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On the Capacity of MIMO Cellular Systems with
Base Station Cooperation

Peng Wang, Member, IEEE, Hao Wang, Li Ping, Fellow, IEEE, and Xiaokang Lin

Abstract—This paper is concerned with the capacity of
multiple-input multiple-output (MIMO) cellular systems. We
assume an equal rate constraint for all users and adopt a realistic
channel model that incorporates path loss, lognormal fading and
Rayleigh fading. Several bounds are derived for the minimum
transmission power of such rate-constrained MIMO cellular
systems with various base station (BS) cooperation strategies.
In particular, the upper power bound is based on the maximum
eigenmode beamforming (MEB) scheme. These power bounds
are then used to obtain the corresponding cellular capacity
bounds when partial BS cooperation strategies are adopted. Our
results show that, allowing more users to transmit simultaneously,
introducing cooperation among BSs and increasing the number
of antennas (especially at each BS) are efficient ways to improve
system performance.

Index Terms—Cellular capacity, multiple-input multiple-
output (MIMO), base station cooperation, rate constraint, si-
multaneous transmission, maximum eigenmode beamforming
(MEB).

I. INTRODUCTION

THE capacity analysis of cellular systems is an intriguing
topic in wireless communication systems. A main chal-

lenge in cellular capacity analysis is the treatment of interfer-
ence among users. In the earlier work [1], the signals of other
users (both intra-cell and inter-cell) are treated as additive
noise, which simplifies the problem but also underestimates
the achievable system performance. Potentially, interference
alleviation methods, such as multi-user detection, base station
(BS) cooperation and multiple-input multiple-output (MIMO)
techniques, can lead to significant performance gain. How-
ever, the related capacity analysis problem is difficult due to
complicated transmission environments.

The Wyner model [2] provides a simplified approach to this
problem. The Wyner model is based on two basic assumptions:
(i) inter-cell interference is from adjacent cells only; and (ii)
all the same-cell users experience the same path loss to the
same BS. Based on the Wyner model, the authors in [3][4]
compared the performance of cellular systems with different
multiple access techniques. The capacity improvement of cel-
lular systems with BS cooperation and inter-/intra-cell multi-
user detection is discussed in [5]-[8]. The impact of the MIMO
technique on cellular systems is studied in [8]-[12]. However,
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due to the above two assumptions, the Wyner model cannot
always capture the essential aspects of cellular interactions, as
pointed out in [13]. Overall, the accurate evaluation of cellular
capacity in realistic and complex environments still remains a
challenging problem.

This paper addresses the capacity of uplink cellular systems
taking into account MIMO configurations and BS cooperation.
Most results in this paper can be extended to downlink cellular
systems based on the duality principle [14]. We adopt a
realistic channel model that incorporates three multiplicative
factors, i.e., path loss, lognormal fading that models shadow
fading channel process and Rayleigh fading that models fast
fading channel process. Various BS cooperation strategies
are investigated using bounding techniques. For the full BS
cooperation (FBSC) strategy, we derive upper and lower
capacity bounds. In particular, the lower bound is based on
a simple and realizable maximum eigenmode beamforming
(MEB) scheme. These two bounds converge when the number
of simultaneous transmission users in each cell is sufficiently
large, which indicates that the MEB scheme is asymptotically
optimal.

We also consider a more practical partial signal utilization
(PSU) strategy. With PSU, the signals of each user are
processed at a finite number (denoted by 𝐵 below) of BSs. We
again use MEB to derive a lower bound of the system capacity.
(The asymptotic FBSC capacity serves as an upper bound
here.) We show that, when 𝐵 is large and the cooperative BSs
for every user are independently and identically selected in an
adaptive way in each channel realization, PSU can have similar
performance as FBSC. However, when BSs are selected based
on fixed cluster patterns, performance degradation can be sig-
nificant. Note that a cellular network involving BS cooperation
can be regarded as a distributed antenna system (DAS) [15].
The latter has multiple antennas distributed in a cell, with each
antenna (or a group of co-located antennas) equivalent to a BS
in the former. Therefore, the results in this paper can also be
applied to DASs.

The remainder of this paper is organized as follows. The
cellular system model is introduced in Section II. The FBSC
and PSU strategies are discussed in detail in Sections III and
IV, respectively. Finally, we conclude our paper in Section V.

Notations: Boldface lower-case symbols represent vectors.
Capital boldface characters denote matrices. The operators
(⋅)𝑇 , (⋅)∗ and ∥ ⋅∥2 denote transpose, conjugate-transpose and
2-norm of a matrix or vector, respectively. The operators E(⋅)
and D(⋅) denote the expectation and variance, respectively.

II. SYSTEM MODEL

Consider the uplink of an MIMO cellular system with 𝑁𝑐

hexagonal cells. The BS at each cell center is equipped with 𝑀
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antennas and each user is equipped with 𝑁 antennas. Denote
by 𝐾 the density of active users per cell, i.e., on average
there are 𝐾 users simultaneously transmitting in each cell at
any time. Note that the actual user density supported by the
system can be higher than 𝐾 , e.g., by using a TDMA scheme.

Denote by 𝒙𝑘 the transmitted length-𝑁 signal vector of
active user 𝑘 (𝑘 = 1, 2, ⋅ ⋅ ⋅ , 𝑁𝑐𝐾) at any time. The received
signal at all BSs can be modeled as

𝒚 =

𝑁𝑐𝐾∑
𝑘=1

𝑯𝑘𝒙𝑘 + 𝒏 (1)

where 𝒏 is a length-𝑁𝑐𝑀 vector containing independent and
identically distributed (i.i.d.) complex additive white Gaussian
noise (AWGN) samples with mean zero and variance 𝑁0, and
𝑯𝑘 = [𝑯𝑇

𝑘,1,𝑯
𝑇
𝑘,2, ⋅ ⋅ ⋅ ,𝑯𝑇

𝑘,𝑁𝑐
]𝑇 is the global channel matrix

of user 𝑘, in which 𝑯𝑘,𝑛(𝑛 = 1, 2, ⋅ ⋅ ⋅ , 𝑁𝑐) represents the
𝑀 ×𝑁 channel matrix from user 𝑘 to the BS in cell 𝑛. Some
detailed assumptions about {𝑯𝑘} are listed below.

1. All users experience quasi-static flat fading channels and
perfect channel state information (CSI) is assumed at both
the transmitter and receiver sides;

2. The number of cells 𝑁𝑐 is assumed to be sufficiently
large (i.e., 𝑁𝑐 → ∞) such that the edge effect can be
ignored. The edge-length of every cell is normalized to
1;

3. User locations are independent and uniformly distributed
(i.u.d.) over the whole cellular area;

4. Every entry of {𝑯𝑘} contains three multiplicative fac-
tors, i.e., path loss following a power loss exponent 𝛼,
normalized lognormal fading with standard deviation 𝜎𝑠
and Rayleigh fading;

5. The Rayleigh fading factors are i.i.d. for all antenna links.
The lognormal fading factors are the same for all antenna
links from the same user to the same cell and i.i.d. for the
antenna links from different users or to different cells.

From the above assumptions, all {𝑯𝑘} are i.i.d.. For sim-
plicity, we assume that each user has the same fixed rate
constraint of 𝑅/𝐾 in each channel realization, where 𝑅 is the
system sum rate per cell averaged over time. This assumption
is applicable to delay-sensitive services such as voice and
real-time video. In this paper, we are interested in verifying
whether a transmission rate 𝑅 can be supported by the system
and, if the rate can be supported, finding the corresponding
long-term average transmission power.

III. FULL BASE STATION COOPERATION

We first study the full BS cooperation (FBSC) strategy by
assuming that all BSs in the cellular system are connected
to a virtual central processer through error-free links with
unlimited link-capacity and no latency. This is an unpractical
assumption and hence the FBSC strategy studied here only
serves as a reference for the partial BS cooperation strategies
to be discussed in the next section. (The work on cellular
capacity with finite backhaul can be found in [16][17].)

With FBSC, the system in (1) can be viewed as an overall
MIMO multiple access one with 𝑁 transmit antennas at each
user and 𝑁𝑐𝑀 receive antennas equally distributed at 𝑁𝑐

BSs. For such a system with rate constraints, minimizing the

aggregated transmitted power of all users is an appropriate
target due to the battery life concern at mobile units. This
requires joint optimization of all users’ transmit covariance
matrices and the decoding order of successive interference
cancellation (SIC) at all BSs. Some algorithms are available
for this purpose [18][19], but the related computational costs
increase rapidly with the number of concurrently transmitting
users. For the system in (1), the total number of concurrent
users 𝑁𝑐𝐾 tends to infinity as 𝑁𝑐 → ∞ and the related
optimization complexity is excessively high. In the following,
we will take an alternative approach based on bounding
techniques.

