
Pseudo-cryptanalysis of the Original Blue Midnight Wish

Søren S. Thomsen
DTU Mathematics, Technical University of Denmark

September 28, 2009

Abstract

The hash function Blue Midnight Wish (BMW) is a candidate in the SHA-3
competition organised by the U.S. National Institute of Standards and Technology
(NIST). BMW was selected for the second round of the competition, but the algo-
rithm was tweaked in a number of ways. In this paper we describe cryptanalysis
on the original version of BMW, as submitted to the SHA-3 competition in Octo-
ber 2008. When we refer to BMW, we therefore mean the original version of the
algorithm.

The attacks described are (near-)collision, preimage and second preimage attacks
on the BMW compression function. These attacks can also be described as pseudo-
attacks on the full hash function, i.e., as attacks in which the adversary is allowed
to choose the initial value of the hash function. The complexities of the attacks
are about 214 for the near-collision attack, about 23n/8+1 for the pseudo-collision
attack, and about 23n/4+1 for the pseudo-(second) preimage attack, where n is the
output length of the hash function. Memory requirements are negligible. Moreover,
the attacks are not (or only moderately) affected by the choice of security parameter
for BMW.

Keywords: hash function cryptanalysis, SHA-3 competition, Blue Midnight Wish,
pseudo-attacks.

1 Introduction

On October 31, 2008, the “SHA-3 competition”, organised by the National Institute
of Standards and Technology (NIST), was launched [5]. 64 algorithms were submitted,
and 51 of these were accepted for the first round of the competition. On July 24, 2009,
14 candidates were chosen by NIST to advance to the second round of the competition.

One of the candidates accepted for the second round is called Blue Midnight Wish [3],
or BMW for short, and was developed by Gligoroski, Kĺıma, Knapskog, El-Hadedy,
Amundsen, and Mjølsnes. On a standard PC, BMW is arguably the most efficient
of the 14 hash functions remaining in the competition [1]. Blue Midnight Wish was
tweaked for the second round of the competition. In this paper, we always refer to the
original version of the hash function, i.e., the version submitted to the competition on
(or before) October 31, 2008.

In this paper we describe some weaknesses in Blue Midnight Wish. We show how to
easily find near-collisions in the compression function of Blue Midnight Wish. By near-
collisions we mean a pair of inputs to the compression function for which the outputs
only differ in a few (pre-specified) bit positions.

1

We also show how to find collisions, preimages, and second preimages in the com-
pression function, faster than what is possible for an ideal compression function. This
can be done by controlling 128, respectively 256 bits of the output of the compression
function of BMW-256, respectively BMW-512. By controlling we mean that the adver-
sary can give these bits any value he wishes with negligible effort. These attacks on the
compression function can be extended to become pseudo-attacks on the full hash func-
tion, i.e., attacks which allow the adversary to pick the initial value of the hash function.
The complexity of these attacks corresponds to the complexity of a 192-bit, respectively
384-bit ideal hash function in the case of BMW-256, respectively BMW-512. Hence, for
instance, pseudo-collisions can be found in BMW-512 in time about 2192, which is to be
compared to the expected 2256 for an ideal 512-bit hash function. Memory requirements
of all attacks are negligible.

We point out that the attacks described in this paper do not seem to apply to the
tweaked version of Blue Midnight Wish. We are making these results public in the hope
that they will somehow be useful to other cryptanalysts.

1.1 Organisation of the Paper

We explain the notation used throughout the paper in the next subsection. Then, in
Section 2 we describe how the Blue Midnight Wish hash functions work. In Section 3 we
describe the near-collision attack on the compression function. In Section 4, we describe
a more general pseudo-attack, which may be used in pseudo-collision, -preimage, and
-second preimage attacks, and we give some concrete examples. In Section 5 we conclude.

1.2 Notation

The symbol ‘⊕’ denotes exclusive-or (XOR). x�s means x shifted left bitwise by s
positions; similarly, x�s means x shifted right by s positions. By x≪s we mean x rotated
(cyclically shifted) left by s positions. The expression x‖y denotes the concatenation of
the two bit strings x and y, and we denote the bitlength of x by |x|.

2 A Description of Blue Midnight Wish

Blue Midnight Wish is in fact a collection of four hash functions returning digests of
four different sizes: 224 bits, 256 bits, 384 bits, and 512 bits. The two shortest digests
are computed in the same way, except in the final step, which is a truncation. Likewise
for the two longest digests. The word size, denoted by w, for the short variants is 32
bits, and for the long variants is 64 bits. Apart from the word size, all four variants are
very similar. A little-endian byte ordering is assumed.

Blue Midnight Wish applies only four different types of operations: additions modulo
2w, exclusive-ors (XORs), and bitwise shifts and rotations. In the following, all additions
of words in the description of Blue Midnight Wish are to be taken modulo 2w.

Blue Midnight Wish maintains a state of 16 words during the processing of a message;
only in the end, the 16 words are truncated down to 6, 7, or 8, depending on the digest
size (truncation is done by throwing away the first 10, 9, or 8 words, respectively).
Message blocks are also 16 words in length, and Blue Midnight Wish operates with a
compression function mapping 2 × 16 words to 16 words. The compression function is
iterated in a standard fashion [2, 4]. Hence, the message m of bitlength µ = |m| must
be padded to a length that is a multiple of 16w bits, which is done by first appending a

2

‘1’-bit, then appending z = −µ− 65 mod 16w ‘0’-bits (this part of the padding will be
called “10. . . ” padding in the following), and finally appending a 64-bit representation
of the message length µ (length padding).

