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Abstract—In this paper, we consider an interference multiple-
input multiple-output (MIMO) relay system where multiple
source nodes communicate with their desired destination nodes
with the aid of distributed relay nodes all equipped with multiple
antennas. We aim at minimizing the total source and relay
transmit power such that a minimum signal-to-interference-plus-
noise ratio (SINR) threshold is maintained at each receiver.
An iterative joint power control and beamforming algorithm is
developed to achieve this goal. The proposed algorithm exploits
transmit-relay-receive beamforming technique to mitigate the
interferences from the unintended sources in conjunction with
transmit power control. Numerical simulations are performed to
demonstrate the effectiveness of the proposed iterative algorithm.

I. INTRODUCTION

In a large wireless network with many nodes, multiple

source-destination links must share a common frequency band

concurrently to ensure a high spectral efficiency of the whole

network. In such network, cochannel interference (CCI) is

one of the main impairments that degrades the system perfor-

mance. Developing schemes that mitigate the CCI is therefore

important.

By exploiting the spatial diversity, multi-antenna technique

provides an efficient approach to CCI minimization. A joint

power control and receiver beamforming scheme is devel-

oped in [1] to meet the signal-to-interference-plus-noise ratio

(SINR) threshold with the minimal transmission power. A joint

transmit-receive beamforming and power control algorithm is

proposed in [2], when the source nodes also have multiple

antennas.

In addition to the transmit and/or receive beamforming con-

sidered in [1], [2], distributed/network beamforming technique

[3] can further increase the reliability of the communication

link especially for long-distance communication. In [4], a

wireless ad hoc network consisting of d source-destination

pairs and R relaying nodes, each having a single antenna, is

considered, where the network beamforming scheme is used

to meet the SINR threshold at all links with the minimal total

transmission power consumed by all relay nodes. Relay beam-

formers are designed in [5] for multiple-antenna relay nodes

with single-antenna source-destination pairs. Multiple-input

multiple-output (MIMO) relay technique has been applied to

multi-cellular (interference) systems in [6] where transceiver

beamformers are designed using partial zero-forcing (PZF)

technique.

However, [4]-[6] assume that each source node uses its

maximum available transmit power. Such assumption not

only raises the system transmit power consumption, but also

increases the interference from one user to all other users. So

the beamforming and the power control problem should be

considered jointly as in [1], [2]. In this paper, we consider

a two-hop interference MIMO relay system consisting of

L source-destination pairs communicating with the aid of

K relay nodes. Each of the source, relay and destination

nodes is equipped with multiple antennas. The amplify-and-

forward scheme is used at each relay node due to its practical

implementation simplicity.

We aim at developing a joint power control and beam-

forming algorithm such that the total transmission power

consumed by all source nodes and relay nodes are minimized

while maintaining the SINR at each receiver above a min-

imum threshold. Compared with [4], [5], we not only use

the network beamforming technique at the relay nodes, but

also apply the joint transmit-receive beamforming technique

for multiple-antenna users to mitigate the CCI. In contrast

to [6], we develop an iterative technique to solve the total

power minimization problem rather than using the so called

PZF approach. Moreover, transmit power control is used in

our algorithm to minimize the total transmit power and the

interference to other users, which is not considered in [4]-

[6]. Numerical simulations are carried out to evaluate the

performance of the proposed algorithm.

II. SYSTEM MODEL

We consider a two-hop interference MIMO relay system

with L source-destination pairs as illustrated in Fig. 1. Each

source node communicates with its corresponding destination

node with the aid of a network of K distributed relays.

Moreover, the direct links between the source nodes and the

destination nodes are not considered since we assume that

these direct links undergo relatively larger path attenuations

compared with the links via relays. The source and destination

nodes of the lth link are equipped with Ns,l and Nd,l antennas,

respectively, whereas the kth relay node is mounted with Nr,k

antennas.
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Fig. 1. Block diagram of an interference MIMO relay system.

We assume that all relay nodes work in half-duplex mode,

thus the communication between the source-destination pairs

is completed in two time slots. In the first time slot, the lth
source node transmits an Ns,l × 1 signal vector blsl, where

sl is the information-carrying symbol and bl is the transmit

beamforming vector. The received signal vector at the kth relay

node is given by

yr,k =

L
∑

l=1

Hk,lblsl + nr,k

where Hk,l is the Nr,k ×Ns,l MIMO channel matrix between

the lth transmitting node and the kth relay node and nr,k is

the Nr,k × 1 additive Gaussian noise vector at the kth relay

node.

