Scalable Clustering of News Search Results

Srinivas Vadrevu, Choon Hui Teo, Suju Rajan, Kunal Punera,
Byron Dom, Alex Smola, Yi Chang, Zhaohui Zheng
Yahoo! Labs
Sunnyvale, CA, USA
{svadrevu,choonhui,suju,kpunera,bdom,smola,yichang,zhaohui}@yahoo-inc.com

ABSTRACT

In this paper, we present a system for clustering the search
results of a news search engine. The news search interface
includes the relevant news articles to a given query orga-
nized in terms of related news stories. Here each cluster
corresponds to a news story and the news articles are clus-
tered into stories. We present a system that clusters the
search results of a news search system in a fast and scalable
manner. The clustering system is organized into three com-
ponents including offline clustering, incremental clustering
and realtime clustering. We propose novel techniques for
clustering the search results in realtime. The experimental
results with large collections of news documents reveal that
our system is both scalable and also achieves good accuracy
in clustering the news search results.

Categories and Subject Descriptors

1.7.m [Computing Methodologies]|: Document and Text
ProcessingMiscellaneous

General Terms

Algorithms, Experimentation

Keywords

clustering, news clustering, news search, realtime clustering,
query based clustering

1. INTRODUCTION

Clustering of search results provides a unified view on the
search results by grouping the similar documents. This al-
lows the user to examine all the related categories of the
search results without requiring to go through hundreds of
items. Clustering becomes more import in the context of a
domain like news because there could be thousands of re-
lated articles to a given query. Most of these news articles
are related however and if we group the articles in terms of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

WSDM’11, February 9-12, 2011, Hong Kong, China.

Copyright 2011 ACM 978-1-4503-0493-1/11/02 ...$10.00.

related stories, then the number quickly reduces to a hand-
ful. It makes it easier for the user to browse the search
results in terms of news stories, rather than individual news
articles. Furthermore, news articles re-publish the article
from a different source to provide comprehensive coverage
on a particular topic. This further exacerbates the problem
by increasing the redundancy in the search results. Instead
of leaving the search result organization to the user, a clus-
tered representation of search results provides an overview
to explore a topic.

The news search also has another component of recency
which introduces additional complexities. Although two ar-
ticles are very related in terms of document content, if they
are far apart in the time axis, then they might correspond
to a repetitive event, such as california earthquake. FEven
though such events occur multiple times, they correspond
to different clusters because they are totally independent
events and the user may be interested in looking at them
individually.

Most of the work on search result clustering focused more
on salient feature extraction and utilizing this information to
cluster the search results [19]. However the salient features
do not provide the complete picture about the document.
Sometimes most important information about the news ar-
ticle is buried deep into the document in the body. Later
we provide experimental evidence that shows that the body
of the document provides a great boost in the performance
of the clustering system. Other approaches [7, 3] utilize
standard clustering algorithms like hierarchical agglomera-
tive clustering (HAC) algorithm and partitional algorithms
such as K-means. In [18], clustering problem is modeled
as phrase extraction from documents and then utilizing suf-
fix tree based clustering algorithm to group documents that
contain common phrases. However we show that the query
information is vital in clustering the search results and also
show how to utilize this information in the clustering algo-
rithm.

Other research related to clustering the search results fo-
cus on utilizing various matrix factorization techniques [13,
12] such as singular value decomposition, non-negative ma-
trix factorization [10], local non-negative matrix factoriza-
tion [11] and concept decomposition [4]. These clustering
algorithms focus on extracting quality descriptions for the
clusters by finding the labels with matrix factorization on
the word features from snippets of search results. Although
the descriptions may be important in web search results clus-
tering, they do not play a vital role in news search results
as the most representative document can be used to show

the summary of the cluster. Another algorithm called Dis-
Cover [9] clusters search results by maximizing the coverage
and distinctiveness of the clusters.

Another line of work is related to using named entities
to browse the clusters of search results [16]. However this
work mainly focuses on extracting the named entities from
search results organizing them into clusters using the named
entities. Other related work [6] identifies discriminative,
ambiguous and common terms by constructing a relational
graph of terms and using them to cluster web search results.

It is clear that the named entities that occur in the body
of the documents are valuable to produce quality clusters of
search results. However it is expensive to process the en-
tire documents to cluster the search results in realtime as it
impacts the user experience. In this work we propose a scal-
able clustering technique that can provide a fast execution
time without sacrificing the accuracy by utilizing the body
features in terms of offline clusters that provide a prior on
the document relatedness of search results. The offline clus-
ters are obtained by a process that is run offline. We also
handle incremental clustering for documents that arrive con-
tinuously.

In fact the offline clusters that are obtained by clustering
the entire corpus provide a useful representation and the
search results can be organized into clusters by using this
information alone. Some of the existing work follows exactly
these methodologies. However such organization would have
a fixed granularity of clustering, which may not be desirable
for all queries. Some queries can be broad and require a
higher level of clustering hierarchy and some other queries
can be very specific and require a fine level of clustering
hierarchy. If the offline clusters alone are used to organize
the search results, the granularity of the clustering cannot
be adjusted according to query. However the solution we
provide overcomes this problem by applying a clustering al-
gorithm on the search results in realtime by utilizing the
offline clusters as features.