We now turn to a description of the Blue Midnight Wish compression function.

2.1 The Blue Midnight Wish Compression Function

The Blue Midnight Wish compression function takes two 16-word inputs and returns a
single 16-word output. It applies three different sub-functions, which are called P , f1,
and f2. P is an efficiently invertible permutation1. f1 is a so-called multi-permutation
taking two inputs, meaning that by fixing one of the inputs, the function is a permutation
on the other input. Finally, f2 compresses three inputs of 16 words to a single 16-word
output, which is also the output of the compression function.

The two 16-word inputs to the compression function will be called H and M , H being
the chaining variable, and M being the message block. Referring to a single word in
one of the inputs will be denoted by Hi or Mi, meaning word number i, where counting
starts from 0. Hence, (e.g.) M = M0‖M1‖ · · · ‖M15.

The input to the permutation P is H ⊕ M . The output of P is denoted Y =
Y0‖Y1‖ · · · ‖Y15. The inputs to f1 are Y and M . The output of f1 is denoted Z =
Z0‖Z1‖ · · · ‖Z15. The inputs to f2 are Y , Z, and M , and the output, which is also the
output of the compression function, is denoted H∗. See also Figure 1.

H

M

H∗

Y

Z--

6

-

- -

-

-

f2f1P -

Figure 1: The Blue Midnight Wish compression function.

Given Y and M , H can easily be computed as P−1(Y) ⊕M , since P is efficiently
invertible. Moreover, H is not used as input to any other sub-function than P . Hence,
in attacks on the compression function, the details of P are irrelevant, and therefore
we postpone a description of these to Appendix A. We now describe the two other
components of the compression function.

2.1.1 A Description of f1.

As mentioned, the inputs to f1 are M and Y , and the output is denoted Z. Let Q = Y ‖Z
be a 32-word vector, and note that when f1 is called, Q contains 16 already computed
words, and 16 “null” words. Then, f1 can be described as a shift register, that computes
one word of Q at the time as a function of the previous 16 words of Q.

There are two variants of the step function that computes each new word of Q: a
simple step function, and a more complex one. Since 16 words are computed in f1,

1In the Blue Midnight Wish specification, a mapping f0 : {0, 1}16w×{0, 1}16w → {0, 1}16w is defined.
Since f0 is a permutation on the XOR of its two inputs, we choose to focus on this permutation and
denote it P , i.e., f0(H, M) = P (H ⊕M).

3

there are always 16 rounds, but the number of complex and simple rounds depends on a
tunable security parameter. By default, there are first two complex rounds and then 14
simple rounds, and we shall generally assume that this is the distribution of complex and
simple rounds. However, all our attacks apply to BMW using any value of the security
parameter (in the case of the near-collision attack, some modifications are required).

Both complex and simple rounds use a number of invertible sub-functions s0, . . . , s5
and r1, . . . , r7, whose descriptions are postponed to Appendix B. Both types of rounds
also use the same “message schedule”: consider M to be a 16-element column vector in
Z2w , and define the matrix B as the circulant matrix whose first row contains the 16
elements

[1, 0, 0, 1, 0, 0, 0, 0, 0, 0,−1, 0, 0, 0, 0, 0].

Row i + 1 of B is row i cyclically shifted one position to the right. Note that B is
invertible for both word sizes 32 and 64; the inverses can be found in Appendix C.
Define W = B ·M mod 2w, with Wi referring to the ith word of W . In round i of f1,
Wi is involved in the computation of Zi = Qi+16.

Furthermore, 16 constants Ki are defined as b2w/3c · i. We can now describe a
complex round as

Qi+16 ← s1(Qi) + s2(Qi+1) + s3(Qi+2) + s0(Qi+3)
+s1(Qi+4) + s2(Qi+5) + s3(Qi+6) + s0(Qi+7)
+s1(Qi+8) + s2(Qi+9) + s3(Qi+10) + s0(Qi+11)
+s1(Qi+12) + s2(Qi+13) + s3(Qi+14) + s0(Qi+15)
+Wi +Ki,

for increasing i; for the default choice of the tunable security parameter, i increases from
0 to 1. A simple round, covering the range of remaining values of i up to and including
15, is described as

Qi+16 ← Qi + r1(Qi+1) +Qi+2 + r2(Qi+3)
+Qi+4 + r3(Qi+5) +Qi+6 + r4(Qi+7)
+Qi+8 + r5(Qi+9) +Qi+10 + r6(Qi+11)
+Qi+12 + r7(Qi+13) + s5(Qi+14) + s4(Qi+15)
+Wi +Ki.

Note that given M and 16 consecutive words of Q, the remaining 16 words of Q can
be computed; in particular, given M and Z, Y can be computed. Likewise, given Y and
Z (i.e., all of Q), M can be computed via W as M = B−1 ·W mod 2w.

2.1.2 A Description of f2.

The sub-function f2 takes as input M , Y , and Z. Let

XL = Z0 ⊕ Z1 ⊕ · · · ⊕ Z7 and
XH = Z0 ⊕ Z1 ⊕ · · · ⊕ Z15.

