

!"#$%""&'($)*+,-.*/$*"$
0*123'+4$5"67"44+7"6$1*+$8*97(4$%//(7:'27*"$;4<4(*/=4"2$

$
0'"2'$8*"7:'>$?%$@$!A$B:2*94+$!CDD$

$
!"#$"%#&'()*#$'

$
!"#$%&'()*+,-+(('-+,).//0(/)#"')1"2-3()4553-6&$-"+)7(8(3"59(+$))))))))))))))):)
%"2.*"EFG)'--4+='">$?'+"4674$84((*"$07(7:*"$H'((4E$
$
+,$-./,*'(,.%0%,1'()*#$.'
$
.95'"8-+,)1"2-3()4553-6&$-"+)7(8(3"59(+$))))))))))))))))));)
I'E$J'+47--$'"#$K*##$04#'"*>$?'+"4674$84((*"$07(7:*"$H'((4E$
$
<'(5&'-+,)1"2-3()!"#$%&'()7(8(3"59(+$)<'"6(//(/)$")1(($)1-//-"+=>'-$-6&3)?(@0-'(9(+$/))))))))))A)
L&7-$?*++'(>$%(94+2*$07((7227>$'"#$M7'":'+(*$0&::7>$N+44$O"7<4+-72E$*1$J*P4"QJ*(P'"*$
$
1"2-3()B0/-+(//)4553-6&$-"+/)90/$)2()$C"'"0,C3D)(+,-+(('(E))))))))))))):F)
I'(1$?'+9*"$'"#$024114"$R4-->$N+'&".*14+$F505$
$
1"2-3(=*+&23-+,)*+$('5'-/()B0/-+(//)4553-6&$-"+/)0/-+,)1"E(3=7'-8(+)*+,-+(('-+,)G(6C+-@0(/):;)
0&='"$I*E:.*&#.&+E$'"#$H7"'E$S&(,'+"7>$K'2'$?*"-&(2'":E$04+<7:4-$
$
!D/$(9)7(/-,+)&+E)!"#$%&'()*+,-+(('-+,)>C&33(+,(/)-+)B0-3E-+,)&+)4+E'"-E))))))))))):A)
4553-6&$-"+H)&)>&/()!$0ED)
I'3'"$K'+4,$S.'(7($'"#$%('T$N'2.7$S.'(714.>$M4+='"$O"7<4+-72E$7"$?'7+*$
$
455/)8/I)J5(+)K(2H)GC()B&$$3()"#)$C()7(6&E()))))))))))))))FF)
K*==7$87,,*"4">$K'=/4+4$O"7<4+-72E$*1$K4:."*(*6E>$'"#$%"24+*$K'7<'(-''+7>$U*,7'$
$
1"2-3()4553-6&$-"+)!"#$%&'()*+,-+(('-+,H)>C&33(+,(/)&+E)?(/(&'6C)7-'(6$-"+/))))))))))FL)
V*-.$;4.(7"64+$'"#$V4+4=E$;7W*">$K*3-*"$O"7<4+-72E$
$
M1"E(3H)&+)N+-#-(E)*##"'$)G"%&'E/)$C()7(8(3"59(+$)"#)O-,C=P0&3-$D)1"2-3()4553-6&$-"+/)))))))))Q:)
5+7,'$?*2'>$L&767$?'++*>$L&:7*$;&'+24>$L47('$I7947+*>$'"#$N('<7*$)'6"4+>$O"7<4+-7#'#4$N4#4+'($#*$
I7*$M+'"#4$#*$0&($XONIM0Y$
$
+,$-./,*'!$2)1%3)0%,1'
'
%"2.*"EFG)'--4+='">$?'+"4674$84((*"$07(7:*"$H'((4E$X?.'7+Y$
I'E$J'+47-->$?'+"4674$84((*"$07(7:*"$H'((4E$
I'(1$?'+9*">$N+'&".*14+$F505$
$

0/*"-*+Z$%//:4(4+'2*+>$F":G$ $

Software Engineering Issues for
Mobile Application Development

Anthony I. Wasserman
Carnegie Mellon Silicon Valley

Bldg. 23, M/S 23-14
Moffett Field, CA 94035 USA

+1 650 335 2807

tonyw@sv.cmu.edu

ABSTRACT
This paper provides an overview of important software
engineering research issues related to the development of
applications that run on mobile devices. Among the topics are
development processes, tools, user interface design, application
portability, quality, and security.

Categories and Subject Descriptors
D.2 [Software Engineering]: D.2.2 Design Tools and Techniques

General Terms
Design, Reliability, Security, Human Factors

Keywords
Mobile devices, application development, software engineering,
programming environments, user interface design, research agenda.

1. INTRODUCTION
While application development for mobile devices goes back at
least 10 years, there has been exponential growth in mobile
application development since the iPhone AppStore opened in
July, 2008. Since then, device makers have created outlets for
other mobile devices, including Android, BlackBerry, Nokia Ovi,
Windows Phone, and more. Industry analysts estimate that there
are more than 250,000 applications available through the various
stores and marketplaces, some of which are available for multiple
types of devices.

We have recently conducted a small survey of mobile developers
[1], using available mobile developer forums to solicit
respondents. A key goal of the survey was to gain a better
understanding of development practices for mobile applications.
Our conclusions included the following points:

1) most of the applications were relatively small, averaging
several thousand lines of source code, with one or two
developers responsible for conceiving, designing, and
implementing the application;

2) there was a sharp divide between “native” applications,
those that run entirely on the mobile device, and web
applications, which have a small device-based client with
execution occurring on a remote server;

3) developers adhered quite well to recommended sets of

“best practices” but rarely used any formal development
processes, and;

4) developers did very little organized tracking of their
development efforts and gathered few metrics.

There are numerous comprehensive programming environments
available for the major mobile platforms. Apple’s iOS Dev Center
offers the Xcode package, which includes an Interface Builder, an
iPhone emulator, and a complete development environment that
can be used across all Apple products [2]. For Android,
developers can use the Android Development Tools plug-in [3]
for the Eclipse programming environment [4]. For Windows
Phone, developers can use a specialized version of Microsoft’s
Visual Studio environment [5]. Similarly, there are application
development tools for BlackBerry, Symbian, and other platforms.
In addition, there are now some cross-platform development tools,
such as RhoMobile’s Rhodes, MoSync, and PhoneGap, which can
be used to create native applications on various brands of
Smartphones. Along the same lines, Netbiscuits, Appcelerator,
Kyte, and other companies provides tools and frameworks to
support the creation of mobile web and hybrid sites using their
SDK or one of the previously mentioned environments.

These powerful development tools and frameworks greatly
simplify the task of implementing a mobile application. However,
they are predominantly focused on the individual developer who
is trying to create an application as quickly as possible. For small
and medium-sized mobile applications that can be built (and
easily updated) by a single developer, they represent a vast
improvement on the previous generations of tools, and encourage
developers to adhere to the important principles of abstraction and
modularity that are built into the platform architectures.

However, as mobile applications become more complex, moving
beyond inexpensive recreational applications to more business-
critical uses, it will be essential to apply software engineering
processes to assure the development of secure, high-quality
mobile applications. While many “classic” software engineering
techniques will transfer easily to the mobile application domain,
there are other areas for new research and development. The
remainder of this paper identifies some of these areas.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full
citation on the first page. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.
FoSER 2010, November 7-8, 2010, Santa Fe, New Mexico, USA.
Copyright 2010 ACM 978-1-4503-0427-6/10/11...$10.00.
.

2. SOFTWARE ENGINEERING AND
MOBILE APPLICATION DEVELOPMENT
We define “software engineering” as a process by which an
individual or team organizes and manages the creation of a
software-intensive system, from concept through one or more
formal releases.

2.1 What Makes Mobile Different?
In many respects, developing mobile applications is similar to
software engineering for other embedded applications. Common
issues include integration with device hardware, as well as
traditional issues of security, performance, reliability, and storage
limitations. However, mobile applications present some additional
requirements that are less commonly found with traditional
software applications, including:

1) Potential interaction with other applications – most
embedded devices only have factory-installed software,
but mobile devices may have numerous applications
from varied sources, with the possibility of interactions
among them;

2) Sensor handling – most modern mobile devices, e.g.,
“smartphones”, include an accelerometer that responds
to device movement, a touch screen that responds to
numerous gestures, along with real and/or virtual
keyboards, a global positioning system, a microphone
usable by applications other than voice calls, one or
more cameras, and multiple networking protocols;

3) Native and hybrid (mobile web) applications – most
embedded devices use only software installed directly
on the device, but mobile devices often include
applications that invoke services over the telephone
network or the Internet via a web browser and affect
data and displays on the device;

4) Families of hardware and software platforms – most
embedded devices execute code that is custom-built for
the properties of that device, but mobile devices may
have to support applications that were written for all of
the varied devices supporting the operating system, and
also for different versions of the operating system. An
Android developer, for example, must decide whether to
build a single application or multiple versions to run on
the broad range of Android devices and operating
system releases [6]

5) Security – most embedded devices are “closed”, in the
sense that there is no straightforward way to attack the
embedded software and affect its operation, but mobile
platforms are open, allowing the installation of new
“malware” applications that can affect the overall
operation of the device, including the surreptitious
transmission of local data by such an application.

6) User interfaces – with a custom-built embedded
application, the developer can control all aspects of the
user experience, but a mobile application must share
common elements of the user interface with other
applications and must adhere to externally developed
user interface guidelines, many of which are
implemented in the software development kits (SDKs)
that are part of the platform.

7) Complexity of testing – while native applications can be
tested in a traditional manner or via a PC-based
emulator, mobile web applications are particularly
challenging to test. Not only do they have many of the
same issues found in testing web applications, but they
have the added issues associated with transmission
through gateways and the telephone network

8) Power consumption – many aspects of an application
affect its use of the device’s power and thus the battery
life of the device. Dedicated devices can be optimized
for maximum battery life, but mobile applications may
inadvertently make extensive use of battery-draining
resources.

2.2 Best Practices
With all of the recent experience in creating mobile applications,
much is known about how to build them and about how people
use their devices and these applications.
At the same time, all but the largest and most complicated
software and system development projects have moved away from
a process-intensive approach toward a more agile approach, with
the Scrum approach [7] and other agile techniques, e.g., test-
driven development, finding widespread acceptance. That’s
particularly true of applications developed for the Web, where the
development model relies on many successive releases of the
evolving product. The Scrum development process is a sequence
of short (2-4 weeks) “sprints” where a team addresses a set of
tasks as a product increment, with each sprint addressing a
“backlog” of requirements. Our survey of mobile developers [1]
suggested that even individual developers are following a Scrum-
like process as they develop mobile applications.
Above and beyond the process, though, is the systematic
codification of knowledge about the best practices to follow for
application development. The World Wide Web Consortium has
issued a candidate set of recommendations for mobile web (not
native) applications [8]. Apple has published an iPhone
Application Programming Guide [9] with guidelines for various
aspects of iPhone development. The Developer’s Guide for
Android includes a Best Practices section that addresses
application compatibility, user interface guidelines, and designing
for performance and responsiveness, among other things [10].

In short, developers can find a lot of guidance to assist them with
programming their applications. Platform developers have drawn
on decades of software engineering knowledge to create software
architectures and SDKs that provide developers with access to
needed device resources. However, these technical aspects don’t
address the larger issues of creating large-scale applications.

2.3 Finding the Balance
One of the long-term challenges in every engineering discipline is
“scaling up”: finding appropriate techniques for managing
increasingly complex projects. Approaches that work well for an
individual engineer don’t always work when the tasks of a project
are divided among members of a team. The team (and any
supervisory management) need mechanisms for coordination and
reporting. The added complexity of larger projects often demands
greater attention to [changing] requirements, product
architectures, and testing, as well as to key project properties,
such as robustness, usability, reliability, and more.

For mobile devices and their applications, the software
engineering process must not only be aware of the hardware
device properties, but must also address project management
issues and the unique aspects of mobile application development
noted above.

Many large-scale and enterprise-oriented mobile applications will
be part of a product family. These applications will often be
mobile web applications, rather than native mobile applications,
and will often complement or augment an existing application. As
a result, development of the mobile application will typically be
done within the context of the overall software development
effort, thus providing a management framework for the mobile
application. However, the unique qualities of the mobile
environment makes it important not to treat the mobile application
as an afterthought, but rather as an independent task with its own
software engineering process and product requirements.

3. A RESEARCH AGENDA FOR MOBILE
SOFTWARE ENGINEERING
Despite the development of 300,000+ mobile applications, there’s
still not much formal research around their engineering processes.
The existing body of knowledge is highly pragmatic, with lots of
guidelines and many pieces of sample code as examples. In this
section, we identify some of the most promising areas for
software engineering research related to development of mobile
applications

3.1 The User Experience
Using a mobile device is different from working with a desktop or
laptop computer. While gestures, sensors, and location data may
be used in game consoles and traditional computers, they play a
dominant role in many mobile applications. The smaller display
and different styles of user interaction also have a major impact
on interaction design for mobile applications, which in turn has a
strong influence on application development. The mobile user
interface paradigm is based around widgets, touch, physical
motion, and keyboards (physical and virtual) rather than the
familiar WIMP (Windows, Icons, Menus, Pointer) interface style
of Apple’s iOS and Microsoft Windows. Other context
dependencies may also play a role in the user experience,
including such aspects as physical location, proximity to other
mobile devices, and the activation of various device features

Mobile platforms include their own UI libraries and guidelines, so
native applications for a device will share a common “look and
feel.” It’s in the interest of the application developer to adhere to
platform standards, especially on touch-screen devices, where
users expect to use the platform’s standard set of gestures, which
differs for each platform.

With the challenge of making the best possible use of limited
screen space, user interface design takes on greater importance
than ever. Mobile users are often seeking to quickly complete a
simple task, and can’t take advantage of the full range of
functionality provided by a traditional Web application.

The user interfaces for mobile web applications may borrow from
traditional web applications, but must often be redesigned to
highlight the most commonly used functions and to make most
effective use of the screen and the mobile user interface paradigm,
including both the user input and the associated motion and
location information.

These observations raise some research issues, including:

1) How does one determine which functions should be
present in a mobile version of a traditional application?
Are there techniques that can assure the maximum reuse
of code among different versions?

2) What is the comparable effort to build a native mobile
application (or a set of them for different platforms)
compared to a mobile web application? Is there a
measurable difference in user satisfaction or
productivity with either of these?

3) Is there a need for specialized scenario development
processes and tools for mobile applications? Does the
mobile UI require a different contextual design process
to support a different set of use cases?

4) How does a software designer integrate the various
forms of input and sensor data in application design?

The user experience is also strongly affected by other industrial
design issues related to the device itself, e.g., weight and size, but
these items are largely outside the domain of software
development, and not discussed further here

3.2 Non-functional Requirements
The success of any application, mobile or otherwise, depends on a
lengthy list of non-functional qualities. Among those most
relevant to mobile applications are performance (efficient use of
device resources, responsiveness, scalability), reliability
(robustness, connectivity, stability),quality (usability,
installability), and security. Many of these issues have been
addressed for web applications, and that knowledge provides an
excellent starting point for studying mobile application
requirements.

The mobile environment, with its dependence on different kinds
of networks, differs from traditional environments and thus raises
some new research questions, such as:

1) Do mobile web applications behave differently when
connected using the telephone network (3G, 4G) than
when using an 802.11 (WiFi) or 802.16 (WiMax)
connection? Are there differences in security? Is there a
significant difference in responsiveness? Are traditional
fallback and exception-handling techniques adequate, or
does the higher likelihood of a dropped connection (or
intermittent connectivity) require additional
mechanisms?

2) Are there new techniques needed for assuring data
integrity, or will the synchronization techniques from
traditional client-server computing suffice? Does
potential loss of connectivity or battery power represent
a risk to program and/or data integrity if such an event
occurs during a transaction or system update?

3) Should applications be designed differently depending
on the speed of the network on which they are being
used? In Asia, some countries offer rates of 50Mb or
higher, while typical speeds in the US, even with 3G
networks, are below 1 Mb.

4) How does a developer create applications that will
maximize battery life and resource usage?

