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Integration of local and global geometrical cues for 3D face recognition
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Abstract

We present a unified feature representation of 2.5D pointclouds and apply it to face recognition. The representation integrates local and global
geometrical cues in a single compact representation which makes matching a probe to a large database computationally efficient. The global
cues provide geometrical coherence for the local cues resulting in better descriptiveness of the unified representation. Multiple rank-0 tensors
(scalar features) are computed at each point from its local neighborhood and from the global structure of the 2.5D pointcloud, forming multiple
rank-0 tensor fields. The pointcloud is then represented by the multiple rank-0 tensor fields which are invariant to rigid transformations. Each
local tensor field is integrated with every global field in a 2D histogram which is indexed by a local field in one dimension and a global field
in the other dimension. Finally, PCA coefficients of the 2D histograms are concatenated into a single feature vector. The representation was
tested on FRGC V2.0 data set and achieved 93.78% identification and 95.37% verification rate at 0.1% FAR.
� 2007 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Face recognition is a fundamental problem in computer vi-
sion and has a wide range of vital applications in numerous
and diverse domains e.g. security and human–robot interaction.
Face recognition by matching 3D surfaces has shown better
performance compared to 2D recognition [1]. This is an indica-
tion that the 3D shape has a significant amount of information.

The main difficulty in matching two 3D surfaces is that the
surfaces are defined in different coordinate systems as the ac-
quired surface data are defined in the coordinate system of the
3D sensor (viewer). Therefore, the 3D surface data depend on
the location and orientation of the 3D sensor. There are three
approaches to handle this difficulty (1) by registering the query
surface to the reference surface [2,3] (2) by extracting and
matching viewer-centric representations [4,5] (3) by extract-
ing and matching object-centric representations of the surfaces
[6–8].

The ICP algorithm is a well-known example of the first ap-
proach. ICP was initially introduced by Chen and Medioni
[2] and Besl and McKay [9] for fine registration of two 3D
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pointclouds or meshes. Since then, it was widely used for
both registering and matching surfaces. Starting from an initial
coarse registration, it iteratively finds the rigid-body transfor-
mation that minimizes a metric error between pairs of closest
points from the two meshes and applies it to one of the meshes
until the metric error stabilizes. If ICP converges at the global
minimum, the metric error is an indication of the similarity
between the two surfaces. Although ICP does not loose any
geometrical information (since it does not require any feature
extraction stage), it does not always converge to the correct so-
lution. In addition it is computationally expensive (especially
if used with large databases) and requires an initial coarse reg-
istration. Another example of this approach is PCA [10] on
range images which requires accurate registration of surfaces.
Inaccurate surface registration adversely affects the recognition
performance of PCA.

In the second approach of surface matching, viewer-centric
representations, the 3D object is represented by a set of 2D im-
ages (views) that summarizes all its possible appearances. The
object is then recognized by matching its representing views
to the views of the reference object. Aspect graphs [4] and 2D
silhouettes [5] of objects are fall in this approach of surface
matching. In aspect graphs representation, topologically similar
2D views of an object are grouped and the neighboring groups
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in the viewpoint space are linked. Representing a 3D object
using this approach requires a large number of views which
does not only make it memory intensive but also complicates
the object recognition task.

An object-centric representation attempts to represent 3D
objects independently of the coordinate systems in which the
acquired 3D surface data are defined. Thus, they are invari-
ant to rigid transformations. Object-centric representations
are usually more compact than viewer-centric representations.
In addition, matching using object-centric representations is
more computationally efficient. They achieves independence
from the coordinate system of the data by deriving a new
coordinate system from the 3D data as in the work by Mian
et al. [8], decomposing the object into volumetric primitives
as in the work by Greenspan et al. [7] or extracting rigid-
transformation invariant surface signatures as in Ref. [6].
Our representation falls in this approach of 3D surface
matching and achieves independence from the underlying
coordinate system of the acquired 3D surface by utilizing
rigid-transformation invariant rank-0 tensor fields (as explained
in Section 3).

