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Abstract—This paper is concerned with the advantages of
multi-user concurrent transmission in multiple-input mul-
tiple-output (MIMO) systems with rate constraints. We first study
a maximum eigenmode beamforming (MEB) strategy for fading
multiple access channels (MACs). This strategy allows each user
to transmit only in its maximum eigenmode direction and applies
a suboptimal matched-filter receiver with successive interference
cancellation at the base station (BS). We derive a closed-form
expression for the average minimum transmitted sum power re-
quired by MEB. Based on this, we show that: a) the MEB strategy
is asymptotically optimal when the number of simultaneous users
is sufficiently large; b) multi-user concurrent transmission has a
power advantage, referred to as multi-user gain, over orthogonal
transmission approaches such as time-division multiple-access;
c) the number of antennas at the BS has a far stronger impact
on the system performance than that at each user side. These
properties are verified by simulation. Both numerical analyses
and simulation results show that a major part of multi-user gain
can be achieved in practical environments even with a quite small
number of simultaneous users. We also study the MEB strategy
for MIMO broadcast channels (BCs). The dirty paper coding
(DPC) technique is necessary in this case. It is analytically shown
that most observations made for MIMO MACs are extendable to
MIMO BCs.

Index Terms—Maximum eigenmode beamforming (MEB),
minimum transmitted sum power, multiple-input multiple-output
(MIMO), multi-user gain, successive interference cancellation.

I. INTRODUCTION

T HE multi-user multiple-input multiple-output (MIMO)
transmission technique has been extensively studied

for future wireless communications [1]–[5]. Currently, most
discussions on MIMO systems are on the sum-rate maximiza-
tion problem with individual/sum power constraints [2]–[12],
which is closely relevant to delay-insensitive services such as
email and file transfer for data networks. Several user selection
criteria [6], [7] and multi-user scheduling algorithms [5], [8],
[9] have been proposed to provide fairness among users.
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Power efficiency for wireless systems is a crucial issue that
has attracted increasing attention recently. Power efficiency
is particularly important for delay-sensitive services such as
speech, real-time video and network game. In this case, every
user must transmit a certain amount of information within a
fixed time period and minimizing the transmitted sum power
under certain rate constraints is an appropriate target. This issue
is also closely related to throughput maximization in cellular
systems where less transmission power implies less interfer-
ence to other cells and so potentially higher cellular capacity.
Several algorithms [13], [14] have been proposed to compute
the minimum transmitted sum power (MTSP) of a multi-user
MIMO system with rate constraints. However, they involve
iterative joint optimization of the transmission covariance
matrices and decoding order. They become computationally
expensive even when the number of users, denoted by below,
is only moderately large.

In this paper, we study the sum-power minimization problem
for multi-user systems with rate constraints. Our focus is
on MIMO multiple access channels (MACs). MIMO broad-
cast channels (BCs) are also briefly discussed. We show
that nonorthogonal multi-user concurrent transmission has
a significant power advantage over orthogonal ones such as
time-division multiple-access (TDMA). This power advantage
is referred to as multi-user gain (MUG). It is known that, when
the sum-rate maximization problem in MIMO fading channels
is considered, the optimal strategy involves multi-user simulta-
neous transmission [5]. However, to the best of our knowledge,
there are only limited efforts to quantify the related gain for
the sum-power minimization problem with rate constraints in
practical fading channels (e.g., for channels with path loss,
lognormal fading and Rayleigh fading). This motivates the
work presented in this paper. Using both analytical and numer-
ical results, we show that MUG is very significant in practical
environments.

We also investigate near optimal transmission strategies for
rate constrained multi-user systems. The low-cost eigenmode
beamforming techniques have been studied and shown to be
asymptotically optimal for the sum-rate maximization problem
[5], [9]–[12]. In this paper, we consider the maximum eigen-
mode beamforming (MEB) strategy [15] where each user only
transmits at a fixed rate in its maximum eigenmode direction.
MEB is a simplified case of the dominant eigenmode transmis-
sion (DET) technique [16]–[18]. It does not involve the trans-
mission direction optimization of all users that is generally re-
quired in DET and thus has a complexity much lower than that
of the latter. We show that the MEB strategy is, though simple,
still asymptotically optimal for a large , and its performance is
impressive even for a quite small . The exploration of MUG
in practical environments using MEB and low-density parity-
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check (LDPC) coding is also verified. Simulation results show
that the power advantage predicted by theoretical analysis is in-
deed achievable in practically coded MIMO systems.

We show that, with multi-user concurrent transmission, in-
creasing the number of antennas at the base station has a far
stronger impact on the system performance than at the mobile
units. Hence an unbalanced MIMO configuration with more an-
tennas at the base station than those at each mobile unit is a good
strategy in a multi-user environment. This finding has useful
practical implications as it is easier to equip more antennas at
the base station than at all mobile units.

If all the mobile units in a multi-user MIMO MAC can co-
operate, it results in an equivalent single-user MIMO channel
with more transmit antennas than receive antennas when is
large. It is well known that the performance of such an unbal-
anced single-user MIMO channel is limited by the number of
receive antennas (denoted by ) for which the achievable rate

increases linearly with at fixed average transmission power
[19] (when is large). In this paper, we show that this is also
true even when mobile units cannot cooperate.