Again, these questions are just a small subset of a broad range of
research questions that need further study.

3.3 Processes, Tools, and Architecture
As mobile applications become more complex and mission-
critical, development organizations must introduce processes that
address more aspects of the development process than are covered
in today’s agile processes and development environments. As
previously noted, the user experience is especially critical, so
there is a greater need to create prototypes of the user interface(s),
particularly when multiple devices will be supported.

Testing is another important area for mobile software engineering
research. One question involves the development of testing
methods for product families, such as Android devices. It’s
insufficient to merely test an Android application on an emulator;
it must be tested across many different Android devices running
different versions of the operating system on various telecom
networks, perhaps with l10n and i18n options. Integrated test
suites would simplify this process.

Another area for research involves application maintenance in the
rapidly changing world of mobile platforms. While “early-
adopter” consumers are often willing to update their device and
their applications, most enterprise users are less likely to do so. In
many cases, their companies will have policies discouraging them
from doing so, as can be seen by the slow enterprise transition
away from Windows XP and Office 2003. One particularly
interesting question involves the use of virtualization technology
on these devices as a way to support various platforms.

Finally, application development and deployment is moving
toward the “cloud”. This new computing paradigm will not only
affect development processes and tools, but also application
architectures.

3.4 Portability
Application developers quickly developed apps for the iPhone
platform following Apple’s creation of the AppStore. As noted
above, other providers of mobile platforms and devices have done
the same (or are in the process of doing so). An important issue
for the application developer is to decide which platform(s) to
support in the highly fragmented world of mobile development.
Today, there are at least five important platforms (iPhone,
Android, BlackBerry, Windows Phone, Symbian).

From the standpoint of the application developer, it’s quite
expensive to support multiple platforms, especially when there are
multiple versions and variants for each of them. The application
developer has several options:

1) develop for a single platform only and use, to the extent
possible, a common subset of the features available
across all variants and versions of that platform; thus,
for example, the developer would have only a single
code base for an application that would run on different
versions of the iPhone, the iPad, and possibly the iPod
Touch. While that approach would simplify the
developer’s work, the resulting application would not be
able to take advantage of all of the differentiating
features of each device ;

2) develop native applications for each platform and
variant, trading off the development and maintenance
costs against the ability to optimize the application for
each platform.

3) develop mobile web applications, thus minimizing the
amount of native code for each platform; it remains
uncertain whether this approach will meet the needs of
the market, or;

4) use one or more layer(s) of abstraction that can map a
“write once” application into native executable
programs that will run on multiple platforms.

Each of these approaches presents a set of research questions, and
suggests the need for customized tools to support cross-platform
development and testing.

4. CONCLUSION
The items discussed in Section 3 are only a subset of the possible research
topics in software engineering for mobile applications, but serve to
indicate the breadth of research needs and opportunities in this emerging
field.

While the large number of mobile applications makes it appear
that software development processes for them are well
understood, there remain a large number of complex issues where
further work is needed. In addition, there is a mobile “angle” to
almost every aspect of software engineering research, where the
characteristics of mobile applications and their operating
environments present a new or different set of research issues

5. REFERENCES
[1] Agrawal, S. and A.I. Wasserman, “Mobile Application

Development: A Developer Survey”, submitted for
publication, 2010

[2] Apple Developer Connection.
http://developer.apple.com/iphone/index.action. Accessed on
6 September 2010.

[3] Android Developer site. http://developer.android.com.
Accessed on 6 September 2010

[4] Eclipse web site. http://eclipse.org. Accessed on 6 September
2010.

[5] Windows Phone developer site
http://developer.windowsphone.com/windows-phone-7-series/
Accessed 6 September 2010.

[6] Fring, Brian. 2009. Mobile Design and Development.
O’Reilly.

[7] Schwaber, K. 2004. Agile Project Management with Scrum.
Microsoft Press.

[8] World Wide Web Consortium, Mobile Web Application Best
Practices W3C Working Draft, 13 July 2010.
http://www.w3.org/TR/mwabp/ Accessed on 6 September
2010.

[9] Apple. iPhone Application Programming Guide.
http://developer.apple.com/iphone/library/navigation/index.ht
ml. Accessed on 6 September 2010.

[10] Android Developers. The Developer’s Guide.
http://developer.android.com/guide/index.html Accessed on
31 May 2010.

!"#$%&'()*+%,'-.*/##-'012'%(*3.&.-%#".(2*
!"#$%"&'())$"*+$,-++$.'+"*-$
/"&*'0('$1'22-*$3*(4'&)(5#$

.(2(6-*$7"22'#$
8&"#9:"&'());$5-++9)'+"*-<=)496>?9'+?$

$
1"*#$>-:(2'$"@@$+'4'2-@'&)$"65$>-&'$2(A'$'*+B?)'&$@&-0&">>'&)C@&-D'))(-*"2)$(*$
+()6(@2(*')$-5E'&$5E"*$)-D5F"&'$+'4'2-@>'*5$FE-$6&'"5'$6->@?5'&$@&-0&">)$")$
@&"0>"5(6$5--2)$5-$)-24'$F-&AB&'2"5'+$@&-:2'>)$$C$$5E"*$2(A'$@&-D'))(-*"2$)-D5F"&'$
'*0(*''&)9$,E'#$F"*5$5E'$G?(6A$0&"5(D(6"5(-*$-D$6&'"5(*0$"$@&-0&">$&"5E'&$5E"*$FE"5$
5E'#$4('F$")$5E'$+&?+0'&#$-D$D-22-F(*0$'*0(*''&(*0$@&-6'))')9$,E'#$D-6?)$-*$5E'$
6-*)5&?65(-*$@E")'$-D$)-D5F"&'$+'4'2-@>'*5;$)2(0E5(*0$-5E'&$@E")')$)?6E$")$
&'G?(&'>'*5);$+')(0*;$5')5(*0;$"*+$+':?00(*09$$
$
H-;$'5$"2;$E"4'$+&"F*$"$62'"&$6-*5&")5$IJKL$

$
,E'$'*+B?)'&$)-D5F"&'$'*0(*''&(*0$&')'"&6E$6->>?*(5#$()$"65(4'2#$F-&A(*0$5-$
(>@&-4'$5E'$G?"2(5#$-D$'*+B?)'&B@&-+?6'+$)-D5F"&'$IJ;M;NK9$O*+B?)'&$)-D5F"&'$
'*0(*''&(*0$()$+'D(*'+$")$)#)5'>"5(6$"*+$+()6(@2(*'+$"65(4(5(')$@'&D-&>'+$:#$'*+B
?)'&$@&-0&">>'&)$5E"5$"++&'))$)-D5F"&'$G?"2(5#$6-*6'&*)$IJK9$P'$6"*$+&"F$?@-*$
5E'$2'))-*)$-D$'*+B?)'&$)-D5F"&'$'*0(*''&(*0$&')'"&6E$5-$+'4()'$"$2(0E5F'(0E5$)'5$-D$
5--2);$5'6E*(G?');$"*+$@&-6'))')$5E"5$>-:(2'$"@@$+'4'2-@'&)$>"#$&'6-0*(Q'$")$:'(*0$
F-&5E$"++(5(-*"2$-4'&E'"+$:'6"?)'$-D$(>@&-4'>'*5)$(*$)-D5F"&'$G?"2(5#;$(+'"22#$
2'"+(*0$5-$E(0E'&$"@@$)5-&'$&"5(*0)$"*+$0&'"5'&$6?)5->'&$"+-@5(-*9$R1-)5$>-:(2'$
"@@$+'4'2-@'&)$"&'$A''*2#$"F"&'$-D$5E'(&$&"5(*0);$"*+$"*#$5'6E*(G?')$5E"5$
+'>-*)5&":2#$(*6&'")'$&"5(*0)$F(22$:'$'")#$5-$S)'22T$5-$5E'$6->>?*(5#9U$
$
!')'"&6E$(*$'*+B?)'&$)-D5F"&'$'*0(*''&(*0$E")$@&(>"&(2#$"++&'))'+$&'G?(&'>'*5);$
+')(0*;$&'?)';$4'&(D(6"5(-*;$"*+$5')5(*09$$
$
V*$&'"2(5#;$5E'$&'G?(&'>'*5)$"*+$+')(0*$@&-6'))')$"&'$5(0E52#$(*5'&5F(*'+$"*+$"&';$
@'&E"@)$:')5$5&'"5'+$")$-*'9$,E()$6->:(*'+$&'G?(&'>'*5)$"*+$+')(0*$@&-6'))$>"#:'$
5E'$'")(')5$-*'$5-$)'22$5-$"@@$+'4'2-@'&)L$V*$5E'$":)5&"65;$+')(0*$()$)'W#$"*+$:'55'&$
+')(0*'+$"@@)$5E"5$:'55'&$>''5$5E'$?)'&X)$*''+)$"&'$2(A'2#$5-$E"4'$E(0E'&$"+-@5(-*$
&"5')$"*+;$5E?);$&'4'*?')9$$Y$2(0E5F'(0E5;$?)'&B6'*5'&'+$&'G?(&'>'*5)$"*+$+')(0*$
@&-6'))$>(0E5$6->@&()'$!"@(+$/-*5'W5?"2$V*G?(&#$IZK;$@'&)-*"B$"*+$)6'*"&(-B:")'+$
+')(0*$I[K;$"+E'&'*6'$5-$@2"5D-&>$0?(+'2(*')$I\;]K;$'"&2#$@&-5-5#@(*0;$"*+$

$

2(0E5F'(0E5$?)'&$5')5(*0I^K9R_-5'$5E"5$?)'&$5')5(*0$()$"*$(>@-&5"*5$F"#$5-$+()6-4'&$
&'G?(&'>'*5)$(*$"++(5(-*$5-$@&-4(+(*0$?)":(2(5#$D''+:"6A;$@'&$)'9U$
$
!'?)'$6"*$6->@&()'$:-5E$&'?)'$-D$@"55'&*)$"*+$-D$6-+'9$`"55'&*$&'?)'$()$)->'FE"5$
'*6-?&"0'+$"5$5E'$?)'&$(*5'&D"6'$2'4'2$:#$@2"5D-&>$+')(0*$0?(+'2(*')$FE(6E$"&';$"5$
2'")5;$2--)'2#$'*D-&6'+$:#$5E'$5F-$>"a-&$"@@$)5-&')$I\;]Kb$(*$@"&5(6?2"&;$Y@@2'$5(0E52#$
6-*5&-2)$5E'(&$Y`V$5-$'*6-?&"0'$+'4'2-@'&)$5-$?)'$5E'$@E-*'$(*$"$6'&5"(*$F"#9$/-+'$
&'?)'$D-&$5E'$6-*)5&?65(-*$-D$E?>"*$"*+;$')@'6("22#;$)'*)-&$(*5'&D"6')$()$"$&'2"5(4'2#$
'")#$)'22$0(4'*$5E'$6->@2'W(5#$-D$6-+(*0$)?6E$(*5'&D"6')9$,E'$6->@2'W(5#$-D$62-?+$
:"6AB'*+);$FE(6E$"&'$(*6&'")(*02#$(>@-&5"*5$5-$*-*5&(4("2$"@@);$>"#$"2)-$'*6-?&"0'$
&'?)'$-D$:-5E$"&6E(5'65?&')$"*+$6-+'9$$,E'$A'#$5-$@&->-5(*0$&'?)'$>"#$)(>@2#$:'$
>"A(*0$+'4'2-@'&)$>-&'$"F"&'$-D$"4"(2":2'$@"55'&*)$"*+$6-+'9$
$
`&->-5(-*$-D$"$&(0-&-?)$5')5(*0$@&-6'))$()$>-&'$@&-:2'>"5(6$:'6"?)'$5')5(*0$()$
"&0?":2#$5E'$2'")5$02">-&-?)$")@'65$-D$)-D5F"&'$+'4'2-@>'*59$1?6E$&')'"&6E$-*$
'*+B?)'&$)-D5F"&'$'*0(*''&(*0$E")$D-6?)'+$-*$5E()$"&'"9$,E'$>-)5$@&->()(*0$
"@@&-"6E$)''>)$5-$:'$5E'$(*6-&@-&"5(-*$-D$4()?"2$(*+(6"5-&)$(*5-$+'4'2-@>'*5$
'*4(&-*>'*5)$5-$'*6-?&"0'$)-D5F"&'$5')5(*0;$'909;$Pc.VPc,$RFE"5$#-?$)''$()$FE"5$
#-?$5')5U$IdKb$(&-*(6"22#;$6->>-*$+'4'2-@>'*5$@2"5D-&>)$+-$*-5$>"A'$"?5->"5'+$
5')5(*0$'")#9$!')'"&6E$"2)-$)?00')5)$5E'$@&->()'$-D$"$.?&@&()'BOW@2"(*B!'F"&+$
"@@&-"6E$IJeK$5-$&-?)'$"$+'4'2-@'&X)$6?&(-)(5#$"*+$5E'*$6-*6'&*;$5E?)$@&->-5(*0$
'*0"0'>'*5$(*$"$)#)5'>"5(6$5')5(*0$@&-6'))$)?6E$")$)5"5'>'*5$"*+$:&"*6E$6-4'&"0'$
5')5(*09$$
$
`'&E"@)$5E'$>-)5$@&-:2'>"5(6$0-"2$()$5-$6-*4(*6'$"@@$+'4'2-@'&)$5-$'*0"0'$(*$)->'$
+'0&''$-D$D-&>"2$4'&(D(6"5(-*$-D$5E'(&$6-+'9$f')@(5'$(5)$2-*0B5(>'$@-@?2"&(5#$(*$
)-D5F"&'$'*0(*''&(*0$6?&&(6?2";$5E'$?)'$-D$4'&(D(6"5(-*$5'6E*(G?')$:#$@&-D'))(-*"2$
)-D5F"&'$'*0(*''&)$&'>"(*)$@&"65(6"22#$*-*'W()5'*5;$)-$5E'$@&-)@'65$-D$0'55(*0$"@@$
+'4'2-@'&)$5-$"+-@5$4'&(D(6"5(-*$)''>)$&'>-5'$(*+''+9$$
$
g4'&$5E'$2-*0B5'&>;$5E'&'$()$"*-5E'&$"@@&-"6E$5-$(>@&-4(*0$)-D5F"&'$G?"2(5#9$,E'$
)-D5F"&'$6&"D5)>"*)E(@$>-4'>'*5$"@@'"2)$5-$+'4'2-@'&)X$+')(&'$5-$:'$&'6-0*(Q'+$")$
0&'"5$@&-0&">>'&)$:#$5E'(&$@''&)$IJJK9$f'4'2-@'&)$"&'$'*6-?&"0'+$5-$@&"65(6'$"&'")$
(*$FE(6E$5E'#$"&'$F'"A$(*$-&+'&$5-$:'6->'$'W@'&5)$(*$5E'(&$D('2+$IJMK9$.->'$
@&-0&">>'&)$6-*4'&5$5E'(&$@&"65(6')$(*5-$"$6-+(D('+$A"5"$)-$5E"5$-5E'&$+'4'2-@'&)$
6"*$>-&'$'")(2#$2'"&*$5E'$)">'$2'))-*)9$PE(2'$A"5")$"&'$@&'4"2'*5$D-&$>-)5$
@&-0&">>(*0$2"*0?"0');$5E'&'$()$"$+'"&5E$-D$)@'6(D(6$>-:(2'$A"5")9$RY5$5E'$5(>'$-D$
F&(5(*0;F'6-?2+$-*2#$D(*+$-*'9U$f'4'2-@'&)$"2)-$@"(&$@&-0&">$F(5E$-5E'&$
+'4'2-@'&)$D-&$5E'$'W@&'))$@?&@-)'$-D$(>@&-4(*0$5E'(&$6&"D5;$"*+$(*$D"65;$)->'$F(22$
'4'*$5&"4'2$"&-?*+$5E'$F-&2+$-*$"$Sa-?&*'#>"*$5-?&T$IJNK9$$
$
,E()$@"@'&$E")$@&-@-)'+$"$)'5$-D$5'6E*(G?');$5--2);$"*+$@&-6'))');$+&"F*$(*$2"&0'$
@"&5$D&->$'*+B?)'&$)-D5F"&'$'*0(*''&(*0$&')'"&6E;$5E"5$5E'$"?5E-&)$:'2('4'$5-$
6->@-)'$"$&'")-*":2'$"@@&-"6E$5-$(>@&-4(*0$5E'$G?"2(5#$-D$>-:(2'$"@@)9$,E'$
&'>"(*(*0$G?')5(-*)$"&'$SY&'$+'4'2-@'&)$F(22(*0$5-$2'"&*$5E')'$5'6E*(G?')hT$"*+$
SY&'$5E'#$F(22(*0$5-$?)'$5E'>$6-*)()5'*52#hT$g*'$F"#$5-$'W@2-&'$5E()$G?')5(-*$()$5-$