The contributions of our work are two-fold:

e We provide a unified framework for scalable online
clustering and detail the architecture of the system
that describes each of the three components: offline
clustering, incremental clustering and realtime cluster-
ing.

e We propose novel techniques to cluster search results
in realtime by incorporating the query information in
the clustering algorithm itself.

The paper is organized as follows. Section 2 presents the
overall architecture of our system. Sections 3 and 4 and 5
discusses various clustering algorithms corresponding to of-
fline, incremental and realtime clustering that we used in
this work. Section 6 presents the experimental results for
our algorithms and Section 7 shows the conclusions and fu-
ture work.

2. ARCHITECTURE OF THE SYSTEM

To cluster the search results in realtime, we just need the
top ranked search results. However, the user would like to
browse all the related articles in relation to a particular news
story, which may not be covered in the top ranked news re-
sults. To address this issue, we rely on offline clustering that
clusters the entire news corpus. We utilize the offline clusters

News Offline
Corpus Clustering Clusters of News Incremental
Algorithm Documents Clustering
New
Ranked News Realtime Document
Results Clustering
User Query

Final Clustered
Results
for Presentation

Figure 1: The Architecture of the news search result
clustering.

as an additional source of information in realtime clustering,
which helps its performance as well. However this offline
batch processing of documents, especially news articles does
not work efficiently as news articles arrive continuously ev-
ery second. To address this, we also incorporate incremental
clustering solution to address the streaming data clustering
problem. Figure 1 shows the architecture of our system that
describes individual components that address these needs.

The offline batch clustering algorithm will be run on a reg-
ular basis, multiple times a day on the news corpus, which
we limit to a full month of news articles. This clustering
algorithm assigns a cluster ID to every document that is
present to the algorithm. The incremental clustering algo-
rithm works in a streaming fashion assigning cluster IDs to
documents that arrive in the interim time before the next
offline batch clustering is run. This is a continuous process
that assigns cluster IDs to documents based on the existing
batch clustering algorithm output. Thus each document in
the corpus at any given time will have at least a cluster ID
from either the offline clustering algorithm or the incremen-
tal clustering algorithm. The realtime clustering algorithm,
which is run when a query is issued, is executed at runtime
utilizing these cluster IDs for each of the documents in the
corpus. This realtime clustering groups the search results
into clusters and provides the final presentation of clustered
search results.

In the next three sections, we describe the offline cluster-
ing, incremental clustering and realtime clustering compo-
nents in detail.

3. OFFLINE CLUSTERING

Our offline clustering system draws from the work of [15].
In this method, the similarity between all pairs of articles is
first computed via Locality Sensitive Hashing (LSH). While
we also use the LSH method to determine the pairwise sim-
ilarities, we then construct a similarity graph on the corpus,
wherein a pair of articles has an edge if the similarity be-
tween the two meets a threshold. A correlation clustering al-
gorithm [1] is then run on top of the similarity graph to pro-
duce the final clustering. Note that it is essential to define a
good similarity measure while constructing the graph. False
edges causes different story clusters to be merged whereas
missing edges causes stories to be split. Figure 2 shows the
main components of our clustering system. In the following
sub-sections, we describe in detail the design of each com-
ponent.

Feature MinHash
Vector . Generation
Generation
Duplicate
Correlation Construction
Clustering on _ of Similarity _ Detection

Similarity Graph Graph via LSH

Figure 2: Overview of Offline Clustering System.

3.1 Feature Vector Generation

The good performance of our offline clustering system is
heavily dependent on the underlying similarity function that
is used to construct the similarity graph. As mentioned ear-
lier, a poorly designed similarity function can either merge
different stories or split a story into many clusters. Note
that, we use the term story to represent the set of news ar-
ticles that are about the same news story and hence should
belong to the same cluster. News articles have several im-
portant information sources associated with it that can be
used to define a custom similarity function. The different
types of features that were extracted are:

e TF-IDF: A unigram based feature vector was con-
structed using the TF-IDF values for the words in a
news article after stop-word removal and stemming

e Wikipedia Topics: Wikipedia topics were extracted
from the news article using the technique described in
[17]. The set of Wikipedia topics were then assigned
an “aboutness score” which represents how important
that topic is to the article. The ranked list was then
used as features with the feature value corresponding
to the aboutness scores.

e Part of Speech Tagging: The news article was also
tagged with a Part of Speech tagger and unigrams were
extracted from nouns, adjectives and verbs and used as
features. Term frequencies were used as feature values.

