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Abstract 

This paper presents a method for recursively estimating 
the static parameters of linear or nonlinear stochastic 
dynamic systems given the systems’ inputs and outputs. The 
paper accomplishes this objective by combining polynomial 
chaos theory with maximum likelihood estimation.  The 
parameter estimates are calculated in a recursive or iterative 
manner.  To the best of the author’s knowledge, this is the 
first paper to address recursive maximum likelihood 
parameter estimation using polynomial chaos theory.  The 
proposed approach is demonstrated on two systems: a linear 
2nd order system with unknown damping and natural 
frequency, and a nonlinear Van der Pol oscillator with an 
unknown nonlinear damping coefficient.  Because this 
recursive estimator is applicable to nonlinear systems, the 
authors portend that this novel formulation will be useful for 
a broad range of estimation problems. 

1. Introduction 

This paper presents a novel recursive parameter 
estimation method that combines generalized polynomial 
chaos (gPC) theory [1] with maximum likelihood estimation.  
The approach of this paper is applicable to nonlinear 
dynamic systems, including systems in which the unknown 
parameters are nonlinear in the state equations.  The 
proposed approach uses polynomial chaos expansions to 
separate the stochastic part from the time-dependent part of 
the dynamic equations.  Then the time-dependent (dynamic) 
part of the equations can be solved in a deterministic manner 
via the Galerkin method or stochastic collocation.  Given 
system observations, and assuming Gaussian observation 
noise with known covariance, the proposed approach 
recursively estimates the most likely values of the unknown 
parameters using maximum likelihood estimation theory.   

Polynomial chaos methods can be used for both dynamic 
system modeling and estimation applications.  In the 
modeling area, Sandu et al. proposed a method for 
representing multibody dynamic systems with uncertainties 

using polynomial chaos theory [2].  Because the dynamic 
equations are solved only once (with a higher dimensional 
state space), gPC theory often provides a more 
computationally efficient method than Monte Carlo 
techniques for solving stochastic dynamic equations. 

In addition to stochastic dynamic system modeling, 
polynomial chaos theory has also been combined with the 
Kalman filter and its variants for state estimation.  Blanchard 
et al. combined polynomial chaos theory with the extended 
Kalman filter for combined state and parameter estimation 
[3].  Li and Xiu proposed a gPC ensemble Kalman filter for 
improved estimation accuracy and computational efficiency 
[4].  Saad et al. proposed a gPC-based ensemble Kalman 
filter for system identification and monitoring [5], and Smith 
et al. combined gPC with the Luenberger observer for state 
estimation [6]. 

Polynomial chaos theory has also been used for 
parameter estimation - not combined with state estimation.  
Blanchard et al. proposed a Bayesian parameter estimator 
that selects parameter estimates based on the maximum a 
posteriori estimate [7].  This estimator calculates parameter 
estimates in a batch manner after all the data has been 
collected.  Marzouk and Xiu [8] proposed a Bayesian 
approach to estimate parameters of systems governed by 
partial differential equations, and provided a study on the 
convergence of the polynomial chaos based estimators.  This 
work used the stochastic collocation approach and extended 
earlier but similar work done by Marzouk et al. [9] which 
used the Galerkin method.  Finally, Southward developed a 
framework for recursive parameter estimators based on gPC 
theory [10].  Southward’s method used instantaneous 
gradients of quadratic cost functions to recursively calculate 
parameter estimates. 

The approach proposed in this paper combines 
polynomial chaos theory with maximum likelihood 
estimation.  The parameter estimates are calculated in a 
recursive or iterative manner.  To the best of the author’s 
knowledge, this is the first paper to address recursive 



maximum likelihood parameter estimation using polynomial 
chaos theory. 

The remainder of the paper is organized as follows: The 
next section introduces the method for solving stochastic 
dynamic equations using gPC theory.  Section 3 derives the 
recursive parameter update law based on maximum 
likelihood estimation; this is the main contribution of the 
paper.  Section 4 applies the estimator to two systems: a 2nd 
order oscillator and the nonlinear Van der Pol equation.  
Finally, Section 5 summarizes the paper’s conclusions. 

2. gPC Theory 

This section presents a framework for solving stochastic 
differential equations using gPC theory.  The gPC 
framework was developed by Xiu and Karniadakis [1] 
building off the groundbreaking work by Ghanem and 
Spanos [11] and the conceptualization by Wiener [12].  Its 
application to multibody dynamic systems was introduced 
by Sandu et al. [2].  This section follows the clear and 
concise gPC development presented by Li and Xiu [4]. 