There are certain qualities which feature a good repre-
sentation. These qualities are unambiguity, conciseness and
uniqueness [11]. The representation is unambiguous if different
objects have different representations. A unique representation
does not have more than one representation for each object.
Some other qualities are often considered such as representa-
tion domain, completeness, sufficiency and stability [12,13].
A wide domain representation can describe a large set of sur-
faces. For example, recognition of free-form surfaces requires
representations that can describe surfaces with any arbitrary
shape. A complete representation does not loose any surface
information and the 3D surface can be reproduced from the
representation. A sufficient representation captures enough sur-
face information that serves the purpose of the representation.
Minor changes in the acquired surface data such as that intro-
duced by noise should not yield to a different representation
(the representation is stable).

Trade-offs between these qualities are often involved.
Complete representations rank low in some other qualities.
For example, generalized cylinder (GR) representation [14] is
complete but lacks stability and uniqueness as the object can be
divided into general cylinders in multiple ways and small vari-
ations in object data can induce different divisions. B-spline
representation [15,16] is also complete but not unique
(nonuniqueness complicates matching or may affect the recog-
nition performance). In addition, complete representations
generally are not concise. Conciseness of the representation
may compromise the unambiguity and sufficiency qualities.
However, concisenessassists in improving the efficiency of the
system. Despite that concise representations loose some infor-
mation, they are desirable as they reduce the dimensionality
of the surface data and facilitate efficient matching (given that
they are sufficiently descriptive).

Surface representations can also be classified as local and
global. Both local and global representations have their advan-
tages and disadvantages. Global representations are extracted

from the whole surface which usually makes them more
concise and robust to noise. Therefore, matching global repre-
sentations is computationally more efficient. However, they are
sensitive to occlusions. On the other hand, local representations
are extracted from local surface patches. Local representations
are less sensitive to occlusions but they are computationally
expensive as a large number of them need to be computed
and matched. Moreover, local representations are extracted
from localized surface patches which have small amounts of
information. In the extreme case (very localized), the local
surface has no information and coincides with the tangential
plane (planar patch). Therefore, local representations are more
sensitive to noise (in other words they have low signal to noise
ratio). Consequently, they may easily be mis-matched with
each other.

Psychological findings show that humans equally rely on
both local and global visual information [17]. In this paper, we
integrate both local and global geometrical cues into a concise
object-centric representation. This representation is beneficial
in two folds. Firstly, the whole surface is represented by a sin-
gle feature vector which makes matching a surface to a large
database computationally efficient as the computational cost
is basically the computation of its representation and vector
matching is computationally cheap. Therefore, as the size of the
database increases, the computational cost of surface matching
does not considerably increase. Secondly, the integration of lo-
cal and global cues helps in increasing the sufficiency and simul-
taneously maintaining the conciseness of the representation. In
addition, the proposed representation has shown stability and
robustness to noise (see Section 6). If the global structure of the
surfaces is similar (as it is the case for intra-class recognition
problems such as face recognition), the local features play an
important role in the representation since they are likely to be
collectively dissimilar. However as previously mentioned, the
local features may easily be mis-matched with each other. The
integration of global geometric cues with the local ones can
enhance the performance of the local cues by providing them
with geometrical coherence. In other words, the local features
are only matched to those which satisfy some global geomet-
rical constraints, resulting in less confusion amongst the local
features.

We devised such a hybrid local and global representation and
applied it to face recognition. An earlier version of this work
appeared in Ref. [18]. The 2.5D pointcloud of the face was
cropped around the nose tip (the points which have distances
more than a certain radius RC from the tip of the nose were
cropped off). Face cropping and nose tip detection was achieved
according to Mian et al. [19]. The cropped facial pointcloud was
then triangulated. From the triangulated mesh, we computed
multiple local and global rank-0 tensor fields (or simply local
and global scalar features at each mesh vertex), see Section 3.
Unlike higher order tensor fields, it can be easily proven that
the extracted rank-0 tensor fields are invariant to rigid transfor-
mations. Initially, we encoded geometric information from the
triangulated mesh (which may have pose variations) in higher
order tensor fields. Higher order tensor fields have the capac-
ity to encode more surface information than rank-0 ones but
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Fig. 1. Illustration of extraction of our unified local and global representation.