In addition to the above feature vectors, we also made use
of presentation cues associated with the article to emphasize
certain phrases or unigrams such as the fact that a phrase
appears in the title, or abstract, or is italicized etc. Thus,
the different features mentioned above were assigned a score
based on their presentation in the news article. The fea-
tures from the three different channels were then combined
through a simple aggregation of weights assigned to uni-
grams from each channel. The feature vector was then unit
normalized before being used to compute the cosine simi-
larity. Another important feature that was used is that of
time. News articles typically have a time stamp associated
with it. Given two articles published on days t1 and t2, the
cosine similarity on the custom feature space was weighted
by exp(—|t1 — t2|/7). The intuition behind this weighting
function is that the closer the date of publication of the two
articles, the more likely they are to be similar. Since we
believe that a story cluster typically should not contain any
articles that are apart by more than a week we decrease the
similarity between such pairs even more.

While it is trivial to compute the feature spaces and
compare all pairs of articles within a small set such pair-
wise comparison becomes computationally expensive for

larger corpora. A corpus with 100,000 articles requires
10,000,000,000 such comparisons. However, once an article
has been mapped into its feature space the chances of a pair
of completely unrelated articles sharing any useful features
is quite low. It is then unnecessary to explicitly compute the
pairwise similarity between such pairs. We make use of the
LSH to eliminate unnecessary similarity computations. An
important component of the LSH method is the generation
of Minhash signatures for each article.

3.2 Minhash Signature Generation

Minhash signatures are a succinct representation of each
article computed such that the probability that two articles
has the same Minhash signature is equal to the Jaccard simi-
larity between the two [8]. In order to compute the Minhash
signature for each article, we first represent it as a feature
vector in the custom feature space described in Section 3.1.
We then construct a length 100 Minhash signature using the
technique detailed in [15]. However, the randomized nature
of the Minhash generation method requires further checks
to increase the chances of uncovering all pairs of related ar-
ticles and removing articles that were brought together by
chance. Thus, we resort to LSH to reduce chance pairings.
Prior to performing LSH, the Minhash signatures can also
be quickly used to detect exact duplicate.

3.3 Duplicate Detection

Given each article and its 100-length Minhash signature
we use these signatures to identify articles that are dupli-
cates of each other. If an article is a duplicate of another it
is unnecessary to include both in the clustering process. One
article per group of duplicates is sufficient to determine the
cluster memberships of the rest. Given that a typical news
corpus has a number of duplicates, because of different pub-
lishers re-printing the same story from a news agency such
as AP, identifying such groups and using only the unique
documents for clustering provides significant computational
savings. If two articles have the same Minhash value in each
of the 100 slots they are highly likely to be duplicates and
are marked as such. Thus, the articles are grouped by their
Minhash signatures and a representative is chosen for each
group to participate in the clustering process. Once the
representative article has been assigned to a cluster we then
propagate that cluster membership to all of its duplicates as
a post-processing step after clustering.

3.4 Locality Sensitive Hashing

Although the Minhash technique allows us to represent
each article by a length 100 signature and enables duplicate
detection, we still need a O(N?) comparison to determine
the similarity between all pairs of articles. However, as men-
tioned earlier, documents that are unrelated are likely to
have very a low similarity which value need not be explicitly
computed. Locality Sensitive Hashing can be used to quickly
eliminate pairs of articles that share very few features from
the pairwise similarity computation. We use the method
detailed in [15] for LSH. For each article we construct a
shorter LSH signature by concatenating a smaller set (2)
of Minhash signatures. This process is repeated 200 times.
Thus, documents which contain at least a few words in com-
mon are likely to agree in at least one of the LSH signatures.
Only those pairs of articles with the at least one common
LSH signature need to have their similarity computed. The

particular settings of our LSH method, 200 LSH signatures
of length 2, were obtained by offline experimentation on a
smaller dataset. The current parameter settings enabled us
to uncover ~ 96% of all pairs of similar documents as a full-
blown pairwise comparison. Pairwise similarity is computed
on all the documents sharing a LSH signature. Note that
cosine similarity is computed on the unit normalized vec-
tors represented in the custom feature space and not on the
Minhash signatures. The cosine similarity thus computed
is further weighted with the time information as explained
in section 3.1. Only those pairs of articles whose similarity
exceeds a user-defined threshold are recorded. A similarity
graph is then constructed using the output of the LSH pro-
cess. Each article is represented as a node in the graph and
an edge exists between two nodes if its similarity exceeds
the threshold. The edges are also weighted by the cosine
similarity measure.

3.5 Correlation Clustering

The similarity graph is then fed into a correlation cluster-
ing algorithm based on the work in [1] to partition the graph
into clusters. Correlation clustering is also a randomized al-
gorithm that attempts to minimize a cost function based
on the number of dissimilar pairs in the same cluster and
the number of similar pairs in different clusters. We modi-
fied the original algorithm to allow the weight on the edges
that are cut or formed, as clustering proceeds, to partici-
pate in the cost function. The algorithm is sensitive to the
initialization data point. So we start multiple correlation
clustering algorithms multiple times with different random
seeds and identify the one with the lowest cost as the final
clustering solution. An important characteristic of the cor-
relation clustering approach is that it does not require the
specification of the number of clusters. This feature is im-
portant as it is not easy to guess the number of clusters in
an evolving corpus in which a major news event can trigger
multiple stories over a few days.