-DD'&$"$6-?&)'$(*$>-:(2'$"@@2(6"5(-*$+'4'2-@>'*5$5E"5$'>:-+(')$5E')'$5'6E*(G?')$
R"))?>(*0$5E"5$"@@&-@&("5'$5--2)$"&'$(*$@2"6'$")$*-5'+$'"&2('&$(*$5E'$@"@'&U9Y
@&-a'65B:")'+$'+?6"5(-*"2$"@@&-"6E$?)(*0$5E'$@'+"0-0#$@(-*''&'+$:#$/"&*'0('$
1'22-*$3*(4'&)(5#$B$.(2(6-*$7"22'#$)''>)$>-)5$"@@&-@&("5'$D-&$5E'$5"&0'5'+$)5?+'*5)$
IJZK9$.?6E$"$6-?&)'$6-?2+$:'$-DD'&'+$5-$>"5&(6?2"5(*0$"*+$*-*>"5&(6?2"5(*0$)5?+'*5)$
"5$-?&$6">@?)9$i-F'4'&;$(5$>(0E5$&'"6E$"$F(+'&$"?+('*6'$"5$"$6->>?*(5#$6-22'0'9$
j(*"22#;$5E'$:')5$"@@&-"6E$-D$"22$>(0E5$:'$5-$?)'$@&(*6(@2'+$>-:(2'$"@@$+'4'2-@>'*5$
5-$(*5'&')5$#-?*0$@'-@2'$(*$6"&''&)$(*$)-D5F"&'$+'4'2-@>'*5$4("$"$S)?>>'&$6">@T$
D-&>"59P'E-@'$5-$&'5?&*$(*$5E'$*'"&$D?5?&'$5-$&'@-&5$-*$5E'$+'4'2-@>'*5$-D$)?6E$"$
6-?&)'9$
$
4.5.$.(0.6*
$
IJK$H-;$Y9$k9;$Y:&"E">$!9;$%'6AF(5E$l9;$%2"6AF'22$Y9;$%?&*'55$1919;$O&F(0$19;$.6"DD(+($/9;$

l"F&'*6'$k9;$l(':'&>"*$i9;$1#'&)$%9Y9;$!-))-*$19%9;$!-5E'&>'2$m9;$.E"F19"*+$
P('+'*:'6A$.9;$S,E'$.5"5'$-D$5E'$Y&5$(*$O*+B3)'&$.-D5F"&'$O*0(*''&(*0;T$Y/1$
/->@?5(*0$.?&4'#);$5-$"@@'"&9$$

$
IMK$%?&*'55;$19;$nPE"5$()$'*+B?)'&$)-D5F"&'$'*0(*''&(*0$"*+$FE#$+-')$(5$>"55'&hT$V*$

O*+$3)'&$f'4'2-@>'*59$`&-6''+(*0)$-D$5E'$M*+$V*5'&*"5(-*"2$.#>@-)(?>;$V.B
O3f$Meed;$P?2D;79"*+$%?&*'55;$19$RO+)9U$.('0'*;$m'&>"*#;$1"&6E$MBZ;$Meed9$
l_/.$7-2?>'$[ZN[oMeed9$f-&+&'6E5L$.@&(*0'&;$@@9$J[BM^;$Meed9$

$
INK$fF(4'+(;$79;$SO*+B3)'&$.-D5F"&'$O*0(*''&(*0T$$R`-F'&`-(*5$@&')'*5"5(-*U$

E55@LooFFF96)96>?9'+?op:">o?(6-?&)'oMeJJE")+o2'65?&'M]B
O*+qMe3)'&qMe.-D5F"&'qMeO*0(*''&(*09@@5W$$

$
[4] Holtzblatt, K., Burns Wendell, J., and Wood, S., Rapid Contextual Design, San

Francisco: Morgan Kaufmann, 2005.

I[K$m--+F(*;$H9$"*+$/--@'&;$Y9;$f')(0*(*0$D-&$5E'$f(0(5"2$Y0'L$i-F$5-$/&'"5'$i?>"*B
/'*5'&'+$`&-+?65)$"*+$.'&4(6');$$."*$j&"*6()6-L$P(2'#;$Meed9$

$
[6] Anonymous, Apple iOS Human Interface Guidelines,

http://developer.apple.com/library/ios/#documentation/userexperience/conceptual/m
obilehig/Introduction/Introduction.html

[7] Anonymous, Android User Interface Guidelines,
http://developer.android.com/guide/practices/ui_guidelines/index.html$

$
[8] Krug, S., Rocket Surgery Made Easy: The Do-It-Yourself Guide to Finding and

Fixing Usability Problems, Berkeley: New Riders, 2010. (Also see
http://sensible.com, especially the video of an example usability test.)

IdK$!-5E'&>'2$m9;$%?&*'55$19;$l($l9;$f?@()$/9$"*+$.E'&5-4$Y9;$SY$1'5E-+-2-0#$D-&$
5')5(*0$)@&'"+)E''5)9;T$Y/1$,&"*)"65(-*)$-*$.-D5F"&'$O*0(*''&(*0$
1'5E-+-2-0(');$JeRJU;$JJeBJZ];$MeeJ9$

$
[10] Wilson, A., Burnett, M., Beckwith, L., Granatir, O., Casburn, L., Cook, C., Durham,

M., Rothermel, G.: Harnessing Curiosity to Increase Correctness in End-User
Programming. In: ACM Conference on Human Factors in Computing Systems.
ACM, New York, 2003.

 [11] Anonymous, Manifesto for Software Craftsmanship,
http://manifesto.softwarecraftsmanship.org

$
[12] Ericsson, K., Prietula, M., Cokely, E.: “The Making of an Expert.” Harvard Business

Review. 2007.

[13] Hoover, Dave. “Dave Hoover’s Journeyman Tour”

http://nuts.redsquirrel.com/post/1181144648/dave-hoovers-journeyman-tour
$
IJZK$%"&'());$!9$"*+$.'+"*-;$,9$;$Developing Software Engineering Leaders, Proceedings

of the First International Symposium on Tangible Software Engineering Education
(STANS-09 in Tokyo, Japan), October 2009.$

���������	
����	��������	����������	���������

��	
���	
��������������	������������

�����������	
�

����	������	������	�������	��������	�����
�����������	

��

������������������ ��!� "#$$����������������!����

%&��'������(��&����'&��)�'����*	�)����'����������+��������'�&���,�(&��)�'��

 !����"������

����
�����
������
�
����
��������
�
����
�
���
����
��
����
�����������������
����	
����������������
�����
�

�� �
�������
���� � ���� � ����
 � �������������� � �
�������� � ��� �
��
������
�� � �� � ���	�
� � ����
���

�		������������������
����������������
��
���
����������
��������������	���������������������
���
����

������ ���
�������	��� ���� ��
���
���� �	
��������
�������	����������������
��� �������������������������

�
����
����
�
����������������������
��
����
������������
���������������
������������
��������
�����
���

��
�����
��
����
����
�����	�
�
��
���������������
������������	���
�������	�������	����������
���

!��	�����
�� �"�������#��������$�������
����
�������
	�� ����������
�%����

��������� ��
�
��� ����������
�

����
�������������������������������
������������
��������������
����������������������������
���
����&� �

����
��
��
����
�
�����
����
����
���
�����
������
���������������
	�������
��������
��
�
��	�
�������
�'()��

&		�����������
�������������#����������������
����	�
�
�������������������������������	�������������
����

�
�	����
���
�������
�����	��
�	�������������������������������
����������
���������������
���'*)��

 �
������������������������	������
������������
��		�������������������������
��
���
�����������
�����

���
�������������
�	�����������
�	����������
����	�
������
�����������������
��#�������������������#

�������������
����&���
�����
�����
����
������
������
������
�
�
�������
��������������
��������
�����
��

������
��
����
������

�����������������
�	������
��������
�����������
�����
�����������	
��������
��
����

���
��������������
���������������������	
�
������������
��
���
�
��
�����������
����
��

+���
������
�����������
�
�����������
�	���
��
�������������������
�
�������
������
��
�������		��� �

��
��
�
��	�
�� ��� ��
�
���#	��	��
 �,
��� �+���� � !�-�(**./� � !�-�(00.12 ��� ��		��������#�	
����� � ,
��� �

3 +&45-#(/67��!�-�8*9.1��%:�0.(*62��������
�� �
�
����
����
�
�����
��
�������
�
��	
����������

������
������
��������������
�������	
����������
��	���������������
��
�
����
�������������������
�����

�
������ �
�������
��� � ,
��� �
�
��
�� � �
����	� �
���2� � �� � ��
� � ��
 � 	�
	��
� � �� � ���� � ��
 � �

�� � ����

�
������������������
�
���	�
����

-����
����
����������
����
�����	�����
���
�
��	�
������
����	
��������������
��������
�����
���

,
��������
#5�'9)����3���5/�'1)2���������������
���������
��	�
�
�������
����
��������������� �
�
����
�� �

����
��
������
��
�
���������&���
��
���������
�����	�����
����
�
��	�
�������
�����������������
���������

��
��
�
������������	�������
�	���
��
������	������
�������
�
���������

����������
��������
�������������
�

�
�
��	�
�������
���&������������������
����������
�����
������
�������
��
�
������������������������
 �

�		��������������&���
�����������������
�	������
����������
�
������������������
��
����
�
������	��
����

�		��������#�����������������������
������������	���
���
��'0)�

!� ��������� �����
����� �� � �� ������������
����
������������ �����
����� ��������
� ��
���������
����

����
��������
����������	�����
��		��������#�����������
�������
��������
������������������������
��

����

�������
�� �����	������������������������
����������
�
�������
��� �����������������������	���� ��
�

�������������
��������
�	�����������������������#�������������
��������
�
��
����
����
������������
�
�����

��������������
�	������
�����
����������
�������
��#����������������
��
�
��	�
��������������

;
�
��
�
� ���� � �� � �� ��
�
������ �� �������,��
� �����
�� � �
�
���
2�����
�� ��������
���������
�	������
��

���	�
��������
��
�
��	�
�������������<
���
�
����������	�
��

����
�������������#����������������
�

���������� �&��
� ��������� ���� ��������
� ��
����� ��
������ ��
 ����� � �� ������ �����
�� �	������
� � ��� �
�

���
����
�
��������	�
��������
�������������
��������
���������
�	���
��������	������
������������
�

�
�
��	
������	�����
��������
���
����
������	����
����������
�������
��������#���������
�������
���

# �����	��	�$�	���

!������������������������������������	���
���������������
	
����
��
�
��	�
���	���
�����������
��		����������

'8)��&����������
������'9)��������
���������
��
�
��	�
����������
��		��������������������
�������������
�

�����
��	
�������
�����������
�����������������������������������
�
�������
����7����
����
��������
�����

�������������
�����������������
�����
�
����
�
��	�
���	���
��
����������
��		����������
�
��	�
��� �

���
��
�
�����������
���������=����
�����;
��
�'/)��������
����
���
������"5�
���������
������������
���
����

���	��������� � �
������ �����
� �
��

���
����	���������
��������
>$����
� ������� ��
��
������
��������

��������
�	������
�����
��		��
���������
��������
�����������
�������
����
���
���������
��
�������
����

&������ ����
�	������
��������������
��
�
��	�
����
������������������
��
���
���� � ��������
����

&����������
������'9)������
��
��������������
������
#5�,���	��
����%���
�
������������2������
#5�

���	��	��
��������&���
��		�������������
��		����������
�
��	�
�������
��
�����
�������
	
��
���������

��&����������'6)�������3������������3������'?)��!����
����
��
��
��3���5/�,3�	���	�������������

�����
�����������/���
	�2�'1)������
�
��	
�������		��
�����:����@�����������
������	��
����&���
�	������
� �

���������
������
�����������������
���������	�����������������
����������������
�	���
����������
���
��

�������
���
���������
��
�
��	�
����!���������
�����
������	�����������&���
�	������
�����������
��������
�

	���
��
�������
�������
��������������
�
���������
��		����������������������
��������������������
���������� �

��
��
�
��	�
�������
����
������
����������
������������������
�����
����
�
�����	���������������
����

 �
�
��������
	�
�
�������

���������
�
�������		���������
�������
�@����
��
�
������
������
���&���
 �

�����
 � ��
� ���� � ���� � �� �
���������� � � � ��
�� � �������
 � ��������
 � �����
�� � ��
� � �� � ����
��
 � 	����� �

	���
���
�� � �
����� � ��� � �
	���� � ��	��
� �� ��		��������#�������� � ��������� � ��� ��
����������� ����������
���

��	���������
�����	���#����
��	������
��

% &��� 	 !���� 	 �� 	
���� 	 �������� 	 ��������� 	 �� 	
��� 	
�������������� 	

������������

&��������������������������������
�����
����
���������
�����
��������
��
�
��	�
���	���
��
������ �

�		��������#�������������������� �
���������������
���������
��������
�	
��
��
����&���
������������#���������

�
�
��	�
�� � �� �����
�
� ��
 ����������������� �� � ����� � ����
���� � ���� � �
���� ���������� ����������� �����

���������
��������
�
����

�����	������
����������
�	���
����
�������
������
��
�
��	�
����������
��������

�����������#����������������
A

� +���
�������
��������
��
���������
����
�����&���
�	������������
����
����	�
������

����
�

�

�������		��������#�������������������,��
�������������
��������
������������
���������	�
��������

���
	
��
��
�
��

�����
���
���2��

� &����
�����	������
�������&���
��
���������
��,
�����
�����������	����	������������������
��

������
�
��2��������
������	����
�������
��
�
��	�
����������������������
�������������
����
��

����
�����	������
���	������
�����
������
�	������B�����������

 �
�����
�����		�����������
	���
������
��������
�
	���
���������
�����������������������������������

����������������
���
����������
���������	�������
��#��
�����	������
���	�
����;
���
��������������

�����������
� �
�
	���
������������
�	����������������	
�����������
���	��
�����
��,
��� ������
����
�

��
�� � �	
������ � �����
�� � ����
��2� � �
�������
 � ����
�� � ,
��� � �������� � �� � �
��	���
� � ���� � ���
���

��������������������	�����2��������������		����������������
����
�����

�����
��#���������������������������� �

���
���
����
�������������	�
���������
��
��������
����
��

' (�����	��"	�������$	�������$

-�����������������������
��
��
����������
����
������
�������
��������
�����
��������������
���
���������

�����
�	������������
������������
������
��#������������������������
�������������
����
�
�����&���������
���� �

����
��
���
�������������	�����������
	
������������
������������������
���������
�	���
�����������
 �

�		����������������
������
��
��������
����
�����������	��	
����
�
���
�������	
�����
�

 ������
�
�������������
����
���
�����
����������������	�������
����	��������&���
��
���������
�����
��

�����
�����������������
���������
����
�������
���������
	�
���		�����������������������
��������
�

�
�
��	�
���	���
��
���&����<�������
	
��
���������
�������
��������
��
�
��	�
����
���������
������

&���
 � 	������
�� � �
 � ���
 � ��
�����
� � ���� � ��
� � ���� � �� � �
�
��� � 	������
� � ��� � ���������� � �
����
� � ��

�
������������	���
��
������		��������#����������������
������
���	�
�����������	���
��������
��������,	�����

