.4.5 Lattice-based interpolation

In this class of techniques, the training samples are assumed to lie on a
regular lattice in either the input or output space of the characterization
function. Define /; to be a set of real-valued levels along the ith color dimen-
sion. A regular lattice L™ in m-dimensional color space is defined as the set
of all points x = [x;, ..., x,,J' whose ith component x; belongs to the set I..
Mathematically, the lattice can be expressed as

L" = {xe R"|x;e l,,i=1,...,m} or, equivalently, L" = Hli (5.29)

i=1

where the second expression is a Cartesian product. If s; is the number of
levels in [;, the size of the lattice is the product s, x s, x ... X s,,. Commonly,
all the /; are identical sets of size s, resulting in a lattice of size s™.

In one dimension, a lattice is simply a set of levels {x;} in the input space.
Associated with these levels are values {y;} in the output space. Evaluation of
the one-dimensional function for an intermediate value of x is then performed
by finding the interval [x; x,,] that encloses x and performing piecewise
interpolation using either linear or nonlinear functions. If sufficient samples
exist and exhibit low noise, linear interpolation can be used as follows:

X—-X

Y= yj+(x——-—j+l_;j)(yj+1—yj) (5.30)

If only a sparse sampling is available, nonlinear functions such as splines
may be a better choice (see Section 5.4.8).

Let us turn to the more interesting multidimensional case. A three-dimen-
sional lattice in CMY space is shown in Figure 5.15, along with the corre-
sponding lattice in CIELAB space. The lines indicate the levels I; along each
dimension, and the intersections of these lines are the lattice points. The lattice
size in this example is 5 X 5 x 5 = 125. A lattice partitions a color space into
a set of smaller subvolumes. The characterization transform is executed in
two steps: (1) Locate the subvolume to which an input color belongs, and (2)
perform some form of interpolation, effectively a distance-weighted average,
among the neighboring lattice points. By definition, the characterization func-
tion will coincide with the training samples at the lattice points.
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Figure 5.15 Three-dimensional lattice in CMY and CIELAB space.

Note from Figure 5.15 that, while the lattice is regular in one space, it
need not be regular in the other space. In the case of the forward character-
ization function for an output device, the regular lattice exists in the input
domain of the function. Efficient interpolation techniques exist for regular
lattices, including trilinear, tetrahedral, prism, and pyramidal interpolation.
These are described in detail in Chapter 11 and thus will not be discussed
here. The more challenging case is evaluation of the inverse transform,
whereby the lattice that partitions the input domain of the function is irreg-
ular. We will describe a solution to this problem known as tetrahedral inver-
sion.!® Let us assume that the dimensionality of both input and output color
spaces are equal and assume, without less of generality, that the data are
three-dimensional. A regular lattice in three-dimensional space provides a
partitioning into a set of sub-cubes. Each sub-cube can be further partitioned
into several tetrahedra, as shown in Figure 5.16. A tetrahedron is a volume
bounded by four vertices and four planar surfaces. There are several ways
to split a cube into tetrahedra, the most common form being a partitioning

v

/I =4
4

subcube 6 tetrahedra

ANN

Figure 5.16 Partitioning of color space into cubes, further subdivided into tetrahe-
dra.
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into six tetrahedra that share a common diagonal of the cube. An association
is now established between each quadruplet of vertices that constitute a
tetrahedron on the regular lattice in device space and the corresponding
quadruplet of vertices on the irregular lattice in device-independent space,
as shown in Figure 5.17. The inverse characterization function g() is then
modeled as one that maps each tetrahedral volume in device-independent
space to a corresponding tetrahedral volume in device space.

Specifically, referring to Figure 5.17, let {d;, d,, d;, d,} be four vertices of
a tetrahedron T, in device space, and {c;, ¢, ¢; c,} be the corresponding
vertices forming a tetrahedron T, in device-independent space. Here, d; and
¢; are 3 x 1 vectors. Given a point ¢ lying within T, the corresponding point
d in T, is given by

d=g(c)=A;- A" (c—-¢) +d, (5.31)

where Ay and A are 3 x 3 matrices given by
Ay =[dy-dy d3-d; dy-di]; A= [c—¢; ¢3—¢; ¢4—¢q] (5.32)

Equation 5.31 tells us that g() is being modeled as a piecewise affine
function. It can be shown that c is included within a tetrahedron T, if all the
elements of the vector A (c — ¢;) are nonnegative and their sum lies between
0and 1.8

Tetrahedral inversion may be summarized as follows:

e Partition the regular lattice of training samples into a set of tetrahe-
dra.

e Establish a correspondence between tetrahedra on the regular lattice
in the one space and tetrahedra on the possibly irregular lattice in
the other space.

e Given an input point ¢, find the tetrahedron T, to which the point
belongs, using the aforementioned membership test.

M

Figure 5.17 Tetrahedral mapping from device CMY space to colorimetric CIELAB
space.
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* Use Equations 5.31 and 5.32 to evaluate the characterization function
d = g(c).

Because tetrahedral inversion requires membership in a tetrahedron, it does
not allow extrapolation to points ¢ that lie outside the lattice defined by the
training samples. Hence, such points must first be mapped to the lattice
volume before carrying out the inversion algorithm. Also, it is worth noting
that tetrahedral interpolation on a regular lattice can be implemented with
a highly simplified form of Equation 5.31. These equations will be included
in the chapter on efficient color transformations.

In the context of deriving a characterization function, regular lattices of
training data can occur only for the case of output devices, as the patches
in the color target can be designed to lie on a regular lattice in device space.
With input device characterization, neither the captured device values nor
the measured device-independent values of the color target can be guaran-
teed to lie on a regular lattice.

5.4.6 Sequential interpolation

A primary advantage of a regular lattice is that it facilitates simple interpo-
lation techniques. However, it limits the freedom in the placement of control
points in multidimensional color space. Referring to Figure 5.12, one would
expect considerable curvature of the characterization function in certain
regions within the device gamut, while large regions outside the gamut
would never be used for interpolation calculations. It would be desirable,
therefore, to finely sample regions within the gamut, and coarsely sample
regions far away from the gamut. As shown in the figure, the regular lattice
does not permit this. A simple extension of regular lattice interpolation,
which we term sequential interpolation (SI), brings additional flexibility at a
modest increase in computational cost.

In general terms, SI can be thought of as a two-stage interpolation pro-
cess. Consider a decomposition of the space R™ into two subspaces of dimen-
sions p and g, i.e., R" = R X R, m = p + q. The m-dimensional lattice L™ can
also be decomposed into two sub-lattices L¥ and L. Let s be the size of L.
We can think of L™ as being a family of s p-dimensional lattices. In a conven-
tional regular lattice each p-dimensional lattice is identical, and we have L™
=[x 1. In sequential interpolation, we let the p-dimensional lattice structure
vary as a function of the remaining 4 dimensions.

To crystallize this concept, consider the three-dimensional lattice in Figure
5.18 used to implement a characterization function from device RGB to
CIELAB. This lattice can be conceived as a family of two-dimensional RG
lattices, corresponding to different levels of the third-dimension B. In Figure
5.18a, the RG lattices are identical as a function of B, which corresponds to a
regular lattice in RGB space. In this case, interpolation of an input RGB point
is accomplished by selecting a subset of the eight vertices V,, ..., V; that
enclose the point and performing a weighted average of the output values at
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Figure 5.18 Comparison of (a) conventional and (b) sequential interpolation lattices.

these vertices. In Figure 5.18b, a sequential structure is shown where the RG
lattice structure is allowed to change as a function of B. The interpolation
calculation is accomplished by first projecting an input RGB point onto the
B dimension and selecting the neighboring levels B;and Bj,;. These correspond
to two lattices in RG space. The input RGB point is then projected onto RG
space, and two-dimensional interpolation is performed within each of these
lattices, yielding two output colors ¢, c;,;. Finally, one-dimensional interpo-
lation is performed in the B dimension to produce the final output color. In
this example, SI would be advantageous if the characterization function is
known to exhibit different degrees of curvature for different values of B. If,
for example, the function curvature is high for small values of B, SI permits
a finer lattice sampling in these regions (as shown in Figure 5.18). Thus, with
more efficient node placement, SI enables a given level of accuracy to be
achieved with fewer lattice nodes than can be achieved with a regular lattice.
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Figure 5.19 is a flow diagram showing the general case of SI in m-
dimensions. Application of SI to CMYK printer characterization will be
described in Section 5.10.3. Another special case of SI is sequential linear
interpolation (SLI)." In SLI, we decompose the m-dimensional space into
(m — 1) dimensional and one-dimensional subspaces, then decompose the
former into (m — 2) and one-dimensional subspaces, and so on until we have
a sequence of one-dimensional interpolations. SLI is described in more detail
in Chapter 11.

5.4.7 Neural networks

Neural networks have taken inspiration from natural computational pro-
cesses such as the brains and nervous systems of humans and animals. This
class of techniques has received much attention in color imaging in recent
years. In this section, we briefly describe the use of neural nets in device
characterization, referring the reader to Masters!®> for excellent overviews,
algorithms, and further reading on the subject.

A neural network is an interconnected assembly of simple processing
units called neurons whose functionality is loosely based on the biological
neuron. The processing ability of the network is stored in the inter-neuron
connection strengths, or weights, obtained by a process of adaptation to, or
learning from, a set of training patterns. In the most common configuration,
the neurons are arranged into two or more layers, with inputs to neurons in
a given layer depending exclusively on the outputs of neurons in previous
layers. An example of such a multilayer feed-forward neural network is
shown in Figure 5.20. This network has three inputs, three outputs, and one
hidden layer of four neurons. The inputs are obtained from an external
source (e.g., in our application, color data from the characterization process),
and the outputs are the neural network’s approximation of the response to
these inputs. Let SEL) be the ith neuron in the Lth layer, i = 1, ..., N;. The
output from unit s{" is given by

c
s Perform K > Perform '2_
P"°|;°pt in p-dimensional [ | g-dimensional [~ _
interpolations | ¢ interpolation §_
- =
£ o
o
Q-—
5
o
£
Project in Select K surrounding ircn:t:?;)%lll;%é(n
q . - - q >
R lattice points in R weights

Figure 5.19 Block diagram of sequential interpolation.
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Figure 5.20 Three-layer (3—4-3) neural network.

N1
s = h( S w,.jsj.“)J (5.33)

j=1

where w; = a synaptic weight that determines the relative

strength of the contribution of neuron sELil) to

(L
neuron s;

function () = a nonlinear function, such as a step function or
sigmoidal (S-shaped) function

Examples of sigmoidal functions are the logistic function, cumulative Gaus-
sian, and hyperbolic tangent.’®> Depending on the particular architecture
being implemented, constraints such as monotonicity and differentiability
are often imposed on h(). The functionality of the overall neural net is
determined by the number of layers and number of neurons per layer, the
interconnecting links, the choice of k(), and the weights w;. Note from Equa-
tion 5.33 that each layer feeds only to the immediately following layer; this
is the most typical configuration.

A popular method for neural network optimization is back-propagation,
where all parameters except the synaptic weights w; are chosen beforehand,
preferably based on some a priori knowledge about the nature of the function
being approximated. The w; are then derived during a learning process in
which a set of training samples in both input and output spaces is presented
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to the network. An error metric such as the mean squared error in Equation
5.12 is minimized at the training samples with respect to w;. Because the
overall neural network is a complex nonlinear function of wy, iterative error
minimization approaches are called for. An example is the gradient descent
algorithm, where a weight wf]k) at iteration k is given by

k) (k=1) OE

Here, E is the error metric being minimized, and R is a parameter known as
the learning rate. The iteration continues until some convergence criterion
is met with respect to the magnitude or the rate of change of E. The parameter
R dictates the speed and stability of convergence. A major shortcoming of
the gradient descent algorithm is that convergence is often unacceptably
slow. An alternative search technique favored for significantly faster conver-
gence is the conjugate gradient algorithm. As with all iterative algorithms,
rate of convergence also depends on the choice of initial estimates, i.e., wfjo) .
Linear regression can be used to generate good initial estimates. Details are
given in the book by Masters.!>

The application to color characterization should be evident. A neural
network can be used to approximate either the forward or inverse charac-
terization functions. The training samples are the device-dependent and
device-independent colors {c; d;} obtained in the characterization process.
After the neural net is trained, arbitrary color inputs can now be processed
through the network. The architecture of the network is chosen based on the
expected complexity of the characterization function. As with polynomials,
increased complexity can result in a better fit up to a certain point, beyond
which the network will begin to track the noise in the data.

Typically, the iterative training can be a highly computationally intensive
process. Fortunately, this is not a major concern, as this step is carried out
offline. Neural networks are also usually too computationally intensive for
real-time processing of image pixels. They can, however, be approximated
by multidimensional LUTs, which are more computationally efficient.

5.4.8 Spline fitting

Spline interpolation constitutes a rich and flexible framework for approxi-
mating free-form shapes. One-dimensional splines can be used very effec-
tively for the calibration step, whereas the multidimensional versions are
applicable for characterization. The most common spline functions comprise
a set of piecewise polynomial functions defined over a partition of segments
in the input space, as shown for the one-dimensional case in Figure 5.21.
The behavior of the spline is dictated by control points, known as knots, at
the segment boundaries. The parameters of the polynomials are determined
so that the function passes through all the knots while maintaining certain
degrees of continuity across the segment boundaries.
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Figure 5.21 Spline function used for (a) interpolation and (b) fitting.

Splines can be used for both interpolation and fitting. In the case of
interpolation, shown in Figure 5.21a, the knots coincide with the data points.
This approach is desirable when very few accurate data points are available.
In the case of fitting, shown in Figure 5.21b, the control points do not nec-
essarily coincide with the data and are actually free parameters chosen to
minimize an error criterion between the data points and the spline fit. This
approach is preferred when ample data is available but expected to be noisy
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and therefore requiring some smoothing. The number and location of the
knots used for spline fitting are critical. Too few knots could result in an
excessively “stiff” spline that is unable to follow the curvature of the func-
tion, but too many knots could result in overshoots that follow the noise. A
general guideline is to use fewer knots than data points and to space them
approximately uniformly except in regions known to exhibit high curvature,
where a denser sampling of knots can be used. As advised earlier, it is highly
instructive to first plot and visualize the raw data so as to choose the knots
appropriately.

The major advantage of splines over straightforward polynomial
approximation is that the complexity of a spline can be tailored to suit the
local characteristics of the function. Equivalently, a local change in a calibra-
tion or characterization function can be accurately approximated with a
change in one local segment of a spline curve. Piecewise cubic and B-splines
are popular choices for data fitting applications. Figure 5.22 is a comparison
of cubic spline interpolation with the third-order polynomial approximation
using the same data as in Figure 5.13. Clearly, the spline is capable of fol-
lowing the data more closely.

Space constraints do not permit a detailed treatment of splines in this
chapter. The reader is referred to the book by Farin!® for a comprehensive
tutorial on the subject. C programs for cubic spline interpolation can be
found in Numerical Recipes in C.'7 Users of Matlab can find an extensive set
of spline functions in the spline toolbox (go to www.mathworks.com for
details). As with other data-fitting techniques, the most suitable choice of
spline function requires knowledge of the nature of the characterization data.
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Figure 5.22 Comparison of spline and polynomial fitting.
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5.5 Metrics for evaluating device characterization

Many of the mathematical techniques described in the previous section
minimize quantitative error metrics. The resulting error from the fitting or
interpolation is one indicator of the overall accuracy of characterization.
However, this information is not sufficient, for several reasons:

1. The error is available only for the training samples.

2. The error is not always calculated in a visually meaningful color
space.

3. Noise and other imperfections that can occur with multiple uses of
the device are implicitly ignored.

To address the first concern, the notion of evaluating the characterization
with independent test targets was introduced in Section 5.2. To address the
second issue, evaluation of errors with visually relevant metrics is strongly
recommended. While color difference formulae are described in detail in an
earlier chapter, two of them, AE,, and AE,, are restated here, as they are
used extensively in this chapter. Given two CIELAB colors, and their com-
ponent-wise differences, AL*, Aa*, Ab* (equivalently, AL*, AC*, AH*), the AEZb
color difference formula is simply the Euclidean distance between the two
points in CIELAB space,

AES, = J(ALY + (Ad) + (AD) = J(ALY +(AC)Y +(AH)®  (5.35)

It is important to bear in mind that AH* is not a component-wise hue differ-
ence but rather is given by

x 2 2 2
AH* = A/(AEH;,) — (AL*)" = (AC*) (5.36)

The AE,, formula is an extension of AE,, that applies different weights to
the various components as follows:

. ALY (AC YV (AH' Y
AE = J(ﬁ) +(rs) () (5:37)

where S, =1
Sc=1+0.045C*
Sy=1+0.015C*

The parameters k;, k., and k;; account for the effect of viewing conditions.
Under a set of nominal viewing conditions, these parameters are set to 1,
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and the overall effect is dictated solely by S. and S;;, which reduce the
perceived color difference as chroma increases.

Another metric used widely in the textile industry is the CMC color
difference formula. This formula is similar in form to the AE,, equation and
has parameters tailored for perceptibility vs. acceptability of color differ-
ences. Finally, an extension of the AE,, formula has been recently developed,
known as the CIEDE2000 metric.®® This metric accounts for interactions
between the C* and H* terms and is expected to be adopted as an industry
standard until further developments arise. The reader is referred to Chapter 1
for details.

The next question to consider is what error statistics to report. Common
aggregate statistics cited in the literature are the mean, standard deviation,
minimum, and maximum of the AEs for a set of test samples. Often, a
cumulative statistic such as the 95th percentile of AE values (i.e., the value
below which 95% of the AE values in the test data lie) is calculated. For a
complete statistical description, histograms of AE can also be reported.