A. Maximum Eigenmode Beamforming (MEB)

We first consider a sub-optimal maximum eigenmode beam-
forming (MEB) scheme [20] to provide an upper bound for the
optimal power efficiency of the system (1). The basic MEB
principle is outlined below.

∙ Each user only transmits in its maximum eigenmode
direction;

∙ SIC is applied at the receiver. The signal of the user with
the best channel condition is decoded first;

∙ A simple correlator receiver is used to collect the received
signals of each user from all BS antennas;

∙ The transmitted power levels of all users are determined
via the above transmitting/receving operations.

More specifically, for each channel realization, let the
singular value decomposition (SVD) of 𝑯𝑘 be

𝑯𝑘 = 𝑼𝑘𝑫𝑘𝑽
∗
𝑘 (2)

where 𝑼𝑘 and 𝑽𝑘 are unitary matrices. 𝑫𝑘 an 𝑁𝑐𝑀 × 𝑁
diagonal matrix containing all singular values of 𝑯𝑘. Denote
by 𝑑𝑘,max the maximum singular value of 𝑯𝑘. Let 𝒖𝑘,max

and 𝒗𝑘,max be the corresponding singular vectors in 𝑼𝑘 and
𝑽𝑘, respectively. With MEB, each user only transmits in the
direction of 𝒗𝑘,max, i.e., 𝒙𝑘 = 𝒗𝑘,max

√
𝑝𝑘𝑥𝑘 where 𝑝𝑘 is the

transmitted power of user 𝑘 and 𝑥𝑘 the coded signal with unit
power. Then (1) can be rewritten as

𝒚 =

𝑁𝑐𝐾∑
𝑘=1

𝑼𝑘𝑫𝑘𝑽
∗
𝑘 𝒗𝑘,max

√
𝑝𝑘𝑥𝑘 + 𝒏

=

𝑁𝑐𝐾∑
𝑘=1

𝑑𝑘,max
√
𝑝𝑘𝒖𝑘,max𝑥𝑘 + 𝒏. (3)

Without loss of generality, we assume 𝑑1,max ≤ 𝑑2,max ≤
⋅ ⋅ ⋅ ≤ 𝑑𝑁𝑐𝐾,max and apply SIC at all BSs with descending
order on 𝑘. When decoding the signal for user 𝑘, we simply
use 𝒖𝑘,max to correlate the received signal. The corresponding
correlation output is written as

𝒖∗
𝑘,max𝒚 =

𝑘∑
𝑖=1

𝑑𝑖,max
√
𝑝𝑖𝒖

∗
𝑘,max𝒖𝑖,max𝑥𝑖 + 𝒖∗

𝑘,max𝒏

= 𝑑𝑘,max
√
𝑝𝑘𝑥𝑘 +

𝑘−1∑
𝑖=1

𝑑𝑖,max
√
𝑝𝑖𝒖

∗
𝑘,max𝒖𝑖,max𝑥𝑖

+𝒖∗
𝑘,max𝒏. (4)

Note that in (4), we assume that the signals from users {𝑖, 𝑖 >
𝑘} have been successfully decoded and removed by SIC. From
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(4), we can calculate the signal-to-noise ratio (SNR) for user
𝑘 (denoted by 𝑆𝑁𝑅𝑘) as

𝑆𝑁𝑅𝑘 =
𝑑2𝑘,max𝑝𝑘∑𝑘−1

𝑖=1 𝑑2𝑖,max𝑝𝑖∣𝒖∗
𝑘,max𝒖𝑖,max∣2 + 𝑁0

=
𝑑2𝑘,max𝑝𝑘∑𝑘−1

𝑖=1 𝑑2𝑖,max𝑝𝑖𝜙𝑘,𝑖 + 𝑁0

(5)

where 𝜙𝑘,𝑖 = ∣𝒖∗
𝑘,max𝒖𝑖,max∣2.

Assume rate-𝑅/𝐾 ideal coding (e.g., the random Gaussian
coding introduced by Shannon) for each user. From the
Shannon capacity formula 𝑅/𝐾 = log2(1 + 𝑆𝑁𝑅𝑘), ∀𝑘, we
can rewrite (5) as

𝑝𝑘 =
2𝑅/𝐾 − 1

𝑑2𝑘,max

⋅
(

𝑘−1∑
𝑖=1

𝑑2𝑖,max𝑝𝑖𝜙𝑘,𝑖 +𝑁0

)
. (6)

We now proceed to derive the average minimum transmitted
sum power (MTSP) per cell of MEB in FBSC cellular systems.
To avoid an extremely large transmitted power level due to
deep fading, we introduce an outage for each user, i.e., a
user does not transmit if its channel gain is below a given
threshold 𝐺0. For convenience, we define an indicator function
𝐼(𝑘, 𝑖) for any two users 𝑘 and 𝑖 in each channel realization
as follows1.

𝐼(𝑘, 𝑖) =

{
0, if 𝑑2𝑖,max < 𝐺0 or 𝑑2𝑖,max ≤ 𝑑2𝑘,max;

1, if 𝐺0 ≤ 𝑑2𝑖,max < 𝑑2𝑘,max.
(7)

Taking outage into consideration, we can rewrite (6) as

𝑝𝑘 =
2𝑅/𝐾 − 1

𝑑2𝑘,max

⋅
(

𝑁𝑐𝐾∑
𝑖=1

𝑑2𝑖,max𝑝𝑖𝜙𝑘,𝑖𝐼(𝑘, 𝑖) +𝑁0

)
. (8)

The proof of the lemma below is given in Appendix I.
Lemma 1:

E(𝜙𝑘,𝑖∣𝑑𝑘,max, 𝑑𝑖,max) =
1

𝑁𝑐𝑀
, ∀𝑘 ∕= 𝑖. (9)

Denote by 𝐹 (⋅) and 𝑓(⋅), respectively, the cumulative dis-
tribution function (CDF) and the probability density function
(PDF)2 of {𝑑2𝑘,max} (both of which can be obtained by the
Monte Carlo method). The proof of Theorem 1 below is given
in Appendix II.

Theorem 1: The average MTSP per cell of the MEB
scheme (denoted by 𝑃𝑀𝐸𝐵(𝑅,𝐾)) in an FBSC cellular
system is given by

𝑃𝑀𝐸𝐵(𝑅,𝐾)

=𝑁0

∫ ∞

𝐺0

𝐾(2
𝑅
𝐾 − 1)𝑒𝐾(2𝑅/𝐾−1)(𝐹 (𝑔)−𝜀)/𝑀

𝑔
𝑓(𝑔)𝑑𝑔 (10)

where 𝜀 = 𝐹 (𝐺0) is the outage probability of each user.

Since MEB is realizable, (10) serves as an upper bound for
the average MTSP of the FBSC cellular system in (1) with

1Note that when 𝑑2𝑘,max = 𝑑2𝑖,max,∀𝑘 ∕= 𝑖, we have 𝐼(𝑘, 𝑖) = 0 from
(7), which makes (8) inconsistent with (6). However, this will not affect the
derivation below as such an event occurs with zero probability if {𝑑2𝑘,max}
are continuously distributed.

2Since all {𝑯𝑘} are i.i.d., so are {𝑑2𝑘,max}

the optimal scheme discussed in [18][19]. Hence we have the
following.

Corollary 1: The average MTSP per cell of the optimal
scheme (denoted by 𝑃𝑂𝑝𝑡(𝑅,𝐾)) in an FBSC cellular system
is upper-bounded by that of MEB, i.e.,

𝑃𝑂𝑝𝑡(𝑅,𝐾) ≤ 𝑃𝑀𝐸𝐵(𝑅,𝐾). (11)

Later we will see this upper bound is tight for a large 𝐾 .

B. Asymptotic Performance of FBSC

The following lemma provides a lower bound for
𝑃𝑂𝑝𝑡(𝑅,𝐾). Its proof is given in Appendix III.