A set of state equations, which may be nonlinear, is used 
to describe the dynamic behavior of a system. 

 �� = ���, �, �; 
�, 0 ≤ � ≤ �� (1) 
 ��0� = �� (2) 

The vector � ∈ ℝ�� contains the system states which are 
assumed to have known initial conditions �� ∈ ℝ��, and the 

vector 
 = �
� 
� ⋯ 
��� contains the unknown 

parameters. The input vector � ∈ ℝ�� is known and time-
varying. The “dot” notation signifies the derivative with 
respect to time �. 

In general, observations on a system may be governed by 
a nonlinear output model � = ���, �, �; 
�.  However, the 
scope of this paper is limited to systems having observations 
described by a linear, time-invariant model: 

 � = ��
�� (3) 
The output vector � ∈ ℝ�� contains the system observations. 

The unknown parameters are viewed as being functions 
of random variables, i.e., 
� = 
�� �� for ! = 1, … , $%.  If the 

random variables are assumed to be independent, the joint 

density function is &� � = ∏ &�� �����(�  where &�� �� is the 

distribution of the !)* random variable  �, and  =� �  � ⋯  ���.  Parametric uncertainty leads to 

uncertainty in the system states.  Therefore, ���� = ���,  � is 
also a function of the random variables  . 

Following the gPC method, the unknown parameters 
� � and system states ���,  � are expanded onto a basis of 
orthogonal polynomial functions.  The choice of the 
polynomial basis functions depends on the assumed prior 
distribution.  Often, limited information is known about the 
parameter prior distribution.  Sandu et al. [2] suggested 

using the Beta distribution to describe the prior distribution 
of the unknown parameters of mechanical systems.  The 
corresponding selection of polynomial basis functions is the 
set of Jacobi polynomials.   A special case of the Beta 
distribution, the uniform distribution, corresponds to the 
Legendre polynomials.  Xiu and Karniadakis related a group 
of prior distributions to the Askey-scheme polynomials, and 
the interested reader should consult their work [1]. 

Assuming the random variables   to be identically 
distributed, the unknown parameters are expanded as 
follows: 

 
�� �� ≈ , 
�,-
.�

-(� /-� ��, ! = 1, … $%. (4) 

The expansion coefficients 
�,- are chosen such that (4) is 
distributed according to the parameter prior distribution &��
��, and hence, 
�,- are known for all !, 2.  The 

polynomials /-� �� are orthogonal with respect to the 
following inner product: 

 3/-  � ��, /4� �� 5� ≔ 7 /-� ��/4� ��&�� ��8 � (5) 

The system states are also expanded in terms of 
orthogonal polynomials.  The 9)* state is expanded as:  

 �:;��,  � ≔ , �;,<���Φ<� �.
|<|(� ,   9 = 1, … , $? (6) 

Here, the vector @ ≔ �@�, … , @��� ∈ ℕ��� is an $%-

dimensional multi-index, and |@| is the sum of the vector 
elements, i.e. |@| ≔ @� + ⋯ + @��.  The expansion �:;��,  � 

is the closest approximation of the true state �;��,  � in the 

space spanned by the orthogonal polynomials Φ<� �.  The $%-variate polynomials Φ<� � are products of the univariate 

polynomials /<C� ��.   

 Φ<� � = D /<C� ����
�(� , |@| ≤ E (7) 

These polynomials Φ<� � are orthogonal [2] with respect to 
the inner product: 

 3Φ<� �, ΦF� �5 ≔ 7 Φ<� �ΦF� � &� �8  (8) 

The total number of state-expansion coefficients �;,<��� 

and polynomial basis functions Φ<� � per state is 

 G ≔ HE + $%I!E! $%! . (9) 

This number grows rapidly as the polynomial order and the 
number of unknown parameters increase.   