��� � �
�����2� � ����
������ � �
������ � ���
	
��
��
 �
��

� � ����� � ���
� � ,
���� � ���
	
��
��
 �
��

��

�
�
��	�
��������
�����������������2��������
���
����
�
����

-����
�
������		�������������
�
���
���
��
����
�
�����
������
��������	��������
�
��	�
�������������

�����		��������#����������������
�,
�����3 +&45-#(/67�����������
��		�����������!�-�8*9.1������
������

����
��������%:�0.(*6��������������
��2�����������������	����������������������������������
��������
������ �

������������������������
�������
��
�
��	�
����
���������
��������
�	
���������
��#��������������������

!�������������
�����������	����
������
��������
����
�����
������
�����
�
�������
������
���,
�����������
� �

�� � ������������� � �
������� � �����
� � ���	��������� � �
�����
�� � ��� � ���
��2 � �� � ���	�
�
�� � ��
 � ���
���

������
������� � �� �
 ���� � �� ��������
� �� �����
 ��
���
 � ��� � ��� � �������
 � ��
 � ���� � 	������	���� ��� ����

�		��������#�������������
��

&��
� � ���� ���������� ��
 ����� � ����� ��� �� � �
��
� ��� � �
����
�������� � ,���
���	������
�� � �
����� � ����

�
����
�
���2 � �� �
 � ���
� � �� � ��
 �
������� � ����
 � �������
 � �
�
��	�
�� � �
���������
�� � �
�
�

�
����
�����������
��������
��
������
	���
�����
����
�
��	�
���	������
�������������#����������������
��

�����
��������
	�
�
������
����
�����
���
�������
����
������
�
���	������
���������������
�����
��������
�

�
�
��	�
�����������
���
����
������	���
��
���	�����������������
����������
�������
�����

�����
��#

����������
�������������
����
�
����������������	�������������
���
��
�
��	�
���������������
�	������������

�����
��
	���
��������
�������
��������������
�
��������������������������������
��

����������

'() ��C���������*..?� �������������������-�./���/�������������0���������
�C�����������
��������������
�((��

����
�9��!��:�(0**#.01*���	��*6�� �
�&�
����������
�������C��������

'*) �
�������� �7���� � �

��� �3������� ��� �*..?� �	� ��

����/ � �� �������� � �������� � ������ � �� � ��������������� �

���������D����������+��	��
�����
��
�0��*..?���	��9((#99*��!��:�(01?#9898��E����
��
�������������

'9) &���������������F�����
����&���F�������F���!��
�� ���DGG��������D���H������������H���
����D���H���I�
������ �

������-��*..1��1�)�����-�	��	�����	

����/�����1�)����	

���������������
����'�--��J&B.1��

'1) H���G�������3��*..0��2����3-�	������)��������1��/�������/�����������	����������������������������������� �

!�&��������4
���������!�7:�?0*#(0#(0(/#(��:�����

'0) &��
������*..0� �5&������������	�����.���� ����������
�C�����������
��������D�������������
��/������
��1��

!��:�(0**#.01*���	��91#1.�� �
�&�
����������
�������C�������

'8) K��������� ���� ��������� ���� �����
����<� �3�� �H��
� �J�� �7�
��
�� �;��*..0� ����
���������� ����1��&������ �

�����&���1���������/��������
��������1�)���������!�����������!%%%�

'/) =����
��5������;
��
��+��*.((����������������������5&��������������6�����7����������1�)����	

���������'�

=������!%%%�!��
����������+���
�
��
�����������
�
�������L
���������������L�����������

'6) &������������'�*..0��1�)������������������
�����8��/��)&��������

���&������������'�����

�����������
�

!��
����������+���
�
��
�����������
�5
�
��	�
����*..0��3
���������!�
������		��*.#*9�

'?) 3���������L��3�������3��*..6���������������	�����1��/�����������1�)�������������������
����-�	�9�)�� �

1��/������������� �	

����/' ��
�����!��
��������� �+���
�
��
 ��� �3
�
���� �+����
��
� � �� � !�����������

���
��
�

Mobile Business Applications must be thoroughly
engineered!

Ralf Carbon
Head of the Research Area �“Business Goes Mobile�”
Fraunhofer IESE
Kaiserslautern, Germany
ralf.carbon@iese.fraunhofer.de

Steffen Hess
Fraunhofer IESE
Kaiserslautern, Germany
steffen.hess@iese.fraunhofer.de

Ralf Carbon works in applied Software Engineering research since 2002 after he received his diploma
in computer science from the University of Kaiserslautern, Germany. He performed many projects in
the area of software architecture, especially in the domain of large, workflow-based information
systems. Since 2009, he performs projects on mobile business applications covering their complete
life-cycle. Since 2010, he is the head of the newly established research area �“Business Goes Mobile�”
at Fraunhofer IESE. The research area currently consists of a team of 10 researchers working on
mobile software engineering projects.

Steffen Hess works at Fraunhofer IESE in the field of usability and user experience since 2004. He
worked first as a student employee and after receiving his diploma in industrial engineering as
researcher and practitioner. Already in his diploma thesis he worked in the field of mobile software
engineering �– comparing different mobile open source and proprietary operation system
ecosystems. Since 2009, he performed many projects on mobile business applications for different
customers in different areas. Performed work in this context covers especially conception and
prototyping of apps using a lightweight engineering approach.

1. How does traditional software engineering relate to the engineering of
mobile applications and systems?
In the research area �“Business Goes Mobile�” at Fraunhofer IESE, we develop methods to
systematically engineer mobile business applications (apps) and transfer them to industry. Mobile
business apps are provided by organizations to offer valuable mobile services to their customers (B2C
scenario) or equip their own mobile workers with appropriate workflow support (B2B scenario). We
supported, for instance, customers in the agricultural domain to develop mobile business apps for
farmers, contractors, and field workers and in the airline domain to build mobile business apps for
passengers, pilots, and service personnel. The examples show, that mobile business apps are used in
business-critical situations and therefore need to provide the required functionality with guaranteed
quality. Especially a great user experience, security, but also flexibility with respect to future
extensions are beyond the key quality requirements.

In our industrial projects we experienced many insufficient apps. The main reason for mobile
business apps of poor functionality and quality is that such organizations do not thoroughly engineer
them. Driven by tough time to market constraints, they suppose mobile business apps can be
implemented quickly without precisely specified requirements and without thorough UI, interaction,
and architectural design.

Our approach is reuse parts of �“traditional�” Fraunhofer IESE software engineering approaches we
applied in many domains for many years, but to tailor them where required and to complement
them by, for instance, solution patterns and lessons learned from the mobile domain.

We decided on certain guiding principles for mobile software engineering that support us in tailoring
our existing methods to address key challenges of mobile business apps:

Be user-centric: Heavily involve the end-user throughout the engineering process of mobile business
apps.
Be lightweight: Run through all major activities of a typical software engineering approach, but focus
on the production of key artifacts.
Be iterative: Perform short iterations to get quick and continuous feedback (especially from end-
users) and continuously improve your mobile business apps based on that feedback.
Be integrative: Take care of close interaction between major stakeholders in the development team,
for instance, requirements engineers, UI and interaction designers, and architects.

While these principles are generally valuable for all kind of Software Engineering projects, we want to
specifically point out the importance of them in the case of Mobile Software Engineering projects.

2. What are the distinguishing features of mobile software specification,
architecture, development and testing that need special attention, skills, or
innovation?
Currently, our research in mobile software engineering mainly focuses on requirements engineering
and architectural design.

Requirements engineering for mobile business apps must be performed quickly, must focus on the
main stakeholders, especially the end-users and their main requirements, and results must be
documented precisely but in a lightweight fashion. We try to accomplish this, for instance, by
performing a one day requirements engineering workshop with the major stakeholders per release
(especially involving the end-users), with a fixed agenda, and a documentation template that is
reduced to the essential requirements artifacts.

Architectural design for mobile business apps should be focused based on typical quality
requirements of the mobile domain. If such typical domain requirements and potential solutions can
be represented adequately in a reusable form, the quality of the architecture and the efficiency of
the architectural design process can be improved to better fulfill the tough time to market
constraints of mobile business apps and guarantee a certain quality of the product. We try to capture
quality requirements and architectural solutions in a platform independent way and if required
describe iOS or Android specific instances.

3. What should be the suggested focus and agenda for mobile software
engineering research and education? What new knowledge and skills do
practitioners need most?
Mobile software engineering research and education should focus on developing and teaching
methods considering the specific challenges of mobile application development. Such challenges are,
for instance, short time to market and high quality, especially user experience, security, and
flexibility. According to our philosophy mentioned above, requirements engineering, UI and
interaction design, or architectural design approaches for mobile business apps should be user-
centric, lightweight, iterative, and integrative.

Mobile software engineering methods need to provide answers to practitioner, for instance, with
respect to the following questions:

• How can we achieve a great user experience?
• How can we design for multiple platforms?
• What is the right scope of an app?
• What do we need to consider when integrating an app in an existing IT infrastructure?
• �…

��������	
���	���	������������	����������
��	�����	��

�����������	��	��	����	������	�����

���
	��������������
	����	
�� ��!
�	�

"���
	#������������$���	
�#�!��!
�	�%&��#���

�

�����
�������������	�
	�������	�'�	��$

�

�'�	���
	�����������$�

(�	��)�*++,+-$�.	��

��������

�������	����
�����	�/
�	������������������������
����	�������0���������	����	�
������
����0���
����	���

1��� � �2���� � �� � �	�
���� ��
�� ��0 �('� ��� �3,+-# ����� � �	���
�� � �
 � ���� �1���� ��� �
 ����� ��
�!� ��0 ��������

�	
�����	��0��2���	���	��������������#�'����	��
���0����
��1���	�����	�������������������
�0�������
		�� �

�����
��	�0���
�� ����������
0������0��	����# �.	��
� �1�����������������������
������	��
����
����
���� �

������������
��������0��
��	��	�������������������
0����$��#�#$�
	�
����������������������������	���	��!��$����

�	��0
��	� � �����	$ � �� � �

 �
��	� �1�� � �� � �	��
���	 � ������� �
	� � �� � �
�
����� � � � ��	��
� � ���� � 0��� � ���

�����0��
��	#�4���
����	��
������0��0���	������������
�����0������
�������0�����������������	����#

�				
����������

��� �
���	 ��0 � ���� ������� � ������	� ���
0���� � 5+6 �
��	� �1�� ���	�	���� � ���������	 � �	 � �� ��	������	��

�
��1
�� � �
�
������� �
	� �	�1��! � �	0�
������� � 536 ��
�� � ������� � �	 �
 � ��
�� ����
	� � 0�� ������� � ������	��

�����
��	�# �������� ��
��� �
�����	� �1��� � 0������ � �1
��� � �	��
�	��	 � ��	��� �
�����
��	� � 7�#�#$ � �
��	�$�

�����$ �������$ � ������8$ � ����	 � ��	�� � ������ �
 � ������ � �	���� � �	 ������� � �	
�����	 � �0 � �	������� � ����	����

�����
��	��7���8# �9����2
����$ �0�	
	��
� �
�����
��	�������
����������
	!�	�$����0������
	
����	$ ��������

���!��
������
������1����
�	�	��
����
	���
��	���������������5-6#�9�	
	��
���	�����	��
	������	�����������1���

1�����
�������
�������	��������	���������������0�������������	����������������
���	�1�0����1�	��
�����������
� �

�
�#���������$�
�����	�/
�	���������5*6���������
�������	���	���	����	�������0���
����	�������������('������ �

	�������	���
���
��
�
��������0�0��������
����	
�����!����
����������	�����������������	�#�:�1����$ �

���������	�������	����
	��0�����������	
�����	��0�����	����
�����
��	���
�������
�
�����������#������������
����

�0��������������	��
��1
��$���
0���$��	����	��	$�������	��
���	���#$������
�����
��	���
����������1���	�0���

����� � �����0�� �
��� � ��	�2 �
������ � ���� � ���� � 0�	���	
��� � ���
�	� � �2
��� � �� � �
��# � ���� � �	���
��� � ���

���������	������0����
�	��;���������
��<�
�����
��	��������������	��
���
���0�	
	��
�������	��	�����	����

�	�����	��
	��
�������1����1	����
�����
��	=���������
�!�#������0�����	�����������	��
���$�1���2������	�����

��01
����	��	����	�����	�������
��
	��
	�0���������������������������
	#

������

�					����������	��������	������������

�����
���$�
	��	������	������������	����
�����
��	��
	���������������	��-��
����$�	
����$��������	���������$ �

����

�
	�����������	��0
���7>.8��
���#���������	���������������	��
�����	�
����
���1���	�
�����0�����������
 �

�	��
���1�������

��
���#�����>.��
��������
������	���������0��	��	���0�����������
��	��������	��
���	 �

1������������	��0
��#�9���+
�����������
��������	
�����
����1����1�����	��
���	�
��	��������
�����
!�� �

��
�����
���������������
	�������	����������#

9���+�������	������
�������������0����
�������������������#�������0������	���	���
�
���
�����
����	 �

������	������

��
���0�
	������
�����	����	�?
��	$���	����	��$��������	����
�����#�@	������
����	��$����

��	���	���
�
���
�����
���1���������	�����>.��
� �
�������	��
���	���A����7�#�#$ �1�����8$ ������������0�

����
��	�7���
���8�
	��������	��
���	��
��	#�9����2
����$�������
�������������1
���
�������
	����1���
�

��������

���$���������
���������
	���0�	����������00�������������
��1
�����������
	����1�������������

�
����	0���
��	�����	��	���	�����������
	�������
0����7������8���B�����������������#������0�����	��
���	�

�
��	���
���
	������
	�������	���������	��0�>.��
���0�
	��
�����
��	#�9�	
���$��������������
�
�����	��
��� �

�����������	�	
����
����	��!�����
���00���	������	��
��	���������$�0����2
������@�($����$�.�����#

�					���������������	����

9���
	���	���������
��00����
�����0�����������	�������!�����
0���$���������0����������	��
��������	� �

��	������������������	
�������������
���
���������	�����	���
��������������
	������9����1�	������������	$����

����0����
���������	��
��C

• :�1��
	�����
	�0������
�����
��	��������������	�
	�����������
0�������������D

• :�1������������������������2�����	����	����
������
0��������
	���D

• :�1������������������
�����
��	���
�
������������������$�����!����������
�!��
	�����
�������
�����

�
�	
�	D

���
	�1������
�����������	�$�1����0�����	�������
����01
����	��	����	����
�����
	���2�����	��#�9������

�
�������
� ���
��$ �1��
������	�������������	��	��	����	��7���8����	��������
����������	�����0���������	��

�	��������
�����
��	�0����������������������5E6#����������
�������������	�
	�������0��
��	��0�
	��
�����
��	�

	� � �
��� � �� � ����� ��0 �
���
���	 � 0�����������	��� �1
� ��0 �
�����
��	 ����������	 � � ���������	��� �1
� ��0 �

�����
��	 ����������	# �9���3������	� ����������	 ����� ���	�����0�� ���	�����	� �	���� ��	������� �����	����

�����
��	��7���8#�.����1�����������
�����	����	��7�#�#$��

$�>.�
	����������8��0�
	�������������
�����������

���	���
�����	��
����
����)�	
�������������0��
��	���
��$������	��
��	���
���
	������������	
��	���
��#�@��

�0 � ���� � ���� � ���	��
� � ��
���$ � �� � �����0��
��	 � ��
�� � �� � ���� � � � �
���� � �� � ���������� � �����0��
��	 � �0 �
	�

�����
��	 �1����
� � �� � ��	��
��	 � ��
�� � �� � �������� � �0 ��������
��� � ���� � ��	��
��� � �
 �
!� � �� �������

�����0��
��	��
���	���
	����������������1��������������	
��	�
������#�9�	
�������
������
0������������7�8�

���������
��������	��
���
��0
���1�����
�����	��
�!
���$����������
	����	��	������	���������#

����������	
��

�������

�
�

���

�����������

����������
���������������

�����
�������������

�����
�������
������

���
����

���

��
��������

��

�������

�����	������	�

����

�������� ���	����

�������

����

�	������

�������������������������� ��!�������"���!