Lemma 2: The average MTSP per cell of the optimal
scheme in an FBSC cellular system is lower-bounded by

𝑃𝑂𝑝𝑡(𝑅,𝐾) ≥ 𝑁0

∫ ∞

𝐺0

𝑅ln2 ⋅ 2𝑅(𝐹 (𝑔)−𝜀)/𝑀

𝑔
𝑓(𝑔)𝑑𝑔

△
= 𝑃𝐿𝐵(𝑅). (12)

Returning to Theorem 1, when 𝐾 → ∞, we can rewrite
(10) as

𝑃𝑀𝐸𝐵(𝑅,∞)

= lim
𝐾→∞

𝑁0

∫ ∞

𝐺0

𝐾(2
𝑅
𝐾 − 1)𝑒𝐾(2𝑅/𝐾−1)(𝐹 (𝑔)−𝜀)/𝑀

𝑔
𝑓(𝑔)𝑑𝑔

= 𝑁0

∫ ∞

𝐺0

𝑅ln2 ⋅ 2𝑅(𝐹 (𝑔)−𝜀)/𝑀

𝑔
𝑓(𝑔)𝑑𝑔

= 𝑃𝐿𝐵(𝑅,𝐾). (13)

Note that we exchanged the order of limit and integration
in (13). This exchange is valid since the term inside the
integration in (10) is continuous and uniformly convergent
when 𝑓(⋅) is continuous. Equation (13) indicates that the
upper/lower bounds (11) and (12) converge when 𝐾 → ∞.
Hence we have the following.

Theorem 2: The asymptotic average MTSP per cell of the
optimal scheme in an FBSC cellular system with 𝐾 → ∞ is
given by

𝑃𝑂𝑝𝑡(𝑅,∞) = 𝑁0

∫ ∞

𝐺0

𝑅ln2 ⋅ 2𝑅(𝐹 (𝑔)−𝜀)/𝑀

𝑔
𝑓(𝑔)𝑑𝑔, (14)

which is asymptotically achievable by the MEB scheme.

Intuitively, the asymptotic optimality of MEB in FBSC
cellular systems can be explained as follows. With MEB,
although every user only transmits in one direction, the signals
of all users arrive at the BSs in all possible directions and,
when 𝐾 is large, statistically span the whole received signal
space. Hence MEB can approximately achieve all the available
degrees of freedom (DOF) and is therefore asymptotically
optimal. The corollary below can be obtained from Theorem
2 directly. The proof is omitted here for brevity.

Corollary 2: Given the average sum power 𝑃 per cell and
equal rate allocation among all users, the asymptotic capacity



WANG et al.: ON THE CAPACITY OF MIMO CELLULAR SYSTEMS WITH BASE STATION COOPERATION 3723

0 1 2 3 4 5 6 7 8 9 10

-10

0

10

20

30

40

50

60

70

80

R (bits/symbol/cell)

A
ve

ra
ge

 M
T

SP
 p

er
 c

el
l f

or
 M

E
B

 (d
B

) K = 1

K = 2

K = 4

K = 8

K = 16

K = 32

K

Fig. 1. The average MTSP of MEB in an FBSC cellular system with 𝑀 =
𝑁 = 1 and different simultaneous user densities 𝐾 .

of an FBSC cellular system with 𝐾 → ∞ is the solution of
𝐶 (in terms of bits/symbol/cell) in the following equation.

𝑃 = 𝑁0

∫ ∞

𝐺0

𝐶ln2 ⋅ 2𝐶(𝐹 (𝑔)−𝜀)/𝑀

𝑔
𝑓(𝑔)𝑑𝑔. (15)

C. Numerical Examples

We now present some examples based on Theorems 1, 2
and Corollary 2. The noise power 𝑁0 is normalized to 1. The
path loss exponent and the standard deviation of lognormal
fading are set at 𝛼 = 4 and 𝜎𝑠 = 8, respectively. The
outage probability for each user is 𝜀 = 0.01. Since it is
impossible to simulate a cellular system with infinite size,
both 𝐹 (⋅) and 𝑓(⋅) are obtained by generating users only in
a central cell and considering their channel matrices to the
BSs within the first 20 cycles around (i.e., the nearest 187
cells). Figure 1 plots the upper and lower power bounds, i.e.,
𝑃𝑀𝐸𝐵(𝑅,𝐾) and 𝑃𝐿𝐵(𝑅), for an FBSC cellular system with
𝑀 = 𝑁 = 1. We can see from Fig. 1 that, for a fixed sum rate
𝑅 per cell, significant power savings can be achieved when
𝐾 increases, indicating that allowing more simultaneous users
is advantageous. When 𝐾 = 16, these two bounds are very
close to each other and they provide a reasonably accurate
estimation for 𝑃𝑂𝑝𝑡(𝑅,𝐾).

Figure 2 compares the asymptotic capacities of FBSC
cellular systems with different 𝑀 and 𝑁 when 𝐾 → ∞.
We fix 𝑀 = 1 and 𝑁 = 1 in Figs. 2(a) and 2(b), respectively.
From these figures, we can see that doubling 𝑁 achieves only
about 3dB of power gain, regardless of the value of 𝐶. In
contrast, increasing 𝑀 can increase the available DOF of
the system and significant power savings can be achieved,
especially when 𝐶 is large. This observation is in line with
the discussion in [21] that the performance of a multi-antenna
system is dominated by the minimum of transmit and receive
antenna numbers. It is also interesting to see from Fig. 2(b)
that the slope of 𝑃𝑂𝑝𝑡(𝑅,∞) is very small when both 𝐶
and 𝑀 are large, indicating that the cellular capacity can be
significantly enhanced using minimal additional transmission
power.
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Fig. 2. The asymptotic capacities of FBSC cellular systems with different 𝑀
and 𝑁 when the density of simultaneous users is sufficiently high (𝐾 → ∞).

IV. PARTIAL SIGNAL UTILIZATION

A. System Model

The discussion in Section III is based on full utilization of
each user’s signals at all BSs, which is unrealistic in practice.
We now consider a more practical partial signal utilization
(PSU) strategy. Specifically, for each user, we only process its
signals received at a limited number (denoted by 𝐵 below) of
BSs, and those received at other BSs are treated as additive
noise. We have seen from Fig. 2 that the capacity of an FBSC
cellular system increases indefinitely with the average MTSP
(i.e., the system is power limited). In the following, we will see
that the cellular capacity with PSU is upper-bounded, which
is caused by interfering signals that cannot be suppressed by
SIC (i.e., the system is interference limited).

For each channel realization, we write the channel matrix
𝑯𝑘 for each user 𝑘 as the sum of two parts, i.e.,

𝑯𝑘 = 𝑯𝑢
𝑘 + 𝑯𝑢

𝑘 (16)

where 𝑯𝑢
𝑘 corresponds to the 𝐵 BSs at which the signals of

user 𝑘 are processed. 𝑯𝑢
𝑘 then corresponds to the rest unused

BSs. For example, if the signal of user 𝑘 is only processed at
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the BS in cell 1, we have

𝑯𝑢
𝑘 = [𝑯𝑇

𝑘,1,0
𝑇 , ⋅ ⋅ ⋅ ,0𝑇 ]𝑇

and

𝑯𝑢
𝑘 = [0𝑇 ,𝑯𝑇

𝑘,2, ⋅ ⋅ ⋅ ,𝑯𝑇
𝐾,𝑁𝑐

]𝑇

where 0 represents an 𝑀×𝑁 all-zero matrix. Such an extreme
case of PSU with 𝐵 = 1 is referred to as non-BS cooperation
(NBSC).

In this section, we will derive lower bounds for the capacity
achieved by PSU using MEB. The optimal FBSC capacity
can be used as an upper bound here. The following two PSU
strategies will be studied.

Adaptive PSU (APSU): In each channel realization, the
signals of each user are collected, decoded and cancelled only
at 𝐵 adaptively selected BSs. The BS selection criterion is
independent and identical for all users and can be based on
either the user location or the channel condition. For example,
we can select the 𝐵 BSs with the nearest distances to user 𝑘,
or those with the highest channel gains {∥𝑯𝑘,𝑛∥22} among all
BSs {𝑛, 𝑛 = 1, 2, ⋅ ⋅ ⋅ , 𝑁𝑐}.

Fixed PSU (FPSU)3: All cells in the system are grouped
into fixed and non-overlapped clusters, each containing 𝐵
cells. For each channel realization, we find a cluster for each
user 𝑘 that either contains this user geographically or has the
best channel condition to this user among all clusters. The
signals of user 𝑘 are then processed cooperatively only by the
BSs in this cluster. Those signals received at the BSs in other
clusters are treated as interference and never canceled.

The term “cluster” in FPSU is the same as that used for
frequency reuse. Figure 3 shows two clustering examples with
𝐵 = 3 and 7. Note that FPSU only involves local cooperation
among the BSs in each cluster. In contrast, APSU may need
collecting the signals of each user from any 𝐵 BSs and re-
quires global cooperation among all BSs in general. However,
later we will see that the APSU performance approaches to
that of FBSC faster than FPSU when 𝐵 increases. The global
BS cooperation involved in APSU can be implemented in
a distributed way [23]-[25] (e.g., using the message passing
technique in [23]).

