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Abstract using polynomial chaos theory [2]. Because theadyic
This paper presents a method for recursively etitiga €duations are solved only once (with a higher dsteTal
the static parameters of linear or nonlinear ststiha State space), gPC theory often provides a more
dynamic systems given the systems’ inputs and ¢sitfilne Computationally  efficient method than Monte Carlo
paper accomplishes this objective by combining potyial ~techniques for solving stochastic dynamic equations
chaos theory with maximum likelihood estimation.heT ~ In addition to stochastic dynamic system modeling,
parameter estimates are calculated in a recursiiterative ~Polynomial chaos theory has also been combined thith
manner. To the best of the author's knowledges ihithe Kalman filter and its variants for state estimatidsianchard
first paper to address recursive maximum likelihoo®t @ combined polynomial chaos theory with the extended
parameter estimation using polynomial chaos theofpe Kalman filter for combined state and parameternestion
proposed approach is demonstrated on two systetimeaa  [3]- Li and Xiu proposed a gPC ensemble Kalmaterfifor
2" order system with unknown damping and naturdMProved estimation accuracy and computationatiefficy
frequency, and a nonlinear Van der Pol oscillatthvan [4]- Saadet al. proposed a gPC-based ensemble Kalman
unknown nonlinear damping coefficient. Becauses thffilter for system identification and monitoring [&nd Smith
recursive estimator is applicable to nonlinear eys, the €t a. combined gPC with the Luenberger observer foestat
authors portend that this novel formulation will iseful for ~ €stimation [6].
a broad range of estimation problems. Polynomial chaos theory has also been used for
parameter estimation - not combined with stateredton.
Blanchardet al. proposed a Bayesian parameter estimator
1. Introduction that selects parameter estimates based on the mnaxan
This paper presents a novel recursive paramet@pSteriori estimate [7]. This estimator calculates parameter
estimation method that combines generalized polyaom stimates in a batch manner after all the data bee
chaos (gPC) theory [1] with maximum likelihood esation, collected.  Marzouk and Xiu [8] proposed a Bayesian
The approach of this paper is applicable to noaline@PProach to estimate parameters of systems govesped
dynamic systems, including systems in which thenomin  Partial differential equations, and provided a gtunh the
parameters are nonlinear in the state equationshe TCONvergence of the polynomial chaos based estisiafbinis
proposed approach uses polynomial chaos expanmnswork used the stochastic collocation approach ameneed
separate the stochastic part from the time-depenuien of ~©arlier but similar work done by Marzowk al. [9] which
the dynamic equations. Then the time-dependemtayjc) USe€d the Galerkin method. Finally, Southward deyedi a
part of the equations can be solved in a detertignisanner framework for recursive parameter estimators basedPC
via the Galerkin method or stochastic collocatiogiven theory [10].  Southward's method used instantaneous
system observations, and assuming Gaussian okiserva@radients of quadratic cost functions to recurgiweliculate
noise with known covariance, the proposed approadtirameter estimates.
recursively estimates the most likely values of tin&nown The approach proposed in this paper combines
parameters using maximum likelihood estimationtpeo ~ POlynomial - chaos theory ~with  maximum likelihood
Polynomial chaos methods can be used for both dignanStimation.  The parameter estimates are calculated
system modeling and estimation applications. I thf€Cursive or iterative manner. To the best of déhor's
modeling area, Sandwet al. proposed a method for knowledge, this is the first paper to address sver
representing multibody dynamic systems with undatitzs



maximum likelihood parameter estimation using polyial using the Beta distribution to describe the pristribution
chaos theory. of the unknown parameters of mechanical systembe T

The remainder of the paper is organized as folloMe corresponding selection of polynomial basis funetics the
next section introduces the method for solving Isstic set of Jacobi polynomials. A special case of Heta
dynamic equations using gPC theory. Section 3vderihe distribution, the uniform distribution, correspontts the
recursive parameter update law based on maximubegendre polynomials. Xiu and Karniadakis reladegroup
likelihood estimation; this is the main contributi@f the of prior distributions to the Askey-scheme polynalsj and
paper. Section 4 applies the estimator to twoesyst a 2  the interested reader should consult their work [1]

order oscillator and the nonlinear Van der Pol &qua Assuming the random variables to be identically
Finally, Section 5 summarizes the paper’s conchsio distributed, the unknown parameters are expanded as
follows:
Np
2. gPCTheory 0:(&) = Z ik P (&), i=1,..np (4)
This section presents a framework for solving sastic k=0