The output words H∗
0 , . . . ,H

∗
15 are computed as follows.

H∗
0 = (X�5

H ⊕ Z0
�5 ⊕M0) + (XL ⊕ Z8 ⊕ Y0)

4

H∗
1 = (X�7

H ⊕ Z1
�8 ⊕M1) + (XL ⊕ Z9 ⊕ Y1)

H∗
2 = (X�5

H ⊕ Z2
�5 ⊕M2) + (XL ⊕ Z10 ⊕ Y2)

H∗
3 = (X�1

H ⊕ Z3
�5 ⊕M3) + (XL ⊕ Z11 ⊕ Y3)

H∗
4 = (X�3

H ⊕ Z4 ⊕M4) + (XL ⊕ Z12 ⊕ Y4)

H∗
5 = (X�6

H ⊕ Z5
�6 ⊕M5) + (XL ⊕ Z13 ⊕ Y5)

H∗
6 = (X�4

H ⊕ Z6
�6 ⊕M6) + (XL ⊕ Z14 ⊕ Y6)

H∗
7 = (X�11

H ⊕ Z7
�2 ⊕M7) + (XL ⊕ Z15 ⊕ Y7)

H∗
8 = (H∗

4)≪9 + (XH ⊕ Z8 ⊕M8) + (X�8
L ⊕ Z7 ⊕ Y8)

H∗
9 = (H∗

5)≪10 + (XH ⊕ Z9 ⊕M9) + (X�6
L ⊕ Z0 ⊕ Y9)

H∗
10 = (H∗

6)≪11 + (XH ⊕ Z10 ⊕M10) + (X�6
L ⊕ Z1 ⊕ Y10)

H∗
11 = (H∗

7)≪12 + (XH ⊕ Z11 ⊕M11) + (X�4
L ⊕ Z2 ⊕ Y11)

H∗
12 = (H∗

0)≪13 + (XH ⊕ Z12 ⊕M12) + (X�3
L ⊕ Z3 ⊕ Y12)

H∗
13 = (H∗

1)≪14 + (XH ⊕ Z13 ⊕M13) + (X�4
L ⊕ Z4 ⊕ Y13)

H∗
14 = (H∗

2)≪15 + (XH ⊕ Z14 ⊕M14) + (X�7
L ⊕ Z5 ⊕ Y14)

H∗
15 = (H∗

3)≪16 + (XH ⊕ Z15 ⊕M15) + (X�2
L ⊕ Z6 ⊕ Y15).

3 Near-collisions in the Compression Function

Attacks on the compression function of Blue Midnight Wish are not affected by the
permutation P , since this permutation can be inverted, and thereby the chaining input
can be computed.

One may also observe that by choosing the same (XOR) differences in H and M ,
there is no input difference in P , and therefore also no output difference. By ensuring
that only the last few words of the expanded message W contain a difference, we see
that no difference is involved in a large part of f1. Combined with the fact that diffusion
is not very effective in f2, this observation leads to near-collisions in the compression
function.

Hence, a strategy to find the best (lowest weight) near-collision in the compression
function is to search for difference patterns of the last few words of W , such that these
differences do not spread too much in the last few rounds of f1 and in f2. Note that the
inverse message schedule must be applied to W in order to be able to compute f2, and
this message schedule will cause some diffusion of differences in W ; however, differences
in the most significant bits (MSBs) will remain in the MSB positions after the inverse
message schedule is applied. Therefore, an obvious choice is to search for difference
patterns in W that only affect the MSBs of words of W .

3.1 An Example

In the case of both BMW-256 and BMW-512, the search mentioned showed that a good
difference pattern in W has differences in the MSBs of W13, W14, and W15 only. The
inverse message schedule causes differences in the MSBs of M0, M1, M3, M4, M7, M9,
and M13. Hence, there are 7 bit differences in M , which are introduced in the function
f2.

5

Table 2: The desired binary differences in the last three words of Z.

Word Desired XOR difference (binary)

Z13 100...0

Z14 010...0

Z15 110...0

A difference in W13 is propagated directly to Z13 in the 13th round of f1. Hence, Z13

obtains the difference 100 . . . 0 (in binary). In round 14, the function s4 is applied to Z13

yielding the difference 1100 . . . 0 (see Appendix B), and a difference in the MSB of W14

is also introduced. The end result is the difference 0100 . . . 0 in Z14 with probability 1/2.
Finally, in round 15, the function s5 is applied to Z13 yielding the difference 10100 . . . 0,
the function s4 is applied to Z14 yielding the difference 01100 . . . 0, and a difference in
the MSB of W15 is also introduced. Optimally, these differences result in the difference
1100 . . . 0 in Z15, since then ∆Z13 ⊕∆Z14 ⊕∆Z15 = 0 (∆Zi meaning the difference on
Zi), which means that in f2, the variables XL and XH will contain no difference. The
total probability of this characteristic is about 2−3. See Table 2.

In f2, as mentioned, the desired bit differences in Z yield no difference in XL and
XH . Hence, in the output words H∗

0 , H
∗
1 , H

∗
3 , H

∗
4 , there are only differences in the MSBs,

and these come from the message M . There is no difference in H∗
2 . In H∗

5 , the MSB
difference in Z13 is inherited, and there are no other differences. In H∗

6 , the difference
0100 . . . 0 in Z14 is inherited and with probability 1/2 does not propagate. In H∗

7 , the
MSB difference in M7 cancels the MSB difference in Z15, and the resulting difference is
0100 . . . 0, which does not propagate with probability 1/2.