The kth relay multiplies its received signal vector by an

Nr,k ×Nr,k matrix Fk. Thus the signal vector transmitted by

the kth relay node is given by

xr,k = Fkyr,k. (1)

The received signal at the lth destination node is obtained

as the weighted sum of the received signals at each antenna

element of that node, and is given by

yd,l=wH
l

(

K
∑

k=1

Gl,kFk

(

L
∑

m=1

Hk,mbmsm + nr,k

)

+ nd,l

)

(2)

where Gl,k is the Nd,l×Nr,k MIMO channel matrix between

the kth relay node and the lth destination node, wl and nd,l

are the Nd,l × 1 beamforming weight vector and the additive

Gaussian noise vector at the lth destination node, respectively,

and (·)H denotes matrix (or vector) Hermitian transpose. We

assume that all noises are complex circularly symmetric with

zero mean and variance σ2
n.

Let us now introduce the following definitions

h̃l ,

[

(H1,lbl)
T
, · · · , (HK,lbl)

T
]T

∈ CN̄r×1

G̃l , [Gl,1, · · · ,Gl,K ] ∈ CNd,l×N̄r

F , blkdiag (F1,F2, · · · ,FK) ∈ CN̄r×N̄r

ñr ,
[

nT
r,1, · · · ,n

T
r,K

]T
∈ CN̄r×1

where N̄r ,
∑K

k=1 Nr,k, (·)T denotes matrix (or vector)

transpose, and blkdiag(·) stands for a block-diagonal matrix.

Using these definitions, (2) can be rewritten as

yd,l = wH
l G̃lF

(

L
∑

m=1

h̃msm + ñr

)

+wH
l nd,l. (3)

From (3), the total power of the received signal at the lth link

destination node is given by

E{yd,ly
∗
d,l} =

L
∑

m=1

pmwH
l ψmlψ

H
mlwl +wH

l Clwl (4)

where (·)∗ denotes complex conjugate, ψml , G̃lFh̃m is the

equivalent vector channel response between the mth source

node and the lth destination node, Cl , σ2
nG̃lFF

HG̃H
l +

σ2
nINd,l

is the covariance matrix of the equivalent noise at

the lth receiver, and In is an n× n identity matrix. Here we

assume that E{|sl|
2} = pl is the transmit power of the lth

information-carrying symbol. Using (4), the SINR at the lth
destination node is given by

Γl =
plw

H
l ψllψ

H
ll wl

∑L

m6=l pmwH
l ψmlψ

H
mlwl +wH

l Clwl

. (5)

Using (1), the transmit power at the kth relay node can be

expressed as

Pr,k = tr
(

FkRy,kF
H
k

)

, k = 1, · · · , K (6)

where Ry,k =
∑L

l=1 plHk,lblb
H
l HH

k,l + σ2
nINr,k

is the co-

variance matrix of the received signal at the kth relay node,

and tr(·) denotes matrix trace. Thus the total transmit power

consumed by the whole network can be expressed as

PT =

K
∑

k=1

Pr,k +

L
∑

l=1

plb
H
l bl. (7)

III. JOINT POWER CONTROL AND BEAMFORMING

Let us define the relay beamforming vector f from the relay

amplifying matrices F1, · · · ,FK as

f =
[

fT1 , · · · , fTK
]T

∈ CÑr×1 (8)

where fk , vec(Fk), k = 1, · · · , K , Ñr ,
∑K

k=1 N
2
r,k, and

vec(·) stands for a vector obtained by stacking all column

vectors of a matrix on top of each other. We design the optimal

source transmit power vector p , [p1, p2, · · · , pL]
T , the relay

beamforming vector f , transmit beamforming vectors {bl} ,

{bl, l = 1, · · · , L}, and receive beamforming vectors {wl} ,

{wl, l = 1, · · · , L}, such that a target SINR threshold γl, l =
1, · · · , L, is maintained at the lth destination node with the

minimal PT . The optimization problem can be written as

min
p,f ,{bl},{wl}

PT (9)

s.t. Γl ≥ γl, l = 1, · · · , L. (10)

The problem (9)-(10) is nonconvex due to the constraints in

(10). In the following, we solve corresponding subproblems

to optimize each variable.



A. Receive Beamforming

The optimal receiver beamforming vectors {wl} for fixed p,

f , and {bl} can be obtained such that it minimizes the noise-

plus-interference power at the receiver under the condition of

unity gain for the signal of interest, which can be written as

min
wl

L
∑

m6=l

pmwH
l ψmlψ

H
mlwl +wH

l Clwl (11)

s.t. wH
l ψll = 1. (12)

The unity gain condition ensures that the desired signal is

unaffected by beamforming. Using the Lagrangian multiplier

method, the solution to the problem (11)-(12) is given by

wl =
Φ−1

l ψll

ψH
ll Φ

−1
l ψll

(13)

where Φl ,
∑L

m6=l pmψmlψ
H
ml +Cl is the interference-plus-

noise covariance matrix at the lth receiver, and (·)−1 denotes

matrix inversion.