If the solution �;��,  � is known, the expansion 

coefficients �;,<��� in (6) are chosen such that the error 

between �;��,  � and �:;��,  � is orthogonal to the basis 

functions Φ<, i.e., 3�:;��,  � − �;��,  �, Φ<� �5 = 0.  Then 



3�:;��,  �, Φ<� �5 = 3�;��,  �, Φ<� �5, and the state 

expansion coefficients �;,<��� satisfy the following: 

�;,<��� = 3�;��,  �, Φ<� �53Φ<� �, Φ<� �5 =   3�:;��,  �, Φ<� �53Φ<� �, Φ<� �5  9 = 1, … , $? , |@| ≤ E 
(10) 

Since the solution �;��,  � or �:;��,  � is generally not 

available, the gPC theory uses either the stochastic Galerkin 
method or the stochastic collocation method to determine the 
state-expansion coefficients �;,<���. 

Note that the inner product defined in (8) can be viewed 
as an expectation operator, i.e., 

 L[Φ<� �ΦF� �] = 3Φ<� �, ΦF� �5 (11) 
Then, the Galerkin method seeks estimates �:;,<��� of the 

state-expansion coefficients �;,<��� by solving (1) and (2) in 

the following weak form: 

 
L��:� ��,  �Φ<� ��= L��H�, �:��,  �; 
� �IΦ<� ��, |@| ≤ E 0 ≤ � ≤ ��, L[��0�Φ<� �] = L[��Φ<� �] (12) 

This results in a set of deterministic state equations having 
the estimated state-expansion coefficients �:;,<��� as the new 

state variables.  These new deterministic state equations can 
be solved using numerical integration. 

The stochastic collocation method is discussed next.  It is 
often more straightforward to implement, especially for 
nonlinear systems [2].  However, it is generally less accurate 
than the Galerkin method [4].  Following the stochastic 
collocation method, a deterministic set of collocation points O���, … , O�P�, Q ≥ G and O��� ∈ ℝ��, is drawn from the 
parameter prior distribution &� �.  These deterministic 

collocation points O��� are substituted for the random 
variables   in (1) and (2), i.e., 

 S���� = �H�, S������; 
�O����I, ! = 1, … , Q (13) 

 S����0� = S���� (14) 

Here, S;��� ≔ ∑ �;,<���Φ<HO���I.|<|(�  is the 9)* deterministic 

state of the !)* set of deterministic state equations.  The 
resulting Q uncoupled sets of state equations (each set 
having $? states) can be solved using numerical integration.  

Stacking the new sets of states S��� into a column vector U ∈ ℝP∙�� yields: 

 U ≔ WS���⋮S�P�Y (15) 

Note that the state-expansion of (6) can be written as the 
Euclidean inner product between two vectors: 

 �:;��,  � = Z� �[\;��� (16) 
In this equation, if Φ<� � is the 2)* element of Z� � ∈ ℝ], 
then �:;,<��� is the 2)* element of \;��� ∈ ℝ].  Then the 

state-vector �:��,  � can be written in terms of (16) as 
 �:��,  � = ℙ� �\���. (17) 

Here, ℙ� � and \���, are defined respectively as 

 ℙ� � ≔ _Z� �[ ` `` ⋱ `` ` Z� �[b, (18) 

 \��� ≔ _ \����⋮\�����b (19) 

The matrix ℙ� � ∈ ℝ��×]∙��  has dimensions determined by 
the number of original system states $? and the number of 
elements in the vector \��� ∈ ℝ]∙�� .  Then U from (15) can 
be written: 

 U ≔ WS���⋮S�P�Y = d\��� (20) 

Here, the collocation matrix d ∈ ℝP∙��×]∙�� is formed by 

substituting the collocation points O���, … , O�P� into ℙ� � 
and then stacking the resulting matrices: 

 d ≔ _ℙHO���I⋮ℙHO�P�Ib (21) 

The vector \���, containing the state-expansion 
coefficients �:;,<���, is calculated by  

 \��� = d#U. (22) 
The matrix d# ∈ ℝ]∙��×P∙��  is the Moore-Penrose pseudo 
inverse: 

 d# ≔ �d[d�fgd[ (23) 
The collocation points O��� must be selected such that d# 
exists.  Finally,  

 \;h|<| = �:;,<���. (24) 
Sandu et al. [2] provide a note on the relationship between 
the stochastic collocation and stochastic Galerkin methods, 
and they also suggest methods for implementing the 
Galerkin method on nonlinear systems. 

3. Recursive Parameter Estimation 

This section derives the recursive parameter update law 
for estimating the most likely values of the random variables   given the system observations.  The estimates of the 
unknown parameters 
� � are then calculated using (4). 