3.6 Evaluation

In order to evaluate the performance of the offline cluster-
ing system in terms of the quality of the clusters produced,
editorial tests were conducted. We first constructed a cor-
pus of news articles collected over a week. The size of this
corpus is ~ 700K . Pairwise similarities were then computed
between all pairs of articles in the corpus. ~ 5000 article
pairs were sampled by stratified random sampling with the
stratification done on the similarity measure. Pairs of arti-
cles were then presented to the editors and were labeled as
follows:

e Must-link: Includes pairs of articles that are dupli-
cates, pairs in which one article summarizes or para-
phrases the content in the other and also those pairs
covering the same news event but with different text.

e Maybe-linked: When the two articles are about the
same set of entities but in two different news stories
the pair is labeled as Maybe-linked.

e Cannot-link: When the two articles in the pair are
about unrelated news stories it is marked up as Unre-
lated.

The clustering system was then run on the same corpus and
we compute the fraction of times pairs of articles appears

Label Editor Pairs | # in Same Clus. | %in Same Clus.
Must Link 1958 1504 77%
Maybe Linked 1327 293 22%
Cannot Link 1436 40 2.8%

Table 1: Performance of Offline Clustering System

in the same cluster for each label. Note that this number
should be high for must-links and low for cannot-links. The
maybe-linked label is the gray area where it is not entirely
wrong to show the two articles in the same cluster but for
better user experience one would want to keep this number
low as well. The results of the clustering system are shown
in Table 1. As can be seen, the offline clustering system
performs well.

4. INCREMENTAL CLUSTERING

The offline clustering phase produces a set of clusters of
similar/relevant documents. These clusters are then taken
as groundtruth for constructing a classifier for incremental
clustering. The incremental clustering refers to the task of
assigning a new document that has just arrived at the system
to a cluster it is most likely to be associated to.

Since offline clustering is usually scheduled to run at the
interval of a couple of hours, it is likely the case that news
that has just broke after the offline clustering phase does
not belong to any of the existing clusters. We describe here
three simple classifiers for the purpose of incremental clus-
tering with strategies to reduce the potential impact of this
scenario:

Static A standard classifier that must be re-trained on the
latest set of documents at a shorter time interval.

Semi-adaptive: A classifier that is capable of creating new
class for news articles which are not close “enough” to
any of the existing clusters. The closeness here is a
value which requires careful tuning.

Fully-adaptive: A classifier that is not only capable of cre-
ating new classes but also updating itself to cope with
the evolution of the news in the existing clusters. That
said, the classifier is also able to remove classes corre-
sponding to “submerging” stories. Compared to semi-
adaptive classifier, this classifier is more flexible but
more likely to suffer from sub-optimality as it is sen-
sitive to the order of the news articles that arrived at
the system.?

The three types of classifiers described above roughly
cover the whole spectrum of incremental clustering. The
choice of a specific classifier depends on the computational
and time constraints we are confined to: As long as offline
clustering can be carried out more frequently, static classifier
is perhaps the best as it is simple to implement, easy to de-
ploy, and requires no maintenance effort. Otherwise, semi-
or fully-adaptive classifiers, which are harder to maintain,
can be used instead.

IThis cause of sub-optimality is also commonly seen in on-
line learning.

S. REALTIME CLUSTERING

Realtime clustering is vital to adjust the granularity of
clustering at the query-time. For example, the query ‘earth-
quake’ in a news search engine returns clusters of news sto-
ries where the each cluster represents news story discussing
about an earthquake occurred in a particular location. Thus,
all the results related to Chile earthquake may be grouped
in to a single cluster. However a related query such as ‘chile
earthquake’ might return detailed news stories that are all
related to the Chile earthquake. In this case, the news sto-
ries may be discussing about the damages caused by the
earthquake, donation related information and the incredi-
ble force of the earthquake, which depict various aspects of
Chile earthquake.

Thus adjusting the granularity in realtime clustering is
very important and we propose three novel techniques to
handle this that are described in following sections. Each of
the methodologies shows how to modify the similarity mea-
sure in a standard clustering algorithm that can be used to
cluster the top documents retrieved by a news search engine.
In our experiments we used hierarchical agglomerative clus-
tering (HAC) to incorporate these similarity measures and
compared the proposed similarity measures with the stan-
dard cosine similarity.