In H∗
8 , the difference coming from H∗

4 is rotated and does not propagate with prob-
ability 1/2. When it does not propagate, the difference is 0 . . . 0100000000. In H∗

9 ,
differences come from H∗

5 and M9. The MSB difference in H∗
5 is rotated by 10 po-

sitions to yield 0 . . . 01000000000. With probability 1/2, it does not propagate. The
MSB difference from M9 is inherited. In H∗

10, the difference from H∗
6 is rotated by 11

positions to yield 0 . . . 01000000000 with probability 1/2. In H∗
11, the difference from

H∗
7 is rotated by 12 positions to yield 0 . . . 010000000000 with probability 1/2. In H∗

12,
the MSB difference from H∗

0 is rotated by 13 positions to yield 0 . . . 01000000000000
with probability 1/2. In H∗

13, there are differences in three input words: H∗
1 , Z13, and

M13. However, the MSB differences in Z13 and M13 cancel each other out, and the
MSB difference in H∗

1 yields 0 . . . 010000000000000 with probability 1/2. In H14, the
difference 0100 . . . 0 from Z14 is inherited with probability 1/2, and this is the only input
difference. Finally, in H∗

15 there are differences coming from H∗
3 and Z15; these yield

0100 . . . 01000000000000000 with total probability 1/4.
To sum up, there are one-bit differences in H∗

0 , H
∗
1 , H

∗
3 , . . . ,H

∗
8 , H

∗
10, . . . ,H

∗
14, and

two-bit differences in H∗
9 and H∗

15 (see Table 3). The total number of bit differences is
17, and the total probability of this near-collision is about 2−14 (assuming independence).
10 of the differences are in the words H∗

8 , . . . ,H
∗
15, which are the output words of the

BMW-256 and BMW-512 hash functions (after truncation). 9 differences are in the
words H∗

9 , . . . ,H
∗
15, which are the output words of the BMW-224 hash function. 7

differences are in the words H∗
10, . . . ,H

∗
15, which are the output words of the BMW-384

hash function.

6

Table 3: Output differences in the near-collision attack on the BMW compression func-
tion. Apply to all variants.

Word XOR difference (binary)

H∗
0 100 . . . 00000000000000000

H∗
1 100 . . . 00000000000000000

H∗
2 000 . . . 00000000000000000

H∗
3 100 . . . 00000000000000000

H∗
4 100 . . . 00000000000000000

H∗
5 100 . . . 00000000000000000

H∗
6 010 . . . 00000000000000000

H∗
7 010 . . . 00000000000000000

H∗
8 000 . . . 00000000100000000

H∗
9 100 . . . 00000001000000000

H∗
10 000 . . . 00000001000000000

H∗
11 000 . . . 00000010000000000

H∗
12 000 . . . 00001000000000000

H∗
13 000 . . . 00010000000000000

H∗
14 010 . . . 00000000000000000

H∗
15 010 . . . 01000000000000000

7

3.2 Other Difference Patterns

We note that the difference in Z may be slightly different, and still give the same results
as those described. For instance, the difference patterns of Z14 and Z15 may be swapped.

Moreover, there are in fact slightly better message difference patterns than the one
described above. As an example, a difference in the MSB of W13 and in the second-
most significant bit of W15 yields—with a high probability—a near-collision in all but
14 bits of the compression function output (9 of these are in the last eight words).
However, the corresponding message difference in M has a higher Hamming weight, and
specifically there are differences in the words M14 and M15, which (in a pseudo-attack on
the hash function) are reserved for padding. We did not find simple difference patterns
with differences only in the last few words of W that lead to full collisions with high
probability.

With a value of the security parameter above 13, the above characteristic has a low (if
not zero) probability. However, even with a value of 16, a high probability characteristic
exists producing near-collisions of total Hamming weight as low as 24 for the 16 output
words of the compression function (see [6]).

3.3 A Pseudo-near-collision in BMW-256

In the attack described above, there are no differences in M14 and M15, which in BMW-
256 are the words containing length padding. This means we can extend the near-
collision attack on the compression function to a pseudo-near-collision attack on the
BMW-256 hash function. Moreover, one of the colliding messages may start from the
correct initial value of BMW-256; the other initial value will be different from the correct
one in the same 7 bit positions as those which contain differences in M .

As an example, the bit sequence of length 447 bits starting with the three bytes
f3 8b 01 and ending with (423) ‘0’-bits follows the characteristic described above (with
chaining input equal to the BMW-256 initial value). The 256-bit output of the hash
function is

7927dc5d5759cdd85bdd3e8276e41dd5fd627bff0f3813f51238db090a5e433d.

When applying the difference pattern described above to both the message and the
initial value of BMW-256, the hash function output is

7926dc5d575bcd585bdf3e8276e01dd5fd727bff0f1813f51238db490ade437d.

The XOR of the two outputs is

0001000000020080000200000004000000100000002000000000004000800040.

4 Pseudo-attacks

A second observation on the BMW compression function leads to improved pseudo-
collision, -preimage, and -second preimage attacks: if Zi = 0 for all i, 0 ≤ i < 16, then
we get the following greatly simplified description of f2.