II. SYSTEM MODEL

Consider a -user system over a single-cell quasi-static
fading MIMO MAC with antennas at the base station and

antennas at each user side (i.e., an MIMO MAC).
Denote by and the channel matrix and transmitted signal
for user , respectively. The received signal at the base station
is given by

(1)

where is a vector of complex additive white Gaussian noise
(AWGN) samples with mean zero and variance . are
assumed to be independent and identically distributed (i.i.d.)
and perfectly known at both the transmitters and the receiver.

In this paper, we will mainly focus on the sum-power min-
imization problem given rate constraints. The sum-rate maxi-
mization problem given power constraints is briefly discussed in
Section IX. For simplicity, we first assume that the instantaneous
rate constraint of each user is the same at bits/symbol,
where is referred to as the system sum rate. Later we will
relax this assumption to the scenario of unequal rate constraints.

Definition 1: For each channel realization , the uncon-
strained minimum transmitted sum power (MTSP) is the min-
imum theoretical limit of the aggregate transmitted power (of
all users) that supports reliable communication in (1).

Note that the unconstrained MTSP is a function of the
channel condition , not the transmission strategy. For
different transmission strategies, we have different constrained
MTSP, e.g., the MTSP for the maximum eigenmode beam-
forming strategy to be discussed below. We can also define
average MTSP considering the distribution of . In prac-
tice, average MTSP is a more useful measure.

Our focus in this paper is on the average constrained MTSP
for various transmission strategies and the average uncon-
strained MTSP of the channel. The problem for finding the

unconstrained MTSP of a -user MIMO system involves
joint optimization of the transmission covariance matrices and
decoding order for each channel realization. Detailed discus-
sions on this issue can be found in [13] and [14]. The existing
methods are highly complicated. Our objective is to develop
bounds, asymptotic limits and efficient realization techniques
for the MTSP problem.

III. MAXIMUM EIGENMODE BEAMFORMING

In this section, we study a simple, low-cost, and suboptimal
maximum eigenmode beamforming (MEB) strategy [10], [15].
The corresponding MTSP provides an upper bound for the un-
constrained MTSP of the MIMO system in (1). In the next sec-
tion, we will show that the MEB strategy is asymptotically op-
timal for a large .

A. Basic Principles

The basic principle of the MEB strategy is that each mobile
unit transmits only in its maximum eigenmode direction. In this
paper, we adopt the following low-cost transmitting/receiving
operations for MEB.

(i). A simple correlator receiver is used to collect the signals
of each user from all receive antennas;

(ii). Successive interference cancellation (SIC) is applied at
the receiver. The user with the largest channel gain is de-
coded first;

(iii). The transmitted power levels of all users are optimized
based on the above transmitting/receiving operations.

More specifically, for each channel realization we first per-
form singular value decomposition (SVD) on the channel ma-
trix of each user as

(2)

where and are unitary matrices, an diag-
onal matrix consisting of all the singular values of and
the conjugate transpose of matrix . Denote by the max-
imum singular value of . Let and be the cor-
responding left- and right-singular vectors in and , re-
spectively. With the MEB strategy, user transmits only in the
direction of , i.e.

(3)

where is the transmitted power of user and the encoded
signal with unit power. Then (1) becomes

(4)
Without loss of generality, we assume that

(5)

in each channel realization. When decoding at the receiver,
we simply correlate the received signal vector by . The
signal at the correlator output is given by

(6)
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Note that in (6), we assume that the interference from users
has been successfully decoded and removed

by SIC. The signal-to-noise ratio (SNR) for user (denoted by
) in (6) is then calculated as

(7)

where is a random variable within
. Based on (7) and the Shannon capacity formula

, we can compute recur-
sively in each channel realization as

(8)

By averaging the sum power calculated using (8) with re-
spect to the fading distribution, we can obtain the average MTSP
required by MEB.

The complexity of MEB is much lower than that of the op-
timal multi-user MIMO scheme. The latter requires more feed-
back information of the channel matrices from the receiver and
involves water-filling and joint optimization of transmission co-
variance matrices of all users and decoding order [13], [14],
while MEB only requires the feedback of a vector to steer beam-
forming at each transmitter. In what follows, we will show that
MEB is also asymptotically optimal when is large.

B. Average MTSP

We now proceed to derive the average MTSP required by the
MEB strategy. In practical environments, each user usually has
a power constraint due to its limited battery energy. To avoid
an extremely large transmission power level in deep fades, we
allow an outage probability for each user

. This means that user doesn’t transmit any information if
its channel gain is below a given threshold . The subsequent
discussions are based on the following assumption.

Assumption 1: All are i.i.d., so are . Ad-
ditionally, and are independent for each user .

Based on Assumption 1, it can be shown that the mean of
defined in (7) is . Furthermore, since

and are independent of , we also have the following
conditional mean:

(9)

Equation (9) is the basis of our derivation for Theorem 1 below.
This theorem gives a closed-form expression for the average
MTSP of MEB in a -user MIMO system (1) (denoted by

). Its proof can be found in Appendix A.