differential equations using gPC theory. The gpahe expansion coefficien®;, are chosen such that (4) is
framework was developed by Xiu and Karniadakis [1flistributed according to the parameter prior distion
building off the groundbreaking work by Ghanem andai(i), and hencef;, are known for allik. The
Spanos [11] and the conceptualization by Wienet.[1i&s  polynomials ¢, (¢;) are orthogonal with respect to the
application to multibody dynamic systems was intimetl  following inner product:
by Sanduet al. [2]. This section follows the clear and o
czncise gPC dev[el]opment presented by Li and Xiu [4] @i G0 4,60 ) = f )9, GpGods - )
A set of state equations, which may be nonlinesansied
to describe the dynamic behavior of a system.
Y @ = Y xeOPO), 4= 1ms  (©)
The vectorx € R™ contains the system states which are lal=0 np
assumed to have known initial conditianse R", and the 1e'e the vectora = (a, .., an,) EN," is an m,-
vector 6 =[6; 6, - 0] contains the unknown
parameters. The input vectare R™ is known and time-
varying. The “dot” notation signifies the derivagiwith is the closest approximation of the true stefét,$) in the
respect to time. space spanned by the orthogonal polynomial¢¢). The
In general, observations on a system may be gogdoye n,,-variate polynomialsb, (&) are products of the univariate
a nonlinear output modet = H(t,x,u;8). However, the polynomialsg,, (§,).

The system states are also expanded in terms of

orthogonal polynomials. Thg" state is expanded as:
N

dimensional multi-index, an¢kx| is the sum of the vector
elementsj.e |a| ==a; + -+ An,,- The expansiot, (t,¢)

scope of this paper is limited to systems havingeolations np
described by a linear, time-invariant model: dL(8) = 1_[ ba, (&), la| < N (7)
y=C(0)x ®3) i=1

The output vectoy € R™ contains the system observationsThese polynomial®, (&) are orthogonal [2] with respect to
The unknown parameters are viewed as being furstiothe inner product:

of random v.ariablesi,e., ; = 0,(&) for i = 1, ..,y If t.he (D4(8), Dy(E)) = f‘l’a(f)q)ﬁ(s‘)ﬂ(f)ds‘ )

random variables are assumed to be independenjoitite

density function isp(§) = H?z”l pi (&) wherep;(¢,) is the

distribution of the i** random variableé;, and & =

[& & - Sl Parametric uncertainty leads to

uncertainty in the system states. Therefafe) = x(t, ) is This number grows rapidly as the polynomial orded the

also a function of the random variables number of unknown parameters increase.
Following the gPC method, the unknown parameters |t e solution xq(t,§) is known, the expansion

8(£) and system stated(t, ) are expanded onto a basis Ofcoefficients Xq.«(t) in (6) are chosen such that the error

orthogon_al polynomlal_ functions.  The choice (_)f th%etweenxq(t,f) and £,(t,€) is orthogonal to the basis
polynomial basis functions depends on the assummigd p ) ’
functions @, i.e, (£,(t, &) — x4(t,§), @,(§)) = 0. Then

distribution. Often, limited information is knowabout the
parameter prior distribution. Sand# al. [2] suggested

The total number of state-expansion coefficients (t)
and polynomial basis functioris, (¢) per state is
N +n,)!
= (N'—I'J) 9)
: np.



(£q(£,8), @o () = (x4 (£, 8), Po(§)), and the state PET 0 0

expansion coefficients, . (t) satisfy the following: PE=| 0 =~ 0 I (18)
0 < TG P (26D, Pu)) 0 0 P®)
1@ = 0,@), 0,0) | (0,0),0,2)  (10) M@
q=1,..,n la| <N X(t) = : (19)
Since the solution,(t,¢&) or £,(t,¢) is generally not Xns ()

The matrixP(¢) € R™*"™ has dimensions determined by
the number of original system states and the number of
elements in the vectdf(t) € R™"s. ThenZ from (15) can
be written:

available, the gPC theory uses either the stoch@stlerkin
method or the stochastic collocation method tordstes the
state-expansion coefficientg , (t).