H∗
0 = M0 + Y0

H∗
1 = M1 + Y1

8

H∗
2 = M2 + Y2

H∗
3 = M3 + Y3

H∗
4 = M4 + Y4

H∗
5 = M5 + Y5

H∗
6 = M6 + Y6

H∗
7 = M7 + Y7

H∗
8 = (M4 + Y4)≪9 +M8 + Y8

H∗
9 = (M5 + Y5)≪10 +M9 + Y9

H∗
10 = (M6 + Y6)≪11 +M10 + Y10

H∗
11 = (M7 + Y7)≪12 +M11 + Y11

H∗
12 = (M0 + Y0)≪13 +M12 + Y12

H∗
13 = (M1 + Y1)≪14 +M13 + Y13

H∗
14 = (M2 + Y2)≪15 +M14 + Y14

H∗
15 = (M3 + Y3)≪16 +M15 + Y15.

4.1 Controlling Output Words – A First Example

Some output words of the compression function can be controlled by an attacker after
fixing Z = 0. The idea is to fix some words of M and some words of Y in such a way
that a number of output words obtain an arbitrary value chosen by the attacker, and
such that f1 can be computed backwards, i.e., computing Y15 from Z, then Y14, etc.
Words of M can be fixed directly, since they are part of the input to the compression
function. Words of Y can be fixed indirectly via words of W , which, as mentioned,
depend on M . There is enough freedom to fix some words of M and some words of W
at the same time. More details follow. Note that this attack is independent of the value
of the security parameter, since both simple and complex rounds are invertible.

Consider as an example the “new” definition of H∗
11:

H∗
11 = (M7 + Y7)≪12 +M11 + Y11.

By fixing M7, Y7, M11, and Y11, one has effectively controlled H∗
11. Message words are

part of the input to the compression function. Words of Y can be controlled to some
extent via words of W ; after having fixed Z, we are able to compute words of Y in the
backward direction, i.e., we compute Y15 first, then Y14 etc., all the way down to Y0.
Alternatively, we can compute the value of Wi needed to get some desired value of Yi,
for any i such that Yj is already computed for all j > i. Thereby, we indirectly control
Yi.

As a simple example for BMW-256, assume we want H∗
11 to obtain the value α. To do

this, we may choose (e.g.) M7 = Y7 = Y11 = 0 and M11 = α. We obtain Y7 = Y11 = 0 by
controlling W7 and W11. Note that once Y and M are fixed, we compute H as described
in Section 2.1. How to control words of M and words of W at the same time is now
described.

Sticking to the example, assume we want to be able to control M7, M11, W7, and
W11. Compute W = B ·M with (initially) all words of M as free parameters. As an
example, one gets W15 = M2−M9 +M15. Now, make W15 free by replacing everywhere
M15 by W15 −M2 +M9. Now W15 is freed, but M15 is no longer free.

Since W14 = M1 −M8 + M14, we can make W14 free by replacing everywhere M14

by W14 −M1 + M8. We may continue like this, freeing all Wi down to i = 7 (incl.),

9

without making M7 or M11 dependent. Since M13, M14, and M15 contain padding, we
might want to keep these three words of M free as well. This way, one obtains (e.g.) the
following value of W (where M1, M3, M7, M11, M13, M14, and M15 are free words of
M , and W7, . . . ,W15 are free words of W ; all other words of M and W are dependent):



−M1 +M3 + 2M7 −M13 −W7 +W13

2M1 −M7 −M11 +M13 +W7 −W10

2M1 −M3 + 3M11 + 3M14 +M15 − 2W8 −W9 −W11 − 2W14 −W15

−M1 + 2M3 −M11 −M13 −M14 +W8 +W9 −W12 +W14 +W15

M1 +M13 −M14 +W7 −W10

M1 +M11 + 2M14 −M15 −W11 −W14

M3 −M7 +M13 +M15 +W9 −W12 −W13

W7
...

W15



.

By computing the words Yi in the backward direction, or choosing Yi and computing
the required Wi for i from 15 down to 7, we can control all the words Y15, Y14, . . . , Y7.
In particular, we can make sure that Y7 = Y11 = 0. Since M7 and M11 are free, we can
also choose these two message words as we want; in particular, we can choose M7 = 0
and M11 = α, so that we obtain H∗

11 = α. Since we indirectly also control H∗
7 , we can

obtain H∗
7 = β for any β of our choice via a proper choice of, say, M7.

Note that in order to compute Y1 and Y0, s1 must be inverted (see Section 2.1.1).
This is slightly more complicated in practise than computing s1 in the forward direction,
but it can also be done efficiently (with some additional memory requirements) by pre-
computing and storing all inverses.

The reason for choosing to control H∗
11 is that Y7 is involved in its computation.

This means we have to make only a few words of W free (W15 down to W7), and there
is still a large amount of freedom in the choice of a number of words of M . This will be
useful in extensions of the attack.