5.1 Meta-Clustering and Textual Matching

This approach relies on the output of the offline cluster-
ing output and also textual matching features among the
query and the documents. The similarity measure in this
clustering can be formulated as:

Zw - bm25(g, d1 N d2)
"7 bm25(q, di) + bm25(q, do)

sim(q, d1, d2)

where
e K is the number of offline clustering algorithms
e w; is the weight for the clustering algorithm i

e ¢; = 1 if the clustering algorithm i puts d; and dz in
the same cluster

e ¢; = 0 if the clustering algorithm i puts d; and d2 in
different clusters

e d1 N d2 is the overlap of documents d; and d2

The first term in this equation is the term correspond-
ing to the offline clustering weights. This is similar to en-
semble cluster learning or meta-clustering that is a simple
combination of various clustering solutions from the offline
clustering assignments. The second term in the equation
relies on the textual matching features among the query
and the documents. This formation relies on the textual
matching features among the query and the documents. We
use BM25 [14] as a proxy for textual matching between the
query and the document. Given a query g and a document
d, BM25 score can be computed as

md t (1)
BM?25F(d Z
s K1+ Zay Tt
_ Td,t
Tt = Ld]

T+ B(lavgdl] — 1)

where w<) is the usual relevance weight of the term ¢ in
the document7 which can often be the inverse document fre-
quency, x4, is the frequency of the term ¢ in the document d
and T4+ is the weighted term frequency that can be further
broken into fields which can, in turn have individual weights.
The term frequency is normalized with the document length
with awvdl, which is average document length in the corpus,
so that long and short documents are treated in the same
manner. K; and B are parameters in this score, for which
we used standard weights in our experimental setting.

5.2 Contextual Query-Based Term Weighting

In this QrySim methodology, we modify the weights of the
term vectors to account for the context around the query
in the document. We want to weigh the terms that appear
closer to the query higher than the terms that appear farther
from the query.

Our postulation is that terms that occur closer to
the query terms are more important in realtime query-
dependent clustering than those that occur far from the
query terms. This can be validated from considering an
anecdotal evidence. Consider a query ‘earthquake’ where
the user might be interested in research about the recent
earthquakes that happened, so the important terms for clus-
tering in this case would be locations such as ‘Haiti’, ‘Chile’,
‘Japan’, etc, all of which occur close to the term ‘earth-
quake’. However if the query is ‘Chile Earthquake’, the
important terms for clustering might be different, such as
‘Rescue’, ‘death toll’, ‘donations’, etc. Finding the repre-
sentative terms for each query might be difficult and a good
approximation for finding them is to look for the context
around the query.

We first construct the query position vector for each docu-
ment, which lists the positions where the entire query occurs
together in the document. We experimented with various n-
grams of the query (unigrams and bigrams) as a proxy for
the entire query to increase the coverage, but we found that
using the entire query to build the position vector works well
in practice. With this position vector, we parse each docu-
ment and assign the weight for each term as the distance of
the term from the closest query occurrence, i.e.,

F{ =F %

1
V dmin

Where F; is the original frequency/term weight of the
term t and dmin is the closest distance of the term t to
the query occurrence in the document.

With these new weights to each of the terms, we construct
new term vector for each document and use them in com-
puting the similarity measure for clustering, which weights
the terms that appear closer to the query terms higher.

5.3 Offline Clusters as Features

Another way to utilize the offline cluster information into
the realtime clustering is to use the offline cluster ids as
additional features when we cluster the top n results. Be-
fore we add the offline cluster id information, we show how
valuable the body information is to the realtime clustering.
Figure 3 shows the comparison of clustering algorithms with
and without using body features. It can be clearly seen that
the body features provide a good boost to the performance
of the clustering algorithm.

Although the body provides vital information to the clus-

measure: Jaccard #dqry: 33

— featsetA-hac-12
— featsetB-hac-12

045
040} I~~~ \‘\
0.35

0.25}

0.20 H

5 10 15 20 25 30
Number of clusters

measure: Q4 #qry: 33

— featsetA-hac-12
— featsetB-hac-I2

0.82 |
0.80 |

0.78|

0.74

072

0.70 |

5 10 15 20 25 30
Number of clusters

Figure 3: Usefulness of body features in realtime clustering. The figure shows the values of clustering
evaluation metrics, Jaccard and Q4, averaged over results of 33 queries for various number of clusters (K=1
to 30). The green line corresponds to the feature set with only title and abstract features and the blue line
corresponds to the entire feature set which includes body features, which is clearly superior.

tering algorithm, the feature space increases dramatically if
all of the body features are used in the realtime clustering
algorithm. Since the realtime clustering algorithm needs to
be executed at runtime after the query is issued, this poses
latency issues as the clustering algorithm needs to compute
similarity measure between the documents that operates on
this huge feature vector. Thus, it is expensive to use all of
the body features in the realtime clustering algorithm. To
address this problem, we propose to utilize the offline cluster
IDs as additional features to the online clustering algorithm.
In computing the similarity measure for the realtime clus-
tering, these offline cluster IDs can be used to determine
the closeness of two documents based on whether they have
similar offline cluster IDs. For this purpose, a document
can have multiple offline clustering IDs from either different
algorithms or with the same algorithm with different granu-
lar settings such as coarse and fine. We utilize the standard
HAC for the realtime clustering algorithm with the standard
cosine similarity with the regular term features and use Jac-
card similarity to compute the similarity in the offline cluster
IDs.