Having chosen an error metric, how does one determine that the char-
acterization error is satisfactorily small? First, recall that characterization
accuracy is limited by the inherent stability and uniformity of a given device.
If the errors are close to this lower bound, we know that we cannot do much
better for the given device. In the following sections, we will provide the
reader with some idea of the characterization accuracy achievable by state-
of-the-art techniques. It must be kept in mind, however, that “satisfactory
accuracy” depends strongly on the application and the needs and expecta-
tions of a user. A graphic arts color proofing application will likely place
stringent demands on color accuracy, while inexpensive consumer products
will typically play in a market with wider color tolerances.

Another aspect that further confounds evaluation of color accuracy is
that the end user ultimately views not test targets with color patches but
images with complex color and spatial characteristics. Unfortunately, quan-
titative analysis of patches is not always a reliable indicator of perceived
color quality in complex images. (The latter is a subject of active research.'?)
The reader is thus advised to exercise appropriate caution when interpreting
individual results or those cited in the literature, and to always augment
quantitative evaluation of color accuracy with a qualitative evaluation
involving images and individuals that represent the intended market and
application.

A special class of error metrics for input devices evaluates how accu-
rately the information recorded by the input device can be transformed into
the signals sensed by the human visual system for input stimuli with given
spectral statistics. Such error metrics do not directly evaluate the accuracy
of a characterization but rather the ability of the device to act as a visual
colorimeter. Hence, these metrics are relevant for filter design optimization
and can also suggest the most appropriate characterization technique for a
given input device. The reader is referred to papers by Sharma et al.?® and
Quan et al.?! for further details.
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5.6 Scanners

All scanners employ one of two primary types of sensing technology. Drum
scanners use photomultiplier tubes (PMTs), whereas the less expensive flat-
bed scanners employ charge-coupled devices (CCDs). Both of these technol-
ogies sense and convert light input into analog voltage. Drum scanners
consist of a removable transparent cylinder on which a print, which is reflec-
tive, transparent, or a photographic negative, can be mounted. A light source
illuminates the image in a single pass as the drum spins at a high speed.
The light reflected off or transmitted through the print is passed through
red, green, and blue filters then sent through the PMTs, which relay voltages
proportional to the input light intensity. The PMT is extremely sensitive, thus
providing drum scanners a large dynamic range. The drum scanners used
in offset printing applications contain built-in computers that are capable of
direct conversion of the RGB scan to CMYK output and are used to generate
color separations at very high spatial resolution. A limitation of this scanning
technology is that the original must be flexible so that it can physically be
mounted on the drum.

All flatbed scanners utilize CCD technology, which is simpler, more
stable, and less costly than PMT technology. These scanners have widely
varying sensitivity and resolution and, at the highest end, approach the
performance of drum scanners. Transparent or reflective prints are placed
on a glass platen and evenly illuminated from above the glass for transpar-
encies, and from beneath for reflective. As the light source moves across the
image, individual lines of the image are sensed by a CCD array, which relays
voltages that are proportional to the input light intensity. An integrating
cavity is usually employed to focus light from the scanner illuminant onto
the print. An undesirable outcome of this is that light reflected from a given
spatial location on the print can be captured by the cavity and returned to
the print at neighboring locations. Hence, the scanner measurement at a pixel
depends not only on the reflectance at that pixel but also on the reflectances
of neighboring pixels. A model and correction algorithm for this so-called
integrating cavity effect is given by Knox.??

Following the sensing step, an analog-to-digital (A /D) converter is used
to quantize the analog voltage signal to a digital signal represented by
between 8 and 16 bits per each of R, G, B channels. These raw digital values
are usually linear with respect to the luminance of the stimulus being
scanned. Additional image acquisition software often allows the raw data
to be processed through tone reproduction curves so that a power-law (or
gamma) relationship exists between digital value and luminance. This oper-
ation is carried out before the A/D conversion. One reason for doing this is
that quantization of nonlinear gamma-corrected signals is less visually dis-
turbing than quantization of data that is linear in luminance. (This is dis-
cussed in more detail in the section on display characterization.) A second
reason is to prepare the scanned data for direct display on a CRT, which
exhibits approximately a square law (gamma = 2) relationship.
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5.6.1 Calibration

Scanner calibration involves first establishing various settings internal to the
scanner, or in the scanner driver. To calibrate the white point, a reflective
white sample shipped with the scanner is scanned, and the gain factor on
each of the R, G, B signals is adjusted so that R = G = B = 1 for this sample.
As mentioned earlier, additional scanner software can offer selections for the
digital precision of the RGB output and transformations between analog and
digital representations (e.g., power-law functions). Once set, these parame-
ters must not be altered during subsequent characterization or scanning
operations.

In addition, it is usually desirable to linearize and gray-balance the
scanner response. The result of this step is that an input ramp of gray stimuli
in equal increments in luminance will result in equal increments in R = G =
B scanner values. To achieve this, the scanner is exposed to a ramp of gray
patches of known luminance values (e.g., as found at the bottom of the Q60
target); the scanner RGB values are extracted for each patch, and a TRC is
constructed. A hypothetical example is given in Figure 5.23 to illustrate the
process. The TRC is constructed so that a triplet of raw RGB values corre-
sponding to a gray patch will map to the corresponding measured luminance
value (within a scaling factor). The measurements generally provide only a
subset of the data points in the TRC, the rest being determined with some

Scanner Measured Scaled
RGB Luminance Luminance
(0-255)
10 20 30 4 10
15 25 35 8 20
[100 104 109] 45 1115]
210 206 209 94 240
Output
115

Input

Figure 5.23 Illustration of gray-balance calibration for scanners.
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form of data fitting or interpolation technique. Because the data are likely
to contain some noise from the scanning and measuring process, it is pref-
erable that the fitting technique incorporate some form of smoothing. Kang?
reports that linear regression provides sufficiently accurate results for scan-
ner gray balance, while nonlinear curve fitting offers only a modest improve-
ment. In any event, polynomial and spline techniques are viable alternatives
for scanners that exhibit significant nonlinearity.

5.6.2 Model-based characterization

Model-based scanner characterization attempts to establish the relationship
between calibrated device-dependent data and colorimetric representations
via explicit modeling of the device spectral sensitivities. Adopting the nota-
tion in previous sections, consider a training set of T spectral reflectance
samples {s;}, which can be collected into a matrix S = [s;, ..., s;]'. The spectral
data is related to device data D = [d;, ..., d;]* and colorimetric data C =
[c), ..., cr]' by Equations 5.1 and 5.2, respectively. In matrix notation, we thus
have

C=SA, ;D=S8A, (5.38)

The column vectors of matrix A_are a product of the color matching functions
and the viewing illuminant I, and similarly A, is formed from a product of
the scanner spectral sensitivities and the scanner illuminant I,. The classic
model-based approach is to compute the linear 3 x 3 matrix transformation
M that best fits the colorimetric data to device-dependent data in the least-
squared error sense. The linear approximation is expressed as

C=D-M (5.39)
and from Section 5.4.1, the optimal M is the least-squares solution,
M = (D'D)' D'C (5.40)
Plugging Equation 5.38 into Equation 5.40, we have
M = (A/S' SA)? A/S! SA, (5.41)

Equation 5.41 tells us that the scanner characterization function is deter-
mined by

Color matching functions

Viewing and scanning illuminants I, and I,

Spectral autocorrelation matrix S'S of the training samples
Scanner spectral sensitivities

Ll N
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Note that Equation 5.40 can be directly used to estimate M from a set of
training samples {d, ¢;} without explicit knowledge of the spectral sensitiv-
ities. However, for accurate results, this empirical procedure would have to
be repeated for each different combination of input reflectances S and view-
ing illuminants I,. The model-based formulation, Equation 5.41, allows pre-
diction of the scanner response for arbitrary input reflectances and illumi-
nants given the scanner sensitivities A; and illuminant L. The optimal M
can be computed using Equation 5.41 without having to make repeated
measurements for every combination of input media and illuminants.

Each of the quantities of interest in Equation 5.41 will now be discussed.
Because the color matching functions A, are known functions, they are not
included in the discussion.

Viewing illuminant. In general, it is difficult to ascertain a priori the
illuminant under which a given stimulus will be viewed. A common de facto
assumption for viewing reflective prints is the Daylight 5000 (D50) illumi-
nant. However, if it is known that images are to be viewed under a certain
type of lighting, e.g., cool-white fluorescence or an incandescent lamp, then
the corresponding spectral radiance should be used.

Scanning illuminant. Scanners typically employ a fluorescent source,
hence the spectral radiance function will contain sharp peaks as shown in
Figure 5.4. The spectral radiance function I (A) can be obtained from the
scanner manufacturer or can be estimated from the training data. However,
the peaks found in fluorescent sources can lead to unreliable estimates unless
these are explicitly modeled.* Hence, it is generally preferable that this
quantity be directly measured.

Scanner spectral sensitivities. Deriving the scanner sensitivities is the
most challenging aspect of model-based characterization. Some scanner
manufacturers supply such data with their products. However, the informa-
tion may not be accurate, as filter characteristics often change with time and
vary from one scanner to another. Direct measurement of the scanner sen-
sitivities may be achieved by recording the scanner response to narrowband
reflectance data. However, this is a difficult and expensive process and
therefore impractical in most applications. The most viable alternative is to
estimate the sensitivities from a training set of samples of known spectral
reflectance. Several approaches exist for this and are briefly described below,
along with references for further reading.

The most straightforward technique is to use least-squares regression to
obtain the device sensitivity matrix A, The objective is to find A, that
minimizes ||D—SA,|*. From the linear regression formulation in Section
5.4.2, we have

A,=(8'S)'SD (5.42)
The problem with this approach is that, although the spectral reflectance

data is L-dimensional, with L being typically between 31 and 36, the true
dimensionality of the spectra of samples found in nature is significantly less.
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(Studies have shown that the samples in the Macbeth chart can be accurately
represented with as few as three basis functions.”) Alternatively phrased,
the system of Equations 5.42 contains only a small number of significant
eigenvalues. This results in the spectral autocorrelation matrix S'S being ill
conditioned, in turn yielding unstable, noise-sensitive estimates of the sen-
sitivity functions A,. One approach to mitigate this problem is to use only
the eigenvectors corresponding to the few most significant eigenvalues of
S'S in the solution of Equation 5.42. This so-called “principal eigenvector”
(PE) method results in a solution that is far less noise sensitive than that
obtained from Equation 5.42. The reader is referred to Sharma? for more
details.

One problem with PE is that it does not exploit a priori information
about the nature of the spectral sensitivity functions. We know, for example,
that the spectral sensitivities are positive-valued and usually single-lobed
functions. In the case where A only contains the passive filter and detector
responses (i.e., the illuminant is not included), we also know that the func-
tions are smooth. There are a number of ways to use these constraints to
generate estimates of A, that are superior to those achieved by PE. One
approach is to define the aforementioned constraints as a set of linear ine-
qualities and formulate the least-squares minimization as a quadratic pro-
gramming problem. The latter can be solved using standard packages such
as Matlab. The reader is referred to Finlayson et al.?® for more details.
Another approach is to use a set theoretical formulation to express the
constraints as convex sets and to use an iterative technique known as pro-
jection onto convex sets (POCS) to generate the sensitivity functions.?* One
potential problem with the POCS technique is that the solution is not unique
and is often sensitive to the initial estimate used to seed the iterative process.
Despite this caveat, this technique has been shown to produce very good
results. 4%

Input spectral data.  As alluded to in Section 5.2, the spectral reflectance
data S should be measured from media that are representative of the stimuli
to be scanned. If a single scanner characterization is to be derived for all
possible input media, it is advisable to measure the data from a wide range
of media, e.g., photography, offset, laser, inkjet, etc. An interesting case occurs
if S is constructed by drawing samples at random from the interval [-1, 1]
with equal likelihood. With this “maximum ignorance” assumption, the
spectral data are uncorrelated; therefore, the autocorrelation S'S is an identity
matrix, and Equation 5.41 reduces to

M = (A/A)" A/A, (5.43)

Note that the characterization transform now no longer depends on mea-
sured data. Observe, too, that Equation 5.43 is also the least-squares solution
to the linear transformation that relates the color matching functions A, to
the device sensitivities A,;
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A =AM (5.44)

Comparing Equations 5.39 and 5.44, we see that the optimal linear trans-
form that maps the color matching functions to the scanner sensitivities is
the same as the transform that optimally maps scanner RGB to XYZ under
the maximum ignorance assumption. As a corollary, if the scanner is perfectly
colorimetric, then Equations 5.39 and 5.44 become equalities, and the matrix
that relates the color matching functions to scanner sensitivities is precisely
the matrix that maps scanner RGB to XYZ for all media and illuminants.

One problem with the maximum ignorance assumption is that it includes
negative values, which can never occur with physical spectra. Finlayson et
al.®® show that a positivity constraint on the preceding formulation results
in the correlation S'S being a constant (but not identity) matrix, which results
in a more accurate estimate of M.

Another class of model-based techniques, somewhat distinct from the
preceding framework, derives scanner characterization for a specific
medium by first characterizing the medium itself and using models for both
the medium and scanner to generate the characterization. The additional
step of modeling the medium imposes physically based constraints on the
possible spectra S and can lend further insight into the interaction between
the medium and the scanner. Furthermore, a priori modeling of the input
medium may simplify the in situ color measurement process. Berns and
Shyu? postulate that scanner filters are designed to align closely with the
peaks of the spectral absorptivity functions of typical photographic dyes.
The relationship between scanner RGB and C, M, Y dye concentrations is
thus modeled by simple polynomial functions. The Beer-Bouguer and
Kubelka—-Munk theories (discussed in Section 5.10.2) are then used to relate
dye concentrations to reflectance spectra for photographic media. Sharma3
models the color formation process on photographic media using the
Beer-Bouguer model. From this model, and using a small number of mea-
surements on the actual sample being scanned, the set S,,,,;,,, of all reflectance
spectra reproducible by the given medium is estimated. For a given scanner
RGB triplet, the set S,,,,.. of all reflectance spectra that can generate this
triplet is derived with knowledge of the scanner spectral sensitivities, A.
The actual input reflectance spectrum lies in the intersection S,,,.4i.m N Sscanner
and is derived using POCS. Note that both these approaches generate spec-
tral characterizations, i.e., mappings from scanner RGB to spectral reflec-
tance. From this, colorimetric characterizations can readily be generated for
arbitrary viewing illuminants.

5.6.3 Empirical characterization

Empirical approaches derive the characterization function by correlating
measured CIE data from a target such as the Q60 to scanned RGB data
from the target. Most of the data-fitting techniques described in Section 5.4
can be used (with the exception of lattice-based approaches, as scanner
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characterization data cannot be designed to lie on a regular grid). Kang?
describes the use of polynomial regression to fit gray-balanced RGB data to
CIEXYZ measurements. He compares 3 x 3,3 x 6,3 x 9,3 x 11, and 3 x 14
polynomial matrices derived using least-squares regression as described in
Section 5.4.3. Several targets, including the MacBeth ColorChecker and
Kodak Q60, are used. The paper concludes that a 3 X 6 polynomial offers
acceptable accuracy and that increasing the order of the polynomial may
improve the fit to training data but may worsen the performance on inde-
pendent test data. This is because, as noted in Section 5.4, higher-order
approximations begin to track the noise in the data. The paper also explores
media dependence and concludes that the optimal 3 x 3 matrix does not
vary considerably across media, whereas the optimal polynomial transform
is indeed media dependent and will generally offer greater accuracy for any
given medium.

Kang and Anderson® describe the use of neural networks for scanner
characterization. They use a 3-4-3 network, trained by cascaded feed-for-
ward correlation. A cumulative Gaussian function is used for the nonlinear-
ity at each unit in the network (see Section 5.4.7). In comparison with poly-
nomial regression, the neural network reports superior fits to training data
but inferior performance for independent test data. Furthermore, the neural
network is reported as being fairly sensitive to the choice of training data.
Hence, while neural networks offer powerful capabilities for data fitting,
much care must be exercised in their design and optimization to suit the
nature of the particular device characteristics.

5.7 Digital still cameras

Digital still cameras (DSCs) are becoming a common source for digital imag-
ery. Their characterization is complicated by two factors.

1. The conditions under which images are captured are often uncon-
trolled and can vary widely.

2. To compensate for this, DSC manufacturers build automatic image-
processing algorithms into the devices to control and correct for flare,
exposure, color balance, etc.

DSC characterization is probably unnecessary in most consumer applications
and is called for only in specialized cases that require controlled, high-quality
color capture. In such cases, it is imperative that the automatic processing
be disabled or known to the extent that the raw DSC signals can be recovered
from the processed data.

A few precautions are in order for proper digital capture of calibration
and characterization targets. First, it must be ensured that the illumination
on the target is uniform. A viewing/illuminating geometry of 0/45 is rec-
ommended so as to be consistent with the geometry of measurement devices
and typical visual viewing of hardcopy prints. Next, the lenses in most digital
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cameras do not transmit light uniformly across the lens area, so, for a fixed
input radiance, pixels near the center report higher signal levels than those
in the periphery. The ideal solution to this problem is to expose the camera
to a constant color (e.g., gray) target and digitally compensate for any spatial
uniformity in the camera response. (Such compensation may be built into
some camera models.) The effect can also be somewhat reduced by choosing
the distance between camera and target so that the target does not occupy
the full camera frame. Finally, it is recommended that any nonvisible radi-
ation to which the DSC is sensitive be blocked so that output RGB values
are not affected. Many DSCs respond to IR radiation, hence IR blocking filters
should be used.