B. Transmit Power Allocation

To obtain optimal p with given beamforming vectors f ,

{bl}, and {wl}, we reformulate the problem (9)-(10) as

min
p

PT (14)

s.t.
pl[H̄]l,l

∑L

m6=l pm[H̄]m,l + n̄l

≥ γl, l = 1, · · · , L (15)

where H̄ is an L × L covariance matrix such that [H̄]m,l =
wH

l ψmlψ
H
mlwl and n̄l , wH

l Clwl. Here for a matrix A,

[A]i,j indicates the (i, j)th element of A. In an optimal

power allocation, the transmit power of each user is set to

the minimum required level such that the target SINR is just

met. Thus the optimal power solution to the problem (14)-(15)

is given by

p = (IL − H̃)−1u (16)

where [H̃]l,m =

{

0, m = l
γl[H̄]m,l/[H̄]l,l, m 6= l

, and u is an

L × 1 vector whose lth element is given by γln̄l/[H̄]l,l,
l = 1, · · · , L.

C. Transmit Beamforming

With given p, f and {wl}, the optimal {bl} can be obtained

simply by swapping the roles of the transmitters and the

receivers as in [2]. The received SINR in the lth virtual link

can be expressed similar to (5), and is given by

Γ̃l =
p̃lb

T
l ξllξ

H
ll b

∗
l

∑L

m6=l p̃mbT
l ξmlξ

H
mlb

∗
l + Ñlb

T
l b

∗
l

. (17)

Here ξml , HT
l F

T G̃T
mw∗

m, Hl ,

[

HT
1,l, · · · ,H

T
K,l

]T

is the

equivalent MIMO channel between the lth user and all relay

nodes, p̃l is the transmit power and Ñl is the noise power in

the lth virtual link. Thus the optimal transmit beamformers

{bl} which are the receive beamformers in the virtual links,

can be obtained by solving the following problem for each l

min
bl

L
∑

m6=l

p̃mbT
l ξmlξ

H
mlb

∗
l + Ñlb

T
l b

∗
l (18)

s.t. bT
l ξll = 1. (19)

The solution to this problem is given by

b∗
l =

Θ−1
l ξll

ξHll Θ
−1
l ξll

(20)

where Θl ,
∑L

m6=l p̃mξmlξ
H
ml + ÑlINl

is the noise-plus-

interference covariance matrix at the lth receiver of the virtual

link. The virtual link transmit power can be obtained as

p̃ , (IL − H̃T )−1ũ (21)

where [ũ]l ,
γlÑlb

T
l b∗

l

bT
l
ξH
ll
ξllb

∗

l

, l = 1, · · · , L. Here for a vector v,

[v]l stands for the lth element of v.

D. Relay Beamforming

To optimize the relay amplifying matrices we reformulate

problem (9)-(10). Now the SINR of the lth link in (5) can be

expressed as

Γl =
tr
(

Rg,lFRh,lF
H
)

tr
(

Rg,lF
(
∑L

m6=l Rh,m + IN̄r

)

FH
)

+ σ2
nw

H
l wl

(22)

where Rg,l , G̃H
l wlw

H
l G̃l and Rh,m , pmh̃mh̃H

m. Apply-

ing the fact that tr(AHBAC) = vec(A)H(CT
⊗

B)vec(A)
[7], where

⊗

denotes the matrix Kronecker product, the SINR

in (22) can be expressed as

Γl =
vec(F)H

(

RT
h,l

⊗

Rg,l

)

vec(F)

vec(F)H
(

R̃T
h,l

⊗

Rg,l

)

vec(F) + σ2
nw

H
l wl

(23)

where R̃h,l ,
∑L

m6=l Rh,m + IN̄r
. Let us now introduce

the link between f in (8) and vec(F) as vec(F) = DFf ,

where DF ∈ RN̄2

r
×Ñr is a matrix of ones and zeros and is

constructed by observing the nonzero entries of vec(F). Then

(23) can be rewritten as

Γl =
fHDT

F

(

RT
h,l

⊗

Rg,l

)

DFf

fHDT
F

(

R̃T
h,l

⊗

Rg,l

)

DFf + σ2
nw

H
l wl

. (24)