B. SNR Derivation for PSU

The discussion in this subsection applies to both APSU and
FPSU. Let the SVD of 𝑯𝑢

𝑘 be

𝑯𝑢
𝑘 = 𝑼𝑢

𝑘𝑫
𝑢
𝑘 (𝑽

𝑢
𝑘 )∗. (17)

Denote by 𝑑𝑢𝑘,max, 𝒖
𝑢
𝑘,max and 𝒗𝑢𝑘,max the maximum singular

value of 𝑯𝑢
𝑘 and the corresponding singular vectors, respec-

tively. With MEB, we have 𝒙𝑘 =
√
𝑝𝑘𝒗

𝑢
𝑘,max𝑥𝑘 for each user

3A similar clustered joint processing strategy is discussed in [22] based on
a linear cellular model.

      (a) B = 3                     (b) B = 7 

Fig. 3. Illustrations of clusters in FPSU with 𝐵 = 3 and 7. Note that in
each cluster with 𝐵 = 7, except for the central cell, the other 6 cells are all
outermost cells (see Section IV-E for details).

𝑘 and (1) can be rewritten as

𝒚 =

𝑁𝑐𝐾∑
𝑘=1

𝑼𝑢
𝑘𝑫

𝑢
𝑘 (𝑽

𝑢
𝑘 )∗

√
𝑝𝑘𝒗

𝑢
𝑘,max𝑥𝑘

+

𝑁𝑐𝐾∑
𝑘=1

𝑯𝑢
𝑘

√
𝑝𝑘𝒗

𝑢
𝑘,max𝑥𝑘 + 𝒏

=

𝑁𝑐𝐾∑
𝑘=1

𝑑𝑢𝑘,max

√
𝑝𝑘𝒖

𝑢
𝑘,max𝑥𝑘 + 𝝃𝑢 + 𝒏 (18a)

where

𝝃𝑢 =

𝑁𝑐𝐾∑
𝑘=1

𝑯𝑢
𝑘

√
𝑝𝑘𝒗

𝑢
𝑘,max𝑥𝑘 (18b)

represents the interference components that will not be sup-
pressed by SIC.

Similar to (4), we assume 𝑑𝑢1,max ≤ 𝑑𝑢2,max ≤ ⋅ ⋅ ⋅ ≤
𝑑𝑢𝑁𝑐𝐾,max and apply SIC as well as correlators {𝒖𝑢

𝑘,max} at
the receiver with descending order on 𝑘. The signal at user
𝑘’s correlator output is now written as

(𝒖𝑢
𝑘,max)

∗𝒚

= (𝒖𝑢
𝑘,max)

∗
(

𝑘∑
𝑖=1

𝑑𝑢𝑖,max

√
𝑝𝑖𝒖

𝑢
𝑖,max𝑥𝑖 + 𝝃𝑢 + 𝒏

)

= 𝑑𝑢𝑘,max

√
𝑝𝑘𝑥𝑘 +

𝑘−1∑
𝑖=1

𝑑𝑢𝑖,max

√
𝑝𝑖(𝒖

𝑢
𝑘,max)

∗𝒖𝑢
𝑖,max𝑥𝑖

+

𝑁𝑐𝐾∑
𝑖=1

√
𝑝𝑖(𝒖

𝑢
𝑘,max)

∗𝑯𝑢
𝑖 𝒗

𝑢
𝑖,max𝑥𝑖 + (𝒖𝑢

𝑘,max)
∗𝒏.

(19)

The four terms in (19) are, respectively, the signal from
user 𝑘 intending to be decoded currently, the signals that
interfere with user 𝑘 but will be decoded and cancelled via
SIC later, the interference signals that are not suppressed by
SIC, and additive noise. From (19), the SNR value for user 𝑘
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is calculated as

𝑆𝑁𝑅𝑘 =
(𝑑𝑢𝑘,max)

2𝑝𝑘
𝑘−1∑
𝑖=1

(𝑑𝑢𝑖,max)
2𝑝𝑖𝜙𝑢𝑘,𝑖 +

𝑁𝑐𝐾∑
𝑖=1

(𝑑𝑢𝑖,max)
2𝑝𝑖𝜙𝑢𝑘,𝑖 +𝑁0

=
(𝑑𝑢𝑘,max)

2𝑝𝑘
𝑘−1∑
𝑖=1

(𝑑𝑢𝑖,max)
2𝑝𝑖𝜙𝑢𝑘,𝑖 + 𝐼𝑘 +𝑁0

(20a)

where
𝜙𝑢𝑘,𝑖 = ∣(𝒖𝑢

𝑘,max)
∗𝒖𝑢

𝑖,max∣2, (20b)

𝑑𝑢𝑖,max = ∥𝑯𝑢
𝑖 𝒗

𝑢
𝑖,max∥2, (20c)

𝜙𝑢𝑘,𝑖 = ∣(𝒖𝑢
𝑘,max)

∗𝑯𝑢
𝑖 𝒗

𝑢
𝑖,max∣2/(𝑑𝑢𝑖,max)

2, (20d)

and

𝐼𝑘 = E(∣(𝒖𝑢
𝑘,max)

∗𝝃∣2) =

𝑁𝑐𝐾∑
𝑖=1

(𝑑𝑢𝑖,max)
2𝑝𝑖𝜙𝑢𝑘,𝑖. (20e)

C. PSU with Finite 𝐾

So far, we are unable to obtain a closed-form characteriza-
tion for the PSU performance with a finite 𝐾 . A brute-force
numerical evaluation is also unrealistic due to the excessive
computational cost involved when 𝑁𝑐 tends to infinity. In the
following, we use an example to roughly illustrate the PSU
performance with 𝐵 = 1 and different finite values of 𝐾 .
We assume that the channel conditions of users in different
cells are symmetric to each other in each channel realization,
i.e., the users in one cell experience exactly the same channel
conditions to the BSs around as those experienced by the users
in any other cells. Based on this assumption, all cells have
exactly the same power allocation in each channel realization
and the complexity of calculating {𝑝𝑘} is greatly reduced.
Provided that {𝐼𝑘} are known, the power allocation {𝑝𝑘}
can be obtained recursively from (20a) and Shannon capacity
formula in a similar form as given in (8). However, {𝐼𝑘} are
in turn determined by {𝑝𝑘}. We therefore use the following
algorithm to verify the existence of feasible {𝑝𝑘} for a given
user density 𝐾 and sum rate 𝑅 bits/symbol/cell.

Algorithm 1:

Step 1. Ignore the additive noise 𝒏 and normalize the con-
tribution of all users to 𝝃𝑢 by assuming 𝐼𝑘 = 1, ∀𝑘;

Step 2. Calculate {𝑝𝑘} from (20a) and Shannon capacity
formula recursively;

Step 3. Calculate {𝐼𝑘} from (20e);

Step 4. Claim a successful transmission if all {𝐼𝑘} calcu-
lated in step 3 are smaller than 1, and claim a system
transmission failure otherwise.

Figure 4 shows the system transmission failure probabilities
of a cellular system with finite 𝐾 based on Algorithm 1. We
set 𝑀 = 𝑁 = 1 and 𝐵 = 1. Other conditions are the same
as those used in Figs. 1 and 2. With 𝐵 = 1, the system
effectively reduces to an NBSC one, and it further reduces
to a conventional TDMA system when 𝐾 = 1. From Fig.
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Fig. 4. System transmission failure probability versus average sum rate per
cell in NBSC cellular systems with 𝑀 = 𝑁 = 1. The values of simultaneous
user density 𝐾 are marked on the curves.

4 we can see that, though the single-user rate is decreased,
allowing more users to transmit simultaneously can greatly
increase the system throughput per cell. For example, when
the system transmission failure probability is 10−3, the system
throughput achieved by 𝐾 = 32 is about 1.2 bits/symbol/cell,
which is about three times of that achieved by 𝐾 = 1
(i.e., 0.45 bit/symbol/cell). The dashed line in Fig. 4 is for
the limiting case of 𝐾 → ∞, which will be discussed in
detail below. Again, the curves for finite 𝐾 in Fig. 4 are
only rough illustrations due to the symmetric assumption
above. Nevertheless, we can still see the trend of performance
improvement when 𝐾 increases, indicating that multi-user
concurrent transmission is advantageous.