Figure 5.24 shows the color calibration and characterization path for a
DSC. Much of the theoretical framework for image capture is common
between DSCs and scanners; hence, we will frequently refer to the formula-
tion developed in Section 5.6 for scanners while focusing here on DSC-
specific issues. For additional procedural details on DSC characterization,
the reader is referred to the ISO 17321 standard.*

5.7.1 Calibration

It must be ensured that camera settings such as aperture size and exposure
time are in a known fixed state, and that all automatic color processing is
disabled. The main task in DSC calibration is to determine the relationship
between input scene radiance and camera response, typically for a range of
gray input stimuli. Determination of this function, known as the opto-elec-
tronic conversion function (OECF), is conceptually similar to the gray-bal-
ancing operation for a scanner (see Section 5.6.1). A target comprising gray
patches of known spectral reflectance measurements is illuminated with a
known reference illuminant. From the reflectance and illuminant data, the
luminance Y of each patch is calculated (see Equation 5.9). An image of the
target is captured with the DSC. The correspondence between input lumi-
nance Y and output RGB is used to generate an inverse OECF function as
described in Section 5.6.1 for scanners. This is a TRC that maps raw device

Scene illuminant scene white reference white
estimation
Opto-electronic Inverse Xyz scene i i
D, Dy D, conversion characterization Chron:?;:::s?grarstatlon " XYZ cterence
function
Gray Spectral sensitivities or
measurements empirical data

Figure 5.24 Block diagram of digital camera calibration, characterization, and chro-
matic adaptation transforms.
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RGB to R'G’B’ such that R” = G” = B” = Y for the neutral patches. The raw
captured image is then always processed through this TRC to obtain a
linearized and gray-balanced image prior to subsequent processing. Further
details on specifications and experimental procedures for OECF determina-
tion are given in the ISO 14524 standard.®

5.7.2  Model-based characterization

The goal is to obtain the optimal 3 x 3 matrix M that relates the DSC RGB
data to a colorimetric (e.g., XYZ) representation. As with scanners, derivation
of M is given by Equation 5.41 and requires knowledge of the color matching
functions, correlation statistics of scene data, and device spectral sensitivities.
Color matching functions are known and require no further discussion.
Scene correlation statistics should be used where possible. However, given
the diversity of scene content likely to be encountered by a DSC, the maxi-
mum ignorance assumption is often invoked, and scene statistics are elimi-
nated from the formulation. Derivation of M thus reduces to Equation 5.43
and requires only estimation of the DSC spectral sensitivities.

The techniques described in Section 5.6.2 for estimating device sensitiv-
ities indirectly from the characterization data can be applied for DSCs. One
can also adopt a more direct approach of recording the device’s response to
incident monochromatic light at different wavelengths. The latter can be
generated by illuminating a diffuse reflecting surface with light filtered
through a monochromator. From Equation 5.1, the camera response to mono-
chromatic light at wavelength A is given by

DiA) = L,(MRy(M)g:(h) = S(Mq:(L) (5.45)

where i=R,G,B
I,(A) = the monochromator illumination
R,(A) = the reflectance of the diffuse surface
S(M) = L,(MR,(M) is the radiance incident to the DSC

For simplicity, the detector sensitivity u(A) in Equation 5.1 is folded into the
term g,(A) in Equation 5.45, and the noise term is assumed to be negligible.
The radiance S(A) is measured independently with a spectroradiometer. The
spectral sensitivities g,(A) are then obtained by dividing the camera response
D,(A) by the input radiance S(A). In the case where the DSC response is tied
to a specific reference illuminant I,,(}), the products g,(A)I,,(A) can be stored.
More details are found in ISO 17321.%2

The reader is reminded that, due to practical considerations, DSC sen-
sitivities are not linearly related to color matching functions, and that the
3 x 3 matrix being derived is only an approximation. However, this approx-
imation is sufficient for many applications. The accuracy of M for critical
colors can be further improved by imposing constraints on preservation of
white and neutral colors.?

© 2003 by CRC Press LLC



5.7.3 Empirical characterization

As with scanners, empirical DSC characterization is accomplished by directly
relating measured colorimetric data from a target and corresponding DSC
RGB data obtained from a photographed image of the target. This approach
is recommended in the case where the DSC spectral sensitivities are
unknown, or when the target and illumination conditions used for charac-
terization are expected to closely match those encountered during actual
image capture.

Hubel et al.® compare several techniques for computing the optimal
3 X 3 matrix M. One of these is a model-based approach that uses a white
point preserving maximum ignorance assumption, while the remaining tech-
niques are empirical, using linear regression on training samples. They report
an extensive set of results for different illumination conditions. Average
AE (¢ values range from approximately 2.5 to 6.5, depending on the tech-
nique and illumination used. The model-based technique was often outper-
formed by an empirical technique for a given medium and illuminant. How-
ever, the model-based strategy, being oblivious to scene statistics, was
generally robust across different illumination conditions.

An empirically derived characterization need not be restricted to a linear
transformation. Hong et al.* explore a polynomial technique to characterize
a low-performance Canon PowerShot Pro70 camera for photographic input.
A second-order polynomial was employed with 11 terms given by [D, D,,
D, D,D,, D,D, D,D, D?, D¢, D¢, D,D,D,, 1]. The average characterization
error for 264 training samples from an IT8.7/2 target was AEqycqq) = 2.2. A
similar technique® was used to characterize a high-performance Agfa digital
StudioCam resulting in an average AEqycq,) = 1.07. Note that these errors
are significantly lower than those reported by Hubel et al. This is not sur-
prising, because polynomials can be expected to outperform linear approx-
imations under a given set of controlled characterization conditions. The
other findings from these two studies are as follows:

¢ Correction for the OECF significantly improves overall characteriza-
tion accuracy.

* For polynomial fitting, 40 to 60 training samples seem adequate;
beyond this, there is little to be gained in characterization accuracy.

¢ The polynomial correction is highly dependent on the medium/col-
orant combination.

¢ For a single medium/colorant combination, increasing the order of
the polynomial up to 11 improves the characterization accuracy, with
some terms (notably D,D,D, and the constant term) being more im-
portant than others. With the high-performance camera, a 3 x 11
polynomial results in an average error of approximately 1 AEqycq.q)-
The low-performance camera results in AEqycq.q) = 2.2.

¢ For cross-media reproduction, increasing the order of the polyno-
mials is not of significant benefit. Typical accuracy with a 3 x 11
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correction lies between 2 and 4 AE(yc,,) Wwhen characterization and
test media are not the same.

5.7.4  White-point estimation and chromatic adaptation transform

The characterization step described in Sections 5.7.2 and 5.7.3 yields a
transformation between DSC data and colorimetric values corresponding
to the input viewing conditions. One must be able to convert this colori-
metric data to a standard color space (e.g., sSRGB), which is based on a
different set of reference viewing conditions. This calls for a color appear-
ance model to account for the differences between input and reference
viewing conditions. The most important parameters pertaining to the view-
ing conditions are the input scene and reference white points. The appear-
ance model can thus be reduced to a chromatic adaptation transform (CAT)
between the two white points.

In general, the scene white is unknown and must be indirectly estimated
from the image data. A recent technique, known as color by correlation, has
shown promise as a simple and reliable method of estimating white point.
The idea is to acquire a priori sets of DSC training data corresponding to
different known illuminants. Data from a given image are then compared
with each training set, and the illuminant is chosen that maximizes the
correlation between the image and training data. If the DSC spectral sensi-
tivities are known, the training samples can be acquired via simulation;
otherwise, they must be gathered by photographing samples under different
illuminants. See Chapter 5 of Reference 7 for details of this approach.

There has been considerable research in finding the optimal color space
for the CAT. An excellent survey is given in Chapter 5 of Reference 7. Ideally,
the CAT should mimic visual adaptation mechanisms, suggesting that it
should be performed in an LMS cone fundamental space. Finlayson et al.®
use the added argument that orthogonal visual channels maximize efficiency
to orthogonalize the LMS space, forming their so-called sharp color space.
(The term “sharp” comes from the fact that the associated color matching
functions are relatively narrowband.) Psychophysical validation has shown
that the sharp space is among the best spaces for performing the CAT. A
physically realizable variant of this space is being proposed as an ISO stan-
dard for DSC characterization.® This ISO-RGB space is a linear transforma-
tion of XYZ, and is given by

X 0.4339 0.3762 0.1899| R R|]3.0799 -1.5369 -0.5432| | X
Y| =10.2126 0.7152 0.0721| |G|; |G| |-0.9209 1.8756 0.0454 ||Y|~
Z

0.0177 0.1095 0.8728| |G B|| 0.0531 -0.2041 1.1510 | |Z (5.46)

The procedure for applying the CAT in ISO-RGB space given the input and
reference white points is summarized as follows:
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1. Use the calibration and characterization transforms to convert DSC
device data to XYZ,, corresponding to input viewing conditions.

2. Convert the input and reference white points from XYZ to ISO-RGB

using Equation 5.46.

Convert XYZ,, to ISO-RGB;, using Equation 5.46.

4. Perform von Kries chromatic adaptation by multiplying ISO-RGB,,
by the diagonal matrix,

@

I white 1

Rref
RT.Uh”F

Gwllite

0 % 647
in

Bw’hife

0 0 4

Bwhire
in |

white white

where C,s *, C;, , (C=R, G, B) are the white points under reference
and input viewing conditions, respectively. (The reader is referred to
an earlier chapter for details on von Kries adaptation.) This step
generates ISO-RGB data under reference viewing conditions, denot-
ed ISO-RGB,,;.

5. Convert ISO-RGB,¢ to XYZ, using Equation 5.46. This provides a
colorimetric representation under reference viewing conditions and
can be transformed to other standard color spaces.

Note that the matrices in the last three steps can be concatenated into a single
3 x 3 matrix for efficient processing.

5.8 CRT displays

The cathode-ray tube (CRT) is the most common type of display used in
computers and television. Color is produced on a CRT display by applying
modulated voltages to three electron guns, which in turn strike red, green,
and blue phosphors with electrons. The excited phosphors emit an additive
mixture of red, green, and blue lights. The assumptions mentioned in Section
5.2.4 on channel independence and chromaticity constancy, in addition to
the usual assumptions on spatial uniformity and temporal stability, result in
a fairly simple process for CRT calibration and characterization.

5.8.1 Calibration

Cathode-ray tube (CRT) calibration involves setting brightness and contrast
controls on the display to a fixed nominal value. In addition, the relationship
between the R, G, B input digital values driving the three gun voltages and
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the resulting displayed luminance must be established and corrected. This
relationship is usually modeled based on the power-law relationship between
the driving voltage and the beam-current for a vacuum tube, and is given by*

Dy =D, \%
Y R offset .
% R = f + KR(Dmax — Doffset) Zf DR > DfoSEt (548)
RnI(IX .
f lf DR < Daffset

where Dy = input digital value to the red gun
Yy = resulting luminance from the red channel

Y = luminance of the red channel at full intensity

D, = largest digital count for which there is no detectable
luminance from the screen
D,,.. = maximum digital count (e.g., in an 8-bit system, D,,,, = 255)
f = flare that arises mostly from ambient illumination
Ky = a gain factor
Yz = nonlinear power law factor

Analogous expressions hold for the green and blue terms. Generally, the
calibration is done with all room lights turned off; hence, the flare term is
assumed to be negligible. In addition, with proper brightness and contrast
settings, the following simplifying assumptions are often made: K = K; =K}
=1, Dy = 0. This reduces Equation 5.48 to

D Y
Yl,:R _ (D_R ) ! (5.49)

max

with analogous expressions for Y; and Y. The parameters for the calibration
model are obtained by making measurements of a series of stepwedges from
each primary color to black using a spectroradiometer or colorimeter and
fitting these measurements to the model given by Equations 5.48 or 5.49
using regression. If Equation 5.49 is adopted, a simple approach is to take
logarithms of both sides of this equation to produce a linear relationship
between log(Y;) and log(Dg/D,,.,). This can then be solved for y; via the linear
regression technique described in Section 5.4.1. Berns et al.* provide detailed
descriptions of other regression techniques. Values of Y, v; ¥z for typical
CRTs lie between 1.8 and 2.4.

Once the model is derived, a correction function that inverts the model
is applied to each of the digital R, G, B inputs. If Equation 5.49 is assumed,
the correction is given by

D}{ l/yR
DR - Dmax(D_)

max

(5.50)
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with similar expressions for G and B. Here Dy, Dy, Dj are linear in lumi-
nance, and Dy, D¢, Dy are the raw signals that drive the gun voltages. The
calibration function, Equation 5.50, is often referred to as gamma correction
and is usually implemented as a set of three one-dimensional lookup tables
that are loaded directly into the video path. Plots of Equations 5.49 and 5.50
for y = 1.8 are shown in Figure 5.25.

It is worth noting that digital quantization of the gamma-corrected signal
Dy, D¢, Dy in Equation 5.50 results in smaller quantization intervals at lower
luminance values where the eye is more sensitive to errors, and larger inter-
vals at high luminances where the eye is less sensitive. The idea of applying
nonlinear preprocessing functions to reduce the visual perceptibility of quan-
tization errors (often known as companding) is widely employed in many
digital signal processing applications. In our case, gamma correction applied
prior to conversion to the digital domain not only calibrates the CRT, it also
fortuitously reduces perceived quantization error in color images intended
for CRT display.

The CRT with the gamma correction Equation 5.50 incorporated in the
video path exhibits a tone reproduction characteristic that is linear in lumi-
nance. That is,
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Figure 5.25 Gamma function for y = 1.8.
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(2

RMax

with similar expressions for G and B. Some CRT calibration packages allow
the user to specify an overall system gamma, Y, so that Equation 5.51
becomes

D’ ’Ysysh’m
YYR - (D R ) (5.52)
R max

max

This provides some control on the effective tone reproduction characteristic
of the CRT. To achieve this overall system response, the gamma correction
function Equation 5.50 is modified as

(ysystem)
TR

Dy = D(DD—) (5.53)

5.8.2 Characterization

We assume henceforth that the aforementioned calibration has been derived
so that Equation 5.51 holds. Recall that, with the assumptions on channel
independence and chromaticity constancy, Equation 5.8 describes the rela-
tionship between input device RGB values and output spectral radiance.
Spectral radiance is then converted to tristimulus XYZ values according to
Equation 5.9. Substituting the expression for Sp;(A) in Equation 5.8 into
Equation 5.9., the relationship between the inputs D%, Di;, D3 to alinearized
CRT and resulting tristimulus values is given by

X X Xg Xg| |Dr
Y| = [ Yy Ye Y3 | Dy (5.54)
Z ZR ZG ZB D’B

where Xg, Yg, Zg = tristimulus values of the red channel at its maximum
intensity, and likewise for green and blue

In matrix-vector notation, Equation 5.54 becomes

c=Apd; d' =Axn'c (5.55)
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The columns of Ay are the tristimulus coordinates of R, G, B at maximum
intensity and can be obtained by direct tristimulus measurement. A more
robust approach would be to include additional tristimulus measurements
of other color mixtures and to solve for Aq;r using least-squares regression
as described in Section 5.4.1. Note that A, assumes flare-free viewing
conditions. If flare is present, this can be captured in the d” vector by using
calibration function Equation 5.48 with an appropriate value for f.

The quality of the characterization can be evaluated by converting a test
set of color patches specified in XYZ to display RGB through the inverse
characterization mapping (i.e., the second part of Equation 5.55) and mea-
suring the displayed colors (see Figure 5.10). The original and measured
values are then converted to CIELAB coordinates, and the error is derived
using a suitable metric such as AE,, or AE,, . Berns et al.® report excellent
results using this simple model, with average AE,, less than 1. Factors that
can contribute to additional errors include internal flare within the CRT,
cross-channel interactions not accounted for in the aforementioned model,
and spatial nonuniformity across the display.

Most CRTs exhibit fairly similar color characteristics, because the power-
law relationship, Equation 5.48, is a fundamental characteristic of vacuum
tube technology; furthermore, CRT manufacturers use very similar, if not
identical, phosphor sets. For this reason, and because CRTs are such a prev-
alent medium for the display and manipulation of color, there have been
several efforts to standardize on CRT RGB color spaces. The most notable
recent example is the sSRGB standard (available at www.srgb.com). If one’s
CRT has not been characterized, one of the standard models can be adopted
as a reasonable approximation. Minimally, these RGB spaces are defined by
a gamma (assumed to be equal for all channels) and matrix Az;. Sometimes,
instead of directly specifying A, the x-iy chromaticity coordinates of the red,
green, and blue primaries are provided along with the XYZ values of the
white point. Ay is easily derived from these quantities (see Appendix 5.B).

5.8.3 Visual techniques

Because CRTs can be accurately characterized with simple models, a class
of techniques has emerged that obviates the need for color measurements
and relies upon visual judgments to directly estimate model parameters such
as gamma and offset.?*#2 The basic idea is to display a series of targets on
the screen and provide the user with some control to adjust certain colors
until they match given reference stimuli. Based on the settings selected by
the user, an algorithm computes the model parameters. An example is shown
in Figure 5.26 for visually determining y in Equation 5.49. The bottom half
of the target is a fine checkerboard pattern of alternating black and white
dots. The top half is a series of patches at different gray levels. The user is
asked to select the gray patch whose luminance matches the average lumi-
nance of the checkerboard. The assumption is that the average checkerboard
luminance Y j, oo 1S approximately halfway between the luminances of
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www.srgb.com). 
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Figure 5.26 Target for visual determination of v for displays.

black and white. Reasonable a priori assumptions can be made for the latter
(e.g., Yy = 0 and Y ;. = 100, respectively), and hence for the checkerboard
(.8 Y eckersoara = 50). A user who selects the gray patch to match the check-
erboard is effectively selecting the digital count D,),,,;, corresponding to lumi-
nance Y jocermonra- 1his provides enough information to calculate y by rear-

ranging Equation 5.49 as follows:

108 ( Ycheckerboard / Ywhite)
= 5.56
log(Dmutch/Dmux) ( )

In this example, the same y value is assumed for the R, G, and B channels.
The technique is easily extended to estimate 7y for each individual channel
by displaying checkerboard patterns that alternate between black and each
respective primary. A demonstration of visual CRT calibration can be found
in the recent article by Balasubramanian et al.#* Visual determination of the
color of the primaries and white point (i.e., Aczr) requires more sophisticated
techniques* and is an active area of research.