From (8) we have fk = Dkf , k = 1, · · · , K, with Dk ∈

RN2

r,k×Ñr defined as Dk = [Dk,1, · · · ,Dk,K ], where Dk,k =
IN2

r,k
×N2

r,k
and Dk,j = 0N2

r,k
×N2

r,j
, j = 1, · · · , K , j 6= k. Us-

ing the identity of tr(AHAB) = vec(A)H
(

BT
⊗

In
)

vec(A)
for A,B ∈ Cn×n [7], the transmit power of the kth relay in

(6) can be expressed alternatively as

Pr,k = fHk
(

RT
y,k

⊗

INr,k

)

fk = fHDT
k

(

RT
y,k

⊗

INr,k

)

Dkf .
(25)

Using (24) and (25), with given p, {bl} and {w}, the problem

(9)-(10) can be reformulated as

min
f

fHAf (26)

s.t. fHBlf ≥ γlσ
2
nw

H
l wl, l = 1, · · · , L (27)



where A ,
∑K

k=1 D
T
k

(

RT
y,k

⊗

INr,k

)

Dk and

Bl , DT
F

(

RT
h,l

⊗

Rg,l − γlR̃
T
h,l

⊗

Rg,l

)

DF. (28)

The problem (26)-(27) is non-convex, since Bl in (28) can

be indefinite. By introducing X = f fH , the problem (26)-(27)

can be equivalently rewritten as

min
X

tr(AX) (29)

s.t. tr(BlX) ≥ γlσ
2
nw

H
l wl, l = 1, · · · , L (30)

X � 0 (31)

rank(X) = 1 (32)

where X � 0 means that X is a positive semidefinite (PSD)

matrix, and rank(·) denotes the rank of a matrix. Note that

in the problem (29)-(32), the rank constraint on X is not

convex. Interestingly, the problem (29)-(32) can be solved by

the semidefinite relaxation technique [8] as explained in the

following.

First we drop the rank constraint (32) to obtain a relaxed

SDP problem which is convex in X. The relaxed problem can

be conveniently solved by using interior point methods at a

complexity order that is at most O((L+ Ñ2
r )

3.5) [9]. We use

CVX MATLAB toolbox for disciplined convex programming

[10] to obtain the optimal X. Due to the relaxation, X obtained

by solving the relaxed problem is not necessarily rank one

in general. If it is, then its principal eigenvector will be the

optimal solution to the original problem. Otherwise, we have

to use alternative techniques such as randomization [8] to

obtain a (suboptimal) rank-one solution from X. Different

randomization techniques have been studied [8], [9]. Note that

when rank(X) > 1, at least one of the constraints in (10)

will be violated after the randomization operation. However, a

feasible relay beamforming vector can be obtained by simply

scaling f so that all the constraints are satisfied.

Now the original total transmit power minimization problem

(9)-(10) can be solved by an iterative algorithm as shown

in Table I. Here ε is a small positive number close to zero

up to which convergence is acceptable, max stands for the

maximum element of a vector, and the superscript (n) denotes

the number of iterations. It can be easily shown as in [1],

that starting with random p(0), {b
(0)
l }, and f (0), the algorithm

in Table I converges to (at least) a locally optimal solution.

Note that updating the relay beamforming vector f at step-4
in Table I involves solving an SDP problem whereas updating

other variables involves simpler matrix operations. Therefore,

most of the computational time of the algorithm is required to

update f at a complexity order that is at most O((L+Ñ2
r )

3.5).
The computational time to update any other optimization

variable is negligible compared to that of f .

IV. NUMERICAL EXAMPLES

In this section, we study the performance of the proposed

algorithm through numerical simulations. For simplicity, we

assume γl = γ,Ns,l = Ns, Nd,l = Nd, l = 1, · · · , L, and

Nr,k = Nr, k = 1, · · · , K , in all simulations. All noises are

TABLE I
PROCEDURE OF SOLVING THE PROBLEM (9)-(10) BY THE PROPOSED

ITERATIVE ALGORITHM

1) Initialize the algorithm with an arbitrary forward link power vector
p(0) , virtual link power vector p̃(0) , and randomly generated transmit

beamforming vectors {b
(0)
l

} and relay beamforming vector f (0); Set
n = 0.

2) Solve the subproblem (11)-(12) using given p(n), {b
(n)
l

}, and f (n)

to obtain {w
(n)
l

} as in (13).