they vary with pose variations. Then, we computed rank-0 ten-
sor fields from one or multiple higher order tensor fields. Thus,
the geometric information is transferred from the higher order
tensor fields to a larger number of rank-0 tensor fields. The ex-
tracted local and global rank-0 tensor fields are then used to
integrate local and global geometrical information in multiple
2D histograms of the surface area (Section 4). Each 2D his-
togram is indexed by a local rank-0 tensor field in one direction
and a global field in the other direction. In order to reduce the
dimensionality of the representation, we performed PCA [10]
on every histogram separately (Section 5). The eigenhistogram
coefficients were then concatenated into a single feature vector
(see Fig. 1).

2. Related data fusion work

Since our representation integrates local and global geomet-
ric cues, the representation is linked to the data fusion liter-
ature. In this section, we discuss the representation from this
perspective and review related data fusion approaches. For more
extensive reviews of the existing 3D surface representations
that does not involve combination of local and global cues, the
reader is referred to the surveys by Campbell and Flynn [13]
and Mamic and Bennamoun [12].

Data fusion refers to the synergistic combination of data
from multiple sources to provide more reliable and accurate
information [20]. The aim of data fusion is to combine com-
plementary and/or competing data to achieve better combined
performance [21]. Inadequacies in the data can be comple-
mented by data from other sources. For example, fusing data
from multiple sources can reduce the uncertainty and increase
reliability and robustness of the fused data. In pattern recog-
nition systems, there are four fusion levels depending on the
stage at which fusion takes place in the system [22], namely
data level (fusion module produces a unified features from the
multiple-source data), feature level (fusion module produces
fused features from mono-source features), score level (fusion
module produces a fused score from mono-source scores) and
decision levels (fusion module produces a fused decision from
mono-source decisions). It is believed that pattern recognition

systems that fuse data at an earlier stage (data or feature level)
will outperform those which fuse data at latter stages, because
the data at lower levels have richer information about the class
or the identity [23].

Our representation combines local and global information
in two phases. This combination might be considered as a
data level fusion in the first phase and a feature level fusion
in the second phase. The first fusion phase is the integration
of a local tensor field with a global field into a 2D his-
togram (from which unified features are extracted) and the
second phase is when the unified features (eigenhistogram
coefficients) of each histogram are combined into a single
feature vector.

Despite the fact that there is a considerable amount of work
on multi-modal data fusion (mostly texture and 3D shape at the
score and the data levels) and on 2D local and global fusion,
there is very limited and sparse research that addresses local
and global fusion in 3D. Vandeborre et al. [24] fused local and
global invariant descriptors for 3D model indexing at the rank
(score) level. Their descriptors are 1D histograms of local sur-
face curvatures, distance between mesh triangles, and volumes
of the tetrahedrons formed by the triangles and the center of the
3D model. They have shown that combining the ranks of these
three descriptors improves retrieval performance. Late fusion
of their descriptors prevented the utilization of the important
collocation information of the descriptors and their geomet-
ric relationships. Gokberk et al. [25] have performed decision
and rank level fusions on four 3D face classifiers PCA, LDA,
extended Gaussian images (EGI) [26] and facial profiles [27].
In the work by Xu et al. [28], a 3D face with a frontal view
is uniformly triangulated. Then they used Gaussian–Hermite
moments to quantify shape variations in four facial regions,
namely the two eyes, nose and mouth. Finally, they performed
PCA on the concatenation of the uniform range image and the
Gaussian–Hermites moments. In their approach, simple con-
catenation of data which are of different natures (although
redundant as the four facial regions are included in the range
image) without normalization might impair PCA as the top
principal components might entirely result from one data type
that has the largest variations.
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3. Facial 3D surface data and extraction of tensor fields

The representation was tested on the Face Recognition Grand
Challenge (FRGC) data set V2.0 [29]. In that data set the 3D
surface data were acquired using Minolta Vivid 900 range sen-
sor which is based on the laser light-sectioning technique. The
3D facial surfaces are in the form of 3D pointclouds. Fig. 1
shows an example of a facial pointcloud. The basic data struc-
ture of a pointcloud is a 3 ×N matrix of x, y and z coordinates
of all the points in the pointcloud.