D. Asymptotic Performance of APSU

From definition, the BS antenna selection criterion for
APSU is independent and identical for all users. Recalling
the i.u.d. assumption for all users in the system, we can
conclude that all {𝑯𝑢

𝑘 } are i.i.d. and all entries of each 𝑯𝑢
𝑘

are identically distributed, so are {𝑯𝑢
𝑘 } and their entries. Then

we have the following.

Lemma 3:

E(𝜙𝑢𝑘,𝑖∣𝑑𝑢𝑘,max, 𝑑
𝑢
𝑖,max) = E(𝜙𝑢𝑘,𝑖∣𝑑𝑢𝑘,max, 𝑑

𝑢
𝑖,max)

=
1

𝑁𝑐𝑀
, ∀𝑘 ∕= 𝑖. (21)

The proof of Lemma 3 is similar to that of Lemma 1 and
omitted here for brevity. On the basis of Lemma 3, we can
obtain the corollary below. Its proof is given in Appendix IV.

Corollary 3: When 𝐾 → ∞, all{𝐼𝑘} defined in (20e) take
the same value with probability 1, i.e.,

lim
𝐾→∞

𝐼𝑘 = lim
𝐾→∞

𝑁𝑐𝐾∑
𝑖=1

(𝑑𝑢𝑖,max)
2𝑝𝑖

𝑁𝑐𝑀

△
= 𝐼0, ∀𝑘. (22)

Corollary 3 greatly simplifies the discussion below. In this
case, (20a) has a similar form as (5). Then if the term 𝐼𝑘+𝑁0
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(or equivalently 𝐼0 +𝑁0) in (20a) is known, we can obtain

𝑝𝑘 =
(𝐼0 +𝑁0)(2

𝑅/𝐾 − 1)
(
1 + (2𝑅/𝐾 − 1)/𝑁𝑐𝑀

)𝑘−1

(𝑑𝑢𝑘,max)
2

.

(23)
Note that we have assumed 𝐾 → ∞ and 𝑁𝑐 → ∞. Hence
(23) holds for almost all 𝑘 even without taking average over
{𝜙𝑢𝑘,𝑖}.

We now reuse 𝐹 (⋅) and 𝑓(⋅) to denote the CDF and
PDF of {(𝑑𝑢𝑘,max)

2}. (Note that all {𝑯𝑢
𝑘 } are i.i.d., so are

{(𝑑𝑢𝑘,max)
2}.) From Lemma 3 and following a similar process

as the one for deriving (10) and (13), we obtain the asymptotic
average MTSP per cell of MEB in an APSU cellular system
(denoted by 𝑃𝐴𝑃𝑆𝑈 (𝑅)) as

𝑃𝐴𝑃𝑆𝑈 (𝑅) = (𝐼0 +𝑁0)

∫ ∞

𝐺0

𝑅ln2 ⋅ 2𝑅(𝐹 (𝑔)−𝜀)/𝑀

𝑔
𝑓(𝑔)𝑑𝑔.

(24)

Next we consider the calculation of 𝐼0. Substituting (23)
into (22), we have

𝐼0= lim
𝐾→∞

𝑁𝑐𝐾∑
𝑘=1

(𝑑𝑢𝑘,max)
2

(𝐼0 +𝑁0)(2
𝑅
𝐾 − 1)

(
1 + 2

𝑅
𝐾 −1
𝑁𝑐𝑀

)𝑘−1

(𝑑𝑢𝑘,max)
2𝑁𝑐𝑀

.

(25)

For convenience, we define

Ψ(𝑥)
△
= E

(
(𝑑𝑢𝑘,max)

2∣(𝑑𝑢𝑘,max)
2 = 𝑥

)
, (26)

which is a deterministic function of 𝑑𝑢𝑘,max and can be
obtained via the Monte Carlo method. Similar to the treatment
in (23), when 𝐾 → ∞, we replace the term (𝑑𝑢𝑘,max)

2 in (25)
by its conditional mean given 𝑑𝑢𝑘,max, i.e., Ψ((𝑑𝑢𝑘,max)

2), and
obtain

𝐼0 = lim
𝐾→∞

𝑁𝑐𝐾∑
𝑘=1

Ψ((𝑑𝑢𝑘,max)
2)

⋅
(𝐼0 +𝑁0)(2

𝑅
𝐾 − 1)

(
1 + 2

𝑅
𝐾 −1
𝑁𝑐𝑀

)𝑘−1

(𝑑𝑢𝑘,max)
2𝑁𝑐𝑀

= lim
𝐾→∞

𝐼0 +𝑁0

𝑀

∫ ∞

𝐺0

Ψ(𝑔)𝐾(2
𝑅
𝐾 − 1)

⋅
(
1 + (2

𝑅
𝐾 − 1)(𝐹 (𝑔)− 𝜀)/𝑁𝑐𝑀

)𝑁𝑐𝐾−1

𝑔
𝑓(𝑔)𝑑𝑔

=
𝐼0 +𝑁0

𝑀

∫ ∞

𝐺0

𝑅ln2 ⋅ 2𝑅(𝐹 (𝑔)−𝜀)/𝑀 Ψ(𝑔)

𝑔
𝑓(𝑔)𝑑𝑔 (27)

or equivalently

𝐼0 =
𝑁0

∫∞
𝐺0

𝑅ln2 ⋅ 2𝑅(𝐹 (𝑔)−𝜀)/𝑀 Ψ(𝑔)
𝑔 𝑓(𝑔)𝑑𝑔

𝑀 − ∫∞
𝐺0

𝑅ln2 ⋅ 2𝑅(𝐹 (𝑔)−𝜀)/𝑀 Ψ(𝑔)
𝑔 𝑓(𝑔)𝑑𝑔

. (28)

The right-hand side of (28) can be either positive or negative.
When it is positive, we can substitute (28) into (24) to obtain
the asymptotical average MTSP per cell of MEB, otherwise
the related sum rate 𝑅 cannot be supported by MEB. The
critical event occurs when the denominator of (28) equals zero.
The corresponding value of 𝑅 (denoted by 𝑅max) then serves

as a lower bound for the cellular capacity with APSU. Hence
we have the following.

Theorem 3: The asymptotic capacity of an APSU cellular
system with 𝐾 → ∞ is lower-bounded by the solution of
𝑅max in the following equation.∫ ∞

𝐺0

𝑅maxln2 ⋅ 2𝑅max(𝐹 (𝑔)−𝜀)/𝑀 Ψ(𝑔)

𝑔
𝑓(𝑔)𝑑𝑔 = 𝑀. (29)

For an achievable throughput below 𝑅max, the asymptotic
average MTSP per cell of MEB is given by (24) and (28).

Similar to the asymptotic optimality of MEB in Section III,
we conjecture that the lower bound above achieved by MEB
is asymptotically tight when 𝐾 → ∞. However, we have no
rigorous proof so far.

An interesting conclusion from Theorem 3 is that the
number of BS antennas 𝑀 plays an important role in the
performance of APSU cellular systems with MEB. To see this,
let us re-write (29) as

Ω(𝑅max) = 1 (30a)

where

Ω(𝑅) =

∫ 1

𝜀

𝑅

𝑀
ln2 ⋅ 2 𝑅

𝑀 (𝑡−𝜀)Ψ(𝐹−1(𝑡))

𝐹−1(𝑡)
𝑑𝑡 (30b)

and 𝐹−1(⋅) is the inverse of 𝐹 (⋅). Note that both Ψ(𝐹−1(𝑡))
and 𝐹−1(𝑡) are implicit functions of 𝑀 . We observed nu-
merically that the ratio Ψ(𝐹−1(𝑡))/𝐹−1(𝑡) remains almost
unchanged with 𝑀 . Thus we expect that the ratio between
the solution of 𝑅max in (30a) and 𝑀 remains approximately
a constant for different 𝑀 , indicating that the maximum
achievable throughput of MEB in APSU cellular systems
increases almost linearly with 𝑀 .