Theorem 1: Given the target rate and an outage prob-
ability for each user, we have (10), as shown at the bottom
of the page, where and are,1 respectively, the prob-
ability density function (pdf) and cumulative distribution func-
tion (cdf) of .

For convenience, we define where is the prob-
ability that user ’s channel gain is no larger than .
Then (10) can be rewritten as (11), shown at the bottom of the
page, where is the inverse function of the cdf .
This equivalent expression for will be frequently
used in the rest of this paper.

Since MEB is a particular realization technique, (11) serves as
an upper bound for the average unconstrained MTSP (denoted
by ) of the MIMO system in (1).

Corollary 1:

(12)

In particular, for a single-input single-output (SISO) system
with , every user has only one eigenmode and
MEB reduces to the conventional SIC scheme. It is shown in
[20] that the reduced MEB strategy with (5) is optimal for any

in SISO systems. Hence the average unconstrained MTSP of
a SISO system is given by

(13)

1From the i.i.d. property given in Assumption 1, all �� � have the same
pdf and cdf regardless of �.

(10)

(11)
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It can be shown that MEB is also optimal for any in mul-
tiple-input single-output (MISO) MACs. However, for MIMO
MACs with finite , MEB is generally suboptimal.

IV. ASYMPTOTIC OPTIMALITY OF MEB

In this section, we derive the limit of the average uncon-
strained MTSP of an MIMO MAC when based on
the results in the last section, with which we prove the asymp-
totic optimality of MEB and provide some useful insights into
the asymptotic behavior of multi-user MIMO systems.

A. A Lower Bound

We first derive a lower bound for the average unconstrained
MTSP with a finite . Consider the following multiple access
system:

(14)

where is an identity matrix and the max-
imum singular value of in (1). In (14), each user sees
parallel subchannels with equal gain, one for each receive an-
tenna. Hence (14) can be viewed as a bank of identical SISO
MACs, each with a sum rate . The average unconstrained
MTSP of the system in (14), denoted by , can be
achieved with every user transmitting at rate in every
subchannel. From (13), we have

(15)

Lemma 1:

(16)

Proof: For each channel realization , assume that
achieve the unconstrained MTSP to support the target rates

for (1). Define

(17)

and substitute (17) into (14). Then the same target rates are sup-
ported in the system (14). The related sum power is no larger
than the unconstrained MTSP of (1) since

(18)

where denotes the 2-norm operation. Hence the average
unconstrained MTSP of (14) is a lower bound for that of (1).

B. Asymptotic Average Unconstrained MTSP

Substituting (15) into (16) and letting , we have

(19)

On the other hand, when , (12) becomes

(20)

Comparing (19) and (20), we have the following.

Theorem 2: For fixed and , when

(21)

which is asymptotically achievable by the MEB strategy.
Theorem 2 indicates that the upper and lower bounds in (12)

and (16) are tight for a large , and the MEB strategy is asymp-
totically optimal as increases. Hence (21) gives the average
unconstrained MTSP of an MIMO system when is large. In
particular, when the MIMO channel is a set of parallel SISO
subchannels, (21) reduces to [21, eq. (34)], where a SISO fre-
quency selective channel is considered.

C. Examples

Fig. 1 compares the MEB performance with the optimal
unconstrained system performance over single-cell fading
MIMO MACs. The channel matrix of each user involves three
multiplicative factors, namely, Rayleigh fading, normalized
lognormal fading with and path loss in an edge-length-1
single-hexagonal cell with independent and uniform user distri-
bution and fourth power path-loss law. We assume independent
Rayleigh fading for every transmit-receive antenna link and
equal lognormal fading and path loss for all the links seen by
the same user. The outage probability is set at . The
curves for average unconstrained MTSP shown in the figure
are obtained using the iterative algorithm proposed in [14].
We can see from Fig. 1 that the MEB performance converges
steadily to the corresponding average unconstrained MTSP
as increases, especially when is small and less antennas
are involved. When , the gaps between them become
marginal for both 2 2 and 4 4 systems.

Compared to the optimal strategy that requires joint water-
filling of all users and the minimum mean-square-error (MMSE)
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Fig. 1. Comparison between the average constrained (for MEB) and unconstrained MTSP in various MIMO systems with different � over a single-cell fading
channel. We set � � � and � � ����. The antenna settings in (a) and (b) are, respectively, � � � � � and � � � � �.

receiver, it is surprising that the low-cost MEB strategy can
achieve asymptotic optimality as well. Intuitively, this observa-
tion attributes to the following reasons. With MEB, although
every user only transmits in one direction, the signals of dif-
ferent users arrive at the base station in different directions and
can statistically span the whole received signal space when
is large. Hence the MEB strategy with a large can approxi-
mately achieve all the available degrees of freedom (DOF) and
is therefore asymptotically optimal.

The asymptotic optimality of the simple correlator receiver
used in MEB can be explained using the law of large numbers.
When is large, the interference seen by each user becomes
approximately white. Hence the correlator receiver can perform
close to the optimal MMSE receiver in this case.