This development assumes that the noise in the system 
output observations is zero mean and Gaussian with known 
covariance matrix i ∈ ℝ��×��.  It also assumes that the 
system observations are mutually independent.  It assumes 
the only uncertainty in (1) and (2) is due to the unknown 
parameters.  Finally it assumes that the polynomial chaos 
approximations in (4) and (6) are exact.  (This last 
assumption is satisfied for second order processes as the 
number of expansion terms goes to infinity [11].  In practice, 
the expansion must be truncated after a finite number of 
terms, and thus the parameter estimates via this method will 
only approximately satisfy the maximum likelihood 



criterion.)  Under these assumptions, the likelihood function 
becomes [13, 8]: 

 

ℒ� |��:)� = D &���l�| �)
m(�  

∝ o�p q− 12 ,H��l� − �:�l,  �I[if�H��l�)
m(� − �:�l,  �Is 

(25) 

Here, ℒ� |��:)� is the likelihood function of the unknown 
parameters   conditioned on a matrix ��:) which contains all 
of the observations up to the current time �.  The function &�����| � is the probability density function of the 
observation ���� at time � conditioned on the parameters  ; 
and �:��,  � is the output of the stochastic model, i.e. 

 �: ≔ �H
� �I�:��,  �. (26) 
The maximum likelihood estimate  t is the value of   that 

maximizes the likelihood function (25).  Equation (25) is 
maximized when the magnitude of the negative term in the 
exponent is minimized: 

 
u��,  � ≔ 12 ,H��l� − �:�l,  �I[if�H��l�)

m(� − �:�l,  �I 

(27) 

Thus the most likely value of   is: 
  t = vGwx!$ u��,  � (28) 
The ability to update u��,  � iteratively is critical to 

making the approach of this paper recursive.  This paper 
leverages the benefits of polynomial chaos to separate the 
time and unknown parameter parts of the equation to make 
this recursion possible.  By substituting (17) and (26) into 
(27) and performing a few algebraic manipulations, 
Equation (27) can be written as: 

 

u��,  � ≔ 12 , ,[if�]�,4
��

4(�
��
�(� yz, ���4

)
m(� {

− 2��ℙ z, \�4
)

m(� {
+ ��ℙ z, \\[)

m(� { H�4ℙI[| 

(29) 

Here [if�]�,4 is the })* element in the !)* row of the 

inverse covariance matrix if�.  The scalar �- is the 2)* 
element of the observation vector � and �- is the 2)* row of 
the output matrix �.  In (29) the independent variables are 
dropped to reduce notational complexity. 

The key purpose in writing (27) as shown in (29) is to 
explicitly show that only the deterministic time-dependent 
parts, \ and �, appear inside the time summations.  The 
parts that depend on the unknown parameters, � and ℙ, 
appear outside of the time summations.  This is a result of 

using polynomial chaos expansions.  Because the time 
summations are deterministic, they can be updated 
recursively as will be shown next.  Thus, u��,  � can be 
evaluated recursively. 

Consider an arbitrary matrix ~��� and define the matrix ���)�: 
 ���)� ≔ , ~�l�)

m(� . (30) 

Then ���)h�)� ≔ ∑ ~�l�)h�)m(�  (where Δ� is the time 

between samples) can be determined using only knowledge 

of the matrices ���)� and ~�� + Δ�� as follows: 

 ���)h�)� = ���)� +  ~�� + Δ��. (31) 
Even as time progresses, the dimensions of the matrix ���)� are fixed.  Thus to update the time summations in (29), 

the summation matrices ��C���)� ∈ ℝ, �����)� ∈ ℝ]∙�� , and �����)� ∈ ℝ]∙��×]∙�� are stored in memory and updated 

according to (31) at the next time step.  Equation (29) can be 
written in terms of (30) as: 

 
u��,  � ≔ 12 , ,[if�]�,4

��
4(�

��
�(� ���C���)� − 2��ℙ�����)�

+ ��ℙ�����)� H�4ℙI[� 

(32) 

The forgoing discussion has outlined a procedure for 
determining recursively the term in the exponent of the 
likelihood function (25).  The remaining challenge is to 
determine the value of   that minimizes the term in the 
exponent, u��,  �, thus maximizing the likelihood at each 
time step.  This can be viewed as an optimization problem in 
which the objective function u��,  � is time-varying. The 
following sections offer potential solution approaches. 