�����#��"�!�����$�����!�	��%�������������� ��!������

4����������������	������$�������	������
	�������������������
�1��������	�������	��������
	�1�������

�����������������	
��������	����
�����
��	�#�9���������	��
���2�����	����	��
	�
�����
	�0����	������������

��������	
����$�1���
�������������
�0�������
���
�����
��	$����0�	���	
����
����������

�
	������������� �

�
��� ���	��
�������	����
	���0�����	�����������
0������
	����# �:�1����$ �����������
��
�������	����>. �

�������	
��	���
���
�������
���������������
0����$��	��	���������������������	����>.��
���0����
�����
��	# �

������
���$ ��	��
����0�	
����>.��7�#�#$ �F
�
��	��	�����$�@�A�����'��	��@�8$ ��
���	��
�����00����
������������ �

�2�����	�� � �
	 � 1����
��� � >.� � 7�#�#$ � ���	� � 1��!� �
	� � �������� � ���1���8$ � �� � ������� � �� � �����
� � �����

������	���#�9����2
����$��	�������������������
��1�������
�
���	������������	��@��7�#�#$ �+��������8#�G�!��

���$������
��������
��������
��
��	���	����	
����>.��
����
���������������
0����#����������
��
��
��	���	����>.�

�����0��
��	�0�������
���
�����
��	�
������������	�9���-�
������������
	�����������#�����$��	����������
�����

���� � H � �
��
��	� � �	 � �� � >. � �
���$ � �� � �	������
� � ��
0��� � �����0�� � ���� � ��	��
��� �
�� � ��	0������ � ��
 �
�

�
�
����?
��	 � ������� � �
 �
!�� � �	� � ��	�����
��	 � �� �
���
� �>. ��
���	� ������� �
����� �������� ��������

��
0����#�����������0�9���-����1�������������	��	����
0���������0���
�����
��	���
�1������	��
���0�������

�
���
�����
��	������0��
��	#

�				����������

����� �
��������
� ���
���	�����	�������	���������
�����
��	���
���	������00���	 �0�	���	
��
	��	�	�0�	���	
� �

���������	���0�
�����	����
�����
��	�7�#�#$���	�����
	
����	$��	������
	
����	���8#�:�1����$��	�����������	�

�
���$ �1���������
�������
��
�����
����
���	����	���������	
���	���2���	���������������	�������0��2���	��

��0
�� � 7�#�#$ � �

 �
	� � ��������8 � �� � �����
��	� �
	� � �2�	��	� � �2���	� � �����������	 � ��01
�� � �	��	����	��

���	�����#����
�����0��0���	���$�1���
���
����������
���	�����	������
	���@����
0���#�:�1����$������
���

�
	�����	��������7�#�#$�	
������#�1��8�1��	�������	���������
�����
��	���
����������0�������2����
��	��0������

������
�������	���01
����	��	����	�$�1������
	��������
��
�	�1���������	���0�����1	#

+�.	��
��������������0�	���	
�����
	�����
��������
�
���������	��@�

����!������� "������

9���-C����������	
���	���	������������	��������

����������

+# ��������	 �/�I	��$ � F
��� �:
	��	$ �/�������
 �/��	�
 � ;�
����� � �� � �
���� �!����� � �� � "	�	 �!#$ � 	 �

���	�	�������%��������������������
���
����
�
��<$���������	����0����-���.	��	
��	
��'�	0���	���

�	�(���
���������	�����������
���������������	����	��	��$�F�	��3,+,#

3# �
��� ��?�?��	�$ � ���
��
	 �:�����$ � 9���2 ����	�$ ����
 �������$ � ;&
'���'��� � �	���	�� � 	������	���
 � ��� �

�������� � ��	�� � ��������
� � �
 �
��� � ��
��	���
 � ����� � �������<$ � ��������	�� � �0 � �� � J� � .���B�'��

�	��	
��	
����	0���	����	�:
��1
��B��01
����������	�
	����������	�����$�@������3,,K#

-# ����
��� �L
��0�������$ ��	
�
���� ��# ����	������$ � ;#�	�%	��
� ������ ��	
��
� �����	��<$ � .	��	
��	
��

F���	
���0��������'����	��
��	�$�F
	�
���3,,K$��������J�.�����+#

*# ���(�������	� � 0�� � .� �@��
	�?
��	� �
	� �>���� � �	 �3,+,�
	������	�$ �/
�	�� ������$ � F
	�
�� �3,+,$�

��CBB111#�
�	��#���B�B�
��#A��D��M+3JN*+-#

E# ��	
� � ��!
�	�$ ��# ���	!
��� �
	� �������
� ������# �(�
��	��
� ��
�������� �	�����	���
� � ���������#�

@�A���@���	���.	0���
��	�������$�3,,3$�GO'��3*3P$���#�3J,�3JK#

��������� 	
����� �����������

������� 	
��� ����������

��������������

����������������

������������

����������������

	
�������

	
�������

����������������� �����������������

������������������ �������������������

���� �������

�����������

��

��������

���������� ���������� ����������

	
�
���
�

��� �
����
�

 1

Abstract With the tremendous increase in the number
of mobile phone users. The demand on having mobile
applications that provide solutions to many of the
daily life aspects increases too. However , designing these
applications is different from the typical desktop
applications and imposes many software engineer ing
challenges that need to be taken into consideration. In this
paper , we present the system design and the software
engineer ing challenges encountered while implementing an
Android mobile application that provides a voiced based
text messaging functionalities for people who tends to text
while driving thei r cars.

Index Terms Voice recognition, Android mobile
development, automatic text messaging, voice based
software development, mobile phone software engineer ing.

I. INTRODUCTION

With the way that technology has revolutionized
communication methods, mobile phones have become an
indispensable part of keeping up with this fast paced world.
Mobile phones have provided an on-the-go easy, fast and
efficient method of communication and have opened up a lot
of possibility for enhancing user experience with the digital
world. However, this widespread adoption of these devices has
stimulated software architects to create new applications and
solutions that opened up a new horizon for the software
engineering community and imposed new challenges and
limitation that did not exist in the personal computer
applications.
People are always looking for the easiest, most user friendly
and most intuitive method of communicating through their
devices and there is probably no easier way to achieve that
than talking to your phone. Speech is one of the most intuitive
ways of interaction since it is the natural method of
communication between people. Thus, speech recognition over
mobile phones is rapidly becoming a must have feature in any
device. For people on the go, for example while driving or
walking, it is quite difficult and not to mention very dangerous
to use mobile phones without any kinds of aids such as
wireless Bluetooth earpieces and other accessories that make it
hands free. According to [1], a shocking 16,000 deaths were
caused by texting while driving in the US between 2001 and
2007 and it is on the rise every year. A solution to a problem
would be provided through the use of Automatic Speech
Recognition (ASR). Through ASR software, drivers will never
have to take their eyes off the road, their hands off the wheel
or their minds off their safety. They can respond to text
messages by simply speaking their reply. The main aim of this
paper to present the software design methodology and steps
needed to design a voiced based text messaging application
over Android mobile phones that try to address the

aforementioned problem, with some emphasis on the software
and design challenges faced during the implementation, which
is of particular interest to the Android mobile
community.
The rest of the paper is divided into three further sections.
Section II describes the application developed and its
architecture. Section III presents some of the software
engineering challenges faced during the implementation and
how they were addressed. Finally, Section IV summarizes the
paper.

II. SYSTEM DESIGN AND ARCHITECTURE
In this section, we provide a detailed description of the
application, its architecture, and all the modules and
components of the application.

A. Application Description
The main aim of the application is to enable users, specifically
drivers, to use their mobile phones on the road without having
to resort to physical contact with the phone. This approach for
interaction with the device will greatly reduce the risk of
accidents caused by distracted driving. The application focuses
on the feature of text messaging or Short Message Service
(SMS). When a mobile phone user receives a text message
while driving, he is either not going to reply until they stop or
they will have to pick up the phone to read and/or reply to the
message. To provide a solution to that problem, we created
this application that combines the features of text messaging
with those of speech recognition and speech synthesis. Instead
of having the user to type in the reply using the keyboard, the
user could use the speech recognition feature and reply which
is then automatically translated by the recognition engine. The
application is based on the idea of having a set of keywords
that correspond to longer stored messages. This means that
each user has a list of words stored on their phone and each
keyword is a sort of abbreviation for a longer text message.
For example, the user defined keyword for

his/her own set of custom keywords and messages depending
on their preferences and the most common situations that
could be encountered while driving. The keywords are set to
be exactly one word long in order to make it easier and faster
while driving to just say a keyword instead of a whole
sentence. Moreover, this improves the chances of accurate
recognition rather than using long complex sentences.
When the user receives a text message, by using speech
synthesis the system will ask the user if they would like to
reply. If the user replies with be prompted for
the keyword they would like to send. Once the keyword is
spoken by the user, if the recognition is correct, the message
associated with that keyword is retrieved and used as the

System Design and Software Engineering Challenges in Building an Android
Application: a Case Study

rawan.khalil@student.guc.edu.eg, alaa.khalifeh@guc.edu.eg

 2

message body for the reply. The user will then confirm the
system to send the message. This is the core part of the
application that uses all the key components. There is also a
component for viewing the inbox and a component for viewing
and editing keywords.

B. Application Architecture and Modules
Figure 1 shows the block diagram for the system architecture.
There are three modules in the system; the keywords module,
the messaging module and the dialogue module. The diagram
shows the main Android packages used in each module. The
boxes shaded in green correspond to Android packages [2]
while the boxes shaded in blue correspond to custom classes.
Below each box there is a note that contains all the classes
used within each package. For the custom classes, the note
boxes are also custom classes in the same module that are
related to the main class. The boxes that exist outside any
module like the Activity Manager are general items that were
used in all modules.
 1) Keywords Module: The keywords module is the
component of the system that is responsible for managing the
keywords. There are six main functionalities in this module. A
user can display a list of all keywords, add, show, edit, delete
or send a keyword. It is based on a simple Create, Render,
Update and Delete (CRUD) system with a single two-column
table database where one table entry corresponds to a keyword
and its longer message. The user can see the list of keywords

the keyword list, the user can then choose to view a specific
keyword, add a new one or search for an existing keyword. If
the user clicks on a certain keyword, he/she will be directed to
the view or edit with the keyword and its message
2) Messaging Module: The messages module is a regular text
messaging system. Using this module, users can view their
inbox, send messages and reply to received messages. When
users wish to send a message or reply to a message, they can
choose from the list of stored keywords. Once they select the
required keyword from the list, they will be directed to the

from the menu and will then
messaging application where they can choose a contact to send
the message to. The message body is automatically filled out
using the stored message from the chosen keyword and the
user can edit it if he/she wishes to. In addition to the selection
from the list, users can send messages by using speech
recognition. When a message is received, they can reply to it
by saying the keyword and the speech recognition will process
the input speech and automatically send the message after
confirmation from the user.
3) System-User Dialog Module: In order to make the
application truly serve its purpose of eliminating physical and
visual contact with the phone while driving, we combined the
features of speech recognition and speech synthesis. Through
these technologies, we were able to create a dialog between the
user and the system on the event of receiving a message. This
dialog is aimed at guiding the user to replying to the message

without the need to look at the phone. When a message is
received, the system informs the user through speech synthesis
that he/she has received a new message from certain contact.
The system then asks the user if he/she would like to hear the
message. The system will then start the speech recognition and
wait for the user to respond. If there is no response from the
user, the system will repeat the request two more times and if
there is still no response, it will exit on the grounds that the
user is unavailable. The system will also exit in the case that
the
the system will read out the received message. After that, the
system asks the user if he/she would like to reply or hear the

message is replayed and the dialog sequence resets from that

system will prompt the user for the keyword they would like to
use as the reply to the message. If the keyword spoken by the
user was found in the database, then the user is asked to
confirm that the recognition was correct. If yes, then the
system proceeds to send the message and exit. However, if the

nition returned no result, then the
system will ask the user to say the keyword again. If the
system fails to find the keyword three times, the system then
exits. At any given point in the speech recognition process, if

stem will automatically
exit.

Figure 1. Application Architecture Block Diagram

III. SOFTWAR ENGINEERING CHALLENGES

In this section, we disucss some of the software challeneges
specifict to the mobile device environment that we have faced
during the system design and implementation.

Challenge 1: Mobile Hardware and Software Diversity:
The diversity that now exists between software and hardware
platforms for mobile devices is undeniable. It poses a great

 3

challenge in choosing between them or trying to develop
something that can work the same way across multiple
platforms. Having to make this choice can be a difficult trade-
off. Choosing a specific platform will limit the developer to
the capabilities and features of this platform. Even within one
platform, there could be several different versions that can
make applications behave differently from one device to
another. Developers must always try to make their applications
work smoothly and as expected regardless of the device.
Another significant problem is that it would limit the user base
of the application to those that own supporting devices.
However, sometimes limiting the user base is not necessarily a
disadvantage. It depends on what the application needs and
who it is targeted at. These problems can still exist with
regular Software Engineering and not only Mobile Software
Engineering. However, the problem is more pronounced and
accounted for in mobile development since the scales of
growth are now tipping into the direction of mobile devices
over PCs. Moreover, most of the applications developed over
PCs are usually web applications that are generally platform
independent. In our application, we chose to develop on the
Android platform. The reason for this selection is that the
popularity of Android is increasing rapidly that it has now
become the market leader. Furthermore, it is also open-source
which gives the advantage of more developer collaboration
and insight into the details. In addition, cross-platform
adjustments required between Android devices is a simple
process where the developer just needs to handle some design
issues regarding the UI and defining the features that the
application needs to run, so that if this feature is not present on
a certain device, it would not install the application to avoid
any crashes. In choosing Android, there are specific best
practices recommended by developers that point others into
the direction of what works better. This means that there are
certain methodologies and concepts related to Android that
distinguish the development process from other platforms.
Hence, the software engineering procedure can not be
generalized for other platforms.

Challenge 2: Mobile OS F requent Updates and Releases:
A challenge that may arise during mobile development is the
ability of the application developed to be altered to match
updates. Mobile platforms are very frequently updated and
new versions come out quite often. Developed applications
must be easily upgraded to fit the requirements and adapt to
the changes of newer and better software versions. This is
helped by the fact that Android SDK [2] comes in the form of
several components that can be used to build an application. If
an update occurs, then only the relevant components that are
used in the application would need to be modified to fit the
new version. For that reason, when developing for mobile
software, it is better to separate different components from
each other so that the application can be easily maintained and
upgraded. Once it is altered, newer releases can be published
to the market or app store.

 Challenge 3: Power, Processing and Storage Management:
Another significant challenge that comes with mobile

development is the lack of computational power required to
perform complex operations. Mobile devices that exist so far
have very limited computational power when compared to
PCs. In our application, the use of voice recognition requires a
huge amount of processing power in order to understand and
analyze the speech input from the user. This is why Android
voice recognition is done remotely on Google servers [3]
rather than locally on the device. The amount of power
required to perform speech recognition operations is too
exhausting for a mobile device with the current hardware
limitations. Furthermore, such heavy and complex operations
will also drain the battery out too quickly. Developers must try
to keep in mind the effect of the processing of the application
and the services used by the application that will require a lot
of battery power. However, one disadvantage of off- loading
the mobile phone from the recognition functionality that it
requires the mobile device to be connected to the Internet
which may not be always possible. Another challenge is
related to the limited storage space on mobile devices. In order
to perform voice recognition, the application would require
that there be a huge dictionary of words that the user may say
to match them up. This will require a lot of valuable space.
This space is not an issue on PCs, but for mobile devices,
space consumption must be minimized to fit in all the other
applications and processes required by the device. This is also
helped by the recognition engine actually being on Google
servers. The only space consumption required by the
application is a very light and a basic database managed by
SQLite engine that consists of only one table of keywords and
messages.