D. The Impacts of M and N

Next we examine the impacts of and on (21). Recall
that is the cdf of . Increasing either or
leads to reduced for (which indicates an increased
mean for ) and so reduced average MTSP. Increasing

has an additional benefit since it also reduces the numerator
inside the integral in (21). When is small, this additional ben-
efit is ignorable since the numerator almost remains unchanged.
However, when is sufficiently large, this additional benefit be-
comes noticeable.

Consider the system DOF with defined by

(22)
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It is more convenient to work on the inverse of DOF as follows:

(23)

In the above, the equality holds because the integration in-
volved in it is dominated by the point of when .
Note that (23) is the asymptotic slope of (in dB
form). From (23), we have

(24)

Equation (24) indicates that, when is sufficiently large,
the DOF for an MIMO MAC is only determined by , the
number of BS antennas. Hence at a high system throughput,

can asymptotically increase linearly with for a fixed
transmission power. Experimentally (using numerical results),
we observed that it also approximately holds for quite small .

This observation has interesting implications in cellular sys-
tems. Recall that the capacity of a cellular system is primarily
limited by inter-cell interference. The latter is in turn determined
by the average transmitted sum power of the users in each cell.
Then (24) implies that the cellular capacity increases approx-
imately linearly with since the average sum power can be
maintained unchanged when and increase together pro-
portionally. Generally speaking, a cellular system benefits more
from increasing the number of antennas at the base station than
at each mobile unit.

The above discussion suggests that an unbalanced MIMO
configuration with is a good tradeoff between perfor-
mance and complexity for multi-user systems, since it is difficult
to mount multiple antennas at a mobile unit with limited phys-
ical size.

Here are some numerical examples. Fig. 2 shows the uncon-
strained average MTSPs for various multiple access systems
over a single-cell fading channel. The channel condition and
the outage probability are the same as those used in Fig. 1. We
first fix and increase the value of from 1 to 4 in
Fig. 2(a). Then we fix and increase from 1 to 4 in
Fig. 2(b). We can see from Fig. 2 that, in a single-user SISO
system with , increasing can only bring about mar-
ginal performance improvements [Fig. 2(a)]. However, when
we further increase , significant performance improvements
can be achieved [Fig. 2(b)]. This is because, when ,
the system performance is dominated by the available DOF of
the system, i.e., the minimum of and . This implies that a

balanced MIMO configuration with is preferable for
single-user systems [19].

On the other hand, for a large , most power savings can
be achieved by increasing only [Fig. 2(a)] and further in-
creasing only leads to marginal performance improvements
[Fig. 2(b)]. This is because the system DOF now is and
irrelative of . This agrees with our previous discussion that
increasing has a more noticeable effect than increasing .
Clearly, an unbalanced MIMO configuration with pro-
vides an attractive compromise for multi-user systems.

V. MULTI-USER GAIN

We have seen from Figs. 1 and 2 the power advantage of
multi-user concurrent transmission. Such an advantage is re-
ferred to as multi-user gain (MUG) in this paper and formally
defined using the ratio

(25)

In (25), the derivation for is given in Appendix B
and can be obtained using the method proposed
in [14]. Similarly, we have the following for MEB:

(26)

In this section, we will investigate the MUG in a multi-user
system both qualitatively and quantitatively.

A. The Monotonicity of Average Unconstrained MTSP

For a fixed system sum rate , the average unconstrained
MTSP is a monotonic decreasing function of , which can
be seen as follows. For a -user system, we divide the
total transmission time in each channel realization into
equal-length slots. We take users out of each time
and form different combinations. Let each combina-
tion of users transmit in a distinguished slot in the optimal
way. Provided that all users have the same rate constraint and
i.i.d. fading distribution, the resultant average MTSP of such a
scheme is clearly equal to the average unconstrained MTSP of
a -user system (after averaging over all possible channel re-
alizations). Thus if the optimal transmission scheme is applied
to this -user system, the corresponding average uncon-
strained MTSP must be no larger than that of a -user one. The
above discussion is summarized as follows.

Theorem 3:

(27)

Theorem 3 gives an qualitative explanation for the power ad-
vantage of multi-user concurrent transmission shown in Fig. 1.
Note that the discussion above does not involve any detail of
the optimal transmission scheme. Hence Theorem 3 is also ap-
plicable to MIMO BCs to be discussed in Section VIII.

B. Near-Far Diversity

To better understand MUG, let us first consider a special case
of a -user fading MAC with (i.e., a SISO MAC)
and assume SIC with descending decoding order on . Denote
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Fig. 2. MTSP versus the sum rate � for various multiple access systems with different � and � over a single-cell fading channel. � � �. � � ����. The
antenna settings � �� are marked on the curves.

by the received power of user . From (8) we
have (noting that in a SISO system)

or in a nonrecursive form

(28)

For each channel realization, we can adopt power control to
obtain the received power level in (28) for each user . Then
the transmitted sum power can be represented as

(29)

Given each channel realization , a permutation of
can be obtained by re-indexing these elements. For ex-

ample, is a permutation of
. The average of (29) over all possible permuta-

tions of is

(30)