E. Asymptotic Performance of FPSU

With FPSU, all cells in the system are grouped into fixed
and non-overlapped clusters. Every cluster can be regarded
as a virtual cell with 𝐵𝑀 distributed BS antennas. However,
these 𝐵𝑀 BS antennas are in general asymmetric to each
other in terms of received signal power as well as interference
power (with the exception of 𝐵 = 3). Hence Lemma 3
does not hold, which makes the problem complicated. Let
us consider Fig. 3(b) with 𝐵 = 7 for example. Compared
with the BSs in six outer-side cells of each cluster, the
central-cell BS statistically receives higher signal power and
lower interference power from intra- and inter-cluster users,
respectively. In what follows, we derive a lower bound for
the capacity achieved by FPSU with MEB. When decoding
the signals of each user in its own cluster, we will deal with
intra- and inter-cluster interference separately as follows. For
the intra-cluster interference, we define

𝜌(𝑔) = max
𝑔>𝑔

E
(
𝜙𝑢𝑘,𝑖∣(𝑑𝑢𝑘,max)

2 = 𝑔, (𝑑𝑢𝑖,max)
2 = 𝑔

)
(31)

where users 𝑘 and 𝑖 are assumed to belong to the same cluster.
The deterministic function 𝜌(⋅) can be obtained via the Monte



WANG et al.: ON THE CAPACITY OF MIMO CELLULAR SYSTEMS WITH BASE STATION COOPERATION 3727

E(𝑝𝑘) =
(2𝑅/𝐾 − 1)

(𝑑𝑢𝑘,max)
2

⎛⎝(𝑐−1)𝐵𝐾+𝑘−1∑
𝑖=(𝑐−1)𝐵𝐾+1

(𝑑𝑢𝑖,max)
2E(𝑝𝑖)E

(
𝜙𝑢𝑘,𝑖∣𝑑𝑢𝑘,max, 𝑑

𝑢
𝑖,max

)
+ 𝐼𝑘 +𝑁0

⎞⎠
≤ (2𝑅/𝐾 − 1)

(𝑑𝑢𝑘,max)
2

⎛⎝(𝑐−1)𝐵𝐾+𝑘−1∑
𝑖=(𝑐−1)𝐵𝐾+1

(𝑑𝑢𝑖,max)
2E(𝑝𝑖)𝜌

(
(𝑑𝑢𝑖,max)

2
)
+ 𝐼𝑘 +𝑁0

⎞⎠
≤ (2𝑅/𝐾 − 1)

(𝑑𝑢𝑘,max)
2

⎛⎝(𝑐−1)𝐵𝐾+𝑘−1∑
𝑖=(𝑐−1)𝐵𝐾+1

(𝑑𝑢𝑖,max)
2E(𝑝𝑖)𝜌

(
(𝑑𝑢𝑖,max)

2
)
+ Σmax +𝑁0

⎞⎠ . (35)

Carlo method. Clearly, we have

E
(
𝜙𝑢𝑘,𝑖∣(𝑑𝑢𝑘,max)

2, (𝑑𝑢𝑖,max)
2
) ≤ 𝜌((𝑑𝑢𝑖,max)

2),

∀𝑑𝑢𝑘,max > 𝑑𝑢𝑖,max. (32)

For the inter-cluster interference, we model 𝝃𝑢 in (18b)
as a random vector with joint Gaussian distribution when
𝐾 → ∞. Note that for each user, the fading coefficients
for all antenna links are complex Gaussian random variables
with independent and uniform phase distribution. Hence the
phases of all entries in 𝝃𝑢 are also i.u.d.. This indicates that
the mean and variance of 𝝃𝑢 are, respectively, a zero vector
and a diagonal matrix when 𝐾 → ∞. Therefore we have

E (𝝃𝑢(𝝃𝑢)∗) = diag(Σ1,Σ2, ⋅ ⋅ ⋅ ,Σ𝑁𝑐𝑀 ) (33)

where diag(⋅) denotes a diagonal matrix and Σ𝑖 the inter-
cluster interference power received at the 𝑖-th BS antenna. In
general, {Σ𝑖} are not identical to each other. When 𝐾 → ∞,
we have (recall (20e))

𝐼𝑘 = E(∣(𝒖𝑢
𝑘,max)

∗𝝃𝑢∣2) ≤ max
𝑖

Σ𝑖
Δ
= Σmax. (34)

Without loss of generality, we assume that the users be-
longing to cluster 𝑐 (here 𝑐 = 1, 2, ⋅ ⋅ ⋅ ) are indexed as
{𝑘, 𝑘 = (𝑐 − 1)𝐵𝐾 + 1, (𝑐 − 1)𝐵𝐾 + 2, ⋅ ⋅ ⋅ , 𝑐𝐵𝐾} with
𝑑𝑢(𝑐−1)𝐵𝐾+1,max ≤ 𝑑𝑢(𝑐−1)𝐵𝐾+2,max ≤ ⋅ ⋅ ⋅ ≤ 𝑑𝑢𝑐𝐵𝐾,max.
When focusing on user 𝑘 in cluster 𝑐, we fix {𝑑𝑢𝑖,max} and take
average over {𝜙𝑢𝑘,𝑖}. Then (20a) can be rewritten as equation
(35) shown at the top of this page, where the first and second
inequalities are based on (32) and (34), respectively.

After a similar procedure as those for (10) and (24), we can
obtain an upper bound from (35) for the asymptotic average
MTSP per cell of the FPSU strategy (denoted by 𝑃𝐹𝑃𝑆𝑈 (𝑅))
as

𝑃𝐹𝑃𝑆𝑈 (𝑅) ≤ (Σmax +𝑁0)

⋅
∫ ∞

𝐺0

𝑅ln2 ⋅ 2𝑅⋅∫ 𝑔
𝐺0

𝜌(𝑔′)𝑓(𝑔′)𝑑𝑔′

𝑔
𝑓(𝑔)𝑑𝑔.

(36)

Note that the value of Σmax depends on the power allocation
{𝑝𝑘} in other clusters. Following a similar procedure as that
for the computation of 𝐼0 in (28), we obtain

Σmax =
𝑁0

∫∞
𝐺0

𝑅ln2 ⋅ 2𝑅⋅∫ 𝑔
𝐺0

𝜌(𝑔′)𝑓(𝑔′)𝑑𝑔′ Ψ′(𝑔)
𝑔 𝑓(𝑔)𝑑𝑔

𝑀 − ∫∞
𝐺0

𝑅ln2 ⋅ 2𝑅⋅∫ 𝑔
𝐺0

𝜌(𝑔′)𝑓(𝑔′)𝑑𝑔′ Ψ′(𝑔)
𝑔 𝑓(𝑔)𝑑𝑔

(37a)

where

Ψ′(𝑥) Δ
= 𝐵⋅E

(∑
𝑐>1

∥𝑯𝑘,(𝑐−1)𝐵+𝑙∗𝒗
𝑢
𝑘,max∥22

∣∣∣(𝑑𝑢𝑘,max)
2 = 𝑥

)
.

(37b)
The deterministic function Ψ′(⋅) in (37b) can be obtained

via the Monte Carlo method and is explained as follows. We
call a cell in one cluster an outermost cell if it is located
the farthest away from the geometrical center of this cluster.
Statistically, a BS antenna in an outermost cell receives the
largest inter-cluster interference power Σmax. Now consider a
user 𝑘 in cluster 1 and let 𝑙∗ be the index of one outermost cell
in this cluster. Then Ψ′(⋅) represents the average total channel
gain from user 𝑘 to the BSs {(𝑐− 1)𝐵+ 𝑙∗} in other clusters
{𝑐, 𝑐 > 1}. When 𝐾 → ∞ and by symmetry, there exists a
mirroring user of user 𝑘 in any cluster 𝑐 > 1 with probability
one (i.e., these users have exactly the same channel condition
to the BSs around as user 𝑘). Hence (37b) also equals to the
average sum channel gain from all these mirroring users to
the BS of cell 𝑙∗ in cluster 1. From the above discussion, we
obtain the theorem below.

Theorem 4: The asymptotic capacity of an FPSU cellular
system with 𝐾 → ∞ is lower-bounded by the solution of
𝑅max in the following equation.∫ ∞

𝐺0

𝑅maxln2 ⋅ 2𝑅max⋅
∫

𝑔
𝐺0

𝜌(𝑔′)𝑓(𝑔′)𝑑𝑔′ Ψ
′(𝑔)
𝑔

𝑓(𝑔)𝑑𝑔 = 𝑀.

(38)
For a throughput below 𝑅max, the asymptotic average MTSP
per cell of MEB is upper-bounded by (36) and (37).

F. Numerical Results

Figure 5 shows the asymptotic average MTSP of some
MEB-based NBSC systems with different 𝑀 and 𝑁 when
𝐾 → ∞. The signal of each user is decoded only in the cell
with the best channel condition to this user. The corresponding
maximum throughputs 𝑅max (computed using Theorem 3) are
also plotted. We fix 𝑁 = 1 and 𝑀 = 1 in Figs. 5(a) and 5(b),
respectively. From Fig. 5(a) we can see that the maximum
achievable throughput 𝑅max can be approximately expressed
as a linear function of 𝑀 , i.e.,

𝑅max ≈ 1.62𝑀bits/symbol/cell. (39)

This is consistent with the observation made from (30). The
key limitation on throughput is the term 2𝑅(𝑡−𝜀)/𝑀 inside the
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(a) 𝑁 = 1

(b) 𝑀 = 1

Fig. 5. The asymptotic minimum transmission power (solid curves) and
maximum achievable throughput 𝑅max (dashed lines) of MEB in various
NBSC cellular systems with different 𝑀 and 𝑁 when 𝐾 → ∞.

function Ω(𝑅) in (30b). This term increases rapidly when
𝑅 increases, which causes severe interference to other cells
and finally imposes a limit on throughput. Also note that the
constant 1.62 is determined by fading and path loss, which
may take different values under different channel assumptions.

