
Improving Sensor Network Immunity under Worm Attacks:
a Software Diversity Approach∗

1Yi Yang, 1,2Sencun Zhu, and 1Guohong Cao
1Department of Computer Science and Engineering

2College of Information Sciences and Technology
The Pennsylvania State University, University Park, PA 16802

{yy5,szhu,gcao}@cse.psu.edu

ABSTRACT

Because of cost and resource constraints, sensor nodes do
not have a complicated hardware architecture or operat-
ing system to protect program safety. Hence, the noto-
rious buffer-overflow vulnerability that has caused numer-
ous Internet worm attacks could also be exploited to attack
sensor networks. We call the malicious code that exploits
a buffer-overflow vulnerability in a sensor program sensor

worm. Clearly, sensor worm will be a serious threat, if not
the most dangerous one, when an attacker could simply send
a single packet to compromise the entire sensor network. De-
spite its importance, so far little work has been focused on
sensor worms.

In this work, we first illustrate the feasibility of launch-
ing sensor worms through real experiments on Mica2 motes.
Inspired by the survivability through heterogeneity philoso-
phy, we then explore the technique of software diversity to
combat sensor worms. Given a limited number of software
versions, we design an efficient algorithm to assign the ap-
propriate version of software to each sensor, so that sensor
worms are restrained from propagation. We also examine
the impact of sensor node deployment errors on worm prop-
agation, which directs the selection of our system parame-
ters based on percolation theory. Finally, extensive analyt-
ical and simulation results confirm the effectiveness of our
scheme in containing sensor worms.

Categories and Subject Descriptors

C.2.0 [Computer-Communication Networks]: General—
Security and protection; C.2.1 [Computer-Communication
Networks]: Network Architecture and Design—Wireless

communication; D.4.6 [Software]: Operating Systems—Se-

curity and Protection; K.6.5 [Computing Milieux]: Man-

∗This work was supported in part by the National Sci-
ence Foundation (CAREER-0643906, CNS-0524156, CNS-
0519460, and CNS-0627382) and Army Research Office
(W911NF-05-1-0270 and W911NF-07-1-0318).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MobiHoc’08, May 26–30, 2008, Hong Kong SAR, China.
Copyright 2008 ACM 978-1-60558-083-9/08/05 ...$5.00.

agement of Computing and Information Systems—Security

and Protection

General Terms

Security, Algorithms, Experimentation, Performance

Keywords

Sensor Worm, Software Diversity, Graph Coloring, Percola-
tion Theory, Sensor Network Security

1. INTRODUCTION
For sensor nodes operating in an unattended, hostile en-

vironment, they often face various security attacks. Due to
their low manufacturing cost (e.g., less than one dollar for
envisioned smartdust microsensors), it is unlikely that we
will use expensive tamper-resistant hardware for these sen-
sors. Therefore, malicious attacks are inevitable and they
may be launched to obtain important information from sen-
sor networks, to interfere with their normal operations, or
even to destroy them. The question is how much we can
do to increase the survivability of a sensor network that is
under attacks.

In the literature, many security mechanisms have been
proposed to defend against various kinds of attacks in sen-
sor networks, for example, dodging communication channel
jamming, thwarting MAC layer attacks, countering attacks
against routing protocols, providing attack-resilient data ag-
gregation [34], and node localization. However, we notice
that a potentially more severe attack has not yet been stud-
ied. We name this attack sensor worm attack. More specif-
ically, we define sensor worms as crafted messages that ex-
ploit software vulnerability of sensor nodes in a sensor net-
work, causing sensor nodes to crash or taking control of sen-
sor nodes. Clearly, sensor worm attack could be the most
dangerous one if an attacker simply sends a single message to
compromise the entire sensor network, defeating the mission
of the sensor network. The only related work we know of is
one on modeling sensor worm propagation [13]; it, however,
neither discussed the feasibility of launching sensor worms
nor proposed any solution to address sensor worms.

Naturally, the first question that will arise is: is it possi-

ble for worm attacks to occur in sensor networks? On one
hand, compared with regular computer systems, it is even
easier for sensors to be compromised by worm attacks. This
is because sensors do not have complicated hardware archi-
tecture or operating system to protect program safety due to
cost and resource constraints. Moreover, sensors in the same

network are homogeneous in both hardware and software. If
one sensor is compromised because of a program vulnerabil-
ity, all the other sensors are vulnerable to the same com-
promise attack. On the other hand, worm attack on sensors
is not exactly the same as that on regular computers. The
Harvard architecture of many sensor microcontrollers has
separate memories for program and data. This prevents a
piece of malicious code directly injected into the stack of the
data space from being executed in such sensors. While this
is generally true, as a trial study we conducted experiments
on Mica2 motes and found that a buffer overflow vulnera-
bility, the common trigger of worm attacks, could result in
the transfer of program flow to a transmission component
in the code space. Then, an exploited sensor may relay the
attack packet it received before becoming irresponsive. Con-
sequently, this leads to the propagation of the worm packet
over the entire network and the failure/corruption of all the
sensors.

The next question to be answered is: what can we do to

defend against such sensor worm attacks? Although a huge
body of literature exists on addressing the buffer overflow
problem for protecting both clients and servers in the In-
ternet, it is not immediately clear whether and how these
solutions may be adapted to the sensor system, which fea-
tures wireless communication, high connectivity, different
hardware architecture, OS (e.g., TinyOS in Mica motes) and
programming language (e.g., nesC for TinyOS). While this
remains an interesting open research question, in this work
we are more interested in improving the survivability of en-
tire sensor networks under worm attacks.

In spirit of the survivability through heterogeneity philoso-
phy, we explore the technique of software diversity to combat
sensor worms. While the general idea of software diversity
is not new and it has been applied to wired networks [17, 27,
9], its application to sensor networks faces unique challenges
due to high node density and sensor deployment error. High
node density implies that it is unrealistic to assign a differ-
ent version to each node; deployment errors could lead to the
potential danger that sensor nodes with the same version of
code become neighbors (connected) after they are deployed
into the field.

To address the above challenges, we first adopt a location-
based version assignment strategy. Given a limited number
of software versions of the same functionality, we load every
sensor with a proper version of the software through an ef-
ficient graph color assignment algorithm, such that a sensor
worm may be isolated in a small “island”. Then we ana-
lyze based on percolation theory the impact of deployment
errors on sensor worm propagation, which gives some prac-
tical guidelines for choosing appropriate system parameters
to minimize the chance of worm propagation. Finally, our
performance evaluation demonstrates the effectiveness of the
proposed scheme in defending against sensor worm attacks.
It also shows that our scheme greatly outperforms two other
version assignment algorithms proposed in [27].