Note that the inner product defined in (8) can leved
as an expectation operatoe,,

E[®q()Pp(8)] = (Pa(£), Pp(E)) (11) 2@

Then, the Galerkin method seeks estimatgs(t) of the Here, the collocation matrid € R2™*" s s formed by
state-expansion coefficientg . (t) by solving (1) and (2) in substituting the collocation points®, ..., @ into P(¢)

e

7= = AX(¢) (20)

the following weak form: and then stacking the resulting matrices:
E[2(t,§)Pa(S)] P(u™)
= E[F(t,2(t,6);0(D))P(D)],  lal<N  (12) A= (21)
0<t<ty, Ex(0)P(9]=E[x®e($)] P(u?)
This results in a set of deterministic state equatihaving The vector X(t), containing the state-expansion
the estimated state-expansion coefficiefts(t) as the new coefficientst, ,(¢), is calculated by
state variables. These new deterministic statatems can X(t) = A*Z. (22)
be solved using numerical integration. The matrix A* € R"™s*¢7s js the Moore-Penrose pseudo
The stochastic collocation method is discussed. niexs  inverse:
often more straightforward to implement, especidiy A* = (ATA)71AT (23)

nonlinear systems [2]. However, it is generallsslaccurate The collocation points:® must be selected such that
than the Galerkin method [4]. Following the stcstim €Xists. Finally,

collocation method, a deterministic set of collamatpoints Xqtlal = Xqa (D). (24)
p® 0@ 0>7r and u® e R™, is drawn from the Sanduet al. [2] provide a note on the relationship between

collocation points u® are substituted for the random@nd they also suggest methods for implementing the

variablest in (1) and (2)i.e., Galerkin method on nonlinear systems.
0 =F(t,z290);0w?)), i=1.,Q (13)
z®(0) = Z(()D (14)

3. Recursive Parameter Estimation

This section derives the recursive parameter update
state of theit" set of deterministic state equations. They, estimating the most likely values of the randeaniables
resulting @ uncoupled sets of state equations (each 5$tgiven the system observations. The estimateshef t
havingn, states) can be solved using numerical integratiofjnknown paramete®(¢) are then calculated using (4).
Stacking the new sets of state’ into a column vector  This development assumes that the noise in thersyst

Here,zéi) = Y0 X ()P (1 ?) is theq™ deterministic

Z € R™s yields: output observations is zero mean and Gaussian kmitkvn
zM covariance matrixk € R™*™. It also assumes that the
Z= (EQ) (15) system observations are mutually independent. sdtimes
Z

the only uncertainty in (1) and (2) is due to theknown
parameters. Finally it assumes that the polynorciieaos
approximations in (4) and (6) are exact. (Thist las
assumption is satisfied for second order processeshe
number of expansion terms goes to infinity [11. pfactice,
the expansion must be truncated after a finite rermds
terms, and thus the parameter estimates via thisatewill
only approximately satisfy the maximum likelihood

Note that the state-expansion of (6) can be writteithe
Euclidean inner product between two vectors:
24(t,8) = P(OTX,(8) (16)
In this equation, i@, () is thek™ element ofP(§) € R,
then 2, ,(t) is the k™ element ofX,(t) € R". Then the
state-vecto(t, &) can be written in terms of (16) as

2(t,§) = P(O)X(D). 17)

Here,IP(¢) andX(t), are defined respectively as



criterion.) Under these assumptions, the likelthénction
becomes [13, 8]:

t
LElyod = | [po@10
7=0

> 0@ -3@o)RIG@ @9

=0

N| =

o exp {—

-9(, f))}

Here,L(&]y,.:) is the likelihood function of the unknown

parameterg conditioned on a matriy,.. which contains all
of the observations up to the current time The function
p(y(®)1$)
observationy(t) at timet conditioned on the parametéis
and¥y(t, &) is the output of the stochastic moded,
y = C(8()2(L, ). (26)
The maximum likelihood estimateis the value of that
maximizes the likelihood function (25). Equatio®5) is
maximized when the magnitude of the negative tarrthe
exponent is minimized:

t
169 =50 (O -3 RAGD
@)

Thus the most likely value dfis:
& =argmin](t,§) (28)
The ability to update/(¢,¢) iteratively is critical to
making the approach of this paper recursive. Taper
leverages the benefits of polynomial chaos to stpathe
time and unknown parameter parts of the equatiomake
this recursion possible. By substituting (17) 488) into

is the probability density function of the

using polynomial chaos expansions. Because the tim
summations are deterministic, they can be updated
recursively as will be shown next. Thuygt, ¢) can be
evaluated recursively.