IV. CONCLUSION
In this paper, we presented an Android mobile based voice
application with an emphasis on the design aspects, and the
software engineering practices related to the Android mobile
platform. Utilizing our application, the driver can respond to
the received text messages while driving by issuing a voice
commands to his mobile phones. Some of the software
engineering challenges encountered while building the
application were the fact that designing a mobile application is
to a big extent vendor and platform dependent, this is why we
have chosen Android platform as it is implemented in a large
number of mobile phones from different vendors. Another
challenge was related to the frequent updates and releases of
the mobile OS which was addressed by making the application
modular and upgradable. Finally, one should bear in mind the
limited computational and storage capabilities of the mobile
phone which were taken into account in our application by off-
loading the mobile device from the recognition process and
instead, relying on the remote Google servers.

REFERENCES

[1
Distracted Driving i
Am J Public Health, 100.11 (2010):2213-2219.
[2] Android SDK: http://developer.android.com/sdk/
[3] Google Mobile. http://www.google.com/mobile/voice-actions/.

Apps vs. Open W eb: The Battle of the Decade

Tommi Mikkonen
Department of Software Systems

Tampere University of Technology
Tampere, Finland

tommi.mikkonen@tut.fi

Antero Taivalsaari
Advanced Development & Technology

Nokia Corporation
Tampere, Finland

antero.taivalsaari@nokia.com

Abstract Today, both desktop and mobile software systems
are usually built to leverage resources available on the World
Wide Web. However , in recent years desktop and mobile
software have evolved in different directions. On desktop
computers, the most popular application for accessing content
and applications on the Web is the web browser . In mobile
devices, in contrast, the majority of web content is consumed
via custom-built native web apps. This divergence will not
continue indefinitely. We anticipate that we will
witness a major battle between two types of technologies: (1)
native web apps and (2) Open Web applications that run in a
web browser or some other standards-compliant web runtime

Battle of the Decade will determine the
future of the software indust ry as well as the future of
software engineering research for years to come.

Keywords web applications, web programming, web-based
software development, software engineering, web engineering,
open web

I. INTRODUCTION
Although the World Wide Web has existed less than

twenty years, the Web has already transformed our lives in
countless ways. These days, everyday artifacts and services
such as documents, photos, music, videos and newspapers
are widely available on the Web. Online banking and stock
trading have become commonplace. Various documents that
used to be difficult to access, such as municipal zoning
documents, government budget documents or tax records,
are now readily available on the Web. Entire industries such
as banking, financial services, electronics and book retailing,
photography, and music distribution have undergone
dramatic transformations. Web-based services such as
Facebook and Twitter have altered the meaning of social life.
The Web is even having a profound impact on politics and
democracy, shaping the future of nations all over the planet.

The World Wide Web has also had a considerable impact
on the software industry. These days, both desktop and
mobile software systems are usually built to leverage
resources available on the Web, with the objective that the
same content can be accessed effortlessly from different
types of terminals. However, in recent years desktop and
mobile software systems have evolved in rather different
directions. On desktop computers, the most popular
application for accessing content and applications on the
Web is the web browser. In mobile devices, in contrast, the
majority of web content today is consumed via custom-built
native web applications, .

In this paper, we anticipate that
witness a major battle between two types of technologies: (1)
native web apps and (2) Open Web applications that run in a
web browser or some other standards-compliant web runtime
environment. The former approach implies the use of binary
software and traditional software engineering practices,
while the latter approach implies that conventional software
engineering methods and practices will be replaced by
technologies created for web development. Battle of
the Decade , as we call it, will determine not only the future
of the software industry, but the future of software
engineering research as well.

This paper builds on a number of earlier papers [4, 5, 6,
7, 11, 12, 13, 14]. Many of the topics in this short paper have
been covered more extensively in those earlier papers.

The rest of this paper is structured as follows. In Section
II we provide a brief discussion on the evolution of the Web
as a software platform, and then focus on the ongoing battle
between native apps and Open Web applications in Section
III. In Section IV we outline the research challenges that
arise from the two divergent paths. In Section V we draw
some final conclusions.

II. EVOLUTION OF THE WEB AS A SOFTWARE PLATFORM
Over the past twenty years, the World Wide Web has

evolved from a document sharing system to a massively
popular, general purpose application and content distribution
environment in short, the most powerful information
distribution environment in the history of humankind. This
evolution has taken place in a number of evolutionary phases
or eras [14]. Note that here we intentionally focus on the
evolution of the Web as a software platform. When viewed
from other angles e.g., from the viewpoint of online
banking or music or video distribution the history of the
Web would look somewhat different.

In the first era the Web as a document environment
the programming capabilities of the Web were very limited,
reflecting the origins of the Web as a document sharing and
distribution environment. In the second era the Web as an
application environment the software development
capabilities of the Web started emerging, with different
technologies competing with each other vigorously. In the
third era that is unfolding currently the Web as the
application environment we believe that the landscape of
the software industry will change dramatically, as the
balance shifts irrevocably from binary end user software to
web-based software. Note that these three eras are by no

means mutually exclusive. Rather, web pages and
applications representing all three eras coexist on the Web
today. A visual summary of the different eras is provided in
Figure 1. We will ignore many of the details in this paper,
since they are not relevant for the main theme of the paper.

III. THE BATTLE OF THE DECADE
The key point about the evolution of the Web presented

in Figure 1 is the current, ongoing battle between native web
apps and HTML5-based Open Web applications.

A. Native Apps
Custom-built native apps have become one of the

dominant ways people use web services. For instance, on

Facebook, Twitter, and many other popular web services
using custom-built native apps rather than with the web
browser. Such native apps are not really web applications at
all; however, they use the same network protocols to access
the backend services as the web browser does.

There are good reasons for native web apps to exist.
While the underlying needs to communicate and access
information are the same in desktop and mobile
environments, the way people consume content and use
applications with different types of terminals and devices are
fundamentally different. In the mobile space, the time span

of the users' actions is usually significantly shorter than in
the desktop space; the users wish to perform rapid, focused
actions instead of long-lasting sessions; actions must be
simple yet focused, and they must accomplished with ease,
using only a minimal number of keystrokes or finger presses,
often while the user is walking, driving a car or is somehow
otherwise distracted by other activities. The different usage
modalities and smaller screen sizes have a significant impact
on application design; generic web pages geared towards
laptop or desktop computer users are not usually ideal for
mobile use. In addition, performance issues or network
connectivity issues can make web applications nearly
unusable in mobile devices. The conventional web browser
simply was not designed for such use.

By using the native graphics libraries, the look-and-feel
of apps can be customized specifically to the needs of the
application and the device; the applications can also leverage
device-specific features much more comprehensively than a
pure web application could. The downside of such apps is
that they are strictly platform-specific. Apps developed for
the iPhone run only on Apple devices, so several different
implementations composed with different platform-specific
tools are needed if the app is to run also on Android,
Blackberry, Symbian, or other commonly used target
platforms [15]. In many cases a separate app is needed for
each of the different versions of the target device. Such
fragmentation is what effectively killed Sun's (now Oracle's)
once highly successful Java ME platform [10].

Another source of fragmentation is that different apps,
developed by different parties, commonly assume different
ways of interaction. For instance, gestures that work in a
certain fashion in one application may imply totally different
functions in other applications. This can be confusing for the
user, and in the end lead to additional requirements on how
applications should be defined, together with associated style
guides and so forth.

Finally, unlike pure web applications, a native app
requires conventional installation. The user must usually
download the application binary from a specific location,
such as Apple's App Store (http://store.apple.com/). In order
to introduce new features, the user must typically download
and install a totally new version or upgrade the application
explicitly by device-specific means. This is clumsy and
inconvenient for the user, e.g., since the application or the
entire device may be partially unavailable while the
download and upgrade is in progress.

B. Open Web
Following the Open Web principles laid out in the

Mozilla Manifesto [8], web applications should be built on
technologies that are open, accessible and as interoperable as
possible, and should run in a standards compatible web
browser without plugins, extensions or custom runtimes. In
December 2010, Tim Berners-Lee the inventor and founder
of the World Wide Web published an article in which he
called the current trend towards custom-built native web

into separate content silos that are isolated from each other
[2]. Such content is off the Open Web, and usually under the

Figure 1. Evolution of the Web as a Software Platform

(for high-quality image, see http://lively.cs.tut.fi/WebEvolution.png)

control of an individual company. Typically, you cannot
bookmark, tweet or e-mail a link to such a page using a
standard browser. Rather, you must explicitly download,
install and use (and later upgrade) a vendor-specific app
from a vendor-specific app store for each device platform in
order to access such content.

Open Web applications have various benefits. For
instance, they require no installation or manual upgrades, and
they can be deployed instantly worldwide. A web application
published in Tampere (Finland), say, is instantly and equally
available in Tallahassee (Florida, USA), Tandragee (Ireland)
or Taree (New South Wales, Australia) without explicit
installation. The Open Web principles will allow application
development and instant worldwide deployment without
middlemen or distributors. Conventional binary applications
are at a major disadvantage when compared to web-based
software that can be deployed instantly across the planet.

So far, a number of obstacles have hindered the
development and deployment of full-fledged, truly
interactive web applications. The obstacles have been
especially apparent in the mobile device space. We have
analyzed the problems in earlier papers [4, 5, 6, 12].
However, new standards such as HTML5 and WebGL will
eliminate many of the limitations in this area.

The forthcoming HTML5 standard [16] complements the
capabilities of the existing HTML standards with numerous
new features. Although HTML5 is a general-purpose web
standard, many of the new features are aimed squarely at
making the Web a better place for desktop-style web
applications. Examples of features that support desktop-style
applications include offline applications that can be run even
when an active network connection is not available
(http://www.w3.org/TR/offlinewebapps/), a simple storage
mechanism that behaves like a simple key-value database,
allowing textual data to be stored locally in the
computer/device, Canvas API that provides a 2D drawing
canvas for procedural, interactive graphics, and built-in
audio and video support.

WebGL (http://www.khronos.org/webgl/) [3] is a cross-
platform web standard for hardware accelerated 3D graphics
API developed by Mozilla (http://www.mozilla.org) and
Khronos Group (http://www.khronos.org/), and a consortium
of additional companies including Apple, Google and Opera.
The main feature that WebGL brings to the Web is the
ability to display 3D graphics natively in the web browser
without any plug-in components. Unlike with earlier
technologies such as Flash, O3D, VRML and X3D, with
WebGL the 3D capabilities are integrated directly in the web
browser, meaning that 3D content can run smoothly and
portably in any standards-compliant browser. The possibility
to display 3D graphics natively in a web browser is one of
the most exciting things happening on the Web recently.

While HTML5 and the related W3C standard activities
play a critical role in turning the Web into a serious
application platform, it is important to note that the feature
set offered by an HTML5-compliant web browser is still
somewhat incomplete for real-world applications. As
depicted in Figure 1, our prediction is that another major
round of standardization will be necessary in mid-to-late

2010s to establish a more complete web application
platform. We refer to such standard work informally as
HTML5+

HTML5 Specification. A critical goal in that work will be to

system and device capabilities, as well as ensure that the
necessary security mechanisms are in place to access the
platform and device capabilities securely.

IV. IMPACT ON THE SOFTWARE INDUSTRY AND
SOFTWARE ENGINEERING RESEARCH

The document-oriented origins of the Web have led to an
impedance mismatch between web development and
conventional software engineering. In this section we take a
brief look at this impedance mismatch and its implications
for the software industry and software engineering research.

A. Web vs. Conventional Software Development:
The Impedance Mismatch
As we have discussed in earlier papers, a historical

impedance mismatch exists between web development and
software engineering. This impedance mismatch reflects the
fact that the World Wide Web was originally designed to be
a document distribution environment not a software
platform. The differences are highlighted in Figure 2.

Figure 2. Impedance Mismatch Between Web Development

 and Conventional Software Development

In the remaining parts of the paper, we will consider the two
divergent paths that the evolution of the Web may take as a
result of the Battle of the Decade. The implications for the
software industry and software engineering research are
entirely different depending whether the balance tilts
towards native apps or the Open Web.

B. Scenario 1: Native Apps Will Dominate
Many people seem to take it for granted that especially in

the mobile industry native apps will continue to dominate.
For instance, in a September 2010 Wired magazine article
Chris Anderson and Michael Wolff claimed that the Web is
already dead [1], because for the vast majority of web
services such as e-mail, news, Facebook and Twitter, users
will prefer custom-built native applications (e.g., Flipboard
for iPad) over open, unfettered web browser access.

The success of native apps is not entirely unexpected.
Native apps enjoy considerable success partly because of
commercial reasons (e.g., because it tends to be easier to
monetize closed rather than open platforms) and partly
because of technical reasons (e.g., because it is easier to
define new APIs and optimize overall system behavior in
world in which the platform is owned and controlled by a
single vendor.

Superficially, from the viewpoint of software
engineering, the native apps scenario is business as usual.
Since the development model in this scenario revolves
around the creation of rather conventional binary
applications that are written, installed and run in a well-
known fashion, existing design, integration and testing
practices and methods can be used without major changes.

However, under the surface there are numerous things
that need attention. To begin with, mobile devices are subject
to significantly more variations and fragmentation than
conventional desktop computers. For instance, screen size
differences, different interaction and input mechanisms,
memory and processing power limitations/differences and
intermittent network connections create additional challenges
for developers. In the area of Java ME development the
once dominant mobile application platform some game
companies reported that they had to create over a thousand
different variants of their applications for different devices!

These days, the mobile industry seems to be headed to an
equilibrium in which two or three native platforms will
dominate the industry. The companies controlling those
platforms place a lot stricter restrictions on the device
capabilities than the Java ME specifications ever did.
Nevertheless, the application developers will still have to
create a large number of variants of their applications if they
expect their applications to be available on all the major
platforms, devices and countries; even if the developer is
targeting only one major platform ,
internationalization and localization may still require effort.

In general, the successful creation of commercial native
web apps places a lot of requirements on product family
management. In order to offer an attractive app portfolio that
covers all the different platforms, tools for managing
fragmentation in massive scale are needed. Those tools must
be able to provide cross-platform support that enables the use
of the same code in different platforms, and is capable of
recognizing and handling the micro-level fragmentation
issues (bug between different devices that
use the same platform. The tools must also be able to take
into account the different installation practices for different

devices, application installation can only take place via
s Web Store.

The topics discussed above are just a tip of the iceberg
for a proper research agenda for Scenario 1.

C . Scenario 2: Open Web Will Dominate
The starting point for Scenario 2 is that the transition

towards web-based software development will continue and
will eventually have a profound impact not only for desktop
software but mobile software development as well.

The victory of Open Web applications is by no means
guaranteed, though. There are still numerous issues that
plague the development of web applications, and for mobile
devices especially. In our earlier papers, we have divided
those problems broadly into the following categories:

(1) software engineering principle violations,
(2) usability and user interaction issues,
(3) networking and security issues,
(4) browser interoperability and compatibility issues,
(5) development style and testing issues,
(6) deployment model issues, and
(7) performance issues.

We will not revisit all the categories in this brief paper.

Rather, we highlight a number of topics that we believe
should be high on the research agenda for Scenario 2.

First, the transition from binary applications to pure web
applications will result in a shift away from static
programming languages such as C, C++ or C# towards
dynamic programming languages such as JavaScript, PHP or
Python [9]. Since mainstream software developers are often
unaware of the fundamental development style differences
between static and dynamic programming languages, there is
a need for education in this area. Developers need to be
educated about the evolutionary, exploratory programming
style associated with dynamic languages, as well as agile
development methods and techniques that are available for
facilitating such development.

Second, the software deployment practices for web
applications are entirely different from conventional binary
software. Web applications are distributed primarily in the
form of source code, not binaries. Any application updates
that are posted on the Web are immediately accessible to

dimension will revolutionize the deployment and distribution
of software applications, and will
i.e., software releases that may occur multiple times per day
or even every few minutes. For instance, recently Netflix
(http://www.netflix.com/) reported that they commonly
publish updates to their web applications up to six times per
day! One of the main challenges in the deployment area is to
define a model that addresses the fundamental changes in the
nature of applications: applications that remain
the ever-shortening nano release cycles, and the perpetual
beta syndrome , i.e., applications that will stay in continuous
development mode indefinitely [11].