Tensors are generalization of vectors. They vary with the
transformations of their coordinate systems in which they are
defined in such a way that the described mathematical or phys-
ical quantities are independent of such transformations [30]. A
tensor field is a collection of tensors defined over a manifold (a
tensor is attached to every point in the manifold). In our case
the tensors are defined over the represented surface.

In computer vision, tensor fields have been used in the frame-
work by Medioni et al. [31] which has been applied to many
early vision problems. In their approach, they decompose a
local surface patch into the basic components ball, plate and
stick. Then these components (tokens) are communicated in the
neighborhood and cast votes in a voting tensor field (rank-2)
which is then decomposed again into ball, plate and stick with
a magnitude measure (called saliency). Although their frame-
work has worked successfully in applications like tracking [32],
segmentation and surface extraction from noisy data [33], there
is no evidence that the system can handle object recognition ro-
bustly as their voting scheme does not utilize sufficient global
information and their local surface descriptors does not seem
to be sufficient for such application.

In our approach, we used many rank-0 tensor fields which
encode local and global information. Although, at a single sur-
face point our rank-0 tensors are still weak descriptions of the
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Fig. 2. Extracted local and global rank-0 tensor fields (best viewed in color).

surface’s local and global geometric information, the ten-
sor fields are synergistically combined into a sufficient
representation.

3.1. Computation of local rank-0 tensor fields

We computed 11 local tensor fields over the triangulated
mesh. For each field, a tensor is assigned to each mesh ver-
tex. Fig. 2 shows the extracted tensor fields. These tensors are
extracted from two local neighborhoods of the vertex. Each
neighboring triangle which has a center of gravity ci less than
a certain distance threshold Rt1 from the vertex is included
in the first neighborhood H1. Similarly if ci is less than an-
other radius threshold Rt2 the triangle is added to the second
neighborhood H2. The values of Rt1 and Rt2 were chosen
empirically to include surface patches that have sufficient ge-
ometric variations (as explained in Section 1, very localized
surface patches have limited information). The difference be-
tween Rt1 and Rt2 should be sufficient so that the extracted
tensor field captures different aspects of the local surface. In
our experiments, we chose Rt1 = 9 mm and Rt2 = 15 mm (see
Fig. 3). From each local neighborhood (H1 and H2), a rank-
2 tensor field is extracted according to the following formula
(we use matrix notation throughout the paper):

Tj =
nj∑

i=1

airir�
i

Ah‖ri‖2 , (1)

where nj is the number of triangles in the vertex neighborhood
Hj . ri represents the vector from the vertex to the centroid
of the ith triangle (see Fig. 3) and ai is the area of the ith
triangle. Ah is the total area of the local neighborhood. Eq. (1)
projects the surface patch onto the unit sphere and computes
the covariance matrix of r which encodes variations of r
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in Hj . The projection onto the unit sphere normalizes the
contributions of the triangles in the covariance matrix so that
the triangles with large ri vector do not dominate others (see
Fig. 4). Experimental tests have shown that this projection
has improved the recognition accuracy (in comparison to the
recognition accuracy when it is not used). The contribution
of each triangle in the covariance matrix is weighted by its
area ai/Ah to make Tj less affected by the irregularities in
mesh triangulation. Consequently, the representation can effi-
ciently match decimated meshes which are usually irregular.

ni

ri

Rt1

Rt2

Fig. 3. Two threshold values (Rt1 and Rt2) are used select two local neigh-
borhoods of a vertex.

3D surface patch

Planar surface
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Fig. 4. Projection of an arbitrary local surface patch onto the unit sphere (top). The projection of a planar surface onto the unit sphere is a circle (bottom).

It also makes the representation robust to variations in mesh
resolutions. In our case, the mesh resolution was about 12 000
points on the face. When the facial meshes are heavily dec-
imated to about 5000 points, a small degradation in recogni-
tion rate is noticed (about 4% from the demonstrated rate in
Section 6).