Consider an arbitrary matri&(t) and define the matrix

®.
D&

t
DY = Z G (o). (30)
=0
Then D{*AY .= 3+t G(7) (where At is the time
between samples) can be determined using only letnel
of the matriceng‘) andG (t + At) as follows:

DAY = p® 4+ G(t + Ab). (31)
Even as time progresses, the dimensions of theixmatr

D" are fixed. Thus to update the time summation@®),
the summation matricesD%j € R, D)(f;}, € R™s, and

D)((QTEIRT'”SXT'”S are stored in memory and updated

according to (31) at the next time step. Equati®) can be
written in terms of (30) as:
Ny My
J(t,§) = %Z Z[R_l]i.j (Dﬁgz,- - ZCiPD;((?,
i=1 j=1
+ P (GP))

The forgoing discussion has outlined a procedure fo
determining recursively the term in the exponenttlod
likelihood function (25). The remaining challengge to
determine the value of that minimizes the term in the
exponent,/(t, &), thus maximizing the likelihood at each
time step. This can be viewed as an optimizatiablem in
which the objective functiorj(t,¢) is time-varying. The

(32)

(27) and performing a few algebraic manlpuIatlons1’ollowing sections offer potential solution apprbas.

Equation (27) can be written as:

J(&§) = %ii[R_l]i,j (i ym)
i=1j=1 7=0

(29)

t
=0
t
+CP (Z XXT> (cp)
=0

Here [R™'];; is thej** element in the® row of the
inverse covariance matriR~'. The scalary, is the k"
element of the observation vectpandC,, is thek" row of

3.1 Solution via Gradient Descent
Proceeding in a manner similar to and indeed ieglpiry
Southward’s [10], this paper proposes a gradiergeda
parameter update law.

€t+1 = é:t - Fa](atéf) ot
Hereé, is the estimate of at timet, andT is a user-
specified gain matrix that can be chosen to varynie. In
static optimization, ifl" is the identity matrix, (33) is a
steepest descent method.T'Ifs the inverse Hessian matrix
(matrix of second derivatives), then (33) is Newdon

(33)

the output matrixC. In (29) the independent variables arenethod, and if" is proportional to the Hessian matrix, then

dropped to reduce notational complexity.

(33) is a modified Newton's method. These static

The key purpose in writing (27) as shown in (29}ds optimization concepts may be helpful for selecfing

explicitly show that only the deterministic timepsndent
parts, X andy, appear inside the time summations.

parts that depend on the unknown parametérand P,
appear outside of the time summations. This issalt of

Thme-dependent partg

Substituting (32) into (33) and using the fact tkia

®  p®

®)
vy Dxy;o and D, .r can be moved



outside of the partial derivatives since they dal@pend on Let N :={1,2,3,...} be the set of natural numbers. At

the unknown parameters gives the following update | each time instant, selent. € N realizations of randomly,
i1 and evaluate the cost of each realization using. (3then
Ty Ty compare these costs with the cost of the previeuampeter
e — FZZ[R_l]L‘,j estimate §,_;, and set the new estimatg to be the
i=1j=1 (34)  realization with the lowest cost. This random ebar
acn» ® T ® strategy allows the algorithm to search any pomtthie
(D T (CIP) |§:g - DXy,) entire parameter space and thus escape local minima

A guided random search policy combines the random
earch with the gradient search: The cost of tlaglignt
SOsolution from (35) is compared with the costs oé th.
normalization may be necessary. Note that the mabgs randomly selected realizations as well as the cbsthe

”D)((QT ]PTC = ||Z$=oX;Vj||2 and ||Z§=0ij||2 — previous estimaté,_,. The new estimate is chosen to be the

The magnltude of the values in the time summations
D)((’;?T and D)((?j may grow unbounded in time,

lecell, =

. realization with the lowest cost.
”D( )” , therefore normalizing (34) by the scalar
(” b || ) is a judicious choice. 4. Examples
In practice, to avoid division by zero, (34) mrmalized This section presents two examples to demonsthate t

recursive parameter estimator proposed in this rpafidée

-1
® ; .
by (1 + ”D ”2) - Then the final update law becomes: first example considers estimating the damping aairal

ny ny frequency of a forced second order oscillator.udes the
£ =& — FZZ 1, oGP Galerkin approach.  The second example uses the
== T\ o¢ £=¢ collocation approach and seeks to estimate a p&earné
(35) the Van der Pol equation.
pt (t
( DO, (GP) | - DXy)])