4.2 Controlling Additional Output Words

There are many degrees of freedom left. These can be used to control additional output
words. For instance, we may control H∗

6 and H∗
10 via M6, W6, M10, and W10. We again

keep M14 and M15 free as above, but M13 is not free. We shall obtain correct “10. . . ”
padding in M13 probabilistically; the probability is about 1/2 if we assume only a single
bit of “10. . . ” padding (hence, the message length is 512 − 65 = 447 bits). We set
M6 = M7 = M10 = M11 = 0 (for the sake of simplicity), and now we want to free all Wi

for i from 15 down to 6, since we need to be able to control Y6. Using the same method

10

as in the previous examples, we obtain the vector

2M14 +M15 −W6 − 2W7 − 2W8 −W9 +W12 − 2W14 − 2W15

−M14 −M15 +W6 +W8 −W10 +W13 +W14 +W15

2M14 +M15 −W7 −W8 −W11 −W12 −W14

2M14 +M15 −W6 − 2W7 − 2W8 −W9 +W12 −W13 − 2W14 − 2W15

−2M14 −M15 +W6 +W7 +W8 −W10 +W13 +W14 +W15

2M14 −M15 −W7 −W11 −W14

W6
...

W15



.

We now control the four output words H∗
6 , H∗

7 , H∗
10, and H∗

11 via W6, W7, W10,
and W11. The time complexity of this attack is about 2, since we need correct “10. . . ”
padding in M13, but we have no (direct) control over this message word.

4.3 Other Variants of BMW

The same technique as described above for BMW-256 can be applied to BMW-512. In
fact, for BMW-512, length padding takes up only one message word, and therefore we
have enough freedom to ensure correct “10. . . ” padding with probability 1.

Obviously, the attacks also apply to BMW-224 and BMW-384, since these differ from
BMW-256 and BMW-512 (respectively) only in the initial value and the final truncation.

4.4 Applications

After truncation, two out of eight (or out of six or seven in the case of BMW-384 and
BMW-224, respectively) output words can be given any value chosen by the attacker.
This control can be used to carry out pseudo-attacks, i.e., attacks in which the attacker is
free to choose the initial value of the hash function. Example pseudo-attacks are pseudo-
collision, pseudo-preimage, and pseudo-second preimage attacks. The time complexities
of these attacks on BMW correspond to brute force attacks on 3/4 of the output bits
(or 2/3 or 5/7 in the case of BMW-384 and BMW-224, respectively). Hence, the time
complexity is reduced compared to an ideal hash function. Table 5 summarises the
attack complexities for the three types of attack on the four variants of Blue Midnight
Wish. Memory requirements are negligible.

As mentioned, pseudo-attacks are attacks in which the attacker is free to choose the
initial value of the hash function. In the case of pseudo-collision and pseudo-second
preimage attacks, the two colliding messages will generally assume two different initial
values.

4.5 Available Degrees of Freedom

Clearly, in these attacks we do not have to choose Z to be all-zero, we can choose it
to be anything we want. Also, we have lots of freedom in the choice of M6, M7, M10,

11

Table 5: Pseudo-attack complexities on the four Blue Midnight Wish variants (in brack-
ets, birthday/brute force complexities).

Variant Pseudo-collision Pseudo-(second) preimage

BMW-224 281 (2112) 2161 (2224)

BMW-256 297 (2128) 2193 (2256)

BMW-384 2128 (2192) 2256 (2384)

BMW-512 2192 (2256) 2384 (2512)

M11, H∗
6 , and H∗

7 to get the desired values of H∗
10 and H∗

11. The choices we made in
the examples above were only to simplify expressions. The available degrees of freedom
may be useful in extensions of the attacks; however, so far we did not succeed in doing
this.

4.6 Some Examples

As a proof of concept, we now give some examples where output words H∗
6 , H∗

7 , H∗
10, and

H∗
11 are controlled (set to zeros). All words are written in (little endian) hexadecimal.

4.6.1 BMW-256.

With chaining input

H = (ca9f6a93, 3cf76d1d, 9e4dc0d0, c3c23fdc, a9dbaa8d, fc21aac3, 9b4025d4, 9cc22fd7,
61d87164, 798a37d0, 600c7d3d, 34e25b56, ed8daa32, 6cf3fb69, 30fab149, dc9bd4c2)

and message input (including padding)

M = (0803a93a, 5013d06d, ebd8f1b6, ada77a2b, 41491ede, 3af1638e, 00000000, 00000000,
7445bdbc, 90eec654, 00000000, 00000000, 610b24e8, 11a24bca, 000001bf, 00000000),

the output of the compression function is

H∗ = (a321e2f8, ec7c4e0a, 47f45671, 2009f6ed, 964a5ce7, 5c4fce1d, 00000000, 00000000,
2d7273b0, 928f72bc, 00000000, 00000000, 6ca15abe, 3fa46015, b16696b4, f6ad9f5c).

Hence, if H as defined above had been the initial value of BMW-256, then the message
M would hash to

b073722dbc728f920000000000000000be5aa16c1560a43fb49666b15c9fadf6.

Finding this chaining/message pair required the equivalent of two compression function
calls.