From each of the two rank-2 tensors, three rank-0 tensors
are extracted. The three eigenvalues of each Tj are sorted in
descending order (�1 ��2 ��3) and considered three rank-0 lo-
cal tensor fields (Lf 1, Lf 2 and Lf 3). Since the rank of Tj is
greater than zero, it varies with rigid transformations. Tj is de-
composed into rigid-transformation independent components
(eigenvalues) and dependent components (eigenvectors). If the
local surface is planar, its projection onto the unit sphere is a
circular line with equal density. In this case �1 =�2 and �3 =0.
However, if the local neighborhood has variations, the eigen-
values will vary according to the distribution of the local sur-
face patch on the unit sphere. Fig. 4 shows surface projections
onto the unit sphere.

Five additional rank-0 tensor fields are extracted from the
normals of the triangles ni and their ri vectors. Two of these
are from Eq. (2) and the remaining ones are from Eq. (3):

lj =
nj∑

i=1

aini · ri

Ah‖ri‖ , (2)

Q =
n2∑

i=1

ai(ni − n̄)r�
i

Ah‖ri‖ . (3)
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In Eq. (2), ni ·ri is the dot product between the normal of the ith
triangle and its vector ri (see Fig. 3). From each neighborhood
(H1 and H2 correspond to the same local neighborhoods used
in Eq. (1)), we get one rank-0 tensor field. These two tensor
fields provide measures of how the normals in the neighborhood
are oriented with respect to the vector ri . For a planar surface
the value of this tensor field is zero because the normals of the
triangles are always perpendicular to the ri vectors. However,
if the normals in the local neighborhood are tilted away from
the vertex (e.g. in a convex surface), the field will be positive.
The field is negative if the normals are tilted towards the vertex
(e.g. in a concave surface). In these three special cases, the
field resembles the mean curvature of the surface. However, the
tensor field is different for arbitrary surface variations in the
local neighborhood.

The two local fields which are extracted from Eq. (2) are
sensitive to the variations in normals relative to their ri vectors
regardless of the ri directions. In contrast, the tree rank-0 local
fields which are extracted from Eq. (3) relate directional quan-
tities derived from r and n. The tensor computed in Eq. (3) (Q)
is the covariance matrix between the normals of the triangles ni

and their ri vectors (after projection on the unit sphere). Q was
computed only from the large neighborhood (H1). Unlike the
rank-2 tensor in Eq. (1), the tensor in Eq. (3) is unsymmetrical
and may have complex eigenvalues. Therefore, instead of us-
ing the eigenvalues as rank-0 tensor fields, the tensor is decom-
posed into its singular values (Qk = USV�). As the previously
used eigenvalue decomposition, singular value decomposition
also decomposes the rank-2 tensor into rigid-transformations
invariant components (singular values) and directional com-
ponents (the orthonormal columns of V and the orthonormal
columns of U). The singular values (s1, s2 and s3) are consid-
ered rank-0 tensor fields. Nishida et al. [34] have shown that
the singular values of the matrix of x, y and z coordinates of
a pointcloud are invariant to rotations. In a similar way, it can
be shown that the singular values of the covariance matrix of
n and r are invariant to rigid transformations. The singular
values relate columns of V to the columns of U according to
Qvi =siui . Hence, the counterpart of U and V in Q are n and r,
respectively.

The normals of a 3D surface have more variations along di-
rections with more curvatures. The first singular value could be
an indication (to some extent) of the absolute value of the max-
imum principal curvature. The tensor field of the first singular
value in Fig. 2 shows that the facial regions with more abso-
lute maximum principal curvature have more tensor values. For
example, at the nose which is cylindrically shaped and has a
large maximum principal curvature but a low minimum curva-
ture, the values of this field are high. However, the field of the
second singular value is very low at the center of the nose. At
the two ends of the nose (nose tip and the region between the
eyes) both fields are high because the surface is highly curved
in different directions. The tip of the nose is convex and its
normals vary in all directions but the other region is saddle
shaped and highly curved in two perpendicular directions, the
horizontal direction (positively curved) and the vertical direc-
tion (negatively curved).