Third, in the testing area there is an increased need for
code coverage testing methods to ensure that all the parts and
execution paths of the applications are tested appropriately.
Since web applications consist of pieces that are loaded
dynamically without any static compilation, type checking or
linking, it is quite possible for significant pieces of the
applications to be missing at runtime. This feature, when
combined with the lack of well-defined interfaces and
general fragility that characterize web-based software [6,
12], leads to many interesting research topics and challenges,
especially when developing mashups and mashware, i.e.,
software that dynamically combines content and components
published in different sites all over the world.

In general, many of the development and deployment
practices that are common in web-based software
development go against the grain or even obliterate many of
the established software engineering principles. So far, there
has not been enough discourse between the software
engineering and web engineering communities; this is
definitely an area for future improvement.

V. CONCLUSIONS
In this paper, we have argued that the Battle of

the Decade -based
Open Web applications will determine the future of the
software industry and software engineering research. We
started the paper by summarizing the evolution of the Web
as a software platform, followed by an overview of native
web apps vs. Open Web applications that run in a web
browser or some other standards-compliant web runtime
environment. We then presented two alternative scenarios
for the future of the industry based on the possible outcomes
of the battle, as well as highlighted interesting areas for
future research.

REFERENCES
[1] C. Anderson, and M. Wolff, The Web is Dead: Long Live the

Internet Wired, Sep 2010, pp.118-127, 164-166.
[2] T. Berners-Lee, Long Live the Web: a Call for Continued Open

Standards and Neutrality Scientific American, vol 303, nr 4 (Dec),
2010, pp.56-61.

[3] Khronos Group, WebGL Specification , August 8,
2011. URL: http://www.khronos.org/registry/webgl/specs/latest/

[4] T. Mikkonen and A. Taivalsaari, Web Applications Spagetti Code
for the 21st Century Proc. 6th ACIS International Conference on
Software Engineering Research, Management, and Applications
(SERA'08), IEEE Computer Society Press, 2008, pp. 319-328.

[5] Mobile Web
Application Platform: The Lively Kernel Experience

, ACM
Press, 2009, pp. 177-184.

[6] T. Mikkonen and A. Taivalsaari, The Mashware Challenge:
Bridging the Gap Between Web Development and Software
E 2010 Workshop on Future of Software
Engineering Research (Fo , ACM Press, 2010, pp. 245-249.

[7] T Reports of the Web's Death Are
Greatly Exaggerated, IEEE Computer, vol 44, nr 5, 2011, pp.30-36.

[8] Mozilla, The Mozilla Manifesto, 2011. URL:
http://www.mozilla.org/about/manifesto.en.html

[9] L. D. Paulson, Developers Shift to Dynamic Programming
languages, IEEE Computer, vol 40, nr 2 (Feb) 2007, pp. 12-15.

[10] R. Riggs, A. Taivalsaari, J. Van Peursem, J. Huopaniemi, M. Patel,
and A. Uotila, Programming Wireles
Platform, Micro Edition (2nd Edition). Addison-Wesley (Java Series),
2003.

[11] A. Taivalsaari, T. Mikkonen, D. Ingalls, and K. Palacz, Web
Browser as an Appl 34th Euromicro
Conference on Software Engineering and Advanced Applications
(SEAA'08), IEEE Computer Society, 2008, pp. 293-302.

[12] A. Taivalsaari and T. Mikkonen,

Workshop on Social Software Engineering (So
Italy), Department of Software Systems, Tampere University of
Technology, Report 1, 2008, pp 21-28.

[13] A. Taivalsaari, T. Mikkonen, M. Anttonen, and A. Salminen, The
Death of Binary Software: End
Proc. 9th Conference on Creating, Connecting and Collaborating
through Computing (C5'11), IEEE Computer Society, 2011, pp. 17-
23.

[14] Web as a Platform: The Saga
C Euromicro Conference on Software
Engineering and Advanced Applications (SEAA'11), IEEE Computer
Society, 2011, pp. 170-174.

[15] Engineering Issues in Mobile Application
Development Invited talk at MobiCase'10, October 25-27, 2010,
Santa Clara, California, USA.

[16] World Wide Web Consortium, HTML5 Specification, W3C
Draft, September 10, 2011. URL: http://www.w3.org/TR/html5/

ABOUT THE AUTHORS
Dr. Tommi Mikkonen is a Professor of Computer Science

at Tampere University of Technology, F inland. Tommi has
pioneered the education of mobile software development in
F inland, and he has arranged numerous courses on software
engineering and mobile computing. Tommi's current
research interests include cloud computing, web
programming, embedded systems, and mashup development.

Dr. Antero Taivalsaari is a Distinguished Engineer at

Nokia. Antero is best known for his seminal role in the

platform) one of the most successful commercial mobile
software platforms in the world, with over three billion
devices deployed so far. Since 2006, Antero has
focused on web application technologies and web-based
software development especially for mobile devices.

Together, Tommi and Antero lead the Lively Web

Programming Research Team at Tampere University of
Technology. For further information and a full list of
research team publications, refer to http://lively.cs.tut.fi/.

Mobile Application Software Engineering: Challenges and Research Directions

Josh Dehlinger and Jeremy Dixon
Department of Computer and Information Sciences

Towson University
jdehlinger@towson.edu, jdixon6@students.towson.edu

A BST R A C T
The rapid proliferation and ubiquity of mobile , smart
devices in the consumer market has forced the software
engineering community to quickly adapt development
approaches conscious of the novel capabilities of mobile
applications. The combination of computing power,
access to novel onboard sensors and ease of application
transfer to market has made mobile devices the new
computing platform for businesses and independent
developers. However, the growth of this new computing
platform has outpaced the software engineering work
tailored to mobile application development. This position
paper looks at four significant challenges to mobile
application software engineering and provides a
discussion of possible research directions, drawing from
existing areas of software engineering, that should be
further examined. Specifically, we examine the challenge
of: 1) creating user interfaces accessible to differently-
abled users; 2) handling the complexity of providing
applications across multiple mobile platforms; 3)
designing context-aware aware applications; and, 4)
specifying requirements uncertainty.

1. IN T R O DU C T I O N

Smart, mobile devices (hereafter, mobile devices) are
the fastest growing computing platform with an estimated
1.6 billion mobile device users by 2013 (compared to a
current estimate of 2 billion PC users) [1]. This rapid
proliferation of mobile devices over the last five years has
dramatically altered the platform that is utilized for social,
business, entertainment, gaming, productivity and
marketing using software applications. Containing global
positioning sensors, wireless connectivity, photo/video
capabilities, built-in web browsers, voice recognition,
among other sensors, mobile devices have enabled the
development of mobile applications that can provide rich,
highly-localized, context-aware content to users in
handheld devices equipped with similar computational
power as a standard PC [2]. Yet, these same novel
features/sensors found in mobile devices present new
challenges and requirements to application developers
that are not found traditional software applications [3].

The combination of computing power, access to
novel onboard sensors and the ease in which applications
can be monetized and transferred to the marketplace has
made mobile application the new IT computing platform

for development. However, the rapid proliferation of
mobile devices and applications has outpaced the
software engineering approaches tailored to mobile
application software engineering.

Traditional software engineering approaches may not
directly apply in a mobile device context. First, mobile
device user interfaces (UI) provide a new paradigm for
new human-computer interaction sequences (e.g., multi-
touch interfaces, QR code scanning, image recognition,
augmented reality, etc.) that have not been previously
explored in research and of which no established UI
guidelines exist [2], [4]. Second, the divergent mobile
platforms (e.g., iOS, Android, Windows 7, etc.), differing
hardware makers for platforms (e.g., Android versions
found on HTC, Google, Samsung) and mobile phone and

necessitated developers to make a series of the same
application tailored for each type of device [3]. Third, the
novelty of a truly mobile computing platform provides
both unique opportunities and challenges [3]. For example,

represents a total meltdown of all the stability
[5].

In this position paper, we discuss how these three
factors present four significant challenges to mobile
application software engineering that are critical to enable
the design and development of quality mobile application
utilizing the capabilities provided by mobile device
hardware and platforms.

2. M O BI L E APPL I C A T I O N SO F T W A R E
E N G IN E E RIN G
Based on the three factors novel to mobile application
development outlined in Section 1, we outline the
following fundamental, unique challenges to the state-of-
practice in mobile application software engineering:

 C reating Universal User Interfaces. There has been
some preliminary research in creating a universal user
interface for mobile devices (c.f., [2], [4]). Each mobile
platform has a unique guide to address developer user
interface requirements. The user interface guidelines
have several overlapping themes.

A significant consideration for mobile UI
development relates to screen size and resolution. For
example, Apple devices are limited to two sizes based

on the size of the iPhone and the iPad where as
Windows 7, Android, and Blackberry provide screens
of varying sizes and screen resolutions. As a result, UI
design is difficult and mobile application developers
must anticipate the targeted device(s).

ave been well received since their
introduction [6]. However, these rules may not equally
apply to mobile devices. Research by Gong and
Tarasewich suggest that four of
guidelines readily translate to mobile devices,
including: enabling frequent users to use shortcuts,
offering informative feedback, designing dialogs to
yield closure, and supporting internal locus of control.
The remaining rules must be modified to be made
applicable to mobile development [7].

As these challenges continue to evolve, further
research should focus on streamlining application
development efforts regardless of the mobile platform
or device. Significant effort should be directed towards
anticipating the diverse landscape of user capabilities,
user interfaces and user input techniques.

 Enabling Software Reuse across Mobile Platforms.
Mobile applications currently span several different
operating system platforms (e.g., iOS, Android,
Windows 7, etc.), different hardware makers (Apple,
HTC, Samsung, Google, etc.), delivery methods (i.e.,
native application, mobile web application) and
computing platforms (i.e., smartphone, tablet). Each of
these options must be considered during mobile
application development as they have a direct influence
on the software requirements. Companies currently
need to make a business decision to target a single
mobile device platform with rich features, multiple
platforms through a mobile website with less rich
features or spend the resources necessary to broadly
target the gamut of mobile devices with rich, native
applications. If targeting a single platform, developers
may decide to build a single application for all
platforms at the risk of some functional inconsistencies
or instead consider building multiple version targeting
each hardware/computing platform [3][8].

Within this development environment, many
companies have separate development teams or
separately contracted out the development efforts for
different platforms (e.g., iOS and Android) essentially
redoubling the software engineering effort needed for
functionally similar mobile applications. Even when
development is coordinated amongst development
teams targeting different platforms, it is often in an ad
hoc basis without a concerted effort to reduce the
development time and cost through existing, reuse-
conscious software engineering methodologies.

Recent efforts in adapting HTML5 with tools like
PhoneGap aim to reduce the development effort to

produce nearly native applications across multiple
platforms by rendering native applications interfaces
through webviews [9]. However, this approach does not
allow for rich features that have access to the mobile

the
desired software engineering approach to reuse early
software engineering assets.

 Designing Context-Aware Mobile Applications.
Mobile devices represent a dramatic departure from
traditional computing platforms as they no longer

static notion of context, where changes are
absent, small or p [5]. Rather, mobile
devices are highly personalized and must continuously
monitor its environment, thereby making mobile
applications inherently context aware (collectively
time-aware, location-aware, device-aware, etc.) [10],
[11]. Mobile applications are now contextualizing
proximity, location, weather, time, etc. to deliver hyper-
specialized, dynamic, rich content to users through
context-aware applications. Previously, web
applications would often provide contextualized content
based on time, detected location and language.
However, the extent of context-awareness currently
possible in mobile applications is beyond what software
engineering approaches have encountered outside of
agent-oriented software engineering [12]. The
consideration of context-awareness as a first-class
feature in mobile application software engineering is
needed so that the requisite attention is paid by
developers when analyzing these requirements resulting
in better designed context-aware applications.

 Balancing Agility and Uncertainty in Requirements.
While most mobile application developers utilize an
agile approach or a nearly ad hoc approach, the
growing demand for context-aware applications,
competition amongst mobile applications and low
tolerance by users for unstable and/or unresponsive
mobile applications (even if free) necessitates a more
semi-formal approach. This should be integrated into
agile engineering to specify and analyze mobile
application requirements. The dynamic, contextual
nature of mobile application content (e.g., location-
based applications) allows for situations in which the

y not be able to fully satisfy
the specified functional and non-functional
requirements thereby necessitating that the application
be self-adaptive. In this scenario the software will then
provide less rich content satisfying less stringent
requirements. For some mobile applications, this may
arise if, as determined in the requirements, it is better
for the application to run continuously and, when
necessary, to autonomously modify its behavior and
provide reduced functionality rather than provide no
functionality at all. For example, in a location-based

application several factors (e.g., low battery, GPS
sensor disabled, etc.) may affect the granularity and
recentness of its content. In some location-based
applications, it may be better to provide old content
(i.e., content based on a previous location) rather than
displaying an error message or risk slow or no response
from the application.

Within mobile application software engineering, the
need for an application to self-adapt, depending on
context, has been constructed using ad hoc approaches.
Yet, as mobile applications become more context-
aware, self-adaptive requirements will need to be more
formally integrated into agile development so that
developers more rigorously consider the behavior of an
application when its full requirements cannot be
satisfied dynamically and how it can self-adapt to
partially satisfy the requirements.

3. R ESE A R C H DIR E C T I O NS F O R M O BI L E

APPL I C A T I O N SO F T W A R E E N G IN E E RIN G
This section builds off of the challenges outlined in
Section 2 and provides sketches of future research
directions in existing software engineering fields that can
contribute to mobile application software engineering.

3.1 User Interfaces for the Differently-Abled

As development of mobile applications continues to
expand, research and development regarding accessibility
and utility for users who are differently-abled will become
essential. Recent US Census data reports that
approximately 15% of the United States population has at
least one disability, including but not limited to sensory
and physical limitations [13]. Yet, limited data exists to
identify specific needs of this community in relation to
mobile device application development and software
engineering.

Some guidelines exist for modifications and
development to assist those individuals with visual
impairment (e.g., for the iOS
platform). These guidelines suggest the utilization of the
VoiceOver software to help blind and low-vision users,
which works as a screen reader and requires minimal
additional information for most standard interfaces [14].
Development of specific applications for those individuals
with other disabilities (e.g., physical and processing
differences) has not yet been explored.

3.2 Mobile Application Software Product L ines
To support the reduction in cost in the development of
functionally similar mobile applications across several
platforms, mobile application software engineering must
proactively make use of existing reuse-conscious software
engineering approaches like software product line
engineering (SPLE). SPLE supports reuse by developing
a suite of applications sharing a common, manage set of

requirements and is advantageous as it exploits the
potential for reusability in the analysis and development
[15]. A software product line a set of applications
developed by a company that share a common set of core
requirements yet differ amongst each other according to a
set of variable requirements [15]. This approach can
reduce time and cost needed in software engineering and
can arguably be viewed as the most successful approach

to intra-organization [16].
Weiss and Lai defined a two-phase SPLE approach

as follows: the domain engineering phase defines the
requirements (both common and variable) for the entire
product line and the application engineering phase reuses
these to develop specific applications within the product
line [15]. The approach may be suitable to mobile
application software engineering in that it would
encourage developers to proactively focus on what the
common requirements, design, resources, etc. to the
development of a mobile application across different OS
platforms (e.g., iOS, Android, etc.) or hardware platforms
(e.g., HTC, Samsung, Google, etc. for the Android OS).

Integrating SPLE into mobile application software
engineering encourages developers to assess the
requirements for an application in a platform-independent
manner and focus on what can be common across all
versions of the application. It would also shift the mobile
application software engineering process to develop
application requirements upfront, rather than assigning
the design and development to different, possibly
independent development teams/contracts that may/may
not coordinate in their efforts. Research efforts should
look to how SPLE can be specifically tailored for mobile
application software engineering to avoid duplicating
early software engineering work and/or assets.

3.3 Context-Aware Applications
Context-awareness is novel feature and one of the primary
factors driving the popularity of mobile applications [5],
[11]. To support the design and development of context-
aware applications, mobile application software
engineering must incorporate context-aware software
engineering approaches like those existing in agent-
oriented software engineering (AOSE).
 AOSE provides high-level abstractions, models and
software engineering approaches for developing the
autonomous software agents of a multi-agent system
(MAS) [12]. One vital consideration for MAS is being
context aware. Agents in a MAS must sense and react to
its surrounding environment to be able to achieve its
desired goals (i.e., functional requirements). This is
increasingly the case with mobile applications.
 Studying how some of the concepts/abstractions
developed for AOSE can be utilized and/or adapted for
mobile application software engineering may improve the
design of context-aware applications and further mobile
device innovation.