3.1 Solution via Gradient Descent 

Proceeding in a manner similar to and indeed inspired by 
Southward’s [10], this paper proposes a gradient based 
parameter update law.   

  t)h� =  t) − Γ ��u��,  �� ��(��  (33) 

Here  t) is the estimate of   at time �, and Γ is a user-
specified gain matrix that can be chosen to vary in time.  In 
static optimization, if Γ is the identity matrix, (33) is a 
steepest descent method.  If Γ is the inverse Hessian matrix 
(matrix of second derivatives), then (33) is Newton’s 
method, and if Γ is proportional to the Hessian matrix, then 
(33) is a modified Newton’s method.  These static 
optimization concepts may be helpful for selecting Γ. 

Substituting (32) into (33) and using the fact that the 

time-dependent parts ��C���)� , �����)� , and �����)�  can be moved 



outside of the partial derivatives since they don’t depend on 
the unknown parameters gives the following update law: 

 

 t)h�
=  t) − Γ , ,[if�]�,4

��
4(�

��
�(�

× y����ℙ� ��(�� ������)� �H�4ℙI[��(�� − �����)� �| 

(34) 

The magnitude of the values in the time summations �����)�  and �����)�  may grow unbounded in time, so 

normalization may be necessary.  Note that the magnitudes ������)� �ℙ[�4[��(�� �� = �∑ \�:4)m(� �� and �∑ \�4)m(� �� =
������)� ��, therefore normalizing (34) by the scalar 

�������)� ���f�
 is a judicious choice. 

  In practice, to avoid division by zero, (34) is normalized 

by �1 + ������)� ���f�
.  Then the final update law becomes: 

 t)h� =  t) − Γ , ,[if�]�,4
��

4(�
��
�(� �����ℙ� ��(��

× ������)� �H�4ℙI[��(�� − �����)� �
�1 + ������)� ��� � 

(35) 

The normalization scalar �1 + ������)� ���f�
 is not a 

function of the random variable   and therefore (35) still 
seeks to satisfy the maximum likelihood criterion (25).  

The partial derivative ��H��ℙI��C ��(��   in (35) can be expanded 

using the product rule: 

 ��H�4ℙI� � ��(�� = ��H�4I� � ℙ��(�� + ��4 ��ℙ�� � ��(��  (36) 

Shimp offers a clever method for calculating the partial 

derivatives ���ℙ���C ��(�� , and the interested reader should consult 

his work [14]. 

3.2 Solution via Random Search 

The gradient descent solution of Section 3.1 doesn’t 
guarantee that the estimated parameters will globally 
minimize u��,  �, but may potentially select parameters 
satisfying only local minima.  This subsection proposes a 
strategy for enabling the parameter update law to escape 
local minima in order to satisfy the maximum likelihood 
criterion.   

The function u��,  � can be evaluated at time � for any 
realization of  .  This suggests the following strategy: 

Let ℕ ≔ {1,2,3, … } be the set of natural numbers.  At 
each time instant, select $] ∈ ℕ realizations of   randomly, 
and evaluate the cost of each realization using (32).  Then 
compare these costs with the cost of the previous parameter 

estimate  t)f�, and set the new estimate  t) to be the 
realization with the lowest cost.  This random search 
strategy allows the algorithm to search any point in the 
entire parameter space and thus escape local minima. 

A guided random search policy combines the random 
search with the gradient search: The cost of the gradient 
solution from (35) is compared with the costs of the $] 
randomly selected realizations as well as the cost of the 

previous estimate  t)f�.  The new estimate is chosen to be the 
realization with the lowest cost. 

4. Examples 

This section presents two examples to demonstrate the 
recursive parameter estimator proposed in this paper.  The 
first example considers estimating the damping and natural 
frequency of a forced second order oscillator.  It uses the 
Galerkin approach.  The second example uses the 
collocation approach and seeks to estimate a parameter of 
the Van der Pol equation. 

4.1 Forced Second Order Oscillator 

Consider a forced, second order, stochastic differential 
equation with zero initial conditions.  The damping and 
natural frequency, � and �, are independent, uncertain 
parameters.  The scalar system input � is a normally 
distributed random sequence with zero mean and unit 
variance.   