It is interesting to compare (30) with the result of a TDMA-
type strategy by dividing the time in each channel realization
into equal-length time slots, each for a unique user transmit-
ting at rate (so that the average sum rate in each channel re-
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Fig. 3. Achievable MUG for SISO multiple access systems with different number of users � over a single-cell fading channel. � � ����.

alization is still ). The corresponding constrained MTSP (av-
eraged over all time slots) is

(31)

Clearly, (31) is the same as (30).
We can do better than (30) by choosing a proper permutation

of for (29). As mentioned in Section III-C, the uncon-
strained MTSP of a -user SISO MAC with channel realization

is given by (29) when the optimal decoding order (5)
is applied, which must be less than (30) or (31). Intuitively,
this power advantage is achieved by matching the elements of
two sets and in a large-to-large/small-to-small
manner [20]. Such an ordered matching strategy becomes
trivial in a single-user environment or when all users has the
same channel gain . Hence the MUG of a multi-user
SISO system comes from the multi-user “near-far diversity”
in fading channels together with the matching strategy. (Here
the “near-far diversity” is a synonym of “near-far effect” with
emphasis on the positive side.)

C. Direction Diversity

Next, we examine another special case of a -user MIMO
MAC with , i.e., the near-far diversity is
excluded. For simplicity, we assume (the discussion
below can be extended to situations with ). Thus there
is only one nonzero eigenmode for each user and the channel
gain is the same for all users. For such a system with ,
the optimal multi-user concurrent transmission strategy can
still achieve power savings when increases, but the related
analysis is complicated due to the lack of concise expressions
for the average unconstrained MTSP. However, the problem is

much simpler with MEB. When all users have the same unit
channel gain, (11) reduces to

(32)

Here we have set since there is no need to consider outage
when the channel gain is a constant.

In the special case of , the system reduces to an
AWGN SISO MAC. Then (32) reduces to the standard AWGN
relationship

(33)

Clearly, (33) is independent of . Thus a SISO system does not
provide MUG when all users see the same channel gain, which
agrees with our discussion in the previous subsection.

When , it is easy to verify that (32) is a decreasing
function of and so MUG is still available. In this case, the
advantage of a large comes from the diversity of direction
of arrival (DOA). (In this paper, we assume that the receive an-
tennas are randomly placed. Thus the meaning of direction here
is slightly different from that for a regular beamforming antenna
array. Nevertheless, we still borrow this concept for intuitive un-
derstanding.) This direction diversity attributes to the fact that
signals are more evenly distributed in the whole received signal
space with multi-user concurrent transmission and the interfer-
ence among them is therefore reduced.

In summary, MUG results from two aspects: the near-far di-
versity discussed in the previous subsection and direction diver-
sity mentioned in this subsection. The latter is not available for
an omni-receive-antenna system with .
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D. Asymptotic Behavior of MUG

When for a finite , from (11) and (26) we have (34),
shown at the bottom of the page.

By applying l’Hôpital’s rule to (34) twice, we obtain

or equivalently

(35)

Equation (35) provides a simple way to estimate MUG for a
small .

When for a finite , we have

(36)

which is a finite value for a finite and increases indefinitely
with .

On the other hand when , from (23) and (68) in
Appendix B, we can obtain the asymptotic slope of MUG in
an MIMO system as

(37)

We can make the following observations from (37):

(i). When , the asymptotic slope in (37) is almost zero
(ignoring the outage probability ), which means that the
achievable MUG increases very slowly with the sum rate

when it is large.
(ii). When , the asymptotic MUG (in dB form) in-

creases linearly with . This indicates that increasing
has a more significant impact than increasing when
is large.

(iii). The maximum asymptotic slope of MUG is ,
which is approached by allocating only one antenna at
each mobile unit side and as many antennas as possible
at the base station. This is a single-input-multiple-output
(SIMO) situation, indicating that the advantage of multi-
user concurrent transmission is most significant for SIMO
channels.

We now provide some numerical results. Fig. 3 shows the
achievable MUG in a SISO MAC with different . The channel
condition is the same as that in Figs. 1 and 2. We can see that the
achievable MUG increases with and . The curves for finite

converge to finite values when . However,
is unlimited when both and become infinite. These obser-
vations agree with (36).

Fig. 4 shows the asymptotic MUGs for various multiple ac-
cess systems over a single-cell fading channel. (The MUGs for
MISO systems are close to those for MIMO ones and not shown
in Fig. 4 for simplicity.) We can see from Fig. 4 that SIMO sys-
tems have much higher MUGs than MIMO ones. This is in good
agreement with the observation (iii) made above. A SIMO MAC
involves multiple antennas at the base station only, which is ba-
sically the technique used by most current cellular systems. This
indicates the possibility to improve system performance without
significantly altering the basic system architecture.

E. Normalized MUG

As we have seen from Theorem 3 and Fig. 3, the available
MUG increases with for a fixed system sum rate . The cor-
responding upper limit, i.e., the MUG for , is not prac-
tically achievable with a finite . It is therefore worthwhile to
examine the relative difference between the MUG values for fi-
nite and infinite . For this purpose, we further define the nor-
malized MUG for a -user MIMO system as

(38)

(34)
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Fig. 4. Asymptotic MUG for various multiple access systems over a single-cell fading channel. � � ����. The antenna settings� �� are marked on the curves.