4.6.2 BMW-512.

An example for BMW-512 is the following. With chaining input

H = (ff95021298b8053b, bcc99f334f6e20af, 7387085dbb945b21, a6e3e0c15e1518d3,
ac1269c4776c3dce, 862544c1ccc9b56e, ba4d394db6052685, fd9cbbf7da10c97c,

d5fb04f37d785c9d, 5369199dce565dd4, 7bdc4c99a89666a9, 5c856b804801cf84,

a9d3c3347f1e1021, 7cb27b3b516d1642, 2b80503146c44e2b, 130d06d4893028ba)

12

and message input (including padding)

M = (1462e93afb35c1cc, da9f0d9ea7f0d9ec, 57b861f574387fb3, d8db2240ca1fddca,
0b2aee5199e34ed8, 00d79aaa54b1b95e, 0000000000000000, 0000000000000000,

2de5cb945577564d, cc627a486df4b73d, 0000000000000000, 0000000000000000,

a4791f4f65cd3bf3, 63cfeaaf0067f03c, 0100000000000000, 00000000000003bf),

the output of the compression function is

H∗ = (88e74c537efd26d4, 1ac48d4de6bc9df7, dbc7bd6d95876c96, 593ce88619782657,
ff01649945976d60, 6df14428399268cd, 0000000000000000, 0000000000000000,

f63e5fc6672c86f8, 100b2869c2be6b8f, 0000000000000000, 0000000000000000,

e63005f1f87f3560, af255aa7c7e0f16c, a7652904d6f61a35, b7dadc75cabe3b7b).

Hence, if the initial value of BMW-512 would be equal to the chaining variable above,
then the 512-bit message digest would be

f8862c67c65f3ef68f6bbec269280b1000000000000000000000000000000000

60357ff8f10530e66cf1e0c7a75a25af351af6d6042965a77b3bbeca75dcdab7.

Finding this chaining/message pair required the equivalent of one compression function
call.

5 Conclusion

We have described a number of weaknesses in the Blue Midnight Wish hash function.
The weaknesses lead to attacks in which the adversary is allowed to choose the initial

value of the hash function. It is by no means straightforward to extend the attacks to
full-blown attacks using the given initial values of the BMW variants. Meet-in-the-
middle attacks also do not seem possible since BMW uses an internal state that is at
least twice as large as the output of the hash function.

The attacks apparently do not apply to the tweaked version of BMW.

References

[1] D. J. Bernstein and T. Lange (editors). eBACS: ECRYPT Benchmarking
of Cryptographic Systems, August 2009. Available: http://bench.cr.yp.to/
results-hash.html (2009/08/26).

[2] I. Damg̊ard. A Design Principle for Hash Functions. In G. Brassard, editor, Advances
in Cryptology – CRYPTO ’89, Proceedings, volume 435 of Lecture Notes in Computer
Science, pages 416–427. Springer, 1990.

[3] D. Gligoroski, V. Kĺıma, S. J. Knapskog, M. El-Hadedy, J. Amundsen, and S. F.
Mjølsnes. Cryptographic Hash Function Blue Midnight Wish. SHA-3 Algorithm
Submission, October 2008. Available: http://people.item.ntnu.no/~danilog/
Hash/BMW/Supporting_Documentation/BlueMidnightWishDocumentation.pdf
(2009/04/07).

13

http://bench.cr.yp.to/results-hash.html
http://bench.cr.yp.to/results-hash.html
http://people.item.ntnu.no/~danilog/Hash/BMW/Supporting_Documentation/BlueMidnightWishDocumentation.pdf
http://people.item.ntnu.no/~danilog/Hash/BMW/Supporting_Documentation/BlueMidnightWishDocumentation.pdf

[4] R. C. Merkle. One Way Hash Functions and DES. In G. Brassard, editor, Advances
in Cryptology – CRYPTO ’89, Proceedings, volume 435 of Lecture Notes in Computer
Science, pages 428–446. Springer, 1990.

[5] National Institute of Standards and Technology. The SHA-3 competition web-
site. Available: http://csrc.nist.gov/groups/ST/hash/sha-3/index.html
(2009/08/26).

[6] S. S. Thomsen. A near-collision attack on the Blue Midnight Wish compression func-
tion. Manuscript, November 2008. Available: http://www.mat.dtu.dk/people/S.
Thomsen/bmw/nc-compress.pdf (2009/09/09).

A Details of P

P is a permutation that corresponds to first multiplying the input by a matrix C, and
then applying reasonably simple permutations to each word. The matrix C is defined
in the same way for all variants of BMW. We have

C =



0 0 0 0 0 1 0 −1 0 0 1 0 0 1 1 0
0 0 0 0 0 0 1 0 −1 0 0 1 0 0 1 −1
1 0 0 0 0 0 0 1 0 1 0 0 −1 0 0 1
1 −1 0 0 0 0 0 0 1 0 −1 0 0 1 0 0
0 1 1 0 0 0 0 0 0 1 0 −1 0 0 −1 0
0 0 −1 1 0 0 0 0 0 0 1 0 −1 0 0 1
−1 0 0 −1 1 0 0 0 0 0 0 −1 0 1 0 0

0 1 0 0 −1 −1 0 0 0 0 0 0 −1 0 −1 0
0 0 1 0 0 −1 −1 0 0 0 0 0 0 1 0 −1
1 0 0 −1 0 0 1 −1 0 0 0 0 0 0 1 0
0 −1 0 0 −1 0 0 −1 1 0 0 0 0 0 0 1
−1 0 −1 0 0 −1 0 0 1 1 0 0 0 0 0 0

0 1 0 1 0 0 −1 0 0 −1 1 0 0 0 0 0
0 0 1 0 1 0 0 1 0 0 1 1 0 0 0 0
0 0 0 1 0 −1 0 0 1 0 0 −1 −1 0 0 0
0 0 0 0 −1 0 −1 0 0 −1 0 0 1 1 0 0



.