 

�� + 2���� + ��� = � � =  −2���� − ��� �~ HO¡ ,  ¢¡�I �~ �O£ ,  ¢£�� (37) 

Equation (37) assumes the uncertain parameters are 
from the Gaussian distribution; therefore, the Hermite 
polynomials form the basis functions [1].  The first few 
Hermite polynomials of variable  � are shown here: 

 

��� �� =  1 ��� �� = 2 � ��� �� =  4 �� − 2 �¥� �� =  8 �¥ − 12 � �§� �� =  16 �§ − 48 �� + 12 �©� �� =  32 �© − 160 �¥ + 120 � 
(38) 

Let  � and  � be independent standard Gaussian 
variables.  Since  �~ �0, 1�, and by properties of Gaussian 
random variables, the damping and natural frequency of the 
system of Equation (37) can be written as follows: 

 
�� �� = O¡ + ¢¡ � �� �� = O£ + ¢£ � 

(39) 



The system state and output equations are expanded in 
terms of the polynomial basis functions: 

 

 

ª�:����,  �,  ���:����,  �,  ��«
= ¬ 0 1−�� ��� −2�� ���� ��­ ¬�:���,  �,  ���:���,  �,  ��­
+ ®01¯ ���� �:��,  �,  �� = �� �,  �� ¬�:���,  �,  ���:���,  �,  ��­ 

(40) 

with 
 �� �,  �� = [−�� ��� −2�� ���� ��] (41) 

Where the  9)* state is expanded as in (6): 

�:;��,  � = , �;,<���Φ<� �.
|<|(�  

= , , �:;,��,4������� ���4� ��.f�
4(�

.
�(� ,   9 = 1, … , $? 

(42) 

Following the Galerkin method (12), the expanded states 
are projected onto the basis functions Φ<� �.  We define the 
following matrices: Δ3°,°5

≔ ±3Φ�, Φ�5 3Φ�, Φ�53Φ�, Φ�5 3Φ�, Φ�5 ⋯ 3Φ�, Φ²53Φ�, Φ²5⋮ ⋱ ⋮3Φ² , Φ�5 3Φ² , Φ�5 ⋯ 3Φ² , Φ²5³ 
(43) 

Δ3°,P°5
≔ ±3Φ�, QΦ�5 3Φ�, QΦ�53Φ�, QΦ�5 3Φ�, QΦ�5 ⋯ 3Φ�, QΦ²53Φ�, QΦ²5⋮ ⋱ ⋮3Φ² , QΦ�5 3Φ² , QΦ�5 ⋯ 3Φ² , QΦ²5³ 

Q =   �,   �,   � �, ´G  �� 

(42) 

and 

 µ� ≔ _¶0⋮0b (45) 

Then the resulting deterministic equations are  

 \� = ¬ ` ·̧¹�� ¹��­ \ + ¬µ̀�­ ���� (46) 

where  ¹�� ≔ −O£�·²h� − 2O£¢£Δ3°,°5f�Δ3°,�º°5− ¢£�Δ3°,°5f�Δ3°,�ºº°5 (47) ¹�� ≔ −2HO£O¡·²h� + O£¢¡Δ3°,°5f�Δ3°,�»°5+ O¡¢£Δ3°,°5f�Δ3°,�º°5+ ¢¡¢£Δ3°,°5f�Δ3°,�»�º°5I 

(48) 

and  

 µ� ≝ Δ3°,°5f�µ�. (49) 
To use the update law from (35), calculate ℙH tI, ���ℙ���C ��(�� , �H tI, ��H��I��C ��(�� , and \.  ℙ�½�¾ℝ�×�] is calculated 

using Equation (18) where:  

 Z = �Φ��,�� Φ��,�� ⋯ Φ�.,���[¾ℝ] (52) 

and Φ��,4� = ��� ���4� �� for !, } = 0,1, … , E can be 

calculated using the Hermite polynomials (38).  Then,  

 
�ℙ�½�� � = ¿ÀÀ

ÀÁ�Z� � `
` �Z� �ÂÃÃ

ÃÄ ; ! = 1, 2 (53) 

The partial derivative 
�Å��C is straightforward because each �Æ� �� for Ç = 0,1, … , E is a polynomial in  � with known 

constant coefficients. 
This section presents simulation runs which for 

simplicity assumed the observation noise variance to be i = 1 which was different than the true simulated 
observation noise variance i = 0.015.  The gain matrix was 
chosen as Γ = 0.75 ∙ I�×�.  Zero mean Gaussian process 
noise with variance 0.015 was also added to the input ����. 