Similar to (26), we have the following for MEB:

(39)

When is small, the normalized MUG (39) can be estimated
using (35) as

(40)

This indicates that a -user system with a low sum rate can ap-
proximately achieve about of the asymptotic MUG
(in dB form), e.g., a 2-user system can achieve about half of the
MUG that is achievable by infinite . Clearly, when is low,
a relatively small (say, around 4 to 8) is sufficiently good in
term of MUG. This observation is useful since a larger usu-
ally implies a higher implementation complexity.

When is large, we can show based on (36) that

(41)

for any finite . This indicates that, when increases,
more simultaneous users are required to provide near optimal
performance.

Fig. 5(a) and (b) shows the unconstrained normalized MUGs
[i.e., (38)] of various SIMO and MIMO systems with different
numbers of users , respectively. The corresponding normal-
ized MUGs achievable by the MEB strategy [i.e., (39)] are also
plotted for reference. From Fig. 5(a) we can see that, for SIMO
systems, the gap between the unconstrained normalized MUG

and its lower bound,2 (39), is marginal and vanishes to zero as
increases or decreases. For MIMO systems, (39) is no

longer a lower bound for (38). From Fig. 5(b) we can see that
the more antennas are involved, the larger the gap is between the
curves for (38) and (39). This is because the single-user MEB
performance is inferior to the corresponding optimal single-user
water-filling performance in this case. However, this gap will
vanish to zero as increases (referring to Fig. 1).

VI. MEB WITH UNEQUAL RATE CONSTRAINTS

So far, we have assumed that every user transmits at the same
rate . The above results can be extended to the un-
equal rate scenario in a straightforward way. Denote by the
designated unequal instantaneous transmission rate for user .
After a similar derivation to that for (10) (the details are omitted
here for brevity), we can obtain the following theorem.

Theorem 4: Given the (unequal) rate constraint and an
outage probability for each user , the average MTSP of the
MEB strategy for a -user MIMO MAC in (1) (denoted by

) is given by

(42)

Equation (42) is the unequal-rate counterpart of the equal-rate
average MTSP expression (11) for MEB.

It is also interesting to examine the limiting case of (42) when
. Let us fix the system sum rate and

2For SIMO systems, it can be seen that � ����� � � ����� for
a finite � and � ��� �� � � ��� ��. Hence (39) is a lower bound
of (38) in this case, i.e., � ����� � � �����.
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assume that when . Then from (42) we
have

(43)

Similar to Theorem 2, we can adopt the bounding technique
used in Section IV to show that (43) gives the unconstrained
MTSP for an MIMO system with unequal rate allocation. The
detailed proof is omitted here for brevity.

Comparing (43) to (21), we can see that in the limiting case of
and under the assumption of , the uncon-

strained MTSP is independent of individual rates and is a
function of the system sum rate only. Thus most asymptotic
properties discussed in Sections V and VI are applicable to the
case with unequal rate allocation among users.

VII. REALIZATION ISSUES

Our discussion above has been focused on capacity as-
pects. We now consider the realization of MUG using the
MEB strategy in practical environments. As mentioned earlier,
nonorthogonal multi-user concurrent transmission is essential
to achieve MUG. We may use a nonorthogonal code-division
multiple-access (CDMA) type technique as a platform to re-
alize MEB. However, the use of spreading codes in a traditional
CDMA system reduces the transmission rate of each user,
which is a key obstacle for its application in high-rate applica-
tion environments (e.g., in MIMO systems). To overcome this
difficulty, here we adopt the interleave-division multiple-access
(IDMA) scheme introduced in [22] that employs different
interleavers to distinguish the signals from different users. Very
high transmission rates can be supported in this way.

In our simulation example, we fix the system sum rate at
bits/symbol and adopt a length-5000 and rate-1/4 irregular

low-density parity-check (LDPC) code for all users. The corre-
sponding edge degree distribution

and is obtained using the optimization tool in
[24]. The basic rate per user is 0.5 bit/symbol with QPSK modu-
lation. If more than 0.5 bit/symbol is requested for each user, we
can assign multiple coded streams to each user based on super-
position coding principle [23]. A turbo type receiver is applied
to perform multi-user linear MMSE detection and single-user
a posteriori probability (APP) decoding iteratively. (Refer to
[22] and [25] for details.) For each channel realization, the trans-
mitted power levels are optimized using an interior point
technique [26].

Fig. 6 shows the BER performance of such LDPC-coded sys-
tems with different over a 4 4 MIMO fading MAC. The
channel condition is the same as that used in previous figures.
The theoretical limits achieved by the MEB strategy, measured

from Fig. 1(b), are also plotted for reference. From Fig. 6, we
can see noticeable MUG between the curves for 1 and 8 users at

. Again, a significant portion of the MUG can be
achieved with only 2 or 4 users. Further increasing only leads
to marginal improvements. In the above example, no effort has
been made to optimize the edge distribution of the LDPC code
with respect to the system under consideration. The related op-
timization technique is an interesting topic for future research.