Note that C is invertible modulo 232 and modulo 264, but we omit a specification of the
inverses.

As an example, if the input is the vector X, and T = C ·X, then (e.g.) T0 = X5 −
X7 +X10 +X13 +X14 mod 2w. The output Y = P (X) is computed as Yi ← si mod 5(Ti)
for 0 ≤ i < 16, where the permutations si, 0 ≤ i ≤ 4, are defined in Appendix B.

14

http://csrc.nist.gov/groups/ST/hash/sha-3/index.html
http://www.mat.dtu.dk/people/S.Thomsen/bmw/nc-compress.pdf
http://www.mat.dtu.dk/people/S.Thomsen/bmw/nc-compress.pdf

B Sub-functions used in P and f1

The sub-functions si, 0 ≤ i ≤ 4, and ri, 1 ≤ i ≤ 7, used in P and in f1 are defined as
follows.

BMW-224 and BMW-256 BMW-384 and BMW-512
s0(x) = x�1 ⊕ x�3 ⊕ x≪4 ⊕ x≪19 s0(x) = x�1 ⊕ x�3 ⊕ x≪4 ⊕ x≪37

s1(x) = x�1 ⊕ x�2 ⊕ x≪8 ⊕ x≪23 s1(x) = x�1 ⊕ x�2 ⊕ x≪13 ⊕ x≪43

s2(x) = x�2 ⊕ x�1 ⊕ x≪12 ⊕ x≪25 s2(x) = x�2 ⊕ x�1 ⊕ x≪19 ⊕ x≪53

s3(x) = x�2 ⊕ x�2 ⊕ x≪15 ⊕ x≪29 s3(x) = x�2 ⊕ x�2 ⊕ x≪28 ⊕ x≪59

s4(x) = x�1 ⊕ x s4(x) = x�1 ⊕ x
s5(x) = x�2 ⊕ x s5(x) = x�2 ⊕ x
r1(x) = x≪3 r1(x) = x≪5

r2(x) = x≪7 r2(x) = x≪11

r3(x) = x≪13 r3(x) = x≪27

r4(x) = x≪16 r4(x) = x≪32

r5(x) = x≪19 r5(x) = x≪37

r6(x) = x≪23 r6(x) = x≪43

r7(x) = x≪27 r7(x) = x≪53

C Inverses of the matrix B used in f1

The matrix B introduced in Section 2.1.1 is defined as

B =



1 0 0 1 0 0 0 0 0 0 −1 0 0 0 0 0
0 1 0 0 1 0 0 0 0 0 0 −1 0 0 0 0
0 0 1 0 0 1 0 0 0 0 0 0 −1 0 0 0
0 0 0 1 0 0 1 0 0 0 0 0 0 −1 0 0
0 0 0 0 1 0 0 1 0 0 0 0 0 0 −1 0
0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 −1
−1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0

0 −1 0 0 0 0 0 1 0 0 1 0 0 0 0 0
0 0 −1 0 0 0 0 0 1 0 0 1 0 0 0 0
0 0 0 −1 0 0 0 0 0 1 0 0 1 0 0 0
0 0 0 0 −1 0 0 0 0 0 1 0 0 1 0 0
0 0 0 0 0 −1 0 0 0 0 0 1 0 0 1 0
0 0 0 0 0 0 −1 0 0 0 0 0 1 0 0 1
1 0 0 0 0 0 0 −1 0 0 0 0 0 1 0 0
0 1 0 0 0 0 0 0 −1 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0 0 −1 0 0 0 0 0 1



.

It is circulant, meaning that each row is equal to the row above rotated one position
to the right. The inverses modulo 232 and 264 are also circulant. The first row of

15

B−1 mod 232 is (in hexadecimal)

[abababac, c6c6c6c7, bdbdbdbe, c0c0c0c1, 15151515, 4e4e4e4e, 90909090, cfcfcfd0,
babababb, 6c6c6c6d, dbdbdbdc, 0c0c0c0c, 51515151, e4e4e4e5, 09090909, fcfcfcfd].

The first row of B−1 mod 264 is

[abababababababac, c6c6c6c6c6c6c6c7, bdbdbdbdbdbdbdbe, c0c0c0c0c0c0c0c1,
1515151515151515, 4e4e4e4e4e4e4e4e, 9090909090909090, cfcfcfcfcfcfcfd0,

babababababababb, 6c6c6c6c6c6c6c6d, dbdbdbdbdbdbdbdc, 0c0c0c0c0c0c0c0c,

5151515151515151, e4e4e4e4e4e4e4e5, 0909090909090909, fcfcfcfcfcfcfcfd].

16

	Introduction
	Organisation of the Paper
	Notation

	A Description of Blue Midnight Wish
	The Blue Midnight Wish Compression Function
	A Description of f1.
	A Description of f2.

	Near-collisions in the Compression Function
	An Example
	Other Difference Patterns
	A Pseudo-near-collision in BMW-256

	Pseudo-attacks
	Controlling Output Words -- A First Example
	Controlling Additional Output Words
	Other Variants of BMW
	Applications
	Available Degrees of Freedom
	Some Examples
	BMW-256.
	BMW-512.

	Conclusion
	Details of P
	Sub-functions used in P and f1
	Inverses of the matrix B used in f1