3) Solve the subproblem (14)-(15) with fixed f (n), {b
(n)
l

}, and {w
(n)
l

}

to obtain power vector p(n+1) as in (16).
4) Solve the relaxed problem of the subproblem (29)-(32) using known

{b
(n)
l

}, {w
(n)
l

}, and p(n+1) to obtain X.

a) Use the randomization technique to obtain f .
b) Find the most violated constraint in the original problem (9)-(10)

using such f .
c) Scale f so that the most violated constraint is satisfied with

equality to obtain f (n+1).

5) Update the transmit beamforming vectors {b
(n+1)
l

} as in (20) by

solving subproblem (18)-(19) with given f (n+1), {w
(n)
l

}, and p̃(n) .

6) Update the virtual link transmit power p̃(n+1) with fixed {b
(n+1)
l

},

{w
(n)
l

}, and f (n+1) as in (21).

7) If max |p(n+1) − p(n)|≤ ε, then end.
Otherwise, let n := n+ 1 and go to step 2.

complex circularly symmetric Gaussian random variables with

zero mean and unit variance (i.e. σ2
n = 1). In each simulation,

the channel matrices have entries generated as i.i.d. complex

Gaussian random variables with zero mean and variances σ2
h

and σ2
g for Hk,l and Gl,k, l = 1, · · · , L, k = 1, · · · , K ,

respectively. All simulation results are averaged over 200
independent channel realizations.

For the proposed algorithm, the procedure in Table I is

carried out in each simulation to obtain the optimal power vec-

tor p, transmit beamforming vectors {bl}, relay beamforming

vector f , and receive beamforming vectors {wl}. To initialize

the algorithm in Table I, we randomly generate {bl} and f ,

along with arbitrary transmit power vector p and virtual power

vector p̃. We observed from our simulations that in a typical

run with L = 2, K = 20, Ns = Nr = 2, Nd = 4, σ2
h = 15,

and σ2
g = 10, the algorithm converges within 3 to 5 iterations.

Also, the algorithm requires less iterations for lower target

SINR thresholds.

In the first example, we compare the performance of the

proposed joint optimal power control and beamforming algo-

rithm (Proposed TxRxBF) with the conventional SVD-based

transmit beamforming approach (SVD-based TxBF). For the

latter scheme, we iteratively update p, f , and {wl}, based on

the proposed structure, and pickup the strongest SVD-based

transmit beamformers bl, l = 1, · · · , L, from the source-relay

channels, i.e., bl = ql, where ql is the strongest right singular

vector of Hl. We plot the total power consumed by all source

nodes and relay nodes versus the target SINR threshold γ (dB).

Fig. 2 shows the performance of both algorithms for L = 2,

K = 20, Ns = Nr = 2, Nd = 4, σ2
h = 15, and σ2

g = 10.

It can be seen from Fig. 2 that the proposed jointly optimal

algorithm requires less total power compared with the SVD-

based transmit beamforming scheme.
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In the next example, we study the performance of the

proposed algorithm for different number of relay antennas

Nr with L = 2, K = 15, Ns = 2, Nd = 4, σ2
h = 15,

and σ2
g = 10. The impact of the number of relay antennas is

displayed in Fig. 3. As expected, if we increase the number

of relay antennas the proposed algorithm requires less power

since more antennas provide more spatial diversity. But at

the same time, the complexity of the algorithm significantly

increases. An important observation from Fig. 3 is that after a

reasonably higher value of Nr, the performance improvement

is not noticeable. The reason is that increasing the number of

relay antennas not only strengthen the desired signals but also

the interferences. So one should make a tradeoff between the

performance and complexity based on the system requirements

and the available resources.
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Fig. 3. Total power versus target SINR for different number of relay antennas.
L = 2, K = 15, Ns = 2, Nd = 4, σ2

h = 15, and σ2
g = 10.

In the last example, we study the effect of channel interfer-

ences on the proposed algorithm. By increasing the number
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Fig. 4. Total power versus target SINR for different number of users. K =

20, Ns = Nr = 2, Nd = 4, σ2
h = 15, and σ2

g = 10.

of source-destination pairs L, the interfering signal received at

each destination node is also increased. The performance of

the algorithm for different L is illustrated in Fig. 4. From

this figure it is clear that if there are more active users

communicating simultaneously in the system, we need more

power to achieve the same target SINR threshold γ.

V. CONCLUSIONS

We considered a two-hop interference MIMO relay system

with distributed relay nodes and developed an iterative tech-

nique to minimize the total transmit power consumed by all

source and relay nodes such that a minimum SINR threshold is

maintained at each receiver. The proposed algorithm exploits

beamforming techniques at the source, relay and destination

nodes in conjunction with transmit power control. Simulation

results demonstrate that the jointly optimal power control and

beamforming algorithm outperforms the existing techniques.
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