" 4.1 Forced Second Order Oscillator

(1 + ”D() ” ) Consider a forced, second order, stochastic diffeke
equation with zero initial conditions. The dampiagd
natural frequency,( and w, are independent, uncertain
function of the random variablé and therefore (35) still parameters. The scalar system inputis a normally
seeks to satisfy the maximum likelihood criteri@d) distributed random sequence with zero mean and unit

The partial derivatlve%) _in (35) can be expanded Vaniance.
§=¢

The normalization scala(1+ ”D(t) ” ) is not a

¥+ 2{wx + wix=u

using the product rule: y = —2{wx — w?x (37)
oGP _ac), o(P) (~V (g, 0c%)
3¢, T T (36) O~N (t, 7,%)
§=¢ §=¢ Equation (37) assumes the uncertain parameters are

Shimp offers a clever method for calculating thetiph from the Gaussian distribution; therefore, the Hem

derivativesz(—?L_g, and the interested reader should consufiplynomials form the basis functions [1]. The ffifew

his work [14]. Hermite polynomials of variablg are shown here:
Ho(§) =1
3.2 Solution via Random Search Hi(&) = 2251'
The gradient descent solution of Section 3.1 ddesn’ H, (8 = 4? —2 (38)
guarantee that the estimated parameters witbally Hs(8:) = 867 — 124,

Hy(§) = 168" — 488" + 12

Hs(§) = 32§,° — 160¢;” + 120¢;
Let & and &, be independent standard Gaussian
variables. Sincé;~N(0,1), and by properties of Gaussian
random variables, the damping and natural frequefidiie
system of Equation (37) can be written as follows:
$(&1) = pg + 0761
() = o + 0w, (39)

minimize J(t, &), but may potentially select parameters
satisfying onlylocal minima. This subsection proposes a
strategy for enabling the parameter update law stcage
local minima in order to satisfy the maximum likedbd
criterion.

The functionj(¢t,¢) can be evaluated at timefor any
realization off. This suggests the following strategy:



The system state and output equations are expandedand @ ;y = H;(§)H;(§;) for i,j=0,1,.

terms of the polynomial basis functions:

[?ﬁ(t 5(1'52)]
X, (t 51152)

[ w(§2)? _25(51)0’(52)”

+[]ue

96618 = CEE 4

with
C(&1,8) = [_w(fz)z

X, (¢, 51’52)]
%2(t,¢1,¢2)

—2{(§)w(§2)]

Where theq'" state is expanded as in (6):

N

260 = D xqa(Pe(d)

lal=0
N N-i

ZZ Rq.0n OHEDH; (&), ¢=1,.

i=0 j=0

Following the Galerkin method (12), the expandedest
are projected onto the basis functigns(é). We define the

following matrices:
Aw,0)
(Do, Pg) (Do, Py)
<q)11 qJO) <q)1l q)l)

(‘I)m (DO)
Ao,oa)
(®g, QD) (Pp, QP4)
<CI)1, QCDO) (cbll chl)

(Dg, ®1)

<cb0' (I)a)
(q)lﬁ.q)o'>

(@, ®,)

(@0, 09,)
(Cbl, Q¢o‘)

(®,,00,)

(@,,Q0Py) (D, Q;)
Q = fll 521 flEZJOr 522
and
B, =

Then the resulting deterministic equations are

= el

where
Azr = =y g — 204000 o,0) A(cb,fztb)
) A(q;yq;) 1A(¢’522¢)
Agy = =2(tobelorr + o0t Mooy Mg, o)
+ UeTuliom) Mo gyo)
+ 00000 Mogye,0)
and

e -1
Be £ Ag,0)

21(t,¢1,82)
% (t,¢1,¢2)

(40)

(41)

(42)

(43)

(42)

(45)

(46)

(47)

(48)

(49)

To use the update law from (35), calculaBé),

a®) 2(c))
afi &= { C(E) afl &=¢

using Equation (18) where:
P=[?00 Poun

T
(D(N,O)] ERr

, andX. P(§)eR?**?" is calculated

(52)