Based on the described similarities between the principal
curvatures and these singular values, these singular values are
potentially applicable in approaches that are based on the prin-
cipal curvatures, e.g. the shape index by Lu et al. [35] and ap-
proaches that segment the 3D surface according to its principal
curvatures (e.g. Ref. [36]). The shape index represents distinct
nine local shapes based on the principal curvatures and is used
to detect certain points on the 3D face such as eye corners and
nose tip. We expect these singular values to be more robust
to noise compared to the principal curvatures as they are ex-
tracted from much larger neighborhoods. On the other hand,
the principal curvatures are mostly computed from the second
derivatives of the 3D surface (which are to some extent sensi-
tive to noise) or fitting a paraboloid to a small local neighbor-
hood then the principal curvatures are analytically computed
from the paraboloid [37].

3.2. Computation of global rank-0 tensor fields

Three rank-0 global fields are extracted from the cropped
face. The centroid of the face mesh is computed according to

g = 1

Ac

n∑

i=1

aici , (4)

M =
n∑

i=1

ai(ci − g)(ci − g)�, (5)

where n is the number of the triangles in the mesh. ai and ci

are the area and the centroid of the ith triangle, respectively.
Ac is the total area of the cropped face. Then the covariance
matrix of the whole cropped surface M is computed. Its three
eigenvectors p1, p2 and p3 (principle directions of the cropped
face) which correspond to the eigenvalues sorted in decreas-
ing order are assumed uniform rank-1 tensors at every vertex.
Since the negative of an eigenvector is also an eigenvector as
M(−p) = �(−p), the principal directions p1, p2 and p3 may
have 180◦ ambiguity. The eigenvectors are checked against ref-
erence vectors limiting the permissible pose variations to less
than ±90◦. In this range, the principle directions behave like
rank-1 tensors with regard to geometric transformations. The
dot product pj · (ci − g) produces a global rank-0 tensor field
from each principle direction. These global fields redefine the
3D surface in the coordinate system determined by the three
principal components as its directed axes and the global cen-
troid as its origin. The three global fields are independent of
the pose of the surface.

In fact, the three principal components are not uniquely de-
finable for every surface. For example, when two eigenvalues of
M are equal, it is not possible to order the eigenvalues uniquely.
Very close eigenvalues may affect the stability of the repre-
sentation as noise may influence the ordering of eigenvalues.
However, the representation is applicable to a large domain of
surfaces including the human face for which the principal di-
rections are robustly definable. In addition, principal directions
are not the only way to extract global fields. Another possible
way is to compute several vectors kj from the whole surface
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such as those defined in Eq. (6). Different values of mj yield to
different vectors (e.g. 1

2 and 2, the value of 1 should be avoided
as it gives kj = [000]�). The dot product can also be used to
define global fields, (ci − g) · (kj /‖kj‖ − kj+1/‖kj+1‖)

kj = 1

Ac

n∑

i=1

ai‖ci − g‖mj
ci − g

‖ci − g‖ . (6)

4. Fusion of local and global tensor fields

In Section 3, the local and global rank-0 tensors are extracted
at every mesh vertex (tensor fields). Values of the various fields
are estimated for mesh triangles by averaging field values at the
vertices of the triangle. Each rank-0 local tensor field is inte-
grated with each global rank-0 tensor field in a 2D histogram.
The histogram is indexed by a local field in one dimension and
a global field in the other dimension. The area of every triangle
in the mesh is added to the bin that is indexed by its local and
global fields. The co-location of the local and global fields at
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Fig. 5. Illustrating example of the non-linear histogram griding. The 2D histogram is indexed by a local field with standard deviation � = 1 and mean � = 0
in one dimension and a global field with � = 2 and � = 0 in the other dimension.

the mesh triangles determines to which 2D histogram bins their
areas are added. Since all the 11 local fields and the 3 global
fields are invariant to rigid transformations the 2D histograms
are also invariant (as long the face is not largely rotated resulting
in self-occlusion of some points).