As a comparison, it is seen from Fig. 5(b) that the gain
obtained by increasing 𝑁 is, although less impressive than
that of increasing 𝑀 , still very significant. For example, the
throughput gain by increasing 𝑁 from 1 to 2 is about 1
bit/symbol/cell. The gain achieved is decreasing with further
increasing 𝑁 . In summary, increasing 𝑀 is more efficient
to improve cellular performance than increasing 𝑁 . However,
when both 𝑀 and 𝑁 are small, significant performance gain
is still achievable by increasing 𝑁 only.

Figure 6 compares the asymptotic performance of cel-
lular systems with various BS cooperation strategies when
𝐾 → ∞. The BS (or cluster) selection for each user 𝑘 in
APSU (or FPSU) is based on channel gains {∥𝑯𝑘,𝑛∥22, 𝑛 =
1, 2, ⋅ ⋅ ⋅ , 𝑁𝑐}. For FPSU with 𝐵 = 3, all BS antennas in each
cluster are symmetrically located in terms of both wanted and

Fig. 6. Performance comparison among NBSC, APSU, FPSU and FBSC
in cellular systems with 𝑀 = 𝑁 = 1. The values of 𝐵 are marked on
the curves. The corresponding capacity lower bounds are also plotted for
reference.

TABLE I
VALUES OF E

(
(𝑑𝑢𝑘,max)

2/(𝑑𝑢𝑘,max)
2
)

IN DIFFERENT PSU STRATEGIES.

E
(
(𝑑𝑢𝑘,max)

2/(𝑑𝑢𝑘,max)
2
)

𝐵 = 3 𝐵 = 7

APSU 0.1561 0.0525

FPSU 0.4641 0.3106

unwanted power received, so we can still use Theorem 3 to
evaluate the system performance. The curve for FPSU with
𝐵 = 7 is obtained based on Theorem 4. We have used the
algorithm 1 in Section IV-C with 𝐾 = 104 and obtained a
result very close to the curve of FPSU with 𝐵 = 7 in Fig.
6, indicating that the lower bound provided by Theorem 4
is tight in this case. We can see from Fig. 6 that FPSU is
considerably inferior to APSU for the same 𝐵 in terms of
both achievable throughput and minimum transmission power.
An intuitive explanation for this is as follows. The PSU-
based cellular system performance is mainly determined by
the ratio between the received signal and interference power
when the noise power is neglectable. With PSU, the received
signals of each user are either processed for signal detection
or treated as additive noise. The system performance is then
dominated by the average ratio between the channel gains
of unprocessed and processed signals from each user, i.e.,
E
(
(𝑑𝑢𝑘,max)

2/(𝑑𝑢𝑘,max)
2
)
. Table I lists the values of this ratio

in different PSU strategies. It is seen that, given the same 𝐵,
the ratio for FPSU is significantly larger than that for APSU,
indicating that the former suffers more from interference than
the latter. This is caused by the fact that all cells are grouped
into fixed clusters for FPSU and we cannot select BSs as
flexible as that for APSU.

A key observation from Fig. 6 is that BS cooperation can
provide significant performance gain over the conventional
NBSC. In particular, the MEB scheme with APSU and a large
𝐵 can achieve performance similar to that of the optimal
FBSC strategy. Note that with APSU, global cooperation
among all BSs is required in general. However, as demon-
strated in [23], it can be implemented in a distributed way.
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V. CONCLUSIONS

In this paper, we have considered a realistic MIMO cellular
channel model and derived upper and lower bounds with
closed-form expressions for the minimum transmission power
and cellular capacity of various BS cooperation strategies. It
is shown that allowing more users to transmit simultaneously,
introducing cooperation among BSs and increasing the number
of antennas (especially at each BS) are efficient ways to
improve the cellular performance. In particular, the APSU
strategy with MEB is a promising approach to the tradeoff
between the performance and implementation complexity. Our
focus in this paper is on the joint interference cancelation via
BS cooperation. Further performance improvement is possible
by adopting other advanced techniques such as relaying and
network coding [26]. The related capacity analysis is an
interesting topic under investigation.

APPENDIX A
PROOF OF LEMMA 1

Since all entries of each 𝑯𝑘 are identically distributed, so
are those of each unit vector 𝒖𝑘,max. Denote by 𝑢𝑘,𝑚 the 𝑚-
th enrty of 𝒖𝑘,max. For each user 𝑘 with channel gain 𝑑2𝑘,max

we have

E(∣𝑢𝑘,𝑖∣2
∣∣𝑑2𝑘,max) =

1

𝑁𝑐𝑀
, ∀𝑖 = 1, 2, ⋅ ⋅ ⋅ , 𝑁𝑐𝑀. (40)

In addition, from the i.i.d. property of all {𝑯𝑘}, all {𝒖𝑘,max}
are i.i.d. as well. By definition, we have

E(𝜙𝑘,𝑖∣𝑑2𝑘,max, 𝑑
2
𝑖,max)

= E

((𝑁𝑐𝑀∑
𝑚=1

𝑢∗
𝑘,𝑚𝑢𝑖,𝑚

)( 𝑁𝑐𝑀∑
𝑚′=1

𝑢∗
𝑘,𝑚′𝑢𝑖,𝑚′

)∗∣∣∣𝑑2𝑘,max, 𝑑
2
𝑖,max

)

=

𝑁𝑐𝑀∑
𝑚=1

E
(
∣𝑢𝑘,𝑚∣2

∣∣∣𝑑2𝑘,max

)
E
(
∣𝑢𝑖,𝑚∣2

∣∣∣𝑑2𝑖,max

)
+
∑

𝑚 ∕=𝑚′
E
(
𝑢∗
𝑘,𝑚𝑢𝑘,𝑚′

∣∣∣𝑑2𝑘,max

)
E
(
𝑢∗
𝑖,𝑚𝑢𝑖,𝑚′

∣∣∣𝑑2𝑖,max

)
. (41)

In (41), the second term is zero since the phases of {𝑢𝑘,𝑚}
are i.u.d. (which follows the i.u.d. property of the phases of
all entries in {𝑯𝑘}). Substituting this and (40) into (41), we
have

E(𝜙𝑘,𝑖∣𝑑2𝑘,max, 𝑑
2
𝑖,max) =

𝑁𝑐𝑀∑
𝑚=1

1

𝑁𝑐𝑀
⋅ 1

𝑁𝑐𝑀
+ 0 =

1

𝑁𝑐𝑀
.

(42)

APPENDIX B
PROOF OF THEOREM 1

Let us focus on a user 𝑘 with channel gain 𝑑2𝑘,max = 𝑔. Our
derivation includes the following steps.

First, we fix {𝑑2𝑖,max, ∀𝑖 ∕= 𝑘} (and {𝐼(𝑘, 𝑖)} as well) and
take averages on both sides of (8) over {𝜙𝑘,𝑖}. From lemma

1, we have

E
{𝜙𝑘,𝑖}

(𝑝𝑘) =
2𝑅/𝐾 − 1

𝑔

⎛⎝𝑁𝑐𝐾∑
𝑖=1

E
{𝜙𝑘,𝑖}

(𝑝𝑖)𝑑
2
𝑖,max𝐼(𝑘, 𝑖)

𝑁𝑐𝑀
+𝑁0

⎞⎠
(43)

or in a non-recursive form

E
{𝜙𝑘,𝑖}

(𝑝𝑘) =
𝑁0(2

𝑅/𝐾 − 1)

𝑔

𝑁𝑐𝐾∏
𝑖=1

(
1 +

(2𝑅/𝐾 − 1)𝐼(𝑘, 𝑖)

𝑁𝑐𝑀

)
.