3.4 Self-Adaptive Requirements
Non-functional requirements are critical to mobile
applications [3], and some mobile applications may need
to dynamically self-adapt to provide reduced
functionality. To better support the dynamism in mobile
applications as a result of context-awareness and design
for self-adaptation, mobile application software
engineering should adapt existing self-adaptive systems
requirement specification approaches like RELAX [17].

Whittle et al. proposed the requirements specification
language RELAX as a medium of explicitly expressing
environmental and behavioral uncertainty for the behavior
of dynamically adaptive systems [18]. Within RELAX,
requirements are partitioned to those that are invariant
(i.e., requirements that must always be satisfied) and
variant (i.e., requirements that may be partially satisfied)
and then are specified in a structured natural language
based on fuzzy logic and using fuzzy logic and using
modal, temporal and ordinal operators. For each variant
requirement, the RELAX process documents what
environmental changes can affect the requirement and
how the requirement can be partially satisfied. This
approach extends the traditional shall requirement
expression to also include keywords including as early as
possible, as close as possible to, eventually, as many as
possible, etc. to document the uncertainty and how the
application can adapt in the face of uncertainty to still
deliver some functionality.

Adapting RELAX into mobile application software
engineering will direct developers to consider how an
application could adapt when the environment or its
behavior is non-optimal [18]. Integrated into an agile
approach, it would provide better requirements structure
and improve analysis and satisfaction of non-functional
requirements in mobile applications when the
environment/context changes.

4. C O N C L UDIN G R E M A R KS
This paper briefly described four current challenges that
we see for mobile application software engineering:
designing universal UIs, developing for mobile
application product lines, supporting context-aware
applications and balancing agility with specifying
requirements uncertainty. This paper asserts that mobile
application software engineering research efforts need to
focus on development approaches emphasizing UI design,
proactive reuse at early software engineering phases,
attention to context-awareness and sensitivity to
specifying requirements to handle requirements
uncertainty within the existing agile development
approaches used for development applications. In addition,
software engineering research needs to emphasize
education initiatives in these four areas to ensure that
these approaches are disseminated to those doing actual
mobile application development.

5. R E F E R E N C ES
[1]

Use Worldwide and Headed to 2 Billion Units by 2014,
2008. [Online]. Available:
http://www.gartner.com/it/page.jsp?id=703807. [Accessed:
11-Sep-2011].

[2] A. Oulasvirta, M. Wahlström, and K. Anders Ericsson,

An investigation of three levels of experie
International Journal of Human-Computer Studies, vol. 69,
no. 3, pp. 155-169, Mar. 2011.

[3]
Proceedings of the FSE/SDP

workshop on Future of software engineering research -
FoSER , 2010, pp. 397-400.

[4] F. Balagtas-Fernandez, J. Forrai, and H. Hussmann,

Human-
Computer Interaction, pp. 243 246, 2009.

[5]
Proc. of the Conf.

on the Future of Software Engineering, 2000, pp. 241 258.
[6]
[7] J. Gong and P

Proceedings of DSI
2004 Annual Meeting, 2004, pp. 3751 3756.

[8] B. Fling, Mobile design and development
[9] S. Allen, Pro Smartphone Cross-Platform Development:

iPhone, Blackberry, Windows Mobile, and Android
Development and Distribution, 1st ed. Apress, 2010.

[10] T. Hofer, W. Schwinger, M. Pichler, G. Leonhartsberger, J.
-awareness on

mobile devices - in 36th Annual
Hawaii International Conference on System Sciences,
2003. Proceedings of the, 2003.

[11] -Awareness and

[12] - Multi-
Agent System Engineering, pp. 1 7, 1999.

[13]
people in group quarters: a brief analysis of disability
prevalence among the civilian noninstitutionalized and total

US
Census Bureau, 2008.

[14]

http://developer.apple.com/library/ios/#DOCUMENTATIO
N/UserExperience/Conceptual/MobileHIG/Introduction/Int
roduction.html. [Accessed: 13-Sep-2011].

[15]
-

Wesley, 1999.
[16]

Proceedings of the 13th International
Software Product Line Conference, 2009, pp. 111-119.

[17] J. Whittle, P. Sawyer, N. Bencomo, B. H. C. Cheng, and J.-

self- Requirements
Engineering, vol. 15, no. 2, pp. 177-196, Mar. 2010.

XModel: an Unified Effort Towards the Development of High-
Quality Mobile Applications

Érika Cota, Luigi Carro, Lucio Duarte, Leila Ribeiro, Flávio Wagner

PPGC - Instituto de Informática – Universidade Federal do Rio Grande do Sul (UFRGS)
Po Box 15064 - Porto Alegre, RS, Brazil

{erika,carro,lmduarte,leila,flavio}inf.ufrgs.br

ABSTRACT

This paper proposes a model-based line of research and education for establishing new
development approaches for mobile applications, where several non-trivial quality aspects of the
product must be considered. We first detail our view of the main requirements for a mobile design
methodology and discuss why traditional software engineering processes fail to address such
requirements. In short, we believe the hierarchical view of a mobile system is not actually available
to the software developer and this precludes productivity and overall quality of the resulting
systems. We then present our view on how new design methodologies should tackle the existing
challenges and actually provide design and implementation layers that can improve productivity and
quality. The proposed line of action is based on the definition of appropriate high-level models and
on multi-disciplinary knowledge, shifting the focus of education and research to topics that are
currently marginal in the software engineer curriculum, such as optimization theory, model-based
design and verification.

1 Mobile System Development Paradox
Mobile applications seem to converge to a generalization-customization paradox. To see that,

let us consider the classic layered view of an electronic-based system, which includes a Business
layer, a Software Development Kit (SDK) layer (development software), a Hardware-dependent-
Software (HdS) layer and a Hardware layer (execution platform), where one layer is positioned
above the next in the mentioned order, creating a hierarchical structure. Unfortunately, this
hierarchical view of the execution and development of an embedded system is realistic only for a
few classes of applications, namely, the ones with very specific requirements, usually having a
single target function, such as automotive supporting systems, instrumentation, etc. Embedded
systems targeted to the mass consumer market or, currently, mobile systems, have a more complex
structure, as shown in Fig. 1. The underlying concept is the variability present at all levels. The
reality that is not represented in this view is that hierarchy is indeed accomplished in the execution
stack, but not in the development process, which is still "monolithic" in many aspects.

Figure 1: Embedded systems organization

In our view, actual hierarchy in the development process is the key to achieve high-quality
mobile systems (for any definition and metrics of quality) but current practice of software
engineering fails to support this development paradigm. In this paper we elaborate this view and
present a possible research and education path towards the goal of a systematic, hierarchical, and
flexible approach to mobile application development. Mobile applications are based on and driven
by variability. Multiple execution platforms and all its variations (hardware layer) provide a broad
range of computational power and development costs, thus allowing the use of an electronic-based
system in a broad range of application fields (business layer). Similarly, computer science fields are
in constant evolution towards the development of new technologies for the HdS layer (e.g.,
communication, optimization, and parallelization) and even more for the SDK layer (e.g.,
algorithms, and data manipulations). This variability at all levels potentially gives the system
designer the necessary flexibility and adaptability to design a cost-effective solution that fits the
specific application requirements and constraints.

On the other hand, programming within this huge design space can be cumbersome without
levels of abstraction. Indeed, mobile software development is making use of abstraction layers. The
hardware layer is accessible through development kits and devices drives provided by specific
implementations of the HdS layer (different embedded operating systems and device drivers
compiled to specific platforms). The concept of software platforms has also been used to leverage
many of the challenges of the development of embedded software, which are normally related to the
interaction with the lower layers. Software platforms, such as Android [1], make it easier for an
ordinary programmer to access the resources of the hardware platform and interact with other
applications or system resources as well. Cross-platform development environments, such as
RhoMobile Rhodes [2] and PhoneGap [3], go one step further and help the developer deal with the
hardware variability.

From the concept of design platforms (hardware and software) one can conclude that embedded
systems tend to be based on generic solutions that are built to be customized at some point later in
the development cycle. This approach is in line with the market trend of the mobile field where
generic products are offered and further customized by end users according to their own needs. At
this point, one can classify the mobile software designer in two groups: the software platform
provider and the application developer. The first group is responsible for the implementation of the
services provided by the HdS and SDK layers whereas the other group implements the final
applications that will actually interact with an end user. Both groups develop mobile applications,
but each one requires different backgrounds.

The application developer customizes a device by developing very specific applications and
using the programming resources provided by the software platform. The concerns of an application
developer should focus on the business and end-user logic, and not on the translation of this logic
into, for instance, a power-efficient, low-level code that must execute over multiple target hardware.
For this to be possible, the resources of the development platform should hide the details of the
actual implementation and concentrate on the behavior or operations that actually represent the
business model. As a consequence, the platform provider must focus on providing a development
environment that can both capture the needs of the end user programmer and generate a high quality
running code. This group should be concerned with the definition of mechanisms to automate the
translation of the services provided by the HdS layer to the plethora of execution platforms
available, and the adaptability of those services with respect to the constraints of the execution
process (performance, memory, power-management, etc). This group must also find appropriate
abstractions to create a high-level access for the resources at each level, in such a way that those can
be used by an application developer that is not a computer science specialist. More than abstractions,
the software platform must also take advantage of the constant new advances and variations of the
lower-level layers to ensure levels of performance, reliability, availability, and overall system
quality. For instance, services provided by the platform must be power-efficient, which can change
according to the use of the service or even to the data. The platform must also be flexible to easily
accommodate new resources or variations in the hardware and future application needs.

We advocate thus that software engineering for mobile systems should focus on the
implementation of flexible and hierarchical features in the SDK and HdS layers, which is only

possible if the lower-level layers also provide the correct abstraction and information. Current
practice, however, requires that each type of developer accumulates concerns and knowledge of
different layers. This implies a longer learning curve for the use of a platform, and may preclude the
implementation of high-quality software, since many decisions are taken without proper knowledge
and information. Moreover, many decisions taken during the development might need to be adapted
during execution or during the application lifetime. The current design model does not support this
level of flexibility. Even higher-level platforms such as PhoneGap or Rhodes still assume the
application developer has programming and computing knowledge to develop their application.
Hence, it seems to us that the developers of the software platforms (HdS and SDK layers) is the one
who needs a strong computing and engineering background, so that they can be able to provide an
abstract framework of high quality for mobile customization. Supporting mechanisms for the
development of high quality embedded software development frameworks is thus the focus of our
research group.

2 MAIN CHALLENGES AND PROPOSED APPROACH
Current software development platforms are tied to a single execution model and hardware

platform. Therefore, the end-user developer can usually provide and support their application for a
single or very few execution platforms. A few platforms claim that a single software description can
be deployed to multiple execution platforms. However, such frameworks are still based on an
abstraction level rather low when compared to the needs and the programming skills of the typical
application developer. Hence, there is a good chance the developer will not use the full potential of
the platform, mainly due to misinformation and lack of deeper knowledge, not to mention the often
required tuning to deal with the constraints of the execution platform (power efficiency, restricted
memory, etc). Moreover, support for testing, performance analysis, and overall quality evaluation of
the resulting application is still very limited, and also requires expertise from the application
developer in those topics. For instance, mistakes due to the misuse of available APIs can be hard to
be detected. Such mistakes may or may not lead to system failure, performance problems or other
non-functional issues, such as power consumption beyond an acceptable range. It is expected that
the end-user developer has no freedom (and/or knowledge) in tuning the platform behavior for a
given application. Indeed, such a task must be implemented by the platform, in many cases during
runtime. Current platform models have little support to such an adjustment.

The keyword for mobile software development is flexibility. Flexibility allows the system to
cope with the variability in many levels (of the hardware, of the application needs, of the
programming languages, etc). It has been long known that one achieves flexibility by
modularization and abstraction. In this aspect, current knowledge of software engineering remains
valid. Reuse is another important concept, which is also already present in the current development
models. These concepts potentially imply higher-quality software, but this must be ensured by
methods and tools. What is still missing in the mobile field is the quality-ensurance-by-methods-
and-tools concept. Much has been said and done about software quality, but this is still not in the
mainstream in the mobile field. The second concept that is still missing is flexibility-in-the-long-run.
How can the platform be flexible enough to realize a change in the application behavior and/or in
the hardware behavior?

In this context, we can define five main challenges for the development of a high-level and
high-quality mobile software development platform:

1) Definition of appropriate abstractions for each development layer in such a way that: i) the
developer of the higher layers can use the provided services without further knowledge; ii)
interaction between layers is facilitated to support variability and provide flexibility;

2) Definition of synthesis processes capable of transforming the semantics of the end-user
application into cost-effective runtime code while taking into account the non-functional
requirements of the application and of the execution platform;

3) Support for application testing and fault-tolerance mechanisms, including mechanisms to
deal with uncovered faults in the platform (hardware or software) and misuse of the platform API;

4) Capture some hardware-related issues that have deep impact on the software development
process, such as the availability of multicore devices and of distributed computing environments;

5) Support for system evolution in several aspects: execution platform, requirements,
programming languages, and so on.

We propose a model-based approach to tackle the mentioned challenges. Current research and

results on models are still limited to traditional applications and few tools are available for the
support of a complete model-based design. Furthermore, software engineering models are still not
capable of capturing behaviors or adapting to the variability in the lower levels. One must find the
most suitable models to deal with the specificities of the mobile system: run-time adaptability,
variability, constant system evolution, verification requirements, and so on. For instance, a
successful model, such as UML, still seems under-utilized due to the lack of supporting automation
tools that allow the interaction of the model with the actual runtime code. Our research group
proposes a development cycle based on models as a means to achieve both flexibility and quality
supported by tools. Models can be verified, can suffer transformations that can be tracked and
verified according to different goals, and can serve as a basis for a number of analysis. In our work,
we propose the use of models in every abstraction interface, which will require extreme modelling
capabilities at all levels, hence the term XModel. Specifically, a research plan towards such a
powerful development platform includes the following topics:
- Investigation of distinct abstraction models and the mechanisms for implementing model
transformations that can be applied in the different design levels;
- Definition of a formal basis for the different models to enable verification and transformation
processes;
- Co-synthesis of fault-tolerant systems, combining hardware and software techniques;
- Model-driven specification and management of platforms;
- On-line and off-line monitoring strategies for verification and optimization;
- Quality metrics applied to embedded software.

3 REQUIRED SKILLS FOR A SOFTWARE ENGINEER
 In order to provide adaptive development frameworks capable of abstracting its behavior in
favour of expressiveness without losing the possibility of adjustment to the execution platform, a
multi-disciplinary approach is required. It should combine traditional computer science knowledge
(algorithms, data structures, network, compiling, operating systems, and programming languages)
with additional knowledge that is normally not in the mainstream of a computer science course.
This additional knowledge would be based on the following ideas:
- Model-based design must be the focus of education: i.e., the software engineer must be capable of
defining and using different models as well as relating them through transformations;
- New abstraction models must be explored to capture the semantics of the end-user application. To
this end, natural language processing, visual languages, and agent systems theory, for instance, can
be considered;
- Verification, Analysis, and Testing concepts are required to support the software synthesis process
and evolution;
- Optmization theory can be applied in the synthesis process to deal with the execution constraints
and to the run-time adaptation;
- Fault tolerance is also a required knowledge for the platform provider as a means to cope with the
escaped faults both in the hardware or in the softwaersoftware platforms;
- Metrics and assessment techniques, which are quite different in the mobile domain w.r.t. the
traditonal software development;
- Parallel programming for MPSoC platforms, since this looks like the future of mobile platforms.

REFERENCES
[1] Android Developer site. http://developer.android.com. Accessed on 16 September 2011
[2] RhoMobile site. http://rhomobile.com/. Accessed on 16 September 2011
[3] PhoneGap site. http://www.phonegap.com/. Accessed on 16 September 2011