In order to utilize the bins of the histogram efficiently,
nonuniform griding was used. Grid sizes are chosen so that the
histogram bins have equal probability as illustrated in Fig. 5.
The grids are spaced according to the mean �fi

and the stan-
dard deviation �fi

of every indexing field fi . �fi
and �fi

are
computed offline from all the gallery faces. The grids Dj of
each field are placed around the mean field according to

Di = �fj
+ ki�fj

, (7)

where ki is the nonuniform griding that yields equal den-
sity distribution for the normal probability density function
N(� = 0, � = 1) (see Table 1 for the used �, � and ki values).
Fig. 5 shows a nonuniform histogram griding example of a
global tensor field with � = 2 and a local field with � = 1. The
choice of the dimension of the histograms is critical. Too coarse
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Table 1
Mean and standard deviation values of the tensor fields (top)

Local fields Global fields

1 2 3 4 5 6 7 8 9 10 11 12 13
�fj

0.05 20.8 17.5 1.82 0.11 56.7 48.9 6.02 1.93 0.71 2.45 −0.1 0.44
�fj

0.88 2.7 2.65 2.29 1.55 5.44 6.03 6.81 1.06 0.34 37.3 29.7 10.7

ki −1.46 −1.07 −0.79 −0.57 −0.37 −0.18 0.0 0.18 0.37 0.57 0.79 1.07 1.46

ki factors which were used to define the non-linear griding of the 2D histograms (bottom).

histogram griding results in an insufficient and ambiguous rep-
resentation because significant field variations may not bring
about a change in bin indexing. On the other hand, too fine
griding adversely affects the stability of the representation and
its robustness to noise. Minor changes in the indexing fields,
caused by noise or variation in mesh triangulation, may be suf-
ficient to make the fields index another histogram bin. The di-
mension of the field histograms used in the representation was
14 × 14. A total number of 33 field histograms are used to rep-
resent a surface (11 × 3).

5. Histograms compression and matching

The principal component analysis (PCA) [10] algorithm has
been widely used in data compression and pattern recognition.
The higher principal components account for most of the data
variations and dropping the lower principal components may
not cause significant data loss. The PCA algorithm was applied
to each 2D field histogram individually. PCA represents a field
histogram in lower dimensional space. The 2D histogram is
vectorized into m×1 vector h, where m is the number of bins of
the histogram. The covariance matrix � of the corresponding
fields in the face gallery is computed as

� =
n∑

i=1

(hi − h̄)(hi − h̄)�, (8)

h̄ is the average histogram. The eigenvectors e of � that have
the top k eigenvalues � are sorted by their eigenvalues in de-
creasing order in the matrix E. Instead of projecting the his-
togram difference hdi

= hi − h̄ onto the orthonormal subspace
E as in the case of the PCA algorithm (E�hdi

), hdi
is pro-

jected on the eigenvectors after dividing each eigenvector by the
square root of its eigenvalue which implies that the subspace is
transformed (equivalent to the statistical whitening transform
[38]) so that the variance along all the principle directions are
equal (w = (ET)�hdi

, where the T matrix is diagonal and has
{1/

√
�1, . . . , 1/

√
�k} diagonal entries). An eigenvalue of the �

is proportional to the squared magnitude of the projection of
hdi

on the corresponding principal direction (see Eq. (9)):

� ≈
k∑

j=1

�j ej e�
j =

k∑

j=1

n∑

i=1

(hdi
· ej )

2ej e�
j . (9)

Thus, dividing the projection of hdi
by

√
�j produces a co-

variance matrix with eigenvalues equal to one. Consequently,

the selected principle components contribute equally to the his-
togram matching. Our tests revealed that this subspace trans-
formation has considerably improved the recognition accuracy.
The eigen-histogram coefficients w of all the field histograms
are concatenated in a single feature vector w. The feature vec-
tors are then matched using Euclidean distance. In addition to
normalization along the top principal direction within each in-
dividual histogram, the transformation also achieves normaliza-
tion among all histograms. The variations in some histograms
may be significantly larger than the variations in other his-
tograms. Consequently, the encoded geometric information in
the histograms with small variations may not translate into pro-
portional distance in histogram matching. This also explains
why the application of PCA on each histogram individually
outperforms PCA on the concatenated histograms as the top
selected principal directions might belong to the histograms
with the highest variations and the geometric information in
the other histograms might be lost.