Figure 1 shows the convergence of the proposed 
algorithm under the conditions described above for different 
initial guesses of O¡ and O£.  The initial guesses were 

chosen so that the system (46) is stable.  In Run 1, O¡ = 0.3 

and O£ = 13.  In Run 2, O¡ = 0.3 and O£ = 6.  In run3, O¡ = 0.9 and O£ = 6.  And in Run 4, O¡ = 0.9 and O£ =13.  In each case, ¢¡ = 0.15 and ¢£ = 2. The simulation 

step size was 0.005 seconds.  The true values of � and � 
were 0.5 (unitless) and 10 radians per second respectively. 

 
 
Fig. 1: Convergence of the algorithm for different initial conditions. 

In the simulations, the standard deviation of the 
observation noise was 0.12, and the standard deviation of the 
signal was 0.215.  Thus the signal-to-noise ratio was 5dB.  
Despite the large amount of signal noise, the algorithm 
converged fairly accurately as shown in Figure 1.  The 
algorithm converged to steady state within about 20 seconds 
or equivalently within about 4,000 data points. 
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4.2 Van der Pol Oscillator 

Consider the forced nonlinear Van der Pol Equation with 
unknown parameter Ì~Í$!Î´Gx�[5,11]�: 

 
��� = �� ��� = −�� − 1Ì ���� − 1��� + sin �50�� 

(55) 

Here, the initial conditions �� = 0.1 and �� = −0.1 are 
known.  The true value of the unknown parameter is Ì∗ = 10.  The first state is observed, i.e., 

 � = ��. (56) 
Because the unknown parameter prior distribution is 

uniform, the appropriate set of basis functions is the 
Legendre polynomials on the interval [-1,1].  The prior 
distribution of Ì can be written in terms of the random 
variable  ~Í$!Î´Gx�[−1,1]� as: 

 Ì = Ì� + Ì� = 8 + 3  (57) 
Next, the states are expanded onto the polynomial basis 

functions: 

 

�:;��,  � = , �;,<���Φ<� �.
|<|(�  

= , �;,����L�� �.
�(� , 9 = 1,2 

(58) 

Here, L�� �, ! = 0, … , E are the Legendre polynomials of 
order up to E on the interval [-1,1]. 

Following the collocation method, a set of collocation 
points O���, … , O�P� are drawn from the Í$!Î´Gx�[−1,1]� 
distribution.  Then ℙHO���I¾ℝ�×�. , ! = 1, … , Q is formed 

using (18) where 

 ZHO���I[ = �L�HO���I ⋯ L.HO���I� (59) 

and d# is calculated using (21-23).  Then  Q sets of equation 
(55) are run simultaneously, and the resulting state-

trajectories S��� are stacked into a column vector as in (15).  
Then, at each iteration, Equation (22) is used to find the 
vector \���. 

To use the parameter estimator (35), we first calculate �ℙ[�4[��(��Ô and ��H��ℙI�� ��(��Ô.  Since only the first state  �� is 

observed, �4ℙ = Z� �[, and thus: 

 �ℙ[�4[��(��Ô = [Z� �]�(��Ô (60) 

and  

 ��H�4ℙI� � ��(��Ô = ���Z� �[�� ��(��Ô (61) 

Again the derivative 
�HÅ����I��  is straightforward as it requires 

derivatives of the polynomial functions L�� �, ! = 0, … , E. 

In Figure 2, E = 5, Γ = 1 2Õ , and the time step was 0.1 

seconds.  Figure 5 shows the convergence of the proposed 
algorithm.  The signal-to-noise ratio in the observations was 

varied between low noise, 15dB, and high noise, 5dB, 
values.   

 
 
Fig. 2: Convergence of the algorithm for variable noise. 

Under the conditions of this simulation study of the 
nonlinear oscillator, the proposed estimator appeared to be 
consistent; i.e, increasing the noise level changed the 
convergence rate, but the algorithm eventually converged to 
the same parameter value as time approached infinity. 

5. Conclusions 

This paper derived a maximum likelihood approach to 
recursive estimation based on polynomial chaos theory.  It 
demonstrated the proposed algorithm on two systems: a 
linear, 2nd order, differential equation and the nonlinear Van 
der Pol equation.  This paper discussed polynomial chaos 
theory using both the stochastic Galerkin and stochastic 
collocation methods and demonstrated each approach in the 
examples.   

The proposed estimator has potential for parameter 
estimation in nonlinear systems, making it valuable to a 
wide range of parameter estimation problems. 
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