Thus the final similarity measure between two documents
in this setting is as follows:

Sim = a * CosineSim + (1 — a) * Jaccard

Where CosineSim is the cosine similarity computed on the
bag of words based term features and Jaccard is the Jaccard
similarity measure between the vector of offline cluster IDs
for two documents and « is the tradeoff parameter between
the two similarity measures, which we set it to 0.5 in our ex-
periments. The Jaccard similarity between two documents
can be computed as

. CiNCy
- CLuUC2

where C7 and Cy are vectors of offline cluster IDs of two
documents that correspond to output from various cluster-
ing algorithms or the same clustering algorithm with various
granular settings.

Jaccard(C1, C2)

5.4 Performance Analysis

In this section, we provide a short analysis to estimate the
number of computational operations required by using the
entire body features as compared with using just the offline
clusters as an approximation. We performed this analysis
on an editorially evaluated data set containing 300 queries
and approximately 25000 news documents. The clustering
features contain words from three sections of the news doc-
uments, including title, abstract and the body. The number
of unique body features is 20 times more than the features
contained in both title and abstract. Thus we observe far
greater number of unique features in the body, thus increas-
ing the total number of operations when computing the sim-
ilarity between documents if the body features are included
in the computation. Hence we gain 20z savings in terms of
number of operations if we do not use the body features and
use the offline clusters as a proxy for these features.

6. EXPERIMENTS

In this section we present the experimental evaluation of
our techniques on Yahoo! news corpus and search engine.
The results we present evaluate the end product of the en-
tire system that we presented, which is the realtime clus-
tering. Thus we present several experimental evaluations to
determine the quality of the clustering output on the search
results given a query. In the following sections, we first de-
scribe the experimental data we used, present various evalu-
ation metrics we used and finally show the results to evaluate
various techniques we described.

6.1 Experimental Setup

We scrape the Yahoo! news search engine with a list of
random queries sampled from the query log and collect the
top 100 news search results returned by the ranking algo-
rithm. Each of these search results correspond to an individ-
ual news article and our goal is to group these search results
into clusters that refer to related news stories. Since the
news articles are coming through feeds from news sources,
we have access to the individual fields such as publication
time, url, title, abstract and body of the news article. We ex-

Algorithm Precision | Recall | F-Measure | Rand
Minhash Clustering 0.77 0.92 0.84 0.66
Subspace Clustering 0.83 0.90 0.86 0.69

K-Means (k=20) 0.89 0.93 0.91 0.63
K-Means (k=25) 0.95 0.96 0.95 0.71
Meta Clustering 0.95 0.96 0.95 0.71
Meta Clustering +

Textual Matching 0.97 0.96 0.96 0.75

Table 2: Results with various simple offline cluster-
ing algorithms and the realtime clustering algorithm
which includes meta clustering algorithm.

Metric OrigSim | QrySim Gain T-test % times
p-value | OrigSim is better
Qa 0.724 0.731 0.96% 0.06 62%
Jaccard 0.258 0.260 0.74% 0.07 62%
Rand 0.564 0.571 1.27% 0.02 96%

Table 3: Realtime Clustering Results with QrySim
similarity measure that boosts the weights to the
terms that occur close to the query term over the
standard similarity measure (OrigSim) with equal
weights to all terms.

tract several features from these news articles including sim-
ple term features, unigram and bigram features and named
entity based features. To extract named entities from the
text of news articles, we use a dictionary based maximum
entropy based tagger [2].

Each of the search results for a given query are editorially
grouped into related clusters by incrementally going through
them one by one. For example, first document is assigned
to cluster A. If the second document is similar to cluster A,
it is assigned to cluster A and if it is not similar, then it
is assigned to a new cluster B. In this manner, all the top
100 results are grouped into clusters. We define a cluster to
be a news story. For example, the documents in the same
cluster are referring to the same news story. If the story is
a developing story, then we require that the related news
articles to be in the same cluster, unless they talk about
significantly different news story. With this criterion for
clustering the news articles, all documents within the same
cluster correspond to same news story from various news
sources such as New York Times and Wall Street Journal.

The offline clustering algorithms were run on the en-
tire corpus of news documents within one month of time
frame, comprising millions of news articles that correspond
to US/English documents. The features for offline cluster-
ing algorithms utilize 600,000 features comprising of uni-
gram and bigram features and named entity based features.
For realtime clustering evaluation, we editorially labeled top
100 results into clusters for a set of 300 queries. The features
used for realtime clustering algorithm were chosen to be a
subset of the features used in offline clustering algorithm,
comprising 12,000 features.

6.2 Evaluation Metrics

We utilize the following extrinsic metrics to evaluate our
clustering algorithms that compare the performance of a
given clustering solution to the editorial solution:

e Precision: If C' is the number of clusters to be eval-
uated, L is the number of categories (from editorial

judgments) and N is the total number of documents
(100 per query), precision can be computed as the
weighted average of maximal precision values.

.. c ..
Precision = E % max Precision(Cj, Lj)
- J

L CiNL;

Precision(C;, L;) = 1€ N L]
|Cil

Recall: Recall, also referred as inverse purity focuses

on the cluster with maximum recall for each category.

Recall can be defined as

L; .
Recall = Z |N| maz;Precision(L;, C;)

F-Measure: Standard F-Measure can be computed
from treating the precision and recall values equally.

Qa4: This is an information-theoretic validity measure
that characterizes how well the cluster labels assigned
to the objects by a clustering algorithm agree with
their (manually assigned) class labels by the number of
bits required to encode/compress the class labels of the
objects given knowledge of their cluster labels. This
code length corresponds to a special encoding scheme
inspired by the Minimum Description Length princi-
ple[?, ?]. The form of the measure that gives the bits
per object to do this encoding is Q3. The measure-
form @4 is simply a normalized form of @3, designed
to vary between zero (no information about class la-
bels contained in cluster labels) and one (perfect clus-
tering.)

Q3(C,K) = % % |:log(v(k))}) 4 log (v(kz) +C| - 1>} 7
k=1

{v(c, k |Cl—1
v(k) _ v(k)! _ . . _
where ({U(L_‘k)}) = 71_[&1 e multinomial coeffi
cient

max g QS(C, K) - QS(C» K)

Q4C, K) = maxx Q3(C, K) — mink Qs(C, K)

= normalized Q3(C, K)

These measures are refinements of the measures Qo
and @2 derived in [5]. These refinements remove a
form of redundancy known as incompleteness from Qo
and Q2. The details of the refinements are discussed
in [?]. We chose to include Q4 in our set of clustering-
accuracy metrics because it satisfies a set of desir-
able properties, which are not all satisfied by more
traditionally used metrics based on pairwise agree-
ment /disagreement. These properties are listed in [5]
and the fact that they are not all satisfied by tradi-
tional measures is demonstrated there as well.

Jaccard: This is a simple Jaccard coefficient com-
puted on the pairs of documents. It is computed as
the number of pairs of documents that are supposed
to be together and the algorithm actually put them
together over all of the number of pairs of documents.

SS

Jaccard = oo N DS

Algorithm Description Avg Q4

Best Single Offline Clustering Algo 0.7340

Title + Abstract Features Only 0.7584

Title + Abstract + Best offline set of clusters 0.7801
Title + Abstract + Body Features 0.8157

Title + Abstract + Body + Best offline set of clusters 0.8208

Table 4: Q4 values with Realtime Clustering algo-
rithm with various combinations of features. The
baselines include features with title and abstract and
a single offline clustering algorithm. Although the
combined feature set with all the features is the best
one, the features with the offline clusters and title
and abstract features is comparable to the one which
includes body features.

[Offline Cluster Sets [Avg Q4

[(1,2,3) | 0.78009
(1,2) 0.77686

(1,3) 0.77444

(1) 0.77418

(2) 0.77130

(2,3) 0.77036

(3) 0.76155

Table 5: (@4 values with Realtime Clustering al-
gorithm with various granularity settings of offline
clusters as features. The baseline feature set in-
cludes just title and abstract features. The numbers
1,2,3 refer to different settings of the offline clus-
tering algorithm at different granularity settings,
specifically varying from coarse to fine representa-
tion of clusters. It can be observed that the best
accuracy is obtained by combining all the configura-
tions, and individual cluster IDs themselves provide
inferior performance.

Where SS is the number of pairs that belong to the
same algorithmic cluster and editorial class, SD is the
number of pairs that belong to same algorithmic clus-
ter and different editorial class and DS is the number
of pairs that belong to different algorithmic cluster and
same editorial class.

e Rand: This statistic relies on counting pairs of docu-
ments and their assignments into appropriate clusters
and categories. Essentially it is the ratio of the number
of pairs of documents that got correctly assigned into
categories to the total number of pairs of documents.

SS + DD
SS +SD + DS + DD

Rand =

6.3 Evaluating Meta-Clustering and Textual
Matching

Table 2 shows the performance of various offline clustering
algorithms applied directly on the editorial dataset for real-
time clustering. It can be seen that the best offline clustering
algorithm is K-Means with 25 clusters which achieves F-
Measure of 0.95. A meta-clustering algorithm which is sim-
ply a combination of various clustering algorithms achieves
the same performance as the best offline algorithm, while
textual matching that utilizes the query information im-
proves upon this result as it incorporates additional infor-
mation in terms of query.

6.4 Results with QrySim

Table 3 shows results with QrySim method described in
Section 5.2. HAC is used a clustering algorithm for these re-
sults. We compared the standard cosine similarity with the
QrySim similarity measure where we emphasize the weights
on the terms that are close to the query. The QrySim
method clearly outperforms the standard similarity measure
as shown in the results.

6.5 Results with Offline Clusters as Features

Next, we present experimental results by evaluating the
efficacy of using offline clusters as features in the realtime
clustering. In this setting, we used minhash offline clustering
algorithm to cluster a big corpus of news documents and
used HAC to cluster the top 100 search results by using the
offline cluster ids as features.

The baseline feature set includes simple features such as
bag of words based term features and we experimented with
three variations of minhash clustering algorithm with vari-
ous number of hash functions for the offline clustering algo-
rithm as additional features. We also utilize the structured
fields in the news articles such as title, abstract and body as
individual features. The results are shown in Table 4.