(44)

Second, we take averages on both sides of (44) over
{𝐼(𝑘, 𝑖)}, i.e., the decoding order. For user 𝑘 with channel gain
𝑔, the probability that user 𝑖′s channel gain is smaller than 𝑔
is simply given by 𝐹 (𝑔). This implies E(𝐼(𝑘, 𝑖)) = 𝐹 (𝑔)− 𝜀
where the term 𝜀 is related to the situation when user 𝑖 is in
outage. Then from (44) we have

E
{𝜙𝑘,𝑖},{𝐼(𝑘,𝑖)}

(𝑝𝑘)

=
𝑁0(2

𝑅/𝐾 − 1)

𝑔

𝑁𝑐𝐾∏
𝑖=1,𝑖∕=𝑘

(
1 +

(2𝑅/𝐾 − 1)(𝐹 (𝑔) − 𝜀)

𝑁𝑐𝑀

)
=

𝑁0(2
𝑅/𝐾 − 1)

𝑔

(
1 +

(2𝑅/𝐾 − 1)(𝐹 (𝑔) − 𝜀)

𝑁𝑐𝑀

)𝑁𝑐𝐾−1

.(45)

Let 𝑁𝑐 → ∞ and define a deterministic function of 𝑔 as

𝑝(𝑔)
Δ
= lim

𝑁𝑐→∞
E

{𝜙𝑘,𝑖},{𝐼(𝑘,𝑖)}
(𝑝𝑘)

=
𝑁0(2

𝑅/𝐾 − 1)𝑒𝐾(2𝑅/𝐾−1)(𝐹 (𝑔)−𝜀)/𝑀

𝑔
. (46)

Clearly, 𝑝(𝑔) is the average transmitted power for a user
experiencing channel gain 𝑔.

Finally, the average of 𝑝(𝑔) with respect to channel gain 𝑔
is calculated as

E(𝑝(𝑔)) =

∫ ∞

𝐺0

𝑝(𝑔)𝑓(𝑔)𝑑𝑔

= 𝑁0

∫ ∞

𝐺0

(2
𝑅
𝐾 − 1)𝑒𝐾(2

𝑅
𝐾 −1)(𝐹 (𝑔)−𝜀)/𝑀

𝑔
𝑓(𝑔)𝑑𝑔.

(47)

From the assumptions for {𝑯𝑘} in Section II, all users have
the same fading distribution 𝑓(⋅). Hence the long-term average
MTSP per cell is simply 𝐾 times of that of a single user, i.e.,

𝑃𝑀𝐸𝐵(𝑅,𝐾) = 𝐾E(𝑝(𝑔))

=𝑁0

∫ ∞

𝐺0

𝐾(2
𝑅
𝐾 − 1)𝑒𝐾(2

𝑅
𝐾 −1)(𝐹 (𝑔)−𝜀)/𝑀

𝑔
𝑓(𝑔)𝑑𝑔. (48)

APPENDIX C
PROOF OF LEMMA 2

We define a new system below based on (1).

𝒚 =

𝑁𝑐𝐾∑
𝑘=1

𝑑𝑘,max𝑰𝑁𝑐𝑀 𝒙̃𝑘 + 𝒏 (49)

where 𝑰𝑁𝑐𝑀 denotes an identity matrix with dimension 𝑁𝑐𝑀 .
Suppose that in each channel realization, {𝒙𝑘} achieve the
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MTSP of the system in (1) that supports the rate constraint
𝑅/𝐾 for each user. Then for the system in (49), we can design
the transmitted signal of user 𝑘 as

𝒙̃𝑘 = 𝑑−1
𝑘,max𝑯𝑘𝒙𝑘. (50)

It is obvious that 𝒙̃𝑘 has no larger power than 𝒙𝑘 because

∥𝒙̃𝑘∥22 = ∥𝑑−1
𝑘,max𝑯𝑘𝒙𝑘∥22 ≤ 𝑑−2

𝑘,max⋅∥𝑯𝑘∥22⋅∥𝒙𝑘∥22 = ∥𝒙𝑘∥22.
(51)

Substituting (50) into (49), we can obtain

𝒚 =

𝑁𝑐𝐾∑
𝑘=1

𝑑𝑘,max𝑰𝑁𝑐𝑀×𝑁𝑐𝑀 ⋅ 𝑑−1
𝑘,max𝑯𝑘𝒙𝑘 + 𝒏

=

𝑁𝑐𝐾∑
𝑘=1

𝑯𝑘𝒙𝑘 + 𝒏 = 𝒚. (52)

This indicates that the same rate constraint 𝑅/𝐾 can be
supported in the system (49) with no larger transmitted sum
power than that required in the system (1). Hence the average
MTSP per cell of the optimal scheme for the system in (49)
(denoted by 𝑃𝐿𝐵(𝑅)) serves as a lower bound for that of the
system in (1). In addition, the system in (49) can be viewed
as a parallel of 𝑁𝑐𝑀 identical single-input single-output sub-
systems, each with 𝑁𝑐𝐾 users and rate constraint 𝑅/𝑁𝑐𝑀𝐾
(the sum rate of each sub-system is then 𝑅/𝑀 ). The optimal
average MTSP for each of such sub-systems is given by (see
[20] for details)

𝑃 (𝑅/𝑀,𝑁𝑐𝐾) = 𝑁0

∫ ∞

𝐺0

𝑁𝑐𝐾
(
2

𝑅
𝑀𝑁𝑐𝐾 − 1

)
𝑔

⋅
(
1 +

(
2

𝑅
𝑀𝑁𝑐𝐾 − 1

)
(𝐹 (𝑔) − 𝜀))

)𝑁𝑐𝐾−1

⋅ 𝑓(𝑔)𝑑𝑔.
(53)

Hence the average MTSP per cell of the system in (49) when
𝑁𝑐 → ∞ is

𝑃𝐿𝐵(𝑅) = lim
𝑁𝑐→∞

𝑁𝑐𝑀

𝑁𝑐
𝑃 (𝑅/𝑀,𝑁𝑐𝐾)

= 𝑁0

∫ ∞

𝐺0

𝑅ln2 ⋅ 2𝑅(𝐹 (𝑔)−𝜀)/𝑀

𝑔
𝑓(𝑔)𝑑𝑔. (54)

APPENDIX D
PROOF OF COROLLARY 3

For each user 𝑘, from Lemma 3 we have

E(𝐼𝑘) =

𝑁𝑐𝐾∑
𝑖=1

(𝑑𝑢𝑖,max)
2𝑝𝑖E(𝜙𝑢𝑘,𝑖) =

𝑁𝑐𝐾∑
𝑖=1

(𝑑𝑢𝑖,max)
2𝑝𝑖

𝑁𝑐𝑀
= 𝐼0.

(55)

On the other hand, the variance of each 𝐼𝑘 can be written as

D(𝐼𝑘) =

𝑁𝑐𝐾∑
𝑖=1

(
(𝑑𝑢𝑖,max)

2𝑝𝑖
)2 ⋅D(𝜙𝑢𝑘,𝑖)

≤ 𝐼20

∑𝑁𝑐𝐾
𝑖=1

(
(𝑑𝑢𝑖,max)

2𝑝𝑖
)2(∑𝑁𝑐𝐾

𝑖=1 (𝑑𝑢𝑖,max)
2𝑝𝑖/𝑁𝑐𝑀

)2
≤ 𝐼20 (𝑁𝑐𝑀)2 ⋅

max
𝑖

(𝑑𝑢𝑖,max)
2𝑝𝑖 ⋅

∑𝑁𝑐𝐾
𝑖=1 (𝑑𝑢𝑖,max)

2𝑝𝑖(∑𝑁𝑐𝐾
𝑖=1 (𝑑𝑢𝑖,max)

2𝑝𝑖

)2
= 𝐼20 (𝑁𝑐𝑀)2 ⋅

max
𝑖

(𝑑𝑢𝑖,max)
2𝑝𝑖∑𝑁𝑐𝐾

𝑖=1 (𝑑𝑢𝑖,max)
2𝑝𝑖

(56)

where the first inequality holds because we always have
D(𝐼𝑘) ≤ 1 by definition.

For any given finite 𝑅, we have 𝑅/𝐾 → 0 when 𝐾 → ∞.
This in turn leads to 𝑝𝑘 → 0 for all 𝑘. Hence we have

lim
𝐾→∞

max
𝑖

(𝑑𝑢𝑖,max)
2𝑝𝑖∑𝑁𝑐𝐾

𝑖=1 (𝑑𝑢𝑖,max)
2𝑝𝑖

= 0 (57)

and (56) can be rewritten as

lim
𝐾→∞

D(𝐼𝑘) ≤ 𝐼20 (𝑁𝑐𝑀)2 ⋅ 0 = 0. (58)

Combining (55) and (58), we can conclude that all {𝐼𝑘}
converge to 𝐼0 with probability 1 when 𝐾 → ∞. Hence (22)
holds, which concludes the proof.
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