VIII. MIMO BCS

Consider an MIMO BC. Without confusion, we still assume
antennas at the base station and antennas at every mobile

unit. Let be the transmitted signal of user at the base sta-
tion. At the receiver for user , the received signal can be
represented as

(44)

where is the channel matrix seen from the base station to
user and is a vector of complex AWGN samples with zero
mean and variance . The MIMO BC in (44) is referred to as
the dual of the MIMO MAC in (1). In particular, the dual of a
SIMO MAC is a MISO BC.

A. MEB for MIMO BCs

When is finite, the optimal realization of the MIMO BC in
(44) involves complicated optimization of transmission covari-
ance matrices and dirty paper encoding. It is therefore worth-
while to verify the system performance when MEB is directly
applied to MIMO BCs. Similar to the MEB strategy proposed
for MIMO MACs in Section III, we only allow each user to
transmit in its maximum eigenmode direction in an MIMO BC.
Without confusion, we still use and to denote the trans-
mitted power and coded signal of user . Then we have

(45)

At the base station, dirty paper coding is applied, which corre-
sponds to the SIC used in MIMO MACs. Without loss of gen-
erality, we still assume that (5) holds and let the user with the
largest maximum eigenvalue be encoded first. Then (44) can be
rewritten as

(46)

Note that in (46), the signals for users are assumed to
have been pre-cancelled by dirty paper encoding and only those
of users are regarded as interference.

At the receiver for each user , we still use a simple correlator
to collect its signal. Based on (46), the correlator output

is

(47)
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Fig. 5. Normalized MUG achieved by a finite number of users in MIMO multiple access systems over a single-cell fading channel. � � ����.

and the corresponding SNR value for user can be written as

(48)

Assume rate- ideal coding for each user. In each channel
realization, the power values can be evaluated recursively
based on (48) and the Shannon capacity formula as

(49)

The following lemma provides a connection between the two
MEB strategies for the MIMO BC in (44) and the MIMO MAC
in (1).

Lemma 2: Given the rate constraint and the channel
realization for each user , the MTSP of the MEB strategy
for the MIMO BC in (44) is exactly the same as that of the MEB
strategy for the dual MIMO MAC in (1).

The proof of Lemma 2 is given in Appendix C. From Lemma
2, we obtain the following theorem.

Theorem 5: Given the target rate of and an outage prob-
ability for each user, the average MTSP for the MEB strategy
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Fig. 6. Simulation results of an MEB-based system with user-specific interleaving and irregular LDPC coding over a 4� 4 MIMO MAC. The corresponding
theoretical limits of MEB are also plotted for reference.

in the MIMO BC (44) (which is still denoted by
without confusion) is given by

(50)

Clearly, (50) is the same as (10) for an MIMO MAC. Similar
to the discussion for MIMO MACs in previous sections, we can
show that the MEB strategy for the MIMO BCs is also asymptot-
ically optimal and the results can be extended to the unequal rate
constraint scenario. Hence all the observations related to Theo-
rems 1–4 and Figs. 1–5 can be directly applied to MIMO BCs.
Again, increasing the number of antennas at the base station is a
more efficient way to enhance performance than increasing that
at the mobile units. However, it should be reminded that dirty
paper encoding/decoding is still required to guarantee the per-
formance predicted by (50).

B. On the Duality Between MACs and BCs

Reference [27] introduced a duality principle between MIMO
MACs and BCs. Here we need clarify some related concepts.

i) Channel duality: For example, the MIMO BC in (44) is
the dual of the MIMO MAC in (1), and vice versa;

ii) Transmission strategy duality: Given a transmission
strategy for an MIMO MAC in (1), there exists a dual
transmission strategy for the dual MIMO BC in (44) such
that these two strategies achieve the same rate constraints
using the same sum power and vice versa;

iii) Capacity Region duality: Given the same sum power con-
straint, the MIMO MAC in (1) and its dual MIMO BC in
(44) have the same instantaneous/ergodic capacity region.

From the above discussion, it can be shown that the MIMO
MAC in (1) and its dual MIMO BC in (44) have the same
average unconstrained MTSP. Hence Theorem 2 for MIMO
MACs is also applicable to MIMO BCs. However, note that
the BC-MEB defined in (45) is not the dual of the MAC-MEB
defined in (3), even though we have proved that they have the
same performance.3 Therefore, we cannot arrive at Theorem 5
via duality directly.

IX. ASYMPTOTIC SUM-RATE OPTIMALITY OF MEB

Before ending this paper, we show that the MEB strategy for
MIMO MACs in Section III can also achieve asymptotic op-
timality when a sum-rate maximization problem given power
constraints is considered. Return to the multiple access system
in (1). For simplicity, we assume the power constraints of all
users are the same at . The sum capacity of (1) (denoted by

) can be written as [1], [5]

(51)

where is the transmitted covariance matrix of
user . The operators and denote the determinant and
trace of a matrix, respectively.

The proof of the theorem below is given in Appendix D.

Theorem 6: Given the power constraint for each user, the
asymptotic sum capacity of an MIMO MAC in (1) with
can be written as

(52)

3Based on the MAC-to-BC duality transformation in Section IV-B of [27], in
the BC dual of (3), every user still only involves a single-mode beamforming.
However, the beamforming direction of each user depends on the channel ma-
trices of all users and is not its own maximum eigenmode direction.
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which is asymptotically achievable by the MEB strategy.
The capacity of a multi-user MIMO system involving re-

source allocation (in time, frequency and space domains) is a
more complicated problem, which is beyond the scope of this
paper.