5.9 Liquid crystal displays

Liquid crystal displays are becoming an increasingly popular medium for
color display. Their compactness and low power consumption, combined
with steadily increasing spatial resolution and dynamic range, have made
these devices increasingly prevalent in both consumer and professional mar-
kets. Consequently, color management for LCDs has received greater atten-
tion in recent years.

The type of LCD most commonly used for computer display is the back-
lit active-matrix LCD (AMLCD) employing twisted nematic technology. In
this technology, each pixel comprises a pair of linear polarizers and a liquid
crystal substrate sandwiched between them. The polarizations are oriented
orthogonally to each other. Light from a source behind the display surface
passes through the first polarizer and is then reoriented by the liquid crystal
substrate before it is passed through the second polarizer. The light then
passes through one of red, green, or blue filters, arranged in a spatial mosaic.
The extent of optical reorientation by the liquid crystal, and thus the intensity
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of light finally emanated, is determined by an electric field applied to the
liquid crystal substrate. This field is determined by an applied voltage, which
in turn is driven by the digital input to the device.

From the viewpoint of color characterization, twisted nematic technol-
ogy can pose several shortcomings: the strong dependence of perceived color
on viewing angle, poor gray balance for R = G = B input, and lack of
chromaticity constancy. Recent developments such as in-plane switching
technology* overcome these problems to some extent.

5.9.1 Calibration

A major difference between CRT and LCD characteristics is the nonlinear
function that relates input digital values to output luminance, shown in
Figure 5.27. Unlike vacuum tubes that exhibit a power-law relationship, LCD
technology results in a native electro-optic response that is often better
modeled as a sigmoidal S-shaped function.?® However, many LCD manu-
facturers build correction tables into the video card that result in the LCD
response mimicking that of a CRT (i.e., a power-law response with y = 1.8
or 2.2). Hence, it is recommended that some initial analysis be performed
before a particular function is chosen and that, if possible, built-in corrections
be deactivated so as to reliably calibrate the raw display response. As with
CRTs, the calibration function is derived by making color measurements of
a series of stepwedges in each of R, G, B. If a model-based approach is
adopted, the model parameters are fitted to the measurements via regression.
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— - Green 7Y
: : — Blue N2
200F - .......... .......... .......... // ,,,,, _
g . . . ;/// .
& : : : 7’y :
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g : : / 7/ :
S100F - - P P N S .
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Figure 5.27 Typical opto-electronic conversion function for liquid crystal displays.
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Alternatively, if the LCD response does not appear to subscribe to a simple
parametric model, an empirical approach may be adopted wherein the mea-
sured data are directly interpolated or fitted using, for example, piecewise
linear, polynomial, or spline functions.

As mentioned earlier, some LCDs do not adhere to the chromaticity
constancy assumption. This is largely due to the non-smooth spectral char-
acteristics of the backlight and its interaction with the color filters.*> Kwak
et al.¥ compensate for the lack of chromaticity constancy by introducing
cross terms in the nonlinear calibration functions to capture interactions
among R, G, and B. They claim a significant improvement in overall accuracy
as a result of this extension.

5.9.2 Characterization

Most of the assumptions made with CRTs (i.e., uniformity, stability, pixel
independence, and channel independence) hold to a reasonable degree with
AMLCDs as well. Hence, the characterization function can be modeled with
a 3 x 3 matrix as in Equation 5.54, and the procedure described in Section
5.8 for deriving CRT characterization can be used for AMLCDs in the same
manner. As mentioned earlier, an important caution for AMLCD:s is that the
radiance of the emanated light can be a strong function of the viewing angle.
The only practical recommendation to mitigate this problem is that the
measurements should be taken of light emanating perpendicular to the plane
of the screen. The same geometry should be used for viewing images. For
further details on LCD characterization, the reader is referred to the works
by Marcu,* Sharma,* and Kwak.¥

5.10 Printers

Printer characterization continues to be a challenging problem due to the
complex nonlinear color characteristics of these devices. Space consider-
ations do not permit a description of the physics of the numerous digital
printing technologies. Instead, we will offer general techniques that apply
to broad categories of devices (e.g., halftone vs. continuous tone; CMY vs.
CMYK, etc.).

Recall the basic calibration and characterization workflow in Figure 5.9.
The techniques for target generation and calibration and characterization
vary widely, offering a range of trade-offs between cost and accuracy. A
selection of common techniques will be presented in this section.

5.10.1 Calibration

Two common approaches are channel-independent and gray-balanced
calibration.
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5.10.1.1 Channel-independent calibration
In this type of calibration, each channel i (i = cyan, magenta, yellow, etc.) is
independently linearized to a defined metric M,. An example of such a metric
is the AE,, color difference between the ith channel and medium white,
defined as

Ml(d) = Hcmedium - Ci(d)HZI i= C,M,Y,O < d < dmnx (557)
where d = input digital level
Creaivm = CIELAB measurement of the medium

¢,(d) = CIELAB measurement of the ith colorant generated at digital
level d

Note that, by definition, M;(0)=0 . Linearizing with respect to this metric
will result in an approximately visually linear printer response along each
of its primary channels.

The calibration is accomplished with the following steps:

* Generate stepwedges of pure C, M, Y patches at a few selected digital
levels d;. The number and spacing of levels required depend on the
characteristics of the printer. As a general guideline, between 15 and
20 patches per channel is sufficient for most printers, and a finer
sampling is recommended in the region of small d values to accu-
rately capture the printer response at the highlights. Also ensure that
the solid patch (ie., d = d,,,) is included.

¢ Make CIELAB measurements of the stepwedges and of the bare
medium. Media relative colorimetry is recommended for the CIELAB
calculations.

* Evaluate M(d)) at the measured digital levels d; using Equation 5.57.

® Scale the data by a multiplicative factor so that M,d,,.) = d,,.,. This
is accomplished by multiplying the function M;(d) by the constant
[dmux/ Mz' (dmax) ] .

¢ Invert the scaled functions M;(d) to obtain M, by interchanging the
dependent and independent variables. Use some form of fitting or
interpolation to evaluate M;! for the entire domain [0, d,,,]. If the
printer response is smooth, linear interpolation suffices; otherwise,
more sophisticated fitting techniques such as polynomials or splines
are called for (see Section 5.4.). The result is the calibration function,
which can be implemented as a set of one-dimensional TRCs for
efficient processing of images.

* Test the calibration by running a stepwedge of uniformly spaced
digital values of a single colorant through the TRC, printing and
measuring the resulting patches, and computing M;. A linear rela-
tionship should be achieved between the digital input to the TRC
and the resulting M;. Repeat this step for each colorant.
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An example of the response M,(d) for a Xerox DocuColor 12 xerographic
printer is shown in Figure 5.28a for 16 digital levels. The scaled M(d) are
shown in Figure 5.28b. The inverse function is shown in Figure 5.29 and is
the final calibration TRC for the DC12. Note that the calibration is essentially
a reflection of the printer response M,(d) about the 45° line. To test the
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Figure 5.28 Raw device response, M;(d) defined as AE%, from paper, for Xerox
DocuColor 12 printer: (a) unscaled and (b) scaled to 4

max*
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Figure 5.29 Calibration curves correcting for response of Fig 5.28.

calibration, the same C, M, Y stepwedge data were processed through the
calibration TRCs, printed, and measured, and M; was evaluated using Equa-
tion 5.57 and plotted in Figure 5.30. The calibrated response is now linear
with respect to the desired metric M,.

Other metrics can be used instead of Equation 5.57, e.g., optical density,
or luminance.* The calibration procedure is identical.

5.10.1.2  Gray-balanced calibration

An alternative approach to calibration is to gray balance the printer so that
equal amounts of C, M, Y processed through the calibration result in a neutral
(i.e., a* = b* = 0) response. There are two main motivations for this approach.
First, the human visual system is particularly sensitive to color differences
near neutrals; hence, it makes sense to carefully control the state of the printer
in this region. Second, gray balancing considers, to a first order, interactions
between C, M, and Y that are not taken into account in channel-independent
calibration. However, gray balancing is more complicated than channel-
independent linearization and generally demands a larger number of patch
measurements.

In addition to determining the relative proportions of C, M, Y that
generate neutral colors, gray balancing can also achieve a specified tone
response along the neutral axis (e.g., linear in neutral luminance or lightness).
The following procedure can be used to gray balance and linearize the printer
to neutral lightness L*:
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Figure 5.30 Response M;(d) of calibrated device.

1. Generate a training set of device-dependent (CMY) data in the vicin-
ity of neutrals across the dynamic range of the printer. One exemplary
approach is to vary C and M for fixed Y, repeating for different levels
of Y across the printer range. The number and spacing of steps for
C, M, and Y should be chosen so as to bracket the neutral a* = b* =
0 axis. Therefore, these parameters depend on printer characteristics,
and their selection will require some trial and error.

2. Generate device-independent (CIELAB) data corresponding to these
patches. This can be accomplished either via direct measurement of
a target containing these patches or by processing the CMY data
through a printer model that predicts the colorimetric response of
the printer. (Printer models are discussed in a subsequent section.)
Media-relative colorimetry is recommended for the CIELAB calcula-
tions. If the CIELAB measurements do not bracket the neutral axis,
it may be necessary to iterate between this and the previous step,
refining the choice of CMY points at a given iteration based on the
CIELAB measurements from the previous iteration.

3. Given the training CMY and CIELAB data, obtain CMY values that
yield neutral measurements, i.e., a* = b* = 0, at a set of lightness levels
L: ,i1=1, ..., T, spanning the range of the printer. A sufficiently fine
sampling of measurements may allow the neutral points to be direct-
ly selected; however, in all likelihood, some form of fitting or inter-
polation will be required to estimate neutral points. A possible can-
didate is the distance-weighted linear regression function from

© 2003 by CRC Press LLC



Section 5.4.4.2. The regression is supplied with the training data as
well as a set of input neutral CIELAB points (L;, 0, 0). The output
from the regression is a set of weighted least-squares estimates (C,
M, Y;) that would produce (L, ,0,0). Ahypothetical example is shown
in Figure 5.31a. Typically, 6 to 10 L* levels are sufficient to determine
gray-balance throughout the printer’s dynamic range.

To generate a monotonically increasing calibration function from
Figure 5.31a, invert the sense of the lightness values L; to obtain
neutral “darkness” values, denoted DZ , scaled to the maximum dig-
ital count d,,,.. The formula is given by

max*

* dmax *
D! = (100)(100-@) (5.58)

Group the data into three sets of pairs {D:, Cl, {D:, My}, {D:-, Y},
and from this generate three functions, C(D*), M(D*), Y(D*) using a
one-dimensional fitting or interpolation algorithm. The use of splines
is recommended, as these have the flexibility to fit data from a wide
variety of printers and also possess the ability to smooth out noise
in the data. These functions are plotted in Figure 5.31b for the same
hypothetical example. Note that, above a certain darknesstmgmy ,
it is not possible to achieve neutral colors, because one of the colo-
rants (cyan in this example) has reached its maximum digital value.
Hence, there are no real calibration data points in the input domain
[D,,,Mgmy , ax]- One approach to complete the functions is to pad the
calibration data with extra values in this region so that the spline

Neutral L* Digital count

L*y
L*,

L

*
mingray

D3 D%, e e o D% D*

maxgray

Digital count Neutral D*

(@) (b)

Figure 5.31 Illustration of gray-balance calibration for printers: (a) L* vs. digital
count for neutral samples, and (b) corresponding TRC.
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fitting will smoothly extrapolate to the endpoint, d,,,,. Figure 5.31b
shows schematically the extrapolation with dashed lines. To achieve
smooth calibration functions, it may be necessary to sacrifice gray
balance for some darkness values less than D,mgmy In the case of
CMYK printers, the trade-off can be somewhat mitigated by using
the K channel in combination with C, M, Y to achieve gray balance.
Trade-offs between smoothness and colorimetric accuracy are fre-
quently encountered in printer calibration and characterization. Un-
fortunately, there is no universal solution to such issues; instead,
knowledge of the particular printer and user requirements is used to
heuristically guide the trade-offs.

6. Test the calibration by processing a stepwedge of samples C =M =
Y =d through the TRCs, and printing and measuring CIELAB values.
As before, it is convenient to assess the outcome by plotting L*, a*,
b* as a function of the input digital count d. For most of the range
0<d <D, the calibration should yield a linear response with respect
to L¥, and a*, b* = 0. If the deviation from this ideal aim is within
the inherent Variability of the system (e.g., the stability and unifor-
mity of the printer), the calibration is of satisfactory accuracy. Recall
that, for gray levels darker than D,.., a linear gray-balanced re-
sponse is no longer achievable; instead, the printer response should
smoothly approach the color of the CMY solid overprint.

7. An additional test, highly recommended for gray-balance calibration,
is to generate a target of continuous ramps of C = M =Y, process
through the calibration, print, and visually inspect the output to en-
sure a smooth neutral response. The prints must be viewed under the
same illuminant used for the CIELAB calculations in the calibration.

A recent study by the author has shown that visual tolerance for gray in
reflection prints is not symmetric about the 4* = b* = 0 point.’ In fact, people’s
memory of and preference for gray occurs in the quadrant corresponding to
a* <0, b* < 0. In regions corresponding to positive a* or b*, a dominant hue
is more readily perceived; hence, tolerances for gray reproduction in these
regions are small. Colloquially phrased, people prefer “cooler” (blu-
ish/greenish) grays to “warmer” (reddish/yellowish) grays. This observa-
tion can exploited to improve the robustness of gray balancing for printers.
The device could be balanced toward preferred gray (a* b* < 0) rather than
colorimetric gray (a* = b* = 0) with the same procedure described above.
The expected advantage is that, by setting the calibration aim-point in a
region with large visual tolerance, the errors inevitably introduced by the
calibration are less likely to be visually objectionable.

5.10.2  Model-based printer characterization

Several physics-based models have been developed to predict the colorimet-
ric response of a printer. Some of the common models will be described in
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this section. Some overlap exists between this section and an earlier chapter
on the physics of color. That chapter focuses on modeling the interaction
between light, colorants, and medium at the microscopic level. The emphasis
here is in modeling the printer at a macroscopic level, with the goal of
deriving the forward characterization mapping from device colorant values
to device-independent coordinates such as spectral reflectance or CIEXYZ.
Derivation of the inverse characterization function is generally independent
of the forward model and is thus discussed in a separate section.

To set a framework for the models to follow, it is instructive to examine
different ways in which light passes through a uniform colorant layer. These
are depicted in Figure 5.32. In Figure 5.32a, light passes though the colorant
layer in only one direction. Some of the light is absorbed, and the remaining
is transmitted. The absorption and transmission are functions of wavelength,
hence the perception that the layer is colored. This layer is said to be trans-
parent and occurs when the colorant particles are completely dissolved in
the medium. The dyes in a dye-diffusion printer can be reasonably well
approximated by this model. In Figure 5.32b, some of the light is transmitted
and some absorbed as in Figure 5.32a. However, due to the presence of
discrete particles, some of the light is also scattered. This layer is said to be
translucent. Xerographic and certain inkjet printers subscribe to this model.
In Figure 5.32¢, a much higher presence of discrete particles results in all of
the light being either absorbed or scattered. This layer is said to be opaque,
and it applies to paints and some inkjet processes. In all cases, transmission,
absorption, and scattering are functions of wavelength. We will see shortly
that models for predicting the color of uniform colorant layers are based on
one of these three scenarios. More details are given in Chapter 3, which
focuses on the physics of color.

In the ensuing discussions, we will assume the exemplary case of a three-
colorant (CMY) printer. Extension to an arbitrary number of colorants is
usually straightforward.

5.10.2.1 Beer—Bouguer model

The Beer-Bouguer (BB) model plays an important role in colorant formula-
tion, being frequently used to predict light transmission through colored
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Figure 5.32 Light transport models for (a) transparent, (b) translucent, and (c)
opaque media.
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materials in liquid solutions. In digital color imaging, it is most applicable
for continuous-tone printing with transparent colorants and media (i.e., Fig-
ure 5.32a). The underlying assumption is that the spatial rate of change of
light radiance as it passes through an absorbing colorant layer is proportional
to the radiance itself. Mathematically, this is given by
ar,(n) _
= —AMI(L) (5.59)
where [(A) = radiance at position x within the colorant layer
A(M = a proportionality factor given by

AN = & w k(A) (5.60)

where & = concentration of the colorant
w = thickness of the colorant layer
k(X) = spectral absorption coefficient of the colorant

Substituting Equation 5.60 into Equation 5.59 and integrating with respect
to x over the thickness of the colorant, we obtain the following expression
for the radiance I(A) emerging from the colorant:

I(h) = I(M)exp(=Ewk(R)) = L(M)T,(A)exp(-Ewk(L)) (5.61)

where [(}) is the radiance of light that would be transmitted in the absence
of the colorant, which can be expressed as the product of the incident light
I(A) and the bare transparency T,(A). Equation 5.61 essentially states that the
amount of light absorption depends directly on the amount of absorbing
material within the colorant, which in turn is proportional to both the con-
centration and thickness of the colorant layer. Often, the colorant thickness
w is assumed to be spatially constant and is folded into the absorption
coefficient k(A). To this end, we no longer explicitly include w in the analysis.

It is useful to introduce spectral transmittance T(A) and optical density
D(A) of a colorant layer.

T = I’% = T,(0)exp(-Ek(L);

D(A) = —logio(T(A))=D,(A) + 0.4343 & k(L) (5.62)

For color mixtures, the additivity rule can be invoked, which states that
the density of a colorant mixture is equal to the sum of the densities of the

individual colorants.?® For a CMY printer, we thus have

DM = Dy(A) + 0.4343(Ec k(M) + Ep k() + Ey k(D) (5.63)
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which can be written in terms of transmittance,
Temy(M) = TN expl=(EckcV) + &y k(M) + & ky(M)] (5.64)

The model can be extended to reflective prints under the assumption that
there is no scattering of light within the paper. This yields

Remy(A) = Rp(x)exp[—(‘gckc(x) +Epkp (M) + Evky(M))] (5.65)

where Rq (M) and R,(A) are the spectral reflectances of the colorant mixture
and paper, respectively. Note that, in reality, most reflective media do exhibit
scattering, hence reducing the accuracy of Equation 5.65.

For a given printer, the parameters of Equations 5.64 and 5.65 are esti-
mated from measurements of selected patches. The procedure for a CMY
reflection printer is as follows:

* Measure the spectral reflectance of the paper, R,(A), and solid C, M,
Y patches, Ro(A), Ry (M), Ry(A).

e Estimate the spectral absorption coefficient k-(A) for the cyan colo-
rant. This is done by setting - =1, £, =&, = 0 in Equation 5.65 to yield

RCO‘)) (5.66)

ke(h) = —log(m
P

Use analogous expressions to derive k,(A) and k,(A).

* Derive the relationship between input digital level d; and cyan con-
centration &; by printing a stepwedge of pure cyan patches at dif-
ferent digital levels d;, and measure spectral reflectances R¢/(A). From
Equation 5.65, we know that

Rei(M)Y _
_log( R (7»)) = Eke(d) (5.67)
The quantity on the left is the absorption corresponding to concen-
tration at level d]-; hence, we denote this as kcj(k). A least-squares
estimate for & can be computed by minimizing the error.

Zchj‘(M - éc]‘kc(x)Hz (5.68)
x

where the summation is overall measured wavelengths within the
visible spectrum. Using the least-squares analysis in Appendix 5.4,
the optimal &, is given by
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szj(Mkc(M
B = (5.69)
> ke(h)
A

By definition, these estimates lie between 0 and 1. Using Equation
5.69, we obtain a set of pairs (d;, &), from which one-dimensional
fitting or interpolation is used to generate a TRC that maps digital
count to dye concentration for all digital inputs 0 < d < d,,,.. This
process is repeated for magenta and yellow.

This completes the model derivation process, and all the parameters in
Equation 5.65 are known. The model can be tested by exercising it with an
independent set of CMY test data. The model predictions are compared with
actual measurements using a standard error metric such as AE,,. For effi-
ciency of computation, the model can be used to create a three-dimensional
LUT that maps CMY directly to CIE coordinates.

The BB model works very well for photographic transparencies and, to
a reasonable extent, for photographic reflection prints. One of the shortcom-
ings of this model is that it does not account for scattering within colorant
layers, thus reducing its applicability for certain printing technologies. The
scattering phenomenon is explicitly introduced in the Kubelka-Munk model,
described next.

5.10.2.2 Kubelka—Munk model

The Kubelka-Munk (KM) model is a general theory for predicting the reflec-
tance of translucent colorants. An appealing aspect of this theory is that it
also models transparent and opaque colorants as special cases. The foremost
applicability for printer characterization is the case of continuous-tone print-
ing processes on reflective media. In this section, only the important formulae
are presented. Their derivations are rather lengthy and can be found in many
sources, including Allen.>!

Kubelka-Munk theory assumes a special case of Figure 5.32b, with light
being transmitted or scattered in only two directions: up and down. The
most general form of the KM model for translucent colorant layers is given by

R,(A) = R.(%)

N R Ru%) - iy Jexe [0 gz =R ) 65.70)

Rp(h)—Rw(K)—(Rp(k) 5 (M)exp[ws(x)(R 5 Rm(k)ﬂ

where R(A) = the spectral reflectance of the sample
R,(M) = the reflectance of the paper
w = the thickness of the colorant layer
K(M) and S(A) = absorbing and scattering coefficients, respectively
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R..(A) = the reflectance of an infinitely thick sample, given by

_ K KM)Y K(\)
R = 14K J(Sm)”(sm) 5.71)

In practice, a sample is “infinitely thick” if any increase in thickness results
in a negligible change in reflectance. Equation 5.71 can be inverted to obtain

K _ (1-R.(A)°

S(M) ~ 2R.(M) (5.72)

For colorant mixtures, the additivity and proportionality rules can be applied
to obtain overall absorbing and scattering coefficients from those of the
individual colorants.

K() = k,(M) + z Eki(M); S(A) = s,(M) + Z &isi(X) (5.73)

i=CM,)Y i=CM,Y

where k,(A) and s,(A) = the absorption and scattering terms for the paper
&, = the concentration of colorant i

The general KM model, Equation 5.70, can be simplified to the two limiting
cases of transparent and opaque colorants (Figure 5.32a and 5.32c), described
next.

5.10.2.2.1 KM model for transparent colorants. For transparent colorant
layers, the scattering term in Equation 5.70 approaches zero, resulting in the
following expression:°!

R(A) = R,(M)exp[-2wK(M)] (5.74)

where K(}) is given by Equation 5.73. Note that this is very similar to the
Beer-Bouguer model, Equation 5.65. However, the absorption coefficients in
the two models are different, because BB assumes collimated light, whereas
KM assumes diffuse light. The procedure outlined in Section 5.10.2.1 for the
BB model can be used to estimate ki(A) from C, M, Y samples at maximum
concentration and to derive the mapping between input digital value d; and
dye concentration &; from stepwedge measurements.

Berns has used this model to characterize dye diffusion printers.> In this
work, the model parameters [i.e., k(1) and &, i = C, M, Y] were initially
derived using essentially the procedure outlined in Section 5.10.2.1. A third-
order polynomial was used to fit the relationship between digital count and
dye concentration. The model resulted in unsatisfactory results (AE,, = 12).
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It was discovered that a major source of error arose from the channel inde-
pendence assumption in the KM model, i.e., the cyan dye concentration
depends only on the cyan digital count, etc. The author observed that, due
to the sequential nature of the dye diffusion and transfer process, there is a
significant sequential interaction among the colorants. This was accounted
for by introducing a matrix with cross terms to relate KM predictions to
more realistic estimates. Coefficients of the matrix were obtained by regres-
sion on a set of measurements of colorant mixtures. This correction was
found to significantly improve the model prediction, resulting in AE,, = 3.
Details are given in the Berns reference. The empirical correction just
described is a common way of accounting for limitations in a physics-based
model and will be encountered again in discussions of the Neugebauer
model.

5.10.2.2.2 KM model for opaque colorants. For opaque samples, the lim-
iting case of infinite thickness in Equation 5.71 can be used to predict spectral
reflectance. Note that Equation 5.71 depends only on the ratio K(A)/S(A) for
the colorant mixture, which can be obtained from the absorption and scat-
tering coefficients of the individual colorants using Equation 5.73.

k, (M) + 2 Eiki(L)

K(}\') — i=CM,Y 575
S s+ Y Es() o7
i=CM,Y

This is referred to as the two-constant KM model. With certain pigments, it
is reasonable to assume that the scattering in the colorants is negligible
compared to scattering in the substrate.>! In this case, the denominator in
Equation 5.75 reduces to s,(A), and Equation 5.75 can be rewritten as

KOy _ b0, g g kb

= —_— 7
S 5,00 500 (5.76)

i=C,M,Y

This is referred to as the single-constant KM model, as only a single ratio
k(MN)/s(A) is needed for each colorant.

To derive the model, the k(A)/s(A) terms for each colorant are obtained
from reflectance measurements of samples printed at maximum concentra-
tion, using Equation 5.72. Next, the relationship between digital count and
colorant concentration & are obtained from reflectance measurements of sin-
gle-colorant stepwedges and a regression procedure similar to that outlined
in Section 5.10.2.1. Finally, Equations 5.76 and 5.71 are evaluated in turn to
obtain the predicted reflectance. More details are found in papers by Parton
et al.”® and Kang.> In these papers, the opaque single-constant KM model
is used to predict the spectral reflectance of solid area coverage in inkjet
prints. The prediction accuracies are in the range of 1.65 to 5.7 AE,,
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depending on the ink mixing process and the particular mixtures tested.
Note that most inkjet printers use halftoning, a process that is not well
predicted by KM theory. The latter only predicts the solid overprints in inkjet
prints, hence its application is in ink formulation rather than device charac-
terization.

5.10.2.2.3 Modeling front-surface and interlayer reflections. ~An important
effect not taken into account in the KM and BB models is reflection loss at
the boundaries between colorant layers, as well as front surface reflection
(FSR) at the boundary between the uppermost colorant layer and air. Because
a certain amount of light is lost due to FSR, this should ideally be subtracted
before computing reflectance. However, in a spectrophotometer, at least part
of the light from FSR reaches the detector. To correct for this effect,
Saunderson® developed a relationship between the reflectance R(A) as pre-
dicted by BB or KM, and the reflectance R,,,(A) as measured by a spectro-
photometer.

meas

_ Rmeus(k) _kl . _
R(?\,) - 1 _kl — k2(1 — Rmms(k)), Rmeus(l) - kl +

(1-k)(A-k)R(M)
T_k,R(A)

(5.77)

where k, is the Fresnel reflection coefficient that accounts for front surface
reflection, and k, models total internal reflection that traps light within the
colorant layers. The factor k; depends on the refractive index 1 of the upper-
most colorant layer. A common assumption for 1 is 1.5, which corresponds
to k; = 0.04. The theoretical value of k, for the case of perfectly diffuse light
is 0.6.°! Alternatively, these parameters can be chosen to provide the best
empirical fit between measured and modeled reflectance data.

The Saunderson correction is performed as a final step after deriving the
BB or KM, and it has been shown to improve model accuracy.?>>

5.10.2.2.4 Modeling fluorescence. ~Another drawback with both the BB
and KM models is that they do not account for fluorescence. Many paper
substrates employ optical brighteners that exhibit fluorescence and can thus
limit the utility of these models. Fluorescence modeling is discussed in more
detail in Chapter 3, which deals with the physics of color.

5.10.2.3  Neugebauer model

The Neugebauer model is used to model a halftone color printing process.
Each primary colorant in a halftone process is rendered as a spatial pattern
of dots, each dot being printed at one of a small number of concentration
levels. The impression of intermediate levels is achieved by modulating the
size, shape, and spatial frequency of the dots. (Techniques for color halfton-
ing are covered in more detail in a subsequent chapter.)

A process employing N colorants at Q concentration levels results in one
of QN colorant combinations being printed at any given spatial location. We
begin the formulation with the simplest case of a binary black-and-white
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printer. This corresponds to N = 1 and Q = 2 (zero or maximum) concentra-
tion levels; thus, at any given spatial location, we have two possible colorant
combinations, black or white. The reflectance of a halftone pattern is pre-
dicted by the Murray-Davies equation,*

R=(1-KkP, + kP, (5.78)

where k = fractional area covered by the black dots
P,, P = reflectances of paper and black colorant, respectively

The Neugebauer model is a straightforward extension of the Murray-Davies
equation to color halftone mixtures.® Binary printers employing C, M, Y
colorants render one of 2° = 8 colorant combinations at a given spatial
location. The set of colorant combinations is S = {P, C, M, Y, CM, MY, CY,
CMY}, where P denotes paper white, C denotes solid cyan, CM denotes the
cyan—magenta overprint, etc. The Neugebauer model predicts the reflectance
of a color halftone as a weighted average of the reflectances of the eight
colorant combinations.

R = Zwipi (5.79)
i=$

where S = the aforementioned set of colorant combinations

P; = spectral reflectance of the ith colorant combination,
henceforth referred to as the ith Neugebauer primary

the relative area coverage of the ith colorant combination,

which is dictated by the halftoning method used

weight w;

In the original Neugebauer equations, the predicted color is specified by
three broadband reflectances representing the short, medium, and long
wavelength portions of the electromagnetic spectrum. In this work, spec-
trally narrowband reflectances are used instead of their broadband counter-
parts, as the former generally yield greater accuracy.”” The spectral Neuge-
bauer equations are

RV = Y wPi() (5.80)

ie§S

Because P;()) are colors of solid overprints, they can be predicted from single-
colorant measurements using the BB or KM theories described in the previ-
ous sections. However, for any given set of colorants, there are only a small
number of such overprints; hence, they are usually measured directly.

5.10.2.3.1 Effect of halftone dot placement. A common assumption is
that the dot placements of the colorants are statistically independent; i.e.,
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the event that a particular colorant is placed at a particular spatial location
is independent of other colorants being placed at the same location. This
leads to the Demichel dot model.*® The Neugebauer primaries and the cor-
responding weights are given by

Pz(}\') € SP = {PP(}\')r PC(A')/ PM}\'/ PY(}\')/ PCM(}\')r PCY()\')/ PMY(X’)I PCMY(X)}I
w;e S, ={(1-0)(1-m)(1-y), c(1-m)(1-y), m(1-c)(1-y),

y(1-c)(1-m), cm(1-y), cy(1 —=m), my(1l-c), cmy}
(5.81)

Here, ¢, m, y are the fractional area coverages corresponding to digital
inputs d,, d,,, d,, respectively. A halftone screen for which statistical indepen-
dence is often assumed is the rotated halftone screen configuration, where
the screens for ¢, m, y are placed at different angles, carefully selected to
avoid moiré artifacts. This is shown schematically in Figure 5.33a. Validity
of the independence assumption for certain types of halftones such as rotated
screens has been demonstrated by Viggiano et al.’®

A geometrical interpretation of Equations 5.80 and 5.81 is that R(A) is a
result of trilinear interpolation performed among the P,(A) in cmy space. (This
can be verified by comparing these equations with the trilinear interpolation
equations given in Chapter 11, dealing with efficient color transformations.)
An algebraic interpretation of the model is that Equations 5.80 and 5.81 form
a third-order polynomial in terms of c, m, y, with P(A) being the polynomial
coefficients.

Another commonly used halftone configuration is the dot-on-dot
screen,” where the C, M, Y dots are placed at the same screen angle and

520 @)

CY

(a) (b)

Figure 5.33 Dot area coverages for (a) rotated screen and (b) dot-on-dot screen.
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phase as shown in Figure 5.33b. While the basic form of the mixing equations
is similar to Equation 5.80, the weights w; are different from those of ran-
domly positioned dots. Let X; be the colorant with the ith smallest area
coverage a;. For example, if [c, m, y] = [0.8, 0.5, 0.2], then X; =Y, X, =M, X;
=GC a,=02,a,= 05, a;= 0.8. The set of Neugebauer primaries and corre-
sponding weights are now given by

Pi(h) e Sp {Px1x2x3(7¥)/ Px2x3(7\-)/ Px3(7\-)/ P.(M},

w; € S, {a;,a,—ay,a3—a,1-a,}

(5.82)

The final output reflectance in Equation 5.80 is now a summation of, at most,
four terms.

Geometrically, Equation 5.82 represents tetrahedral interpolation among
the Py(A) at four of the eight vertices of the cmy cube. (This can be verified
by comparing Equation 5.82 with the equations for tetrahedral interpolation
given in the Chapter 11.) Different Neugebauer primaries are selected for
the calculation depending on the relative sizes of the area coverages c, m, y
(equivalently, the tetrahedron to which the input cmy coordinate belongs).
However, the weights w,, and hence the resulting interpolated output R(A),
are continuous as the input cmy coordinate moves from one tetrahedron to
another in cmy space. Algebraically, it is easily seen from Equations 5.80 and
5.82 that, for fixed A, R(A) is a linear function of ¢, m, y, with the P(}) being
the weighting coefficients.

The aforementioned dot-on-dot mixing model assumes an ideal dot
pattern with no noise, a perfectly rectangular dot density profile, and no
misregistration effects. In practice, these assumptions may be violated. It has
been shown® that a weighted mixture of the dot-on-dot and Demichel mix-
ing models can effectively capture some of these effects. The new predicted
reflectance is given by

RV = (1 — )R,y (M) + Ry, (W) (5.83)

where R, (A) = reflectance predicted by the dot-on-dot model
Ryem(M) = reflectance predicted by the Demichel model
o = a weighting parameter that determines the relative
proportions of the two mixing models; this factor can be
chosen to fit the model to a set of measured data

As alluded to earlier, all these versions of the Neugebauer model easily
generalize for an arbitrary number of colorants. For N colorants, the
Demichel model for independent dot placement will result in the summation
in Equation 5.80 containing 2V terms, while the dot-on-dot model contains
N +1 terms.
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5.10.2.3.2 Effect of halftone screen frequency. The ideal Neugebauer
model assumes a perfect rectangular dot profile as a function of spatial
location. In reality, dots have soft transitions from regions with full colorant
to regions with no colorant. If the halftone screen frequency is relatively low,
or a clustered dot is used, the relative area of the paper covered by the
transition regions is small, and the Neugebauer model would be expected
to be relatively accurate. On the other hand, if the screen frequency is high,
or a dispersed dot is used, a relatively large fraction of the paper is covered
by transition regions, and the model breaks down. While some of the cor-
rections discussed in following sections partially account for soft transitions,
the reliability of the model has been seen to be greatest with clustered dot
screens with frequency less than 100 halftone dots per inch.