.,N can be
calculated using the Hermite polynomials (38). A,he
oP 0
op(e) _ [—f ] ._
3, - ap i=1,2 (53)

19 3]

The partial derivativej—g is straightforward because each
12

Hy(&;) for 1 =0,1,..,N is a polynomial in¢; with known
constant coefficients.
This section presents simulation runs which for
simplicity assumed the observation noise variarwebé
R =1 which was different than the true simulated
observation noise varianée= 0.015. The gain matrix was
chosen adl' = 0.75-1,4,. Zero mean Gaussian process
noise with varianc®.015 was also added to the inpu(t).
Figure 1 shows the convergence of the proposed
algorithm under the conditions described aboveditierent
initial guesses ofu; and u,. The initial guesses were
chosen so that the system (46) is stable. In Run £ 0.3
andu, =13. In Run 2,u, =0.3 andy, = 6. In run3,
u; =09 andyu, = 6. And in Run 4,u; = 0.9 andy, =
13. In each caseg; = 0.15 and g,, = 2. The simulation
step size was 0.005 seconds. The true values afd w
were 0.5 (unitless) and 10 radians per second ctgply.

1
0.8

~ 0.6]

0.4

0.2

0 10 20 30 40 50 60

Runl Run2 Run 3 Run 4
15 |

10

w (rad/s)

0 10 20 30 40 50 60
Time (sec)

Fig. 1: Convergence of the algorithm for different initial conditions.

In the simulations, the standard deviation of the
observation noise was 0.12, and the standard dmviet the
signal was 0.215. Thus the signal-to-noise ratas WdB.
Despite the large amount of signal noise, the &lyor
converged fairly accurately as shown in Figure The
algorithm converged to steady state within abous@bnds
or equivalently within about 4,000 data points.



4.2 Van der Pol Oscillator varied between low noise, 15dB, and high noise, ,5dB
Consider the forced nonlinear Van der Pol Equaith ~ values.

unknown parameter~Uniform([5,11]): 11- : : : : ,
56'1 = Xy
. 1, , (55) 10y
Xy = —xq — ;(xl — 1)x, + sin (50¢t) ol |
Here, the initial conditionse; = 0.1 and x, = —0.1 are o 15 dB
known. The true value of the unknown parameter is € 10dB |
€* =10. The first state is observdd., 7 5 4B 1
Y =X (56) 6 1
Because the unknown parameter prior distribution is
uniform, the appropriate set of basis functions the ° |

Legendre polynomials on the interval [-1,1]. Theop 0 200 400 600 800 1000

distribution of ¢ can be written in terms of the random Time (sec)

Val’iab|ef~Unif0rm([—1,1]) as: Fig. 2: Convergence of the algorithm for variable noise.
e=¢g+&f=8+3¢ (57) Under the conditions of this simulation study of th

Next, the states are expanded onto the polynonaisish nonlinear oscillator, the proposed estimator apgbdo be

functions: N consistent; i.e, increasing the noise level chandee
o convergence rate, but the algorithm eventually e to
260 = ) %a(OPe(®) . 9 Y eoped
=, the same parameter value as time approached jnfinit
“= (58)
N

= % OL©,  q=12 _
: 5. Conclusions

=0
Here, L;(§), i =0,..,N are the Legendre polynomials of  This paper derived a maximum likelihood approach to
order up taV on the interval [-1,1]. recursive estimation based on polynomial chaosrihedt
Following the collocation method, a set of colleeat gemonstrated the proposed algorithm on two systems:
points u®, ..., @ are drawn from th&/niform([-1,1]) linear, 29 order, differential equation and the nonlinear Van
distribution. ThenP(u®)eR?*?N, i =1,..,Q is formed der Pol equation. This paper discussed polynoxfialos
using (18) where theory using both the stochastic Galerkin and sisiih
P('u(i))T — [LO(M(L')) LN(M(D)] (59) collocation methods and demonstrated each apprioaitte
andA* is calculated using (21-23). Thep sets of equation €xamples.
(55) are run simultaneously, and the resulting estat The proposed estimator has potential for parameter
trajectoriesz® are stacked into a column vector as in (15Stimation in nonlinear systems, making it valuatdea
Then, at each iteration, Equation (22) is usedind the Wide range of parameter estimation problems.
vectorX(t).
To use the parameter estimator (35), we first d¢ateu
a(c;P)
0§
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