The remainder of this paper is organized as follows. First,
related work is discussed in Section 2. Then, Section 3 stud-
ies the feasibility of launching sensor worm attacks. After
that, Section 4 describes our graph coloring based sensor
worm defense scheme. Performance evaluation is presented
in Section 5. Finally, we summarize our work and discuss
future work in Section 6.

2. RELATED WORK
Worm Defense Worm attacks in Internet [31] as well as
buffer overflow vulnerabilities [28] have been extensively stud-
ied. Both proactive and reactive strategies are proposed to
defend against worm attacks in Internet [11]. Also, Internet
worm propagation is modeled and the impact of network
topology on the size of the final infected population has
been analyzed in [18, 14]. [33] proposes generic techniques
for blocking buffer overflow attacks based on some inherent
distinctions between exploit code and random data.

The related work we know on sensor worm mainly mod-
els the worm propagation. [13] models node compromise
spread in wireless sensor networks using epidemic theory
and identifies key factors determining potential outbreaks.
However, the sensor deployment error and sensor compro-
mise containment strategies are not considered in this work.
Some techniques [24, 30] are also designed for sensor mem-
ory protection. These work together with [8] improve the
defensive capabilities of individual sensors. It is necessary
for us to enhance sensor network immunity under worm at-
tack in a systematic way, since the defensive capability of
individual sensors is limited. In parallel to our work, [20] il-
lustrates that a mal-packet with only specially crafted data
can exploit memory-related vulnerabilities and utilize exist-
ing application codes in a sensor to propagate itself without
disrupting sensors’ functionality.
Software Diversity Inspired by diversity, an important
source of robustness in biological systems, software diversity
in computer systems [17] as well as computer networking [27,
9] bears a lot of attention recently. A variety of random-
ization techniques [19] have been proposed to enhance the
intrusion resistance of computer systems by increasing soft-
ware complexity without degrading functionalities and per-
formance. Diversification at the network level is achieved by
applying different operating systems, critical software com-
ponents [25] or communication protocols [26] on different
machines of the network.

Similar work is conducted in preventing epidemics in the
context of computer worms or viruses [10]. In [29], it is
stated that selective immunization should be enforced ac-
cording to the node’s degree, i.e., nodes with high degree
should be installed different softwares because they are more
important in the network connectivity.
Graph Coloring Graph coloring (especially vertex color-
ing) [22], a famous problem in graph theory, ensures that
there are no two adjacent nodes sharing the same color. So,
its solution is a natural option for making globally optimal
decision in software diversity. In the distributed coloring al-
gorithms proposed in [27], the initially random assignment
of nodes’ colors will cause high communication overhead in
the following color adjustment and negotiation with neigh-
bors. Also, the algorithms may not converge to a few colors
due to the high density of sensor networks, which in prac-
tice may result in a high cost for software implementations.
Our sensor worm defense scheme has already considered all
these factors as well as the sensor deployment errors, thus
is well-tailored for sensor networks.

3. SENSOR WORM ATTACKS
In this section, we first introduce the memory architecture

of sensors. Then, we illustrate the feasibility of launching
sensor worms through experiments. At last, we model the
propagation of sensor worms using a simple epidemic model.

� � � � �
� � � � �

� �� � � � � 	
 � � ���
 � � � � �
 � �
 � � � � �
 � � �
� � � � � �� � � �
 � � �� �

� � � � �� � � �� � � �� � � �
 � � �� �� � � � 	
 � � ��� � �
 � � �
 �
 � � � � �
 � � �� !
 � �� �
 ��� � � � � " # $% � !
 � �� �
 � �� � � & � ' " () * � $% � !
 � �� �
 � �� � � + � $ � �
 � � � � � ! � 	 �# (, " - . �
) * �
 � � � � � ! � 	�(/ " # 0 - . �

� � 1 � �� 1 1 � � � � � � 23 4 5 6 7 8 9 : : 74 ; ; < = > ? > ? � � @ � @ A 79 8 ; B C; ; CD 8 E D B F D 8 4 8 5G H G I J KL M N O I P Q L RI P S LTU P VL M N O I P Q L RI P S LWH H G X P Y L Z [\] ^ _ ` a b c d e f g _ ` a b d G h V i H XP j k Z Z lm H n d Y L S P] Z [Y Y Z RI P S GQ J J I P Q L RY L o P o Z] Z o Z p I P Q L qr r� � � � �
� 1 � � �� � � � �� � � @ �� � � 1 � s tu v w t x w y zw v t{ |z} ~ t{ } { � � w � zu � � � y{ � { z� { w } { | | w � { � ~ yu � { | | w � � y{ v yu w � � w | � z�� � u z� w | | z� � } { � � � � z� � � � � � | � y � � z � � � � � | � y� t{ � � � � �� � z� � � � � v � � � { y � 1 � � �� ¡� ¢ £ � ¤ ¥ ¦§ § � � � � � � ¨ © � � � ¡¨ ª ¤ « � � � ¢ � ¤ � � �¬­ ­{ � { � � ® ¯ ° � ± | � ² � y ³ { � { z� { ´ } � ± | � µ y{ � { z� { �® ¯ ° � ± | � ² � y ~ } | � �� ­ ­ ­ ­ ­ µ� w t t ¶ { � | µ� y{ { � ® u � � t{ �� � � � � y{ { � t{ � � u � � t{ | u � y{ � { z� z� �w | | z� � } { � � �~ } | � · ¸ � w � w � | z¹ { u � � ~ } | � · ¸ � w � w � � �� w t t ° { � � ´ } � ± | � µ| { � � �® ¯ ° � º ´ » ° ® � » ¼ ¼ ³ �| z¹ { u � � ~ } | � � � ~ } | � � �­ ­ ­ ­ µ µ µy { � � y� ~ } | � �¬¬

Figure 1: Buffer overflow experiment on memory structure of ATmega128.

3.1 The Memory Architecture of Sensors
Observing that most of the Internet worms exploit the

buffer overflow vulnerabilities in software, we start by study-
ing the buffer overflow problem in sensor nodes. Based on
our initial investigation, we find that buffer overflow in sen-
sors is memory architecture dependent. The 8 and 16-bit mi-
crocontrollers used in small embedded systems are designed
in either of two memory architectures: the Von Neumann
Architecture which uses a single physical memory for both
program code and data, and the Harvard Architecture which
uses separate memories for program and data.

Most of the buffer overflow attacks in the Internet tar-
get at the Von Neumann Architecture. By overflowing the
boundary of a buffer in the stack or heap, a worm injects
a piece of malicious code into a program. If it succeeds,
it will cause the return address of a function to be over-
written; further, the instruction pointer will point to the
location of the injected code and start to execute the mali-
cious code. Therefore, if a sensor network consists of sensor
nodes that use the Von Neumann architecture (e.g., micro-
controller msp430 of Texas Instrument [6]), it is also vulner-
able to such worm attacks if the program does not perform
careful boundary checking.

The Harvard architecture, which is used by vendors like
Atmel and Microchip, makes it hard (if not impossible) to
inject malicious code, because the program memory and
the data memory are separate (Figure 1). The data mem-
ory is not executable and typically different instructions are
required to access the program and data memory. Mica2
motes [5] use the 8-bit microcontroller ATmega128 from At-
mel [1]. The stack residing in the internal SRAM of the data
memory is mainly used for storing temporary data, local
variables and return addresses for subroutine calls and inter-
rupts. The base of the stack (normally at 0x10FF) is defined
in the RAMEND value of the include file (m128def.inc) for
ATmega128 and the stack pointer is initialized to be 0x10FF
too. This means when we push return address (two bytes)
into the stack, we need two push instructions. The stack
size is increased by two but the address in stack pointer will
be decreased by two. Therefore, the maximum size of the
stack equals to the size of the internal SRAM, which is 4KB.

The lowest addresses (around 0x0100) in the internal SRAM
are normally allocated for the .bss section including unini-

tialized global or static variables (the size of this part is
calculated for bytes in RAM during compilation) [4]. If the
stack is overflowed by a large quantity of data, the stack size
may grow to overflow the .bss section or even the register
parts in the data memory. Thus, unexpected values will be
set to the system variables and the registers. This kind of
stack overflow, however, can only corrupt the current sensor
and the attack will not propagate to other sensors automat-
ically. Hence, during the experiment in the next section, we
will focus on another kind of buffer overflow, which could
cause the propagation of the attack in the network.

3.2 Trial Experiments on Sensor Worms
As a trial study, we are interested in stack-based buffer

overflow, which causes the transfer of program flow by chang-
ing the return address of a function call. If a senor node has
a routine that processes a received packet before relaying
them, then by manipulating the content in the packet an
attacker may change the return address of the function call
to the beginning address of a transmission component in
the program memory. Consequently, the sensor sends out
the attack packet before it is corrupted. If the attack packet
is supposed to reach all nodes (e.g., a broadcast packet), all
the sensors will be affected.

To study the consequences of this type of buffer overflow,
we performed some simple experiments on Mica2 motes.
Suppose that the data structure of the message type con-
tains a pointer to its data payload (string). Figure 1 shows
the code in a sensor. When a sensor receives a message, it
triggers the function Leds.greenToggle() to turn on/off the
green LED. The sensor then calls a function assignment(),
which copies the data payload to a buffer of size 10 without
bound checking. Finally, it rebroadcasts the same packet
to the network, and toggles a red LED after a successful
transmission.

To start the message propagation process, one sensor broad-
casts an attack packet, the data field of which is the be-
ginning address of the transmission program in the sensor
(which is 0x0505 in our case). In our experiments, we found
that an extra 7-byte in the string is long enough to over-
flow the return address. Thus, by sending a packet with a
17-byte string in the data payload and setting every byte
0x05, the 2-byte return address of a receiving sensor will be
changed to 0x0505.

When buffer overflow does not happen (the function as-
signment() is disabled), the red LED and green LED flash
alternately on these two sensors, which means that two sen-
sors operate normally and the packet is echoed between these
two sensors. However, after the function assignment() is en-
abled, buffer overflow occurs and the return address is mod-
ified to point to the transmission component. Thus, both
sensors become irresponsive after echoed the received packet
once more (their red LED and green LED flash no more).

The above is a trial for constructing a sensor worm. An-
other possibility is to directly inject malicious code into the
program memory through mechanisms such as over-the-air
software distribution or network reprogramming [23]. Since
the injected malicious code could be arbitrary as the attacker
desires, it may bring more severe network-wide damages to
the sensor network. We notice that sensor worm may adopt
other vulnerabilities than buffer overflow to launch success-
ful attacks. How they could be used is out of the scope of
this paper. We may investigate more such possibilities in
our future work.

3.3 The Modeling of Sensor Worm Attack
We use the classical simple epidemic model [10] to model

the propagation of sensor worms when no defense is in place.
Here sensors have two states: susceptible and infectious.
The overall rate of new infections given by this model is:

dI(t)

dt
=

βI(t)(n − I(t))

n
, (1)

where I(t) is the number of infectious nodes at time t, n
is the total number of nodes in the network. β is worm’s
infection rate, which is the average number of probes an
infectious node can send out to the population n during a
unit time. Specifically, if we consider the topology of the
sensor network as a graph, β is the average out-degree of a
node. By solving this differential function, we can get the
number of infectious sensors at any time t as:

I(t) =
n

1 + e−βtCn
, (2)

where C is a constant factor.
In Section 5.2.5, we will show the effectiveness of our pro-

posed scheme in terms of infection fraction by comparing it
with this no-defense case.

4. SENSOR WORM DEFENSE
Message source authentication can block sensor worms

from outsider attackers, but it is not much helpful if sensor
worms are injected by compromised sensors or base station.
Our focus is to increase the survivability of sensor networks
against sensor worms. In the spirit of survivability through

heterogeneity philosophy [35], we will explore software diver-

sity to combat sensor worms.
By software diversity, we should resort to multiple realiza-

tions (by different people) of the critical programs such as
routing protocols and operating systems, then install each
sensor node with one of the versions. We expect that differ-
ent versions of the same functionality will not have the same
vulnerability for the attacker to exploit, e.g., the beginning
addresses of the transmission program in different imple-
mentations are different. On the other hand, due to the
implementation cost it is unrealistic to assign every node
a different version of a program. Therefore, the research
challenge becomes: given a limited number of versions of

½¾¿ ÀÁÂÃÄÃÅ Â¾ÆÇ ½È¿ ÉÁÂÃÄÃÅ Â¾ÆÇ
Figure 2: Examples of color assignment.

a program, how to optimize our global benefits in defend-

ing against sensor worms through software diversity? Next
we first present an efficient algorithm for version assignment
(before deployment), followed by studying the impact of sen-
sor deployment error (after deployment).

4.1 Graph Construction
Graph coloring (especially vertex coloring) [22], a famous

problem in graph theory, tries to assign colors to the vertices
of a graph such that no two adjacent nodes in the graph
share the same color. We may transform our problem into
a graph coloring problem by first mapping a sensor network
into a graph and mapping colors to the software versions(in
the following, we use color and software version interchange-
ably), and then finding a solution to the corresponding graph
coloring problem.

When mapping a sensor network into a graph, an intu-
itive solution is to map every sensor node into a vertex in
the graph [27]. This, however, is not suitable for sensor net-
works, which usually have high density (e.g., a node may
have 20 or more neighbors). A sensor network with high
node density results in a high-density graph, making it in-
feasible to color the graph by using just a few colors. To ad-
dress this problem, we will consider the geographic locations
of sensors for mapping. Specifically, we will first partition
the sensor field into small cells, then map every cell into a
vertex and map the neighborship of two cells into an edge
in the graph. In this model, cell is the unit of considera-
tion and multiple sensors may locate in the same cell. Thus,
when we assign a color to a cell, all the nodes in the cell will
have the same color. Although in this case once a cell color
is compromised more than one sensor will be corrupted, our
focus is to quarantine the propagation of sensor worms so
that large-scale node compromises will be prevented. Note
that our scheme is suitable for applications in which a small
fraction of node compromises may be tolerated.

4.2 Color Assignment
Before we describe the color assignment algorithm, we first

introduce several concepts [27]. In a graph, an edge whose
two endpoints having the same color is called a defective

edge. Otherwise, it is called an immune edge. A discon-

nected component is a subgraph inside which all vertices are
connected through defective edges whereas all its boundary
edges are immune edges. Formally, suppose the set of cells
in the network is denoted by V , the set of software is S and
the number of software versions is s = |S|. Our purpose is
to devise an assignment or mapping S 7→ V , so as to (1)
minimize the number of defective edges and (2) maximize
the number of disconnected components. Indeed, these two
goals are not orthogonal. This is because an increase in the

total number of disconnected components will reduce the
size of each component as well as the number of defective
edges.

According to Four Color Theorem, we only need a limited
number of colors (e.g., no more than four) to implement
our scheme. This means that our scheme is very practical
because a very limited number of implementations for the
critical function are sufficient to solve our problem. More
specifically, our problem is to find out a color assignment to
the graph so that S(i) 6= S(j) if (i, j) ∈ E, given the topol-
ogy of a graph G = (V, E) and the available colors S. In
the case that the number of available colors is larger than
the optimally minimum one, the color assignment solutions
are often not unique. We try to devise a color assignment
algorithm that provides the flexibility of automatically out-
putting one of the viable solutions in an efficient way.

An intuitive solution is a greedy graph coloring algorithm.
This algorithm as well as its improvement heuristics (e.g.,
first order vertices by decreasing or increasing degree) can
find a solution fast, but their results are largely influenced
by the order in the permutation of vertices. That is, in some
circumstance, the greedy algorithm may have a conclusion
that this graph cannot be colored by a certain number of
colors, but once we change the vertex traversing order the
greedy algorithm may successfully output a color assignment
solution.

Our color assignment algorithm is based on backtrack-
ing [21]. Backtracking is a type of algorithm that is a re-
finement of the brute force search. In backtracking, many
partial solutions can be eliminated without being explicitly
examined, according to the properties of the problem [2]. In
our case, once a vertex is assigned a color, then all its neigh-
bors are refrained from being assigned the same color. It is a
recursive procedure, independent of the vertex traversing or-
der. In each recursion, the problem is turned to be a smaller
problem with the same form. This process is repeated un-
til every vertex is assigned a color or the procedure stops
because of failing to assign a color to one of the vertices.
The details of our backtracking color assignment algorithm
is presented in Algorithm 1.

Let N be the total number of cells in the deployment area,
which means that there are N vertices in the constructed
graph. Clearly, time complexity of the brute force algorithm
is Θ(sN), because for each vertex from 0 to N − 1 there
are s choices. The backtracking procedure is a depth-first
search on the solution space tree, which is a balanced tree
with degree s and height N . Each internal node on the
tree is to find the next available color by calling function
availableColor(), with the time complexity of O(sN). Our
algorithm searches along a path from the root to the leaf
in the tree, with the total number of internal nodes as N .
Hence, the time complexity of the backtracking algorithm is
N · O(sN) = O(sN2). This polynomial time is much less
than the exponential time of the brute force method.

We check the effectiveness of the above algorithm by ap-
plying it to the 3- and 4-color cases (the 2-color case is sim-
ply a column-based partition of the sensor field). For the 3-
color case we may partition the sensor field using hexagons
because its corresponding graph is 3-colorable. If we have
four or more colors, then grid-based partition is applicable,
because its corresponding abstract graph is 4-colorable. As
shown in Figure 2, we construct one example of the solu-
tions for each case, based on the outputs from Algorithm 1.

Algorithm 1 Backtracking Color Assignment Algorithm

Input: Adjacency matrix G[0..N − 1][0..N − 1](N = |V |) of
graph G = (V, E), where G[i][j] = 1 if (i, j) ∈ E and G[i][j] = 0
otherwise; Available colors are represented by integers 1..s where
s = |S|;
Output: A color assignment solution represented by an array

X, where X[i](0 ≤ i ≤ N − 1) is the color assigned to vertex i;
Procedure:

1: for i← 0 to N − 1 do

2: X[i]← 0; {Initialize array X}
3: end for

4: backtracking(0); {Array X is updated here}
5:
6: void backtracking (int k)
7: loop
8: availableColor(k);
9: if (!X[k]) then

10: break;{No new color for vertex k is available}
11: end if
12: if (k == N − 1) then

13: printNodeColors();{A solution of array X is outputted}
14: exit(0);
15: else

16: backtracking(k + 1);
17: end if

18: end loop
19:
20: void availableColor (int k)
21: loop

22: X[k]← (X[k] + 1)%(s + 1);{Try the next color}
23: if (!X[k]) then

24: return;{All colors have been tried}
25: end if
26: for i← 0 to N − 1 do

27: if (G[k][i]&&(X[k] == X[i])) then

28: break;{Vertices sharing an edge cannot have the same
color}

29: end if

30: end for

31: if (i == N) then
32: return;{A new color is found}
33: end if

34: end loop

We notice that both the 3-color and 4-color cases are optimal
with minimum number of defective edges (which is zero) and
maximum number of disconnected component (i.e., each cell
is a disconnected component). To ease our presentation, our
following discussion is mainly based on the graph topology
of 4-color case in Figure 2(b).

The next research issue is: what should be the size of
each cell? To answer this question, we need to take into
account the transmission range of sensors, say R. Let the
shortest distance between two cells of the same color be L.
Clearly, we should make sure that L > R, so that there is
no defective edge between them. As shown in Figure 2, L is
actually the edge length of each cell, so the edge length of
each cell should be larger than the transmission range R.

4.3 Sensor Node Deployment
So far we have been focused on color assignment in the

ideal planning phase; we have not discussed how sensor
nodes are deployed in a sensor field and whether a real de-
ployment may cause issues. In real applications, there could
be many ways to deploy sensor nodes in a field, subject
to factors such as the requirement of the application and
the safety of the deployment environment. In one extreme,
we may be able to place every sensor node precisely in a

Ê Ë Ì Í Î Ï Ð Ï Ñ Ë Ò Ó Ô Õ Ò Ö × Ø Ô Ñ ÙÚ Û Ü Ý Þ Úß à á â Ú ã Þ ß ä à å æ Þ â Úß à á â Ú
çç

è é ê é ëÊ ì Ì í Î Ë Õ î ï Ö Ñ ð Ù Î ñ ò Ù Ï Ö Ñ Ê ò Ì ó Ë Ñ ô Ö Ø í Î Ë Õ î Ö õÍ Ñ Ô ï Ö Ò Ö Î
ö çö ç

è é ê é ë
Figure 3: (Random) graph construction for 4 color based on original sensor deployment and color assignment.

planned location. If so, we may directly apply our color as-
signment algorithm. This however is unlikely for deploying
a large-scale sensor network. In the other extreme, the real
location of a sensor node is completely random in the sen-
sor field. In this case, multiple sensors with different colors
might be dropped in the same cell, rendering our algorithm
falling back to a random coloring algorithm [27]. Inspired
by the group-based sensor deployment model in [15, 16], we
will study the case that the distance between the actual lo-
cation of a sensor node and its targeted location follows a
two-dimensional normal distribution (although some other
probabilistic distributions may be considered as well). This
is a reasonable model because in real applications sensors
are normally prearranged according to their targeted loca-
tions and are then dropped out from a moving vehicle group
by group.

More specifically, suppose that the deployment area (X ×
Y) is divided into h× v cells and (i, j)(1 ≤ i ≤ h, 1 ≤ j ≤ v)
is the cell in row i, column j. If the target point of cell (i, j)
is (xi, yj), we have the mean of sensor location distribution
from this cell as µ = (xi, yj). The position (x, y) of sensors
in this cell follows the pdf (probability density function) of
a two-dimensional normal distribution fi,j(x, y):

fi,j(x, y) = f(x − xi, y − yj)

= 1
2πσ2 e−[(x−xi)

2+(y−yj)2]/2σ2

,
(3)

where σ is the standard deviation of the distribution.
Clearly, the deployment error of sensor nodes will have

some impacts on our objective. If two cells with the same
color are separated by one cell of a different color according
to our planning, there will be a chance that these two cells
are connected due to deployment errors. In our setting, with
some simplification(i.e., we do not consider cells in diagonal
as neighboring in the random graph because they are farther
away than cells neighboring in horizontal or vertical), we
could construct a random graph for each color; that is, it
consists of cells of the same color, as shown in Figure 3.
There are four colors available, so four random graphs could
be generated from the original sensor deployment and graph
construction, one for each color. The probability p that
an edge exists between two adjacent vertices in the random
graph is related to the size of a cell (L), the deployment
error (σ), the number of sensors in each cell (m), and the
node transmission range (R).

We denote two cells separated by one cell of a different
color as (i1, j1) and (i2, j2), with target points of (x1, y1)
and (x2, y2) respectively. To derive p, we first consider the
probability p0 that one sensor N1 from cell (i1, j1) is within
the transmission range of another sensor N2 from cell (i2, j2).

Let us consider an infinitesimal rectangle dx × dy in the
deployment area. The probability pn1 that sensor N1 resides
in this small area is:

pn1 = fi1,j1(x, y)dxdy

= 1
2πσ2 e−[(x−x1)2+(y−y1)2]/2σ2

dxdy,
(4)

because the probability density over this very small area can
be treated as even.

Suppose the distance between node N1 and the target
point (x2, y2) of N2 is d. Then, the probability that the
sensor N2 resides in the round area A centered at the loca-
tion of sensor N1 with radius R is different when d ≥ R and
d < R. If d ≥ R, as shown in Figure 4(a), the probability
pn2 that sensor N2 resides in the round area A is a double
integration:

pn2 =

∫∫

A

fi2,j2(x, y)dA.

We consider dA as the arc dA = θldl. Because θ is a function
of l, i.e., θ = 2arccos(l2+d2

−R2

2ld
), the above formula can be

simplified to the integration:

pn2 =

∫ d+R

d−R

fi2,j2(x, y)θldl

=

∫ d+R

d−R

2arccos(
l2 + d2 − R2

2ld
)fi2,j2(x, y)ldl. (5)

If d < R, as shown in Figure 4(b), the probability that sensor
N2 resides in the round area A equals to the same double
integration, but now θ as a function of l has changed to:

θ =

{

2π, if 0 ≤ l ≤ R − d;

2arccos(l2+d2
−R2

2ld
), if R − d ≤ l ≤ R + d.

Hence, in this case the double integration can be simplified
to the integration:

pn2 =

∫ R−d

0

2πlfi2,j2(x, y)dl +

∫ R+d

R−d

2arccos(
l2 + d2 − R2

2ld
)fi2,j2(x, y)ldl

= 1 − e
−

(R−d)2

2σ2 +
∫ R+d

R−d

2arccos(
l2 + d2 − R2

2ld
)fi2,j2(x, y)ldl. (6)

Because node N1 may appear at any place in the deploy-
ment area and the positions of two nodes from two different
cells are two independent events, the probability p0 that two

÷ øù úûü ý þ
ÿ

�þ��ÿ�� �þû�ÿû�� �
�

(a) d ≥ R

�
�
	

� �
� ��� �������� �������

(b) d < R

Figure 4: Derive p0 that two nodes from neighboring cells with same color are within transmission range.

nodes from cells (i1, j1) and (i2, j2) are within each other’s
transmission range is:

p0 =

∫ X

x=0

∫ Y

y=0

pn2 · fi1,j1(x, y)dxdy

=

∫ X

x=0

∫ Y

y=0

pn2

2πσ2
e−[(x−x1)2+(y−y1)2]/2σ2

dxdy. (7)

Next, we derive the probability p that two neighboring
cells of the same color (in the random graph) are connected,
based on p0. The fact that two cells are connected means
that at least one pair of nodes from these two cells respec-
tively are within each other’s transmission range. Let m be
the number of nodes in one cell, then there are totally m2

such kind of pairs. Therefore, the probability that two cells
are connected is:

p = 1 − (1 − p0)
m2

. (8)

The above derivations will be validated by our simulation
results in Section 5.2.1. ��� �

Figure 5: The derivation of probability p.

Based on the value of probability p, our next task is to
check the impact of p on our goal of containing sensor worms.
To address this problem, we resort to the percolation the-
ory [7, 3]. Percolation theory deals with fluid flow (or any
other similar process) in random media. In mathematics,
percolation theory describes the behavior of connected clus-
ters in a random graph. In our application, we will consider
bond percolation (related to edges in graph) instead of site
percolation (related to vertices in graph). Bond percolation
means that the probability that one edge appears in the
graph is p(0 < p < 1). The problem is to find out whether
there is a percolation cluster (i.e., infinitely extended con-
nected cluster) going through the entire graph, which in our
scenario means that sensor worm can successfully propagate
throughout the entire network.

Clearly, as p increases, the average connected cluster size
sav also increases, because the probability of continuing a
cluster by finding an adjacent connected edge becomes larger.
By the size of a connected cluster, we mean the number of
cells that are bound together by connected edges in the clus-
ter. The cluster size distribution is typically expressed as a
discrete function φ(λ), where φ(λ) is the number of clusters

of size λ. Actually, when p is not close to 1, the probability
of encountering a cluster of size λ is in the order of pλ. For
example, if λ = 1, then φ(λ) = p, because if we choose an
edge at random then the chance of it being connected is p.
Similarly, if λ = 2, then φ(λ) = 6p2, and so on. More specif-
ically, since the number of edges occurring in the clusters of
size λ is proportional to λφ(λ), the weighted mean of cluster
sizes is given by:

sav =

∑nr

λ=1 λ2φ(λ)
∑nr

λ=1 λφ(λ)
, (9)

where nr(nr ≤ n) is the total number of nodes with the
same color in the random graph. nr = n when there is only
one available color. From the above formula, we know that
the average cluster size sav approaches nr when p is close
to a critical value pc. For instance, pc ≈ 0.65 for hexagons
(Figure 2(a)), and pc ≈ 0.5 for the square lattice in two di-
mension (Figure 2(b)). When p < pc the probability that
a percolation cluster exists is close to 0, but when p is in-
creased to around or above pc the probability that a perco-
lation cluster exists rapidly approaches 1. This is verified by
our following simulation results in Section 5.2.2.

Hence, we should choose p0 as close to 0 as possible so that
p becomes small and lower than pc (according to Eq.(8)).
In real applications, normally the transmission range and
deployment error level are fixed (although in Section 5.2.4
we will check the situation that the attacker can increase
the transmission range of compromised nodes to gain more
from the attack), so intuitively we should make the cell size
L as large as we can to obtain small p0 and p (when other
parameters such as σ and R are fixed, if L is larger, then p0

is smaller so that p is also smaller). However, we notice that
it is not always better if L is larger, because in that case
there will be more sensors in each cell. Suppose the length
of the edge of the deployment area is |X| = |Y | = δ. Then,
the number of nodes in each cell is:

m =
n

(δ/L)2
=

nL2

δ2
,

assuming that each cell has the same number of sensors.
Clearly, m increases with L, when δ and n are fixed. One
extreme case is that L equals to δ. Then, all the sensors
in the whole deployment area have the same color. At this
time, the worm can easily propagate over the whole area.

The above formulation provides us a way to pick up the
parameter L for cell size. Suppose the maximum size of
connected clusters exists in the random graph is smax. Then,
the number of sensor nodes that can be compromised at one
time by the worm attack is msmax, because there are m
sensors in each cell. Our objective is to keep this number

10 20 30 40 50 60 70 80
0

0.2

0.4

0.6

0.8

1

R: 5~80

p

X=1000, Y=1000, L=100, σ=50, n=10000

Simulation data

Analytical results

5

(a) p as a function of R

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

σ: 10~100

p

X=1000, Y=1000, L=100, R=50, n=10000

Simulation data

Analytical results

(b) p as a function of σ

20 40 60 80 100 120
0

0.2

0.4

0.6

0.8

1

m: 10~130

p

X=1000, Y=1000, L=100, σ=50, R=50

Simulation data

Analytical results

(c) p as a function of m

Figure 6: Probability p of two neighboring cells with the same color connected, as a function of R, σ, m.

as small as possible. To achieve this, if L is larger, then
smax is smaller because p is smaller, but at the same time,
m becomes larger. Therefore, we can have a minimum of
msmax under a certain value of L. We will use simulations
to find out this optimal value of L in Section 5.2.3.

4.4 The Case of Loading Multiple Colors
Above we assume that each sensor can only take one color,

which is the color of its targeted cell. We notice that if the
program memory of a sensor node has extra space to hold
multiple versions of code (OSes or other programs) and it al-
lows dynamic transition of codes, it may be preloaded with
multiple versions altogether. In addition, we can preload
each sensor node with the optimal planning map, which
marks the color of each cell corresponding to the case of
no deployment error. After its deployment, a sensor node
first figures out the cell it falls in based on an attack-resilient
localization scheme [12], and then sets its color according to
the planning map. In this case, deployment error will have
no impact on the scheme.

In [27], O’Donnell and Sethu proposed several distributed
coloring algorithms for networks consisting of machines that
can be loaded with multiple colors. In their algorithms, ev-
ery machine is mapped to a vertex. After deployment, a
machine may randomly select a color out of a set of available
colors (called random coloring) or flips its color based on its
neighbor’s colors (called color flipping). These algorithms
however are not well tailored for sensor networks that fea-
ture high network connectivity; moreover, a relatively high
communication cost is needed for a node to negotiate colors
with its neighbors in a sensor network. Our scheme does not
have these limitations. We will quantitatively compare our
scheme with theirs in the next section.

5. PERFORMANCE EVALUATION
In this section, we will validate our analytical model and

show the performance of our scheme under different param-
eter settings. The results will also be compared with those
of randomized coloring and color flipping schemes in [27].

5.1 Simulation Setup
In the simulation, the deployment area of X×Y=1,000m×

1,000m is divided into different sizes of cells with edge lengths
from 25m to 250m respectively. The target points of each
cell is the center. The total number of sensors in the entire
network changes from 1,000 to 64,000. The transmission
range varies from 5m to 90m. The standard deviation of the
two-dimensional normal distribution is in the range of 10 to
100. The number of available colors is either 4 or 5.

In our simulation, by default, there are totally 10,000 sen-

sors distributed over the deployment area and each cell has
the edge length of 100m. On average, the node density over
the entire area is 100 sensors per cell (100m×100m), i.e.,
one sensor per 10m×10m area. We may adjust the distri-
bution of sensors by changing σ. For example, under the
same cell size, when the target points are 2σ=100m apart
(i.e., σ = 50), the overall probability distribution function
is close to uniform. Note that each point in the following
figures is averaged over 100 rounds.

5.2 Simulation results

5.2.1 Probability p of Two Cells Being Connected

We check how p changes with R, σ and m through both
analytical results and simulations. In the simulation, p is
computed as the number of edges that are connected divided
by the total number of edges in the random graph (of the
same color). As shown in Figure 6, the simulation results
match our analytical results well.

In Figure 6(a), with R being changed to above 10, p is
increased rapidly from 0.2 to 1 under σ = 50, L = 100 and
n = 10, 000. In Figure 6(b), when σ is increased to above
40, p also quickly increases from 0 to 1. In Figure 6(c), when
the number of sensors in each cell increases, p is increased
to 1 gradually.

5.2.2 The Average Cluster Size

Figure 7 shows that the average cluster size changes as
a function of R and σ under different m. When L is 100,
there are totally 10 × 10 cells in the network. Since there
are 4 colors, each random graph of one color has 25 vertices
and 40 edges. When R or σ is larger than a threshold, the
average cluster sizes are increased rapidly to cover the entire
random graph. In reality, this means that we should keep R
and σ to be relatively small values, e.g., much less than 40,
so that sensor worms cannot propagate over the deployment
area.

We also check the values of p at the turning points in
each line of Figure 7. p is normally between 0.4 and 0.5
at those points, which means the critical value pc is around
0.4 ∼ 0.5 in our scheme. This confirms our derivations based
on percolation theory and Eq.(9) in Section 4.3.

5.2.3 Maximum Number of Node Compromises

Next, we study the maximum number (s′max) of node com-
promises that could happen at one time. In the simula-
tion, s′max is calculated by multiplying the maximum size
of connected cluster with the number of sensors at each cell
(smax ×m). As shown in Figure 8, s′max changes as a func-
tion of cell size L and the total number of sensors n.

0 20 40 60 80 100
0

5

10

15

20

25

R: 10~90

A
v
e

ra
g

e
 C

lu
s
te

r
S

iz
e

 (
s a

v)

X=1000, Y=1000, L=100, Num
color

=4, σ=30

m=10

m=50

m=100

m=200

p=0.425 p=0.4

p=0.45

(a) Average cluster size vs R

0 20 40 60 80 100
0

5

10

15

20

25

σ: 10~90

A
v
e

ra
g

e
 C

lu
s
te

r
S

iz
e

 (
s a

v)

X=1000, Y=1000, L=100, Num
color

=4, R=30

0 20 40 60 80 100
0

5

10

15

20

25

σ: 10~90

A
v
e

ra
g

e
 C

lu
s
te

r
S

iz
e

 (
s a

v)

X=1000, Y=1000, L=100, Num
color

=4, R=30

m=10

m=50

m=100

m=200

p=0.325
p=0.45

p=0.475

(b) Average cluster size vs σ

Figure 7: The average cluster size changes as a function of R and σ.

50 100 150 200 250
0

2000

4000

6000

8000

10000

12000

14000

16000

X=1000, Y=1000, Num
color

=4, R=20, σ=20

s
’ m

a
x

L: 25~250

n=64000

n=32000

n=16000

n=8000

Figure 8: s′max changes as a function
of cell size L under different n.

Under a certain number n, when L is larger, the prob-
ability p that two cells with the same color are connected
becomes smaller, so the maximum size of connected cluster
(smax) is also reduced. At R = 20 and σ = 20, it is decreased
to the size of 1 (i.e., containing only one cell) quickly until L
reaches 100. After this, smax remains 1, but the number of
sensors in each cell is increased with L. Thus, s′max starts to
increase (slowly). Therefore, we achieve the minimum s′max

when L = 100 under this condition. On the other hand, if
we decrease n, the above trend is the same, but the absolute
values of s′max become smaller.

5.2.4 Comparison with Previous Schemes

We compare the performance of our scheme with the pre-
vious schemes, random coloring and color flipping [27], in
terms of s′max. In random coloring, n (changing from 1,000
to 10,000) sensors are randomly deployed over an area of
1,000m×1,000m, each of which has a random color. Under
the same setting, in color flipping every sensor changes its
color if necessary according to its neighbors’ colors, so as to
reduce the defective edges. Since there is no concept of cell
in random coloring and color flipping, s′max is the maximum
number of connected sensors with the same color.

We first examine s′max as a function of the total num-
ber of sensors n. The simulation results are presented in
Figure 9(a). In both these two schemes, s′max rapidly ap-
proaches the maximum number of sensors with the same
color (2,500 in 4-color case and 2,000 in 5-color case), when
the total number of sensors increases. On the other hand,
more available colors help only when n is relatively small,
because in the figure only when n < 6, 000 s′max is smaller
with 5 colors than with 4 colors. In our scheme, there are
totally n

100
sensors in each cell when L = 100. s′max does not

change much under appropriate parameters such as a small
σ(= 30). Even when n = 10, 000, s′max is as low as 200.

We also check s′max as a function of the transmission range
R. Although sensors normally have a fixed transmission
range, transmission range R in our simulation varies because
we notice that after the attacker compromises one sensor
he may increase the transmission range of the compromised
node by enhancing its RF power level or antenna configura-
tion to maximize his gain from the attack. The simulation
results are presented in Figure 9(b). Similarly, in both ran-
dom coloring and color flipping, s′max is increased rapidly
to close to the maximum number of sensors with the same
color in the network, even when R is as small as 30 under
n = 10, 000. Compared with Figure 9(a), more available
colors (from 4 to 5) is even useless, because the 4-color and
5-color lines are almost overlapped together. In our scheme,

there are totally 100 sensors in each cell when L = 100 and
n = 10, 000. If R is small, sensor worm will not propagate
outside one single cell, so the maximum number of sensors
that could be compromised at one time is 100, which may be
slightly higher than those in the other two schemes at the
beginning. However, our scheme significantly outperforms
the other two as R becomes larger, because s′max does not
change much under appropriate parameters.

The above results indicate that our scheme with proper
parameters can effectively prevent the propagation of sensor
worms, compared with the previous two schemes.

5.2.5 Effectiveness of Sensor Worm Containment

At last, we simulate the infection rate I(t) in our scheme
and compare the results with those in the simple epidemic
model and the random coloring scheme. We check the per-
centage of infectious nodes as a function of time units for
probing rate β = 4 and β = 6 (although in reality sen-
sor worm has broadcast nature in probing, we check these
two cases merely for comparison reasons). As shown in Fig-
ure 10, I(t) in our scheme increases much slower than those
in the original theoretical model and the random coloring
scheme. The comparison results indicate that our scheme
can substantially reduce the possibility that sensor worm
propagates in the network.

Through simulations, we find that the simple epidemic
model can roughly describe the propagation rate of sensor
worm when all the sensors have the same color in the net-
work. In this case, sensor worm can propagate throughout
the entire network of 10,000 sensor nodes (100% coverage)
within 2 or 3 time units. Moreover, when the probing rate
β becomes larger (e.g., increased from 4 to 6), i.e., an infec-
tious node sends more probes to the population at one time,
the number of infectious nodes is increased even faster. For-
tunately, having multiple colors (in random coloring) can
slow down this process in a large degree. The percentage of
infectious nodes in random coloring is eventually increased
to 25% when the number of available colors is 4 at the 10th
time unit. Compared with random coloring, our scheme can
further improve the defensive capability against sensor worm
by quarantining sensor worm within as few cells as possible.
As a result, at the 10th time unit, there are only 3.2% in-
fectious nodes when β = 4 and 4.76% infectious nodes when
β = 6, under the condition that σ = R = 30 and L = 100.

6. CONCLUSION
In this paper, we not only illustrate the feasibility of launch-

ing worm attacks in sensor network, but also propose a con-
crete defense scheme based on the idea of software diversity.

0 2000 4000 6000 8000 10000
0

500

1000

1500

2000

2500

n: 1000~10000

s
’ m

a
x

X=1000, Y=1000, R=30

Our Scheme(Num
color

=4,σ=30)

Color Flipping(Num
color

=5)

Color Flipping(Num
color

=4)

Random Coloring(Num
color

=5)

Random Coloring(Num
color

=4)

(a) s′max as a function of n

10 20 30 40 50 60 70 80 90
0

500

1000

1500

2000

2500

R: 10~90

s
’ m

a
x

X=1000, Y=1000, n=10000

Our Scheme (Num
color

=4,σ=20)

Color Flipping (Num
color

=5)

Color Flipping (Num
color

=4)

Random Coloring (Num
color

=5)

Random Coloring (Num
color

=4)

(b) s′max as a function of R

Figure 9: Comparing s′max of our scheme with others.

0 2 4 6 8 10
0

20

40

60

80

100

t: 0~10 time units

I(
t)

/n

X=1000, Y=1000, n=10000, R=30

Simple Epidemic Model(β=6)

Simple Epidemic Model(β=4)

Random Coloring(β=4)

Random Coloring(β=6)

Our Scheme(σ=30,β=4)

Our Scheme(σ=30,β=6)

(%)

Figure 10: Comparing I(t)/n.

We show by assigning each sensor an appropriate version of
software among a few versions, we can significantly increase
the survivability of sensor networks under worm attacks. We
also analyze the impact of sensor deployment error on the
capability of our scheme, which provides a guidance for our
selection of system parameters. In the future, we may inves-
tigate the impact of different cell shapes, such as hexagon,
triangle, and other polygons.

Acknowledgments We are grateful to Piotr Berman for
inspiring discussion on graph coloring. We also thank the
anonymous reviewers for their helpful comments.

7. REFERENCES
[1] ATmega128(L).

http://www.atmel.com/dyn/resources/prod-
documents/doc2467.pdf.

[2] Backtracking. http://en.wikipedia.org/wiki/Backtracking.
[3] Introduction to Percolation Theory.

http://garnet.berkeley.edu/ jqwu/paper1/paper1.html.
[4] Memory Sections in Related Pages.

http://hubbard.engr.scu.edu/embedded/avr/doc/avr-
libc/avr-libc-user-manual/.

[5] Mica Motes. Crossbow Technology, Inc.
http://www.xbow.com.

[6] MSP430 Microcontrollers. Texas Instrument.
http://www.ti.com/.

[7] Percolation theory.
http://en.wikipedia.org/wiki/Percolation-theory.

[8] A. Alarifi and W. Du. Diversify sensor nodes to improve
resilience against node compromise. In SASN’06, 2006.

[9] M. G. Bailey. Malware resistant networking using system
diversity. In SIGITE ’05.

[10] N. Bailey. The mathematical theory of infectious diseases
and its applications. Hafner Press, New York, 1975.

[11] D. Brumley, L.-H. Liu, P. Poosankam, and D. Song. Design
space and analysis of worm defense strategies. In
ASIACCS, 2006.

[12] S. Capkun and J. Hubaux. Secure positioning in sensor
networks. Technical Report Technical Report
EPFL/IC/200444, 2004.

[13] P. De, Y. Liu, and S. K. Das. Modeling node compromise
spread in wireless sensor networks using epidemic theory. In
WOWMOM ’06.

[14] M. Draief, A. Ganesh, and L. Massoulie. Thresholds for
virus spread on networks. In ValueTools’06.

[15] W. Du, J. Deng, Y. S. Han, S. Chen, and P. Varshney. A
key management scheme for wireless sensor networks using
deployment knowledge. In IEEE INFOCOM, 2004.

[16] W. Du, J. Deng, Y. S. Han, and P. Varshney. A key
predistribution scheme for sensor networks using
deployment knowledge. IEEE Transactions on Dependable
and Secure Computing, 2006.

[17] S. Forrest, A. Somayaji, and D. Ackley. Building diverse
computer systems. In HOTOS ’97.

[18] A. Ganesh, L. Massoulie, and D. Towsley. The effect of
network topology on the spread of epidemics. In Infocom,
2005.

[19] G.S.Kc, A.D.Keromytis, and V.Prevelakis. Countering code
injection attacks with instruction set randomization. In
CCS, 2003.

[20] Q. Gu and R. Noorani. Towards self-propagate mal-packets
in sensor networks. In ACM WiSec’08.

[21] E. Horowitz, S. Sahni, and S. Rajasekaran. Computer
Algorithms/C++. Computer Science Press, 1996.

[22] T. R. Jensen. Graph Coloring Problems. Wiley, 1995.
[23] S. Kulkarni and L. Wang. MNP: Multihop network

programming for sensor networks. Proc. of International
Conference on Distributed Computing Systems, 2005.

[24] R. Kumar, E. Kohler, and M. Srivastava. Harbor:
Software-based memory protection for sensor nodes. In
IPSN, 2007.

[25] M.C.Mont, A.Baldwin, Y.Beres, K.Harrison, M.Sadler, and
S.Shiu. Towards diversity of cots software applications:
Reducing risks of widespread faults and attacks. In
Technical Report HPL-2002-178, 2002.

[26] N.Roux, J-S.Pegon, and M.Subbarao. Cost adaptive
mechanism to provide network diversity for manet reactive
routing protocols. In MILCOM, 2000.

[27] A. J. O’Donnell and H. Sethu. On achieving software
diversity for improved network security using distributed
coloring algorithms. In CCS ’04.

[28] A. One. Smashing the stack for fun and profit. Phrack 49.
http://www.phrack.org/show.php?p=49a=14.

[29] R. Pastor-Satorras and A. Vespignani. Epidemics and
immunization in scale-free networks, chapter Handbook of
graphs and networks: from the genome to the Internet.
2002.

[30] J. Regehr, N. Cooprider, W. Archer, and E. Eide. Memory
safety and untrusted extensions for tinyos. Technical
Report UUCS-06-007, University of Utah, 2006.

[31] S. Staniford, V. Paxson, and N. Weaver. How to own the
internet in your spare time. In Proceedings of the 11th
USENIX Security Symposium, 2002.

[32] M. Vojnovic and A. Ganesh. On the race of worms, alerts
and patches. In ACM WORM 2005.

[33] X. Wang, C. Pan, P. Liu, and S. Zhu. SigFree: A
Signature-free Buffer Overflow Attack Blocker. In USENIX
Secucrity’06, July 2006.

[34] Y. Yang, X. Wang, S. Zhu, and G. Cao. SDAP: A secure
hop-by-hop data aggregation protocol for sensor networks.
In Mobihoc, 2006.

[35] Y. Zhang, H. Vin, L. Alvisi, W. Lee, and S. K. Dao.
Heterogeneous networking: A new survivability paradigm.
In NSPW’01.