5.10.2.3.3 Effect of light scattering in the paper. An important pheno-
menon not modeled by the basic Neugebauer equations is the scattering of
light within the paper. To understand this phenomenon, consider the inter-
action of light with a black halftone print. The light that reaches the paper
is given by

I, =1, -k +KkT) (5.84)

where [, = incident light intensity
I, = light reaching the paper
k = fractional black area coverage
T, = transmittance of the black colorant

Figure 5. 34a shows the case where there is no optical scattering within the
paper. In this case, light incident on the print at a location containing colorant
will also exit through the colorant; likewise, light reaching the substrate will
exit from the same location. The reflected light is thus given by

Ly=L{1-k P, +kT2P,} (5.85)

where P, is reflectance of the paper.

Define the reflectance of the solid black colorant as P, = T?P,. The overall
reflectance is then given by the original Murray-Davies Equation 5.78.

Consider now the case where there is scattering within the paper, as
shown in Figure 5.34b. In this case, light that enters the paper through an
area with no colorant may leave the paper through an area that is covered
with colorant, and vice versa. To account for this, Yule and Nielsen®® proposed
a simple correction to the Murray—Davies model for a black printer. Assuming
that light reaching the paper is given by I, in Equation 5.84, the light emerging
from the substrate is I,R,. If complete diffuse scattering is assumed, the light
is equally likely to re-emerge from the paper in all directions. In this case,
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Figure 5.34 Light reflection (a) without and (b) with optical scattering within the
substrate.

the emerging light experiences the same transmission function, (1 - k + kT}),
as in Equation 5.84. The final reflected light is given by

Ly = L,P,(1—k+kTy) = [,,P,(1—k+kTx) (5.86)

With the black reflectance being defined as Py = T/?P,, the following expres-
sion is obtained for the overall reflectance:

R = Ilfff‘ = (1-Kk)P)* + kP;*)’ (5.87)

m

The Yule-Nielsen (YN) correction results in a nonlinear relationship between
the area coverage k and the resulting reflectance R. Figure 5.35 is a plot of
R vs. k with and without the YN correction. The latter predicts a smaller
reflectance (i.e., a darker print) than the linear Murray-Davies model. This
is indeed the case in reality. The darker print can be thought of as being
effected by a larger dot area coverage k; hence, the scattering phenomenon
is often referred to as optical dot gain.
Equation 5.87 can be generalized as follows:

R = (1-kP, " +kP/"" (5.88)
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Figure 5.35 Reflectance vs. area coverage for K colorant (a) without Yule-Nielsen
correction (n = 1) and (b) with Yule-Nielsen correction (1 = 2).

where 7 is known as the YN parameter. When n = 1, Equation 5.88 reduces
to the Murray-Davies equation, i.e., the case of no optical scattering within
the substrate. When n = 2, we have the case of complete diffuse optical
scattering given in Equation 5.87. In reality, one would expect to encounter
partial diffuse scattering, which would yield intermediate values, 1 <n < 2.
Therefore, n is often treated as a free parameter chosen to optimally fit
measured data. The YN correction is readily applied to the spectral Neuge-
bauer equations.

R(A) = (2 wiPi(k)l/”)H (5.89)

ieS

Figure 5.36 is a plot of the prediction accuracy of the Neugebauer model as
a function of n for a rotated screen. The device being modeled was a Xerox
5760 CMYK laser printer. Details of the experiment that produced these
results are given in the paper by Balasubramanian.® Clearly, inclusion of the
YN factor (i.e., n > 1) greatly improves model accuracy. Interestingly, for this
case, best results are achieved for n > 2, for which there is no direct physical
interpretation. Statistical or empirical fitting of model parameters can indeed
often result in nonphysical values. This is largely due to noise and other
characteristics such as front surface and internal reflections not being suffi-
ciently captured by the given model.

Other, more sophisticated techniques have been proposed that model
optical scattering with spatial point spread functions.®%> These approaches
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Figure 5.36 Average AE vs. YN parameter n for spectral Neugebauer model with 24
=16, 3* = 81, and 5* = 625 primaries, for rotated dot screen.

are covered in more detail in Chapter 3. The following discussion is restricted
to the YN correction, as it is a very simple yet effective way of improving
model accuracy.

5.10.2.3.4 Estimation of dot area coverages. In addition to the optical
dot gain just described, halftone printing also experiences mechanical dot
gain, which results from the physical spreading of colorant on the paper. A
combination of optical and mechanical dot gain results in a nonlinear rela-
tionship between the input digital counts to the halftone function and the
dot area coverages used in the Neugebauer calculation. Furthermore, in some
printing processes, optical interactions among the colorants can result in the
dot gain for a given colorant being dependent on the area coverages of the
other colorants. However, for pedagogical purposes, we will make the sim-
plifying assumption that there are no interchannel interactions so that the
cyan area coverage depends on only the cyan digital count, etc. This assump-
tion is reasonably upheld in many printing processes and allows the rela-
tionship between digital count and dot area to be determined from single-
colorant stepwedge data. From Equation 5.89, the reflectance of a cyan patch
produced at digital level d; is given by

Re M) = (1-c)pP,(M)"" +¢;Pe(M)" (5.90)
The least-squares estimate minimizes the error

E= Y RO =((1-c)PpW)" +¢PcV))T’ (591)

reV
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The optimal area coverage is obtained by setting to zero the partial derivative
of Equation 5.91 with respect to ¢, yielding

(P, =R()Y(PRW) " = Pe(M) )
= 2 - (5.92)
3 (Po(M)" = Pe(M)"’
A

opt

¢

The result is a set of pairs {d;, ¢} from which a continuous function can be
derived that maps digital count to dot area coverage using some form of
one-dimensional fitting or interpolation. The process is repeated for the other
colorants. If a sufficiently fine sampling of stepwedge data is available,
piecewise linear interpolation should be adequate; otherwise, higher-order
functions such as splines are desirable. Figure 5.37 shows optimized magenta
dot areas for the DocuColor 12 printer for values of n =1 and n = 2. For the
case where n = 1, the dot area coverages must account entirely for both
optical and mechanical dot gain. When n > 1, the YN correction partially
accounts for optical dot gain; hence, the dot area coverages are generally
smaller in magnitude.

An alternative technique for determining dot areas is to minimize the
error in CIELAB rather than spectral coordinates. Unlike the previous
approach, this is a nonlinear optimization problem that must be solved with
numerical or search-based techniques. Given this fact, one can extend the
training set to include colorant mixtures, e.g., C = M =Y, in addition to the
single-colorant stepwedges. Balasubramanian® provides further details of
this approach.

5.10.2.3.5 Cellular Neugebauer model. The set of primaries P,(A) of the
basic Neugebauer model are derived from C, M, Y overprints of either 0 or
100% area coverages. This set can be generalized to include intermediate
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0.1

magenta dot area function

0 32 64 96 128 160 192 224 255
input digital value

Figure 5.37 Optimized magenta dot area functions for n = 1 and 2.

© 2003 by CRC Press LLC



area coverages. For example, if 50% area coverages of C, M, Y are included
with 0 and 100%, then each colorant has three states, and there are 3% = 27
Neugebauer primaries. Geometrically, this is equivalent to partitioning the
three-dimensional cmy space into a grid of eight rectangular cells, formed
by nodes at 0, 50, and 100%. Hence, this is referred to as the cellular Neu-
gebauer model.®* A two-dimensional example is shown in Figure 5.38 for a
printer employing only cyan and magenta colorants. Depending on the type
of halftone screen, the appropriate mixing equations are applied within each
cell. The mixing equations are to be geometrically interpreted as a three-
dimensional interpolation of the P,(A)'/" at the cell vertices. For the case of
the random halftone, the logical extension from the noncellular model is to
perform trilinear interpolation within each cell whereas, for the dot-on-dot
case, tetrahedral interpolation is to be applied.

More explicitly, a given set of dot areas c, m, y can be represented as a
point in three-dimensional cmy space and will fall in a rectangular cell that is
bounded by the lower and upper extrema, denoted ¢, c,, m;, m,, v, y,, along
each of the three axes. That is, ¢, and ¢, are the two points along the cyan axis
that satisfy the constraint 0 < ¢, <c <¢, <1; ¢, ¢, € I, where I, is the set of
allowable states or area coverages for the Neugebauer primaries correspond-
ing to the cyan colorant. Analogous definitions hold for the magenta and
yellow coordinates. To estimate the reflectance within a given cell, the dot area
values c, m, y, must be normalized to occupy the interval [0, 1] within that cell.

, _ C—(
¢ = - (5.93)

with analogous expressions for m” and y’. The weights w,” for the cellular
model are then given by Equation 5.81 for random screens and Equation
5.82 for dot-on-dot screens, with ¢, m, y being replaced by ¢’, m’, y’, respec-
tively. Let P;'(A) be the spectral Neugebauer primaries that correspond to the
vertices of the enclosing cell. The mixing equations for the cellular model
are then given by Equation 5.89, with w; replaced by w;’and P, replaced by P;".

Py (2)m Pou"
[ = |n put
M=0.5
P,(1)" C=0.5 P

Figure 5.38 Two-dimensional illustration of cellular Neugebauer model. Solid circles
denote spectral primaries interpolated to obtain reflectance R(A)!/" at the input cm
value.
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Note that the cellular equations physically model a halftoning process
wherein each colorant can produce M > 2 concentration levels. For binary
printers, the justification for using a cellular model is empirical rather than
physical; the finer cellular subdivision of cmy space affords finer interpola-
tion of measured data, hence yielding greater accuracy.

Figure 5.36 compares the accuracy of the noncellular model for a CMYK
printer with cellular versions employing 3* = 81 and 5* = 625 primaries. As
the number of cells increases, the model accuracy improves significantly. At
the same time, the dependence on the YN factor decreases. This is to be
expected, as the cellular model marks a transition from a model-based to an
empirical approach and hence would be less sensitive to model parameters.

5.10.2.3.6 Spectral regression of the Neugebauer primaries. Thus far, the
primaries Py(A) in Equation 5.89 are considered as fixed parameters that are
directly measured. An alternative is to treat these quantities as free variables
that can be optimized via regression on a training set of spectral reflectance
data. This technique will be described next for the case of a noncellular CMY
model employing rotated screens. (Extension to the cellular case, N colorants,
or dot-on-dot screen is straightforward). It is assumed that the optimal n
factor and dot area coverages have been derived using the aforementioned
techniques. To formulate the regression problem, it is convenient to express
the Neugebauer equations in matrix-vector form. Consider each spectral
measurement as an L-vector. Collect the YN modified spectral reflectances
R(M)Y" of T training samples into a T x L matrix R. Similarly, collect the YN
modified Neugebauer primaries Py(A)!/" into an 8 x L matrix P. Finally, gen-
erate a T X 8 weight matrix W whose element w;; is the area coverage of the
jth Neugebauer primary for the ith training sample. Equation 5.89 can then
be rewritten as

R=W- P (5.94)
From Appendix 5.A, the least squares solution for P is given by
P, = (WW1HWR (5.95)

The terms in P are raised to the power 7 to obtain optimized primary reflec-
tances. It must be emphasized that the choice of CMY samples in the training
set T is crucial in determining the condition or rank of matrix W. Namely, to
ensure sufficient rank, the samples should be chosen so that there are no null
columns in W. A simple way to assure this is to pick a regular three-dimen-
sional grid of training samples. Also, note that the foregoing analysis is based
on a particular choice of n and the dot area coverage functions. The process
can be iteratively repeated by rederiving n and the dot areas corresponding
to the newly optimized primaries, and then repeating the regression step.
Experiments by the author have shown that more than two iterations do not
generally yield significant improvements in model accuracy.”
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5.10.2.3.7 Owerall model optimization. The following procedure may
be used to optimize the various parameters of the Neugebauer model for a
CMY printer:

* Select the resolution of the cellular Neugebauer model. In the au-
thor’s experience, three levels (i.e., two cells) per colorant offers an
acceptable trade-off between accuracy and number of samples re-
quired. Generate CMY combinations corresponding to the cell nodes
(i.e., the Neugebauer primaries).

* Select the resolution of C, M, Y stepwedges to generate dot area
functions. In the author’s experience, a minimum of 16 samples per
colorant is usually adequate.

* Select an additional set of CMY mixtures to test and refine the model.
One possibility is to use an N x N x N grid of CMY combinations
that does not coincide with the Neugebauer primaries.

¢ Combine the above CMY samples into a characterization target. (As
an alternative to designing a custom target, the standard IT8.7/3
printer characterization target described in Section 5.3 can be used,
as it contains the patches necessary to derive and test the Neugebauer
model.) Print the target and obtain spectral measurements.

* For a fixed value of n (e.g., n = 1), use Equation 5.92 to generate
estimates of dot area coverages for the stepwedge samples. Interpo-
late or fit the data to create functions that map digital count to dot
area coverages. With 16 or more samples per stepwedge, piecewise
linear interpolation should produce adequate accuracy.

¢ Evaluate the accuracy of the model in predicting the stepwedge data.
This is accomplished by computing a AE metric between model pre-
dictions with actual measurements.

* Optimize the model with respect to n by repeating the previous two
steps for several n values in some nominal range (e.g., 1 <n <7) and
selecting the n that produces the minimum AE.

¢ Select a mixing model depending on the type of halftone screen (e.g.,
Demichel vs. dot-on-dot).

¢ If the dot-on-dot model is chosen, find the optimal blending param-
eter oo in Equation 5.83 by iterating through different values of o,
computing AE for the model’s prediction of mixed color samples from
the test set, and selecting o that minimizes the AE.

e If spectral regression of the primaries is desired, select a set of mixed
color samples from the test set, and use Equation 5.95 to compute
optimal primaries P,(A).

Figure 5.39 summarizes the steps in the application of the Neugebauer
model. Accuracy of the model must be evaluated on an independent set
of CMY samples. If the prediction error is within the variability of the
printer, the model is considered to be a satisfactory representation of the
real printer.
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Figure 5.39 Block diagram of Neugebauer model calculation.

5.10.2.3.8 Accuracy of the various Neugebauer models. Table 5.1 com-
pares the performance of the various types of Neugebauer models applied
to the Xerox 5760 CMYK printer. Details are provided by Balasubramanian.>
Clearly, the YN parameter offers significant benefit to the model. The cellular
framework with 5* = 625 primaries offers the best accuracy, but this is at the
expense of a substantial number of measurements. The cellular model with
3* = 81 primaries, as well as spectral regression, offer a promising trade-off
between measurement cost and accuracy.

Table 5.1  Effort Involved and Resulting Accuracy of the Various
Neugebauer Models for a Rotated Dot

No. of Spectral Avg. 95%
Model Measurements AE?%, AE%,
Basic spectral 72 8.88 16.3
Yule-Nielsen corrected 72 3.50 7.80
Cellular, 3* primaries,
Yule-Nielsen corrected 137 2.96 6.0
Cellular, 5* primaries,
Yule-Nielsen corrected 681 2.01 5.0
Yule-Nielsen corrected,
global spectral regression 188 2.27 5.3

5.10.2.3.9 Further enhancements. Several researchers have explored
other refinements of the model. Arney et al.** showed that the colors of both
the paper and the dots are functions of the relative dot area coverages, and
they extended the Neugebauer model to account for this. Lee et al.®® departed
from the Demichel model and used a sequential quadratic programming
method to estimate these parameters. Iino and Berns® accounted for optical
interactions among the colorants by introducing a correction to the dot gain
of a given colorant that depends on the area coverages of the other colorants.
Hua and Huang® and Iino and Berns®*% explored the use of a wavelength-
dependent Yule-Nielsen factor. Agar and Allebach’ developed an iterative
technique of selectively increasing the resolution of a cellular model in those
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regions where prediction errors are high. Xia et al.”! used a generalization
of least squares, known as total least-squares (TLS) regression to optimize
model parameters. Unlike least-squares regression, which assumes uncer-
tainty only in the output space of the function being approximated, total
least-squares assumes uncertainty in both the input and output spaces and
can provide more robust and realistic estimates. In this regard, TLS has wide
applicability in device characterization.

5.10.3 Empirical techniques for forward characterization

With this class of techniques, a target of known device-dependent samples
is generated, printed, and measured, and the characterization function is
derived via data fitting or interpolation. Linear regression is generally inad-
equate for printer characterization; any of the more sophisticated nonlinear
techniques described in Section 5.4 are applicable.

5.10.3.1 Lattice-based techniques

Perhaps the most common approach is to generate a regular grid of training
samples in m-dimensional device space, print and measure these samples,
and use a lattice-based technique to interpolate among the measured colo-
rimetric values (see Section 5.4.5). There is an inherent trade-off between the
size and distribution of the sample set and the resulting accuracy. This trade-
off must be optimized based on the particular printer characteristics and
accuracy requirements. Remember that, if the printer has been calibrated,
these functions must be incorporated into the image path when generating
the target; hence, they will also affect the overall printer characteristics. If,
for example, the printer has been calibrated to be linear in AE from paper
along each of the primary axes (see Section 5.10.1), then uniform spacing of
lattice points is a good choice, as these correspond approximately to equal
visual steps. The following is a simple procedure to determine a suitable
grid size for a CMY printer, assuming it has been either linearized channel-
wise to AE from paper or gray-balanced and linearized to neutral L*:

* Generate uniformly spaced lattices of size s* in CMY space, where
5<5<10. Also generate an independent test target of CMY samples.
The latter can be generated by invoking a random number generator
for each of the digital values d,, d,, d, or by using a regular lattice
that is different from any of the training sets.

* Generate targets for both the lattice and the test data, process through
the calibration functions, print, and measure CIELAB values.

* From this data, generate a set of three-dimensional LUTs of size s*
that map CMY to CIELAB space.

¢ Select a three-dimensional interpolation technique, e.g., trilinear or
tetrahedral interpolation. Process the test CMY samples through each
of the LUTs to obtain CIELAB estimates. Compute AE between esti-
mated and measured CIELAB.
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¢ Plot average and 95th percentile AE as a function of s. Alogical choice
for the lattice size is the smallest s for which an increase in lattice
size does not yield appreciable reduction in 95th percentile AE value.

Figure 5.40 shows such a plot for a Xerox DocuColor 12 laser printer. This
plot suggests that, for this printer, there is no appreciable gain in increasing
the grid size beyond s = 8.

The extension to CMYK printers is straightforward. Note, however, that
the lattice size (hence, the number of measurements) increases as s*and can
quickly become prohibitively large. One method of improving the trade-off
between lattice size and accuracy is sequential interpolation, described next.

5.10.3.2  Sequential interpolation

The general framework for sequential interpolation (SI) was introduced in
Section 5.4.6. Here, we describe a specific application to CMYK character-
ization. Consider a decomposition of CMYK space into a family of CMY
subspaces corresponding to different levels of K, as shown in Figure 5.41. If
we were to print and measure the CMYK nodes of each CMY lattice, we
would obtain a series of volumes in L*a*b* space, as illustrated schematically
in the same figure. Each gamut volume corresponds to variations in C, M,
and Y, with fixed K. Note that as K increases, the variation in color, and
hence the gamut volume, decreases. For the case where K = 100%, we have
almost negligible color variation. The fact that the curvature of the function
strongly depends on K motivates an SI structure comprising a family of CMY

[ average error
Il 95th percentile error

6 8
Lattice size along each dimension

Figure 5.40 AE vs. lattice size.
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Figure 541 Sequential interpolation: a decomposition of CMYK into a family of
CMY subspaces at different K and corresponding CIELAB gamuts. The CMY lattices
become coarser as K increases.

lattices for different K. A finely sampled CMY lattice is used for K = 0, and
the lattice size decreases with increasing K, as shown in Figure 5.41. When
building the SI structure, each CMY lattice is filled with measured CIELAB
values. Interpolation to map CMYK to CIELAB is performed as follows:

* Project the input CMYK point onto the K dimension and select neigh-
boring levels K; and Kj,;.

® Project the input CMYK point onto CMY space and perform three-
dimensional interpolation on the two CMY lattices corresponding to
levels K; and Kj,; to produce two CIELAB points.

* Use the input K value to perform one-dimensional interpolation of
these two CIELAB points.

Table 5.2 shows experimental results comparing the SI structure with a
regular lattice. For approximately the same lattice size, the SI technique offers
superior accuracy, hence improving the quality/cost trade-off. Further
details are given by Balasubramanian.”

It is noteworthy that the standard IT8.7/3 printer characterization target
described in Section 5.3 facilitates SI. The target contains 6 CMY lattices of
size 63, 63, 5%, 5%, 43, 23, corresponding to K values (in percentage) of 0, 20,
40, 60, 80, 100, respectively.

© 2003 by CRC Press LLC



Table 5.2  Comparison of Accuracy and Number of Training Samples for
Standard vs. Sequential Interpolation

CIE ‘94 AE Number of
Model Average 95th Percentile LUT Nodes
Regular 4 x 4 x 4 x 4 lattice 3.0 12.3 256
Sequential interpolation with 53, 43,
3%, 23 CMY lattices corresponding
to k=0, 85, 170, 255 1.8 6.25 224

5.10.3.3  Other empirical approaches

Tominaga (Chapter 9 of Reference 7) describes an example of a neural net-
work for printer characterization. This is accomplished in two steps. First, a
four-layer neural net is derived for the forward transform from CMYK to
CIELAB using over 6500 training samples. Next, a cascaded eight-layer neu-
ral net is constructed, the first stage being the inverse mapping from CIELAB
to CMYK and the second stage being the previously derived forward map-
ping from CMYK to CIELAB. The second stage is kept static, and the first
stage is optimized to minimize the CIELAB-to-CIELAB error for the overall
system. Tominaga reports an average AE, of 2.24 for a dye sublimation
printer. As with the other techniques, the optimal number of training samples
and the neural net structure depend on the printer characteristics and desired
accuracy, and they have to be initially determined by trial and error.

Herzog” proposes an analytic model for the mapping between CMY
and CIELAB. The printer gamut is described as a family of nested shells in
both CMY and CIELAB space. A simple mathematical model of distortion
and scaling operations is used to relate each shell from one space to another
via an intermediate representation called a kernel gamut. Colors in between
the shells are mapped via linear interpolation. A total of 626 measurements
are required to derive the model, and average AE,, errors between 0.7 and
2.5 are reported for various data sets.

5.10.4 Hybrid approaches

We have seen thus far that physical models and empirical techniques offer
different trade-offs between effort and accuracy. There are two ways to
combine the strengths of these two classes of techniques. The first is to use
empirical data to optimize the parameters of a physics-based model. Many
examples of this were encountered in the optimization of BB, KM, and
Neugebauer models. The second is to use empirical data to refine the pre-
diction of a printer model as a post-processing step, as shown in Figure 5.42.
The assumption is that the model is a good first-order approximation, and
that a small number of additional refinement samples is sufficient to correct
for objectionable inaccuracies in the model.!? The number and distribution
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Figure 542 Block diagram showing refinement of printer model.

of refinement samples depend on the characteristics of the printer and the
model, as well as on accuracy requirements. If the printer model is known
to be erroneous in certain regions of color space, the refinement samples can
be chosen with a denser sampling in these regions. Similarly, regions of color
space to which the human visual system is more sensitive (e.g., flesh tones
and neutral colors) can be sampled more densely. In the absence of such
information, a reasonable approach is to span the gamut with an approxi-
mately uniform sampling.

In the case of forward printer characterization, the refinement is a colo-
rimetric function from, for example, CIELAB to CIELAB. Any of the multi-
dimensional data-fitting or interpolation techniques described in Section 5.4
can be applied to estimate this function from the refinement samples. Local
linear regression has been used successfully by the author!? to reduce average
AE,, errors from approximately 5 to 2.5.

5.10.5 Deriving the inverse characterization function

The inverse printer characterization is a mapping from CIE color to device
colorant values that, when rendered, will produce the requested CIE color
under defined viewing conditions. This mapping is usually implemented as
a three-dimensional LUT, so it needs to be evaluated at nodes on a regular
three-dimensional lattice in CIE coordinates. Some of the lattice nodes will
lie outside the printer gamut; we assume that these points are first mapped
to the gamut surface with a gamut-mapping step (described in Chapter 10).
Hence, we restrict the inversion process to colors that are within the printer
gamut.

In the case where the forward function is described by an analytic model,
a possible approach is to directly invert the parameters of the model via
analytic or search-based techniques. The most notable efforts in this direction

© 2003 by CRC Press LLC



have been in the inversion of the Neugebauer model to estimate dot area
coverages from colorimetric values.”*” Here, we adopt a more general inver-
sion process that is independent of the technique for determining the for-
ward function. The process is accomplished in two steps.

1. Use the forward characterization function to generate a distribution
of training samples {c, d;} in device-independent and device-depen-
dent coordinates.

2. Derive the inverse function by interpolating or fitting this data.

5.10.5.1 CMY printers

In the case of three-colorant devices, the forward function from CMY to
colorimetric coordinates (e.g., CIELAB) is a unique mapping; hence, a unique
inverse exists. Any of the interpolation or fitting techniques described in
Section 5.4 can be used to determine the inverse function from the training
samples. Tetrahedral inversion, described in Section 5.4.5, can be used if the
device signals are generated on a regular lattice. Figure 5.43 compares four
fitting algorithms (local linear regression, neural network, polynomial regres-
sion, and tetrahedral inversion) as to their ability to invert a Neugebauer
model derived for a Xerox DocuColorl2 laser printer. The neural network

12 T I I T
. [ average error .
: Il 95th percentile error ;
10 ........ .............. .............. ............... ]
8 .................................................... .

Delta E*(94)
(o))

1 2 3
Fitting algorithm

Figure 5.43 Comparison of various algorithms used to invert a Neugebauer model:

1. local linear regression, 2. neural network, 3. polynomial regression, and 4. tetra-
hedral inversion.
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used a feed-forward algorithm with one hidden layer containing six neurons.
The polynomial regression used a 3 x 11 matrix as in Equation 5.18b. A
training set of 10° = 1000 samples was used to derive the parameters for each
of the fitting algorithms. An independent set of 125 samples was used as the
test set. The test data, specified in CIELAB, were mapped through a given
inverse algorithm to obtain CMY, which was then mapped through the for-
ward printer model to obtain reproduced CIELAB values. The plot in Figure
5.43 shows the average and 95% AE;4 errors between the original and repro-
duced values. Local linear regression and the neural network offer the best
performance. In the author’s experience, this observation holds generally
true for a wide variety of printers. Local linear regression possesses the added
advantage that it is less computationally intensive than the neural network.

Another factor that affects the overall inversion accuracy is the size of
the three-dimensional LUT used to finally approximate the inverse function.
An experiment was conducted to study overall inversion error as a function
of LUT size. The workflow is the same as described in the preceding para-
graph, except that the inverse function is now a three-dimensional LUT built
using local linear regression on 1000 training samples. Figure 5.44 is a plot
of overall inversion error as a function of LUT size. The error decreases with
increasing LUT size; however, beyond a certain point, the returns diminish.
From the plot, it is clear that a LUT size beyond 16 x 16 x 16 does not afford
a noticeable gain in accuracy — another observation that has been seen to

: [ average error
~~~~~~~~~~ +-- | I 95th percentile error

Delta E*(94)

3 4
LUT size along each dimension = 2

Figure 544 LUT approximation error vs. LUT size.
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hold true for a wide variety of printers. Note that the relative spacing of
nodes along each dimension can also affect LUT accuracy. In this experiment,
the nodes were spaced uniformly, because the input space, CIELAB, in which
the LUT was built, is approximately visually uniform.

5.10.5.2 CMYK printers

Although, in principle, the three C, M, and Y colorants suffice to produce
all perceivable hues, very often, a fourth black (K) colorant is used for several
reasons. First, the K colorant is usually considerably less expensive than C,
M, and Y, and it can thus be used in lieu of CMY mixtures to render dark
neutrals and shadows. Second, the addition of K can result in an increase in
gamut in the dark regions of color space in comparison to what is achievable
using only CMY mixtures. Third, the use of K can help reduce the total
amount of colorant required to produce a given color, a feature that is critical
in certain technologies such as inkjet printing.

In the context of device characterization, the K colorant introduces
redundancy into the forward transform, as a large (in principle, infinite)
number of CMYK combinations can result in the same colorimetric measure-
ment. This results in the inverse function being ill posed, and additional
constraints are required to generate a unique CMYK combination for each
input CIE color. Some common methods of deriving the constrained inverse
are presented next.

5.10.5.2.1 Inversion based on K addition, undercolor removal, and gray
component replacement. The processes of black (K) addition, undercolor
removal (UCR), and gray component replacement (GCR) trace their origins
to the graphic arts printing industry.>’ Together, they define a unique trans-
form from a set of canonical CMY primaries to the CMYK signals for the
given printer. Geometrically, the transform generates a three-dimensional
manifold within the four-dimensional CMYK space, with the property that
every CMYK combination within the manifold results in a unique colori-
metric response. Once this transform is established, the inversion can be
carried out on the canonical CMY device as described in Section 5.10.5.1.
Figure 5.45 shows the derivation and application of the inverse function
for a CMYK printer. The two functions in Figure 5.45b are usually concat-
enated into a composite inverse transform from CIE to CMYK signals.
Recall that the printer is assumed to have been calibrated, so the CMYK
signals resulting form the inversion process are finally processed through
the calibration functions prior to printing. In some implementations, the
calibration is concatenated with the characterization or stored in the same
profile.

There are numerous methods for designing K addition, UCR, and GCR
functions. They are usually chosen for an optimal trade-off among factors
such as gamut volume, colorant area coverage, and smoothness of transitions
from neutral to non-neutral colors. The trade-off is usually carried out
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Figure 5.45 Constrained inverse characterization of CMYK printers: (a) construction
of inverse 3-3 function and (b) combining the inverse 3-3 function with K addition,
UCR, and GCR to construct inverse 3-4 function.

heuristically with knowledge of the printer characteristics and quality
requirements. Some examples of these functions are presented next.

5.10.5.2.1.1 Black addition. This is commonly chosen to meet a
desired behavior along the C = M =Y axis. Suppose the printer has been
gray-balanced and linearized to neutral L*. If we define darkness D* as a
scaled inverse of L* using Equation 5.58, then we have C =M =Y = D* along
the neutral axis for the range 0<D* < D%, . Here, D%, is the maximum
digital count (e.g., 255 for an 8-bit system). We can then define K as a
monotonic increasing function f; of neutral D*. Numerous functional repre-
sentations can be used, for example the power-law,

D* ( D* - D)f)ffset
fl(D*) = e Dfnﬂx - thfset
0 lf(OSD*SD’SffSEt)

¥
) if D offset <D*<D max (596)

Here, y and D%, are parameters that can be adjusted to suit the desired
behavior of K along the neutral axis. For y> 1, larger values of yand D7,
result in less aggressive f; (i.e., less K is used for a given amount of neutral
C=M=Y). As yand D", approach 1 and 0, respectively, f; becomes more
aggressive, with the amount of K approaching the amount of neutral C =M
=Y.
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5.10.5.2.1.2 Undercolor removal. This function describes the
amount of reduction in CMY primaries to compensate for the K addition. It
is also derived with attention to the neutral axis. A simple form of CMY
reduction is given by

C’=C-£(D¥ (5.97)

with analogous expressions for M and Y. Again, we are abounded with
numerous strategies for f,(D*). One approach is based on the rationale that
the CMY reduction should be proportional to the amount of K addition,

f2(D*) = af (D*), 0<sa<1 (5.98)

The case where oo = 1 (i.e.,, CMY subtraction equals K addition) is often
referred to as 100% UCR.

A more sophisticated approach is to derive f, to colorimetrically com-
pensate for the K addition. This can be performed as follows. For a given
neutral input C = M =Y sample, the resulting L* and hence D* that would
be produced by printing this sample can be predicted via the forward char-
acterization function. The amount of K associated with this input C = M =
Y is given by f;(). We can now derive the new smaller amounts, C' = M’ =
Y’, which produce the same D* when combined with the given K. This step
is achieved by combining different C =M =Y levels with the given K, running
through the forward transform, and picking the combination that produces
the desired D*. Finally, f, is the difference between the original C =M =Y
and final C’'=M'=Y".

A key factor to be considered in choosing black addition and UCR
parameters is the total area coverage (TAC) that is permissible for the given
device, especially in the dark portions of the gamut. For many CMYK print-
ers, TACs near 400% will result in defects (e.g., ink bleeding in inkjet printers
or improper toner fusing and flaking in xerographic printers). Hence, an
appropriate limit must be placed on TAC, and this in turn affects the K
addition and UCR parameters. If the colorimetric approach described in the
preceding paragraph is adopted, accuracy will likely be sacrificed toward
the dark end of the gamut due to TAC limits.

5.10.5.2.1.3 Gray component replacement. Thus far, K addition and
UCR have been defined for neutral samples C = M = Y. GCR is a generali-
zation of these functions for the entire gamut of CMY combinations. A
fundamental assumption is that the gray component of an arbitrary CMY
combination is given by the minimum of C, M, Y. This gray component can
then be used as input to the K addition and UCR functions.

X = min(C,M,Y)

K =£(X)
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C' =C-£(X)
M’ =M - f,o(X)
Y =Y-£(X) (5.99)

Clearly, one can conceive numerous enhancements to this simple model. The
CMY subtraction can be performed in other spaces such as optical density.
This can be accomplished in the current framework by applying a transform
to the chosen space before CMY subtraction and applying the inverse trans-
form after subtraction. Second, functions f; and f, can be multidimensional
functions that depend on more than just the minimum of C, M, Y. This may
be desirable if, for example, the optimal balance between K and CMY along
the neutral axis is different from that along the edges of the gamut. Finally,
CMY reduction can be accomplished by methods other than simple subtrac-
tion. For another perspective on UCR and GCR techniques, refer to Holub
et al.”®

5.10.5.2.2  Direct constraint-based CMYK inversion. The previous ap-
proach used a CMY-to-CMYK transform to arrive at a constrained inverse.
A more general and direct method is to obtain the set of all CMYK combi-
nations that result in the given input CIE color and select a combination that
satisfies certain constraints. Examples of such constraints include:

1. Total colorant area coverage (i.e., C + M + Y + K) is less than a
threshold.

2. The amount of K with respect to the minimum and maximum K that
can produce the given color is constrained.

3. Stability is maximized (i.e., change in colorant values results in min-
imum change in CIE color).

4. Smoothness is maintained with respect to neighboring colors in CIE
space.

5. Gamut volume is maximized.

6. Spatial artifacts such as misregistration and moiré are minimized or
constrained.

Constraint 5 implies that, if a color is achievable with only one CMYK com-
bination, this should be used, even if some of the other constraints are not
met. Space considerations do not permit us to elaborate on the other con-
straints. We refer the reader to Mahy”” for detailed discussions of constraints
1 through 4), and Balasubramanian et al.” for a description of how UCR and
GCR are optimized to minimize moiré. Cholewo” describes another con-
strained inversion technique that takes gamut mapping into account.

Note that the aforementioned two approaches can be combined. For
example, the UCR/GCR approach can be used to generate an initial CMYK
combination, which can then be refined iteratively to meet one or more of
constraints 1 through 6.
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5.10.6 Scanner-based printer characterization

All the foregoing discussion implicitly assumes the use of a colorimeter or
spectrophotometer for color measurement. Another approach is to use a
color scanner as the measurement device in printer characterization. The
main advantage of this approach is that scanning a color target is less labor
intensive than spectrophotometric measurement; furthermore, the measure-
ment time does not depend on the number of patches on the target. Because
a scanner is generally not colorimetric, it must first be characterized. Fortu-
nately, the characterization needs to be derived only for the colorant-medium
combination used by the given printer, hence empirical techniques can be
used with very accurate results (see Section 5.6.3). The scanner characteriza-
tion produces a transform from scanner RGB to colorimetric or spectral
coordinates, thus turning the scanner into a colorimetric device for the given
colorants and medium. Printer characterization can then be carried out as
described in the foregoing sections, with the target measurement step being
replaced by scanning of the target followed by the necessary image process-
ing (i.e., mapping the scanned image through the scanner characterization
and extracting colorimetric values of each patch). Note that this approach
intimately links the scanner and printer into a characterized pair.

5.10.7 Hi-fidelity color printing

The term high-fidelity (hi-fi) color refers to the use of extra colorants in addition
to the standard C, M, Y, K. Two strategies can be adopted for hi-fi color
printing. In one approach, the additional colorants are of the same hues as
the standard colorants but of different concentrations. Usually, C and M are
chosen for this. The use of multiple concentrations allows for superior ren-
dering of detail in the highlights and shadows as well as smoother transitions
from highlights to mid-tones to shadows. In the second strategy, the extra
colorants are of hues that are different from C, M, Y. One purpose of this is
to extend the color gamut. Due to unwanted absorptions, printer gamuts are
often deficient in saturation and lightness in the secondary overprints, i.e.,
R, G, B. Hence, hi-fi colorants are chosen to extend the gamut in these regions
of color space, as shown in the schematic in Figure 5.46. Another purpose
is to reduce metamerism and enable spectral reproduction by using colorants
with relatively narrowband spectral characteristics (see Section 5.11).

5.10.7.1 Forward characterization

For forward characterization, the BB, KM, and Neugebauer models all extend
in a straightforward manner to an arbitrary number of colorants. In the case
of BB and KM, the number of measurements increases linearly with the num-
ber of colorants while, for the Neugebauer model, the number of measure-
ments increases exponentially due to the need for including solid overprints.
In the latter case, the number of overprints can become prohibitively large;
hence, a two-stage model can be employed. The BB or KM is used to predict
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Figure 5.46 Use of R, G, B hi-fi colorants to extend the gamut achieved with standard
CMYK printing.

the reflectances of solid overprints, and this is fed to the Neugebauer model,
which predicts the reflectances of arbitrary colorant mixtures. The reader is
referred to Section 6.6 of Reference 7 for further discussions and references.

Recently, a novel hi-fi color modeling approach has been proposed by
Van de Capelle and Meireson (Reference 7, Chapter 10) that obviates the
need for measuring overprints even for halftone processes. The main advan-
tage is therefore the substantial savings in number of measurements as the
number of colorants increases. Single-colorant stepwedges between 0 and
100% area coverage are printed under three conditions:

1. On the naked substrate
2. On the substrate with 50% black
3. On the substrate with 100% black

From these measurements, three substrate-independent parameters are esti-
mated for each colorant, namely scattering, interaction, and absorption.
These parameters describe spectral properties of the colorants independent
of the underlying substrate and can be used to predict the reflectance of a
colorant layer on any given substrate. The reflectance of an n-layer mixture
of colorants is modeled iteratively by calculating the reflectance of the n — 1
layer mixture and treating this as the substrate for the nth layer. The authors
report average AE,, between 1.8 and 3.0 for various data sets. See the afore-
mentioned reference for details.
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5.10.7.2  Inverse characterization

As with CMYK printing, hi-fi color introduces redundancy into the color
reproduction process in that many colorant combinations can result in the
same perceived (CIE) color. The inversion process must select a unique
colorant combination for each input CIE color. Additional considerations
include minimization of colorant area coverage, minimization of moiré in
the case of rotated halftone screening, and a smooth characterization function
from CIE to device signals.

A common strategy is to partition the color gamut into subgamuts
formed from combinations of three or four colorants. Referring to Figure
5.46, one approach is to partition the gamut into six subgamuts formed from
the following colorant combinations: CGK, GYK, YRK, RMK, MBK, and
BCK. Here, R, G, and B represent hi-fi colorants chosen in the red, green,
and blue hues.®8! (Often, orange is used instead of red; the idea still holds.)
Because C + Y combinations are spectrally redundant with G, the former are
disallowed, and only C + G and G + Y combinations are entertained. This
rule guarantees uniqueness, and is applied likewise for the other combina-
tions. Also, because only three screens angles are being used to render any
given input color, moiré can be handled using the same rules applied for
conventional printing. Another variant®? represents the gamut as overlap-
ping subgamuts formed by GYRK, YRMK, RMBK, MBCK, BCGK, and
CGYK. Several criteria, including minimization of colorant area coverage
and smoothness of transitions across subgamuts, are used to select unique
colorant combinations for a given input color. A third variant®® employs an
approach directly akin to UCR and GCR for CMYK printing. The gamut is
partitioned into the subgamuts formed by YRMK, MBCK, and CGYK. In the
YRMK subgamut, the M and Y signals are fed to an R addition function and
MY subtraction function. Analogous operations are applied in the other
subgamuts. The functions are chosen to produce a unique colorant combi-
nation for each input color while maximizing the volume of each subgamut.
As with conventional UCR/GCR, the latter can be aided by applying a
nonlinearity to the input signal and inverting this after the addition and
subtraction operations have been performed. Note that, with all these
approaches, hi-fi colorants are used to render colors that can also be achieved
with standard CMYK colorants. In a fourth variant, only CMYK colorants
are used to achieve colors within the standard CMYK gamut, and hi-fi
colorants are introduced only in those regions of color space that cannot be
reproduced with CMYK mixtures. This approach offers better compatibility
with standard CMYK devices. Details of these techniques are deferred to the
stated references.

5.10.8 Projection transparency printing

Overhead transparency projection continues to be a common medium for
communication of color information. Characterization for this application is
complicated by several factors. First, the final viewing conditions and
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projector characteristics are difficult to predict a priori and may be very
different from those used for characterization. Second, it is difficult to achieve
strict spatial uniformity, especially when the image is projected into a large
screen. Fortunately, color accuracy requirements for projected transparency
are usually not so stringent as to require careful characterization. But, if
accuracy is important, care must be taken to control the aforementioned
conditions as well as possible.

The characterization procedure is conceptually the same as for conven-
tional printers. A test target is printed on a transparency and projected under
representative viewing conditions. The main factor that affects the latter is
ambient lighting. The projected image is measured with a spectroradiometer.
To minimize light scattering, the transparency can be masked to present only
one patch at a time to the spectroradiometer. The measured CIELAB values
and original printer coordinates are then used to build the characterization
transform. For all the reasons stated above, a simple transparency model
such as the Beer-Bouguer formula in Equation 5.64 may not suffice to predict
the characterization; rather, empirical approaches and three-dimensional
LUTs may be necessary to capture the various complex effects. The techniques
described in Section 5.4 and Section 5.10.3 can be used for this purpose. For
further reading, see Chapter 10 of Kang* and the work by Cui et al.®

5.11 Characterization for multispectral imaging

The discussion in this chapter is primarily based on colorimetric reproduc-
tion wherein the device-independent representation of Figure 5.1 comprises
three color channels. An emerging area of research that is gaining increasing
attention is multispectral imaging, whereby the goal is to capture, store, and
reproduce narrowband spectral information rather than three-dimensional
colorimetric data. A primary motivation for preserving spectral information
is that it mitigates the metamerism problems encountered in conventional
colorimetric reproduction. A related advantage is that colorimetric charac-
terizations can be computed dynamically for different viewing illuminants
from one set of spectral data. A schematic of a spectral imaging system is
shown in Figure 5.47. The input device records color in N channels, where
N is greater than three. This is usually accomplished by using N narrowband
filters in the image acquisition device. Spectral information is reconstructed
from the data via spectral characterization of the input device.

A major concern in spectral imaging is the substantial increase in the
amount of data to be handled (i.e., from 3 to 30 or more channels). This
necessitates an efficient encoding scheme for spectral data. Most encoding
techniques are based on the well-known fact that spectra found in nature
are generally smooth and can be well approximated by a small number (i.e.,
between five and eight) of basis functions.®> The latter can be derived via
principal-component analysis (PCA) described in an Chapter 1. PCA yields
a compact encoding for spectral data and can serve as the device-indepen-
dent color space in a multispectral imaging framework. An important con-
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Figure 547 Multispectral imaging system.

sideration in selecting the PCA encoding is to ensure compatibility with
current colorimetric models for color management.®

The goal of the output device is to reproduce the spectral (rather than
colorimetric) description of the input image via a spectral characterization.
As with input devices, a “spectral printer” must employ more than the
traditional C, M, Y colorants to facilitate spectral reproduction. The forward
characterization transform can be achieved using many of the techniques
described in this chapter; derivation of the inverse transform is, however, a
more challenging problem.

For further details, the reader is referred to the book by MacDonald and
Luo? for a description of multispectral image capture and encoding tech-
niques; the work by Tzeng and Berns®-#¥ for contributions to multispectral
printing, including colorant selection and characterization algorithms; and
Rosen et al.”* for a description of a framework for spectral characterization.

5.12 Device emulation and proofing

Frequently, it is desired to emulate the color characteristics of one device on
another. Two classic examples are the use of a proof printer to emulate a
color press and the use of a softcopy display to emulate a printer. (The latter
is known as softproofing.) In both cases, the idea is to use a relatively inex-
pensive and easily accessed device to simulate the output of a device that
is less accessible and for which image rendering is costly. We will generically
refer to these two devices as the proofing device and target device, respec-
tively. Device emulation is a cost-effective strategy when iterative color
adjustments on an image are needed prior to final production. The iterations
are carried out on the proofing device, and the final production takes place
on the target device.

Figure 5.48 is a flow diagram showing how a device emulation transform
can be generated from characterizations of the proofing and target devices.
A device-independent color input c is transformed to the target device space
d, via the function gy(). This transform should be the same as the one used
for final rendering of images on the target device. Because the target device
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Figure 5.48 Block diagram for device emulation. Functions f() and g() denote for-
ward and inverse characterizations. Subscripts “t” and “p” refer to target and proof-
ing devices. Device-independent and device-dependent color representations are
denoted ¢” and d.

is invariably a printer, d, is usually a CMYK representation. Next, the device
colors are transformed back to device-independent coordinates ¢’ via the
target device’s forward transform f(). Thus, ¢’ describes the appearance of
the given input color on the target device. The remaining step is to match
this color on the proofing device. This is accomplished by applying the
inverse transform g,() for the proofing device and rendering the resulting
device coordinates d, to this device. Depending on whether the proofing
device is a printer or display, d, will be in CMYK or RGB space, respectively.
For efficiency, the operations in Figure 5.48 are usually concatenated into a
single emulation transformation.

In an alternative scenario, the input image may already exist in the target
device space d,, in which case only the last two blocks in Figure 5.48 need
to be executed. A common example of this occurs when CMYK files prepared
for a standard offset press (e.g., SWOP) are to be rendered on a digital CMYK
proofing device. The result is a four-dimensional CMYK-to-CMYK trans-
form.

The four-to-four transform deserves brief mention. We learned in Section
5.10.5.2 that constraints are needed to produce a unique output CMYK
combination for each distinct input color, and we introduced the notion of
K addition, UCR, and GCR for this purpose. In the case where the input is
a CMYK space, an alternative constraint might be to determine the output
K as a function of input K. The simplest instantiation is to simply preserve
the input K signal. Techniques of this type are presented by Cholewo?! and
Zeng.”?

5.13 Commercial packages

A number of calibration and characterization products are available that
offer a wide range of capabilities and performance. Comprehensive product
descriptions are beyond the scope of this chapter. However, for the more
application-oriented reader, the following is a list of mainstream color man-
agement products available at the time this book was published.

Note that this list mainly includes stand-alone packages and that cali-
bration and characterization functions are also often embedded within
device controllers (e.g., print controller products by Creo-Scitex, Electronics
for Imaging) or as applications bundled with current operating systems (e.g.,
Adobe Gamma for display calibration).
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GretagMacbeth (ProfileMaker) www.gretagmacbeth.com

Agfa (ColorTune) www.agfa.com/software/colortune html
ColorBlind (Matchbox) www.color.com
ColorSavvy (WiziWYG Pro) www.colorsavvy.com
Kodak (ColorFlow) www.kodak.com
LinoColor (Scanopen, Viewopen, www.linocolor.com
Printopen)

Monaco Systems (MonacoEZcolor and www.monacosystems.com
MonacoProfiler)

Praxisoft (WiziWYG, CompassProfile) ~www.praxisoft.com/products/cms.html

5.14 Conclusions

In this chapter, we hope to have provided the reader with the theoretical
foundation as well as practical procedures and guidelines to accomplish
device calibration and characterization. The chapter began with a general
conceptual overview and terminology associated with color characterization
of input and output devices. Two basic approaches to characterization were
presented: model-based and empirical. In addition, hybrid techniques were
described that combine the strengths of both approaches. Next, a treatment
was given of fundamental topics that apply to all forms of device character-
ization — namely color measurement technology, data interpolation and
fitting algorithms, and quantitative analysis tools. This was followed by a
detailed discussion of the calibration and characterization of several common
input and output devices, including scanners, digital cameras, displays, and
printers. Finally, the chapter concluded with several special topics, namely
characterization of hi-fi and projection transparency printers, device emula-
tion techniques, and commercial color characterization products.

Clearly, there are many aspects to this subject, and we have not been
able to cover all of them in great depth. It is hoped that the extensive set of
references will serve for further enquiry into any given topic. Finally, it must
be emphasized that device characterization is not a topic that stands on its
own, and it cannot by itself guarantee high-quality results in a color imaging
system. The latter calls for a thorough system-wide understanding of all the
components in the color imaging chain and their interactions. This is evi-
denced by the numerous cross references to other chapters in this book.
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appendix 5.A

Least-squares optimization

Given a T x m matrix D of m-dimensional input data points, and a T x 1
vector ¢ of one-dimensional output data points, we wish to find the optimal
m x 1 coefficient vector a that minimizes the squared error

E=|c-Dal? (5.A.1)

2 . .
where | |© denotes the L? norm or vector length. We can write the error in
matrix-vector notation as

E =[c-D aJ[c - D a] = ¢’c - 2c¢!Da + a‘'D'Da (5.A.2)

The a that minimizes E is found by differentiating with respect to a and
setting to 0.

%E = 2D'Da-2D'c = 0 (5.A.3)

This leads to
a = (D'D)'Dic (5.A.4)

To extend to n-dimensional output, vector c is replaced by a T x n matrix C.
The foregoing analysis is applied to each column of C, and the resulting
linear transformation is now an m x n matrix A rather than vector a. This
results in Equation 5.14.

Direct inversion of the matrix DD in Equation 5.A.4 can result in numer-
ically unstable solutions, particularly if the system is noisy or ill conditioned.
A more robust approach is to use singular value decomposition (SVD). A
theorem in linear algebra states that any T x m matrix D of rank r can be
represented by SVD, given by

D = UsV! (5.A.5)
381

© 2003 by CRC Press LLC



where U is a T x T unitary matrix whose columns u,, ..., u; are the
orthonormal eigenvectors of D'D; V is an m x m unitary matrix whose
columns vy, ..., v, are the orthonormal eigenvectors of DD’; and Zisa T
x m matrix given by

Y- {A 0} (5.A.6)
00
where A is a diagonal r x r matrix. Proof of this theorem, which is beyond
the scope of this chapter, is found in Noble and Daniel.”®
The diagonal entries, 6y, ..., Oy, of A are the singular values of D. Equation
5.A.5 can be written in series form as

D = Y ouyv; (5.A.7)

i=1

Substituting Equation 5.A.7 into Equation 5.A.4, we get
a=>y o;'vulc (5.A.8)
i=1

An ill-conditioned or noisy system will result in some ¢, taking on very small
values, thus resulting in an unstable solution to Equation 5.A.8. Singular
value decomposition handles this situation gracefully. A stable least-squares
solution can be arrived at by simply eliminating terms corresponding to very
small ¢, in the summation of Equation 5.A.8.

A thorough formulation of SVD is given in Reference 93. C software for
computing SVD and using it to solve the least-squares problem is provided
in Chapter 2 of Reference 17. Popular mathematical packages such as Mat-
lab™ also offer SVD based matrix inversion and least-squares solutions to
linear systems.
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appendix 5.B

Derivation of 3 X 3 matrix
from display RGB to XYZ
given white point and
chromaticities of the
primaries

Given chromaticity coordinates of the three primaries, [xg, yzl, [Xs Vel [Xs
ysl, and the tristimulus values of the white point, [X,, Y,, Z,], the goal is to
derive the 3 x 3 matrix Acg that maps display RGB to XYZ as in Equation 5.55.

Assign an arbitrary value Y = Y; = Y} = 1 for the luminance of the three
primaries. This provides three-dimensional xyY descriptors for the prima-
ries.

Convert the xyY coordinates of each primary to XYZ space as follows:

Xe="R y,=1, 7, = (lﬁ:ﬂ) _ (5.B.1)
Yr Yr Yr

Analogous expressions apply for the green and blue primaries. This defines
a matrix A’ given by

Xk X6 X5 Xr/Yr Xc/ Y X5/ Yz
Zx Zie 7y zr/Yr 26/ Yo 28/ Ys

We now have to scale the column vectors of A’ so that an input of RGB =
[1, 1, 1] results in the desired white point [X,, Y., Z,]. This is done by the
following operation:
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Ackr = A *diag(A™"* W) (5.B.3)

where W is the white vector.
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