We also experimented with various granularity settings for
the offline clustering algorithm mentioned in Section 3 and
their usefulness as features in the realtime clustering algo-
rithm. The Table 5 shows the results with various combina-
tions of such granularity settings as features in the realtime
clustering algorithm. The results show that the redundancy
in the clustering algorithms is helpful to achieve maximum
accuracy in the realtime clustering. We can also observe a
trend that the accuracy decreases as we go from coarse to
fine granularity in the clustering algorithm.

7. CONCLUSIONS AND FUTURE WORK

In this paper, we presented an overall system for cluster-
ing news search results. We presented a system that in-
volves clustering the entire news corpus with an offline clus-
tering algorithm and handling the incoming streaming data
with incremental clustering algorithm. The output from the
offline and incremental clustering algorithms are then uti-
lized for improving the realtime query based clustering. The
experimental results indicate that the meta clustering that
combines various offline clustering algorithms is as good as
the best clustering algorithm, but the realtime query based
clustering can be improved upon this by utilizing the query
information. We also show how to utilize the offline cluster
information in the realtime clustering by using them as fea-
tures and this shows an improvement both in accuracy and
the performance of the system.

8. REFERENCES

[1] N. Bansal, A. Blum, and S. Chawla. Correlation
clustering. In MACHINE LEARNING, pages 238-247,
2002.

[2] A. L. Berger, V. J. D. Pietra, and S. A. D. Pietra. A
maximum entropy approach to natural language
processing. Comput. Linguist., 22(1):39-71, 1996.

[3] K. Chakrabarti, S. Cauduri, and S. won Hwang.
Automatic categorization of query results. In
Proceedings of SIGMOD 2004, 2004.

[4]

[11]

[12]

I. Dhillon and D. Modha. Concept decomposition for
large sparse text data using clustering. Machine
Learning, 1(42):143-175, 2001.

B. Dom. An information-theoretic external
cluster-validity measure. In UAI pages 137-145, 2002.
F. Gelgi, H. Davulcu, and S. Vadrevu. Term ranking
for clustering web search results. In Proceedings of
Tenth International Workshop on the Web and
Databases, Beijing, China, 2007.

M. A. Hearst and J. O. Pedersen. Reexamining the
cluster hypothesis: scatter/gather on retrieval results.
In SIGIR ’96: Proceedings of the 19th annual
international ACM SIGIR conference on Research and
development in information retrieval, pages 76-84,
New York, NY, USA, 1996. ACM.

P. Indyk and R. Motwani. Approximate nearest
neighbors: Towards removing the curse of
dimensionality. pages 604-613, 1998.

K. Kummamuru, R. Lotlikar, S. Roy, K. Singal, and
R. Krishnapuram. A hierarchical monothetic
document clustering algorithm for summarization and
browsing search results. In WWW ’04: Proceedings of
the 13th international conference on World Wide Web,
pages 658-665, New York, NY, USA, 2004. ACM.

D. Lee and S. Seung. Learning the parts of objects by
non-negative matrix factorization. Nature,
(401):788-791, 1999.

S. Li, X. Hou, H. Zhang, and Q. Cheng. Learning
spatially localized, parts-based representation. CVPR,
(1):207-212, 2001.

S. Osinski. Improving quality of search results

(13]

(14]

(15]

(16]

(17]

(18]

(19]

clustering with approximate matrix factorisations. In
In the Proceedings of the 28th European Conference on
IR Research (ECIR 2006), London, UK, 2006.
Springer Berlin.

S. Osinski, J. Stefanowski, and D. Weiss. Lingo:
Search results clustering algorithm based on singular
value decomposition. In Advances in Soft Computing,
Intelligent Information Processing and Web Mining,
Proceedings of he International IIS: IIPWM 2004
Conference, pages 359-368, Zakopane, Poland, 2004.
S. Robertson, H. Zaragoza, and M. Taylor. Simple
bm25 extension to multiple weighted fields. In ACM
international Conference on Information and
Knowledge Management, pages 42-49, New York, NY,
USA, 2004. ACM.

P. I. Taher H. Haveliwala, Aristides Gionis. Scalable
techniques for clustering the web. In In Proc. of the
WebDB Workshop, pages 129-134, 2000.

H. Toda and R. Kataoka. A search result clustering
method using informatively named entities. In WIDM
’05: Proceedings of the Tth annual ACM international
workshop on Web information and data management,
pages 81-86, New York, NY, USA, 2005. ACM.

S. G. Yiping Zhou, Lan Nie. Surface form resolution
based on wikipedia. In To appear In Proc. of COLING
2010, 2010.

O. Zamir and O. Etzioni. Web document clustering: A
feasibility demonstration. In Proceedings of SIGIR
1998, pages 46-84, 1996.

H.-J. Zeng, Q.-C. He, Z. Chen, W.-Y. Ma, and J. Ma.
Learning to cluster web search results. In SIGIR,

pages 210-217, New York, NY, USA, 2004. ACM.