X. CONCLUSION

In this paper, we have made a comprehensive study on multi-
user MIMO systems with rate constraints over MACs and BCs.
The main contributions of this paper are summarized here.

• We have derived the closed-form expression for the av-
erage MTSP of the low-cost MEB strategy and proved that
MEB is asymptotically optimal for a large . Numerical
results show that MEB is also nearly optimal even for a fi-
nite .

• Using MEB, we have proposed upper and lower bounds
for the average unconstrained MTSP of MIMO MACs and
BCs. These bounds are tight when is large.

• The limiting form of MEB sum power with fa-
cilitates the asymptotic analysis of multi-user MIMO be-
haviors. In particular, we have shown that: (a) significant
power savings, i.e., MUG, can be achieved by multi-user
concurrent transmission in fading channels with rate con-
straints; (b) a large portion of MUG can be achieved by
only a few number of users; and (c) an unbalanced MIMO
configuration with offers a good tradeoff between
performance and complexity for multi-user systems.

• We have provided simulation results to show that signif-
icant MUG is achievable in practically coded multi-user
systems.

APPENDIX A
PROOF OF THEOREM 1

For each channel realization, we define an indicator function
for any two users and as4

(53)

Then (8) can be rewritten as

(54)

4The function (53) does not include the event that two users � and � have the
same channel gain, i.e., � � � . The probability of such events is
zero when �� � have continuous distribution.

Our derivation below includes the following four steps.
First, we fix (noting that are also

fixed in this case) and take average with respect to on
both sides of (54), i.e.,

(55)

From (54), it can be verified that is independent of for
. Then based on (9), we can rewrite (55) as

or in a nonrecursive form

(56)

Second, we fix and take average with respect to
on both sides of (56). This is equivalent to

taking average with respect to based on the
definition of in (53). Recall that are
i.i.d., so are . Then from (56) we have

(57)

For user under consideration with channel gain , the
probability that another user ’s channel gain is smaller than

is simply . So we have

(58)
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where the term corresponds to the situation when user is in
outage. Substituting (58) into (57), we obtain

(59)

Third, we take average with respect to the channel gain
on both sides of (59) and obtain

(60)

which gives the average transmitted power of user . Note that
since user should be in outage when , the inte-
gration in (60) is taken within , instead of .

Fourth, since we have assumed that all users have the same
pdf of channel gain, so are their average transmitted power.
Therefore, the corresponding average MTSP for MEB is simply

times of (60), i.e.,

(61)

Hence Theorem 1 holds.

APPENDIX B
MTSP FOR

For a single-user MIMO system, the MTSP is achieved by the
single-user water-filling algorithm for each channel realization
[5]. Suppose one user has its channel matrix with rank and sin-

gular values . The minimum transmitted power
is achieved by

(62)

where and satisfies

(63)

Then can be obtained by taking the average of
over the channel distribution, which also provides the average
transmitted MTSP of a TDMA-based multi-user MIMO system.
The details are omitted here for brevity.

When is sufficiently large, in (62) and (63) is also large
such that (62) reduces to

(64)

where satisfies

(65)

Thus we have

(66)

or equivalently

(67)

which is the same for all channel realizations.
For most practical fading distributions, the channel ma-

trices have full rank with probability 1. This indicates that
for almost all channel realizations. Hence the

asymptotic slope of (in dB form) with an outage
probability can be calculated as

(68)

APPENDIX C
PROOF OF LEMMA 2

We first derive a useful expression for the MTSP of MEB for
MIMO MACs. We rewrite (8) as
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or in a matrix form

(69)

where is a identity matrix, and
are two length- vectors,

and are two diagonal matrices with
and , respectively.

is a lower-triangular matrix with

From (69), we can represent the MEB sum power of an MIMO
MAC as

(70)

Next, we derive a similar expression for the MEB sum power
of MIMO BCs. Equation (49) can be rewritten as

or equivalently

(71)

Then the MEB sum power of an MIMO BC is given by

(72)

From the Woodbury formula [28], we have

(73)

Hence (72) can be rewritten as

(74)

which is the same as (70). This ends the proof.

APPENDIX D
PROOF OF THEOREM 6

We still use the bounding technique to prove this theorem.
Similar to the proof for Lemma 1, we can readily show that,
given the same power constraint , the system in (14) has a larger
sum capacity than (1), i.e.,

(75)

When , (75) becomes [29]

(76)

Next, we derive the sum rate achieved by MEB. Assume
(5) and correlator receivers as well as SIC with de-
scending order on . Based on (7), the rate achieved by user
can be written as

(77)

According to the law of large numbers and (9), when ,
we have

(78)

Hence (77) can be further rewritten as

(79)
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and the corresponding system sum rate achieved by MEB,
which is clearly a lower bound of , is given by

(80)

Combining (76) and (80), we can see that the upper and lower
bound converge to (52) when . Hence the theorem is
proved.
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