6. Results and discussions

The representation was tested on neutral expression faces of
the FRGC v2.0 data set. This data set was chosen for testing
the representation mainly for two reasons. (1) Face recogni-
tion is a subclass of object recognition and possibly more chal-
lenging because the shape of the face is deformable and varies
with expression (even the neutral expression faces have mild
variations) and aging. In addition, it is an intra-class recogni-
tion problem which requires highly descriptive representations
for the classification into subclasses. (2) In contrast to object
recognition databases, the FRGC v2.0 data set is considerably
large and has 466 subjects and about 2410 facial pointclouds
with neutral expressions (Fig. 6).

Out of the 2410 facial pointclouds, 466 ones were consid-
ered as the gallery faces (one training pointcloud per subject).
The remaining 1944 facial pointclouds were used to test the
representations. Our proposed representation achieved 95.37%
verification rate at 0.1% false accept rate (FAR) on the 466
galary faces. Fig. 7(a) shows the verification performance
in an ROC curve and Fig. 7(b) shows the recognition rates
for the first 20 ranks. An identification rate of 93.78% was
achieved. The curve indicates that the recognition rate rapidly
increases from the first rank to the 10th rank. This indicates
that recognition will significantly improve when 2D infor-
mation is used or another classifier is integrated with this
classifier.
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Fig. 6. Some probe faces (1st line) that were mis-recognized as gallery faces shown in the 3rd line. The correct gallery faces are shown in the middle line.
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Fig. 7. Recognition performance of 466 gallery faces and 1944 probes.

To test how the global fields contribute to the representation,
these fields were discarded from the 2D histograms. Instead of
indexing each 2D histogram by a global field and a local field,
it was indexed by two different local fields. The recognition
performance in this case decreased significantly to less than
50%. Matching using only the global fields is not possible
because they are not sufficiently descriptive by themselves. We
conclude from this that the fusion of the local and global fields
increases the descriptiveness of the representation.

Failures in the recognition were mainly due to large sur-
face variations between the probes and the gallery faces (See
Fig. 6). The main sources of these variations are hair and other
surface artifacts caused by noise in the pointcloud. The faces
were automatically cropped and the cropping errors also af-
fected the representation. The local fields are robust to surface
cropping errors and artifacts as they are locally extracted. If
these factors introduce large changes in the global structure,
the global tensor fields may change. Recall from Section 4 that
large field variations can introduce a change in histogram bin
indexing. In such a situation, an offset between the local fields

and the global fields might happens and result in surface mis-
recognition. The tolerance of the global field to cropping errors
and artifacts is related to the number of histogram grids. His-
tograms with less number of bins are more tolerant to cropping
errors and artifacts but as mentioned in Section 4, the suffi-
ciency of the representation will decrease too. In some cases,
mis-recognized gallery faces have very similar 3D shapes even
to the human eye. In this case, if the face is mis-recognized in
the first rank, it is still within the top few ranks.

7. Conclusion

A surface representation that fuses local and global geomet-
rical cues at the data level in a compact representation is pre-
sented. The local geometric cues are encoded in multiple rank-0
tenor fields and similarly the global cues are encoded in other
rank-0 tensor fields. The local and global fields are integrated
into 2D histograms. Then PCA is performed separately on ev-
ery histogram. The fusion of the local and the global fields (in
our representation) has shown better performance than when
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relying only on local or global tensor fields. Our tests have
shown that applying PCA on multiple-source data individu-
ally outperforms PCA on the concatenation of the multiple-
source data (in our case the 2D histograms) because PCA
effectively may discard data that has smaller variances than the
others. Also, our results have shown that the statistical whiten-
ing transform of the subspaces of the multiple PCAs normal-
izes their features and consequently improves the recognition
performance.
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