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Abstract

This paper combines polynomial chaos theory with maximum likelihood estimation for a novel approach to recursive parameter
estimation in state-space systems. A simulation study compares the proposed approach with the extended Kalman filter to
estimate the value of an unknown damping coefficient of a nonlinear Van der Pol oscillator. The results of the simulation
study suggest that the proposed polynomial chaos estimator gives comparable results to the filtering method but may be less
sensitive to user-defined tuning parameters. Because this recursive estimator is applicable to linear and nonlinear dynamic
systems, the authors portend that this novel formulation will be useful for a broad range of estimation problems.
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1 Introduction

This paper describes a novel method for recursively es-
timating the unknown static parameters of linear and
nonlinear state space systems. This method combines
two established theories: generalized polynomial chaos
(gPC) theory [21] and maximum likelihood estimation
theory (see pages 542-548 of [10]).

Unlike many traditional methods such as recursive least
squares (see pages 192-226 of [5]) and total least squares
(see pages 381-389 of [10]), the proposed method does
not require the underlying model to be formatted into
a regressor model form but can be applied directly to
state space models. Other state-space estimation meth-
ods, such as Kalman filtering approaches (see Chapters
13–15 of [16]) and sequential Monte Carlo (or particle
filtering) (pages 35-62 of [12] and [1]) approaches treat
unknown parameters as dynamic states and formally in-
clude them in the state vector, thus differing from the
proposed approach. This paper will use a numerical sim-
ulation to study the benefits of the proposed approach
compared with the filtering methods.
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Many researchers in the estimation community have
recognized the benefit of combining polynomial chaos
theory with parameter estimation. Blanchard et al.
combined polynomial chaos theory with the extended
Kalman filter for state and parameter estimation [3].
Li and Xiu proposed a gPC ensemble Kalman filter for
improved estimation accuracy and computational effi-
ciency [7]. Saad et al. proposed a gPC-based ensemble
Kalman filter for system identification and monitoring
[13], and Smith et al. combined gPC with the Luen-
berger observer for state estimation [17]. Polynomial
chaos theory has also been used for parameter estima-
tion - not combined with a state observer. Blanchard et
al. proposed a Bayesian parameter estimator that se-
lects estimates based on the maximum a posteriori esti-
mate [2]. This estimator calculates parameter estimates
in a batch manner after all the data has been acquired.
Marzouk and Xiu [9] proposed a Bayesian approach
to estimate parameters of systems governed by partial
differential equations, and provided a valuable study on
the convergence of the polynomial chaos based estima-
tors. They used the stochastic collocation approach and
extended earlier but similar work done by Marzouk et al.
[8] which used the Galerkin method. Finally, Southward
developed a framework for recursive parameter estima-
tors based on gPC theory [18]. Southward’s method
used instantaneous gradients of quadratic cost functions
to recursively calculate parameter estimates. Shimp [15]
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and Pence et al. [11] applied Southward’s method to the
problem of real-time vehicle mass estimation.

This paper combines polynomial chaos theory with max-
imum likelihood estimation to recursively estimate the
static unknown parameters of state space systems. Simi-
lar to the approaches discussed above, this paper applies
polynomial chaos theory to solve the stochastic differ-
ential equations that govern the underlying system dy-
namics. However, unlike any of the methods above, this
paper recursively calculates the maximum likelihood val-
ues of the unknown parameters based on all of the past
system observations. To the best of the authors’ knowl-
edge, this is the first paper to address recursive max-
imum likelihood parameter estimation for state space
systems using polynomial chaos theory.

2 Generalized Polynomial Chaos Theory

The generalized polynomial chaos (gPC) framework is
essential to the methods of this paper. The gPC frame-
work was developed by Xiu and Karniadakis [21] build-
ing off groundbreaking work by Ghanem and Spanos [4]
and the conceptualization by Wiener [19].

A set of continuous-time state equations, which are often
nonlinear, are used to describe the dynamic behavior of
a system.

ẋ = f(t, x, u; θ), 0 ≤ t ≤ tf (1)

x(0) = x0 (2)

The vector x ∈ Rns contains the system states which
have known initial conditions x0 ∈ Rns , and the vector
θ = [θ1 θ2 . . . θnp ]T contains the unknown param-
eters. If any of the initial conditions x0 is unknown, it
can be treated as one of the unknown parameters. The
input vector u ∈ Rnu is known and time-varying. The
“dot” notation signifies the derivative with respect to
time t.

In general, observations on a system may be governed by
a nonlinear, time-varying output model y = h(t, x, u; θ).
However, the scope of this paper is limited to sys-
tems having observations described by a linear, time-
invariant, discrete-time model:

yk = C(θ)x(tk) + vk. (3)

The output vector yk ∈ Rny contains the observations
on the system at time tk. The vector vk ∈ Rny represents
an additive Gaussian disturbance with known covariance
Rk ∈ Rny×ny .

The unknown parameters are viewed as being functions
of random variables ξi, i.e., θi = θi(ξi) for i = 1, . . . , np.

The random variables are independently identically dis-
tributed (IID), and the joint density function is ρ(ξ) =
Π
np

i=1ρ(ξi) where ρ(ξi) is the distribution of the ith ran-
dom variable ξi, and ξ = [ξ1 ξ2 · · · ξnp ]. Paramet-
ric uncertainty leads to uncertainty in the system states.
Therefore, x(t) = x(t, ξ) is also a function of the random
variables ξ.

Following the gPC method, the unknown parameters
θ(ξ) and system states x(t, ξ) are expanded in terms of
orthogonal polynomial basis functions Φα(ξ):

θ(ξ) ≈
S∑
|α|=0

θαΦα(ξ), (4)

x̂(t, ξ) ≈
S∑
|α|=0

xα(t)Φα(ξ). (5)

Here, the vector α := [α1, . . . , αnp
] is an np-dimensional

multi-index, and |α| is the sum of the vector elements,
i.e. |α| := α1 + · · ·+αnp . Each element αi of α can take
on a non-negative integer value between 0 and S. Un-
der certain assumptions (see [21]), Equations (4) and (5)
become exact in the L2 sense as S →∞. An infinite ex-
pansion is not computationally attainable, so truncation
is neccesary, and (4) and (5) are only approximations.

The expansion coefficients θα, |α| ≤ S are chosen such
that (4) is distributed according to the known parameter
prior distribution ρ(θ), and hence θα is known for all α.
Polynomial chaos theory then solves for the coefficients
xα(t) of the polynomial chaos state expansion (5) using
either the Galerkin [4] or collocation approach [20]. Some
helpful examples that use the Galerkin and collocation
approaches can be found in [4], [14], [7], and [11].

2.1 Galerkin Approach

The Galerkin approach solves for the expansion coeffi-
cients xα(t) by projecting the state equations (1) and (2)
onto the polynomial chaos basis functions Φα(ξ), i.e.,

〈 ˙̂x(t, ξ),Φα(ξ)〉 = 〈f(t, x̂(t, ξ), u(t); θ(ξ)),Φα(ξ)〉,
0 ≤ t ≤ tf ;

〈x̂(0),Φα(ξ)〉 = 〈x0,Φα(ξ)〉, |α| ≤ S. (6)

This results in a set of deterministic state equations
having the state-expansion coefficients xα(t) as the new
state variables. These new deterministic state equations
can be solved using numerical integration. The number
of states in the new set of deterministic state equations is
equal to the total number of state-expansion coefficients
multiplied by the number ns of original states. The total
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number of state-expansion coefficients xα(t) (and poly-
nomial chaos basis functions Φα(ξ)) is [21]

r :=
(S + np)!

S!np!
. (7)

This number grows rapidly as the polynomial order S
and/or the number of unknown parameters np increases.
The inner product 〈F (ξ), G(ξ)〉 is an integral of the prod-
uct of F (ξ) and G(ξ), integrated over the event space of
the random variables ξ:

〈F (ξ), G(ξ)〉 :=

∫
G(ξ)F (ξ)W (ξ)dξ. (8)

The weighting function W (ξ) depends on the choice of
polynomial basis functions, and is generally equal to the
prior distribution ρ(ξ) of the random variables ξ [21].

2.2 Collocation Approach

The collocation approach [20] can be more straightfor-
ward to implement than the Galerkin method, especially
for nonlinear systems [14]. However, it is generally less
accurate than the Galerkin method [20]. A set of col-
location points (or nodes) µ(1), . . . , µ(Q) (Q ≥ r and
µ(i) ∈ Rnp) are drawn from the parameter prior distri-
bution ρ(ξ). These collocation points are substituted for
the random variables ξ in (1) and (2), i.e.,

ż(i) = f(t, z(i)(t), u(t); θ(µ(i))), i = 1, . . . , Q, (9)

z(i)(0) = x0. (10)

Here, z(i) ≈ ΣS|α|=0xα(t)Φα(µ(i)) is the ith deterministic

state vector. The resulting Q uncoupled sets of state
equations (each set having ns states) can be solved using
numerical integration. Stacking the new sets of states
z(i) into a matrix Z ∈ RQ×ns yields:

Z :=


(z(1))T

...

(z(Q))T

 . (11)

The transpose of the state-expansion of (5) can be writ-
ten as the vector-matrix product:

x̂(t, ξ)T = (P (ξ))Tχ(t),

χ(t) =


(x|α|=0(t))T

...

(x|α|=S(t))T

 . (12)

In this equation, if Φα(ξ) is the kth element of the column
vector P (ξ) ∈ Rr, then xTα(t) is the kth row of χ(t) ∈
Rr×ns . The matrix Z from (11) can be written in terms
of P and χ as follows:

Z =


(P (µ1))T

...

(P (µQ))T

χ(t). (13)

The estimates of χ(t), i.e. the estimates of the
state expansion coefficients, are obtained by left-
multiplying both sides of (13) by the pseudo-inverse of
[P (µ1)| · · · |P (µQ)]T .

Another way to write the state expansion (5) that will
be useful for concise notation in the following sections
is to stack the columns of χ, i.e. χ(1), . . . , χ(ns), into a
single column vector. Then Equation (5) can be written
as follows:

x̂(t, ξ) = P(ξ)X(t). (14)

Here, P(ξ) ∈ Rns×r·ns and X(t) ∈ Rr·ns , are defined
respectively as

P(ξ) :=


P (ξ)T 0 0

0
. . . 0

0 0 P (ξ)T

 , (15)

X(t) :=


χ(1)(t)

...

χ(ns)(t)

 . (16)

Sandu et al. [14] provide a note on the relationship be-
tween the stochastic collocation and stochastic Galerkin
methods, and they also suggest methods for implement-
ing the Galerkin method on nonlinear systems.

In summary, the deterministic part of the system is cal-
culated using either the Galerkin or collocation method.
Solving the deterministic dynamic equations results in
known trajectories of the time dependent part xα(t)
which is then recombined using (5) with the random
variable dependent part Φα(ξ) to obtain the complete
stochastic solution x̂(t, ξ).

3 Recursive Parameter Estimation

This section derives the recursive parameter update law
for estimating the maximum likelihood values of the ran-
dom variables ξ given the system output observations.
The estimates of the unknown parameters θ(ξ) are then
calculated using (4). The derivations and resulting pa-
rameter estimators of this section constitute the main
contributions of this paper.
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This development assumes that the noise in the system
output observations is zero mean and Gaussian with
known covariance matrix Rk ∈ Rny×ny . It also assumes
that the system observations yk are mutually indepen-
dent for all k. It assumes the uncertainty in (1) and (2)
is entirely due to the unknown parameters. Finally it
assumes that the polynomial chaos approximations in
(4) and (5) are exact. (As mentioned above, this last as-
sumption is satisfied as the number of expansion terms
goes to infinity [21]. In practice, the expansion must be
truncated after a finite number of terms, and thus the
parameter estimates via this method will only approx-
imately satisfy the maximum likelihood criterion.) Un-
der these assumptions, the likelihood function becomes
(see pages 542-548 of [10]):

Lk(ξ|y0:k) =

k∏
τ=0

ρ(yτ |ξ)

∝ exp{−1

2

k∑
τ=0

(yτ − ŷτ (ξ))TR−1τ (yτ − ŷτ (ξ))}. (17)

Here, Lk(ξ|y0:k) is the likelihood at time tk of the un-
known parameters ξ conditioned on a matrix y0:k which
contains all of the output observations up to the current
time tk. The function ρ(yk|ξ) is the conditional proba-
bility of the observation yk at time tk given ξ; and ŷk(ξ)
is the output of the stochastic model, which, using (14)
can be written as

ŷk := C(θ(ξ))P(ξ)X(tk). (18)

The maximum likelihood estimate ξ̂ is the value of ξ
that maximizes the likelihood function (17). Equation
(17) is maximized when the magnitude of the negative
term in the exponent, i.e., the negative log-likelihood, is
minimized:

Jk(ξ) :=
1

2

k∑
τ=0

(yτ − ŷτ (ξ))TR−1τ (yτ − ŷτ (ξ)). (19)

Thus the most likely value of ξ at time tk is ξ̂k =
argminJk(ξ). The ability to update Jk(ξ) iteratively is
critical to making the approach of this paper recursive.
This paper leverages the linearity of the output model
(18) and the benefits of polynomial chaos to separate
the time and unknown parameter parts of the equa-
tion to make this recursion possible. By substituting
(13) and (18) into (19) and performing a few algebraic
manipulations, Equation (19) can be written as:

Jk(ξ) =
1

2

ny∑
i=1

ny∑
j=1

(Dy(i)y(j)

k − 2C(i)PDXy(j)

k

+ C(i)PDXXT

k (C(j)P)T ). (20)

In (20), DG
k is defined as DG

k := Σkτ=0[R−1τ ](i,j)Gτ where

Gk ∈ {y(i)k y
(j)
k , X(tk)y

(j)
k , X(tk)(X(tk))T }. The scalar

term [R−1k ](i,j) is the jth element in the ith row of the

inverse covariance matrix R−1k . Also, the scalar y(l) is

the lth element of the observation vector yk and C(l)

is the lth row of the output matrix C. Equation (20)
can be updated recursively from time tk to tk+1 since
DG
k+1 = DG

k +Gk+1, and Gk is not a function of ξ.

The forgoing discussion has outlined a procedure for de-
termining recursively Jk(ξ), i.e. the term in the expo-
nent of the likelihood function (17). The remaining chal-
lenge is to determine the value of ξ that minimizes Jk(ξ),
thus maximizing the likelihood at each time step. This
can be viewed as an optimization problem in which the
objective function Jk(ξ) is time-varying. The following
sections offer potential solution approaches.

3.1 Solution via Gradient Descent

Proceeding in a manner similar to and indeed inspired by
Southward’s [18], this paper proposes a gradient based
parameter update law.

ξ̂k+1 = ξ̂k − Γk
∂Jk(ξ)

∂ξ
|ξ=ξ̂k (21)

Here Γk is a user-specified gain matrix that may vary in
time. In static optimization, if Γk is the identity matrix,
(21) is a steepest descent method. If Γk is the inverse
Hessian matrix (matrix of second derivatives), then (21)
is Newton’s method, and if Γk is proportional to the Hes-
sian matrix, then (21) is a modified Newton’s method.
These static optimization concepts may be helpful for
selecting Γk.

As stated above, this gradient based approach is similar
to the approach taken by Southward [18] (and Shimp
[15]). There is, however, an important difference. This
paper addresses maximum likelihood parameter estima-
tion, and hence uses gradients of an integrated cost func-
tion, i.e. the cost function (19) is a function of all the
data up to time tk. Southward’s method uses gradients
of an instantaneous cost function and does not propose
to maximize a likelihood function.

Substituting (20) into (21) and using the fact that the

time-dependent parts Dy(i)y(j)

k , DXy(j)

k , and DXXT

k can
be moved outside of the partial derivatives since they
do not depend on the unknown parameters gives the
following update law:

ξ̂k+1 = ξ̂k − Γk

ny∑
i=1

ny∑
j=1

[
∂C(i)P
∂ξ

(DXXT

k (C(j)P)T

−DXy(j)

k )]ξ=ξ̂k . (22)
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In practice, it may be helpful to normalize (22) by di-

viding by (1 + ‖DXy(j)

k ‖2). Then the final update law
becomes:

ξ̂k+1 = ξ̂k − Γk

ny∑
i=1

ny∑
j=1

(
∂C(i)P
∂ξ

|ξ=ξ̂k

·
DXXT

k (C(j)P)T |ξ=ξ̂k −D
Xy(j)

k

(1 + ‖DXy(j)

k ‖2)
). (23)

The normalization scalar (1+‖DXy(j)

k ‖2)−1 is not a func-
tion of the random variables ξ and therefore (23) still
seeks to maximize the likelihood (17).

3.2 Solution via Random Search

The gradient descent solution of Section 3.1 does not
guarantee that the estimated parameters will globally
minimize Jk(ξ), but may potentially select parameters
satisfying only local minima. This subsection proposes a
strategy for enabling the parameter update law to escape
local minima in order to satisfy the global maximum
likelihood criterion.

The function Jk(ξ) can be evaluated at time tk for any
realization of ξ. This enables the following strategy:

Let N := {1, 2, 3, . . .} be the set of natural numbers. At
time tk+1, select nr ∈ N realizations of ξ randomly, and
evaluate the cost of each realization using (20). Then
compare these costs with the cost of the current param-

eter estimate ξ̂k, and set the new estimate ξ̂k+1 to be
the realization with the lowest cost. This random search
strategy allows the algorithm to search any point in the
entire parameter space and thus escape local minima.

A guided random search policy combines the random
search with the gradient search: The cost of the gradient
solution from (23) is compared with the costs of the nr
randomly selected realizations as well as the cost of the

current estimate ξ̂k. The new estimate ξ̂k+1 is chosen to
be the realization with the lowest cost.

4 Example: Nonlinear Oscillator

This section uses a simulation study of a nonlinear Van
der Pol oscillator to demonstrate the proposed method
and to compare it with a (hybrid) Extended Kalman Fil-
ter (EKF) (Chapter 13 of [16]). The equations for the
Van der Pol oscillator are given in state-space represen-
tation as follows (see pages 54-59 of [6]):

ẋ1 = x2

ẋ2 = −x1 − ε(x21 − 1)x2
yk = x1(tk) + vk.

(24)

Fig. 1. Convergence of the proposed polynomial chaos esti-
mator. The dotted lines are the true values.

The term ε > 0 represents a nonlinear damping coef-
ficient, and also provides a measure of the nonlinear-
ity of the system. The trajectory of the Van der Pol
oscillator tends to a stable limit cycle. The initial con-
ditions were [x1(0), x2(0)] = [0.1,−0.1]; this study as-
sumes that only x1(0) is known and that the value of
x2(0) is unknown, but prior information suggests that
it could be any value between −0.2 and 0.2 with equal
probability. Measurements of the output sequence yk are
sampled at a uniform rate with a step size of 0.01 sec-
onds. The measurement noise vk is an unknown normally
distributed random sequence with constant variance R.
Without the added noise, i.e. vk = 0 for all k, the out-
put signal had a mean-squared value of 1.9, and the (as-
sumed unknown) noise variance R was set to be 8 times
smaller, i.e., R = 0.24. This simulation study assumes
that ε ∼ U [0.3, 1.3] is uniformly distributed, and the
true (but unknown) value is ε = 1.1.

Because the noise variance R is assumed to be unknown,
it becomes a user-specified tuning parameter in both the
proposed polynomial chaos algorithm and the EKF fil-
tering algorithm. Because the noise variance is a con-
stant with respect to time and with respect to the un-
known parameters, its assumed (positive) value has no
effect on the value of ξ that minimizes the cost function
shown in (19). It therefore has no effect on the estimate
calculated by the proposed polynomial chaos approach.
Thus, for all assumed values of R, the convergence of the
proposed approach is shown in Figure 1. Figure 2 shows
the convergence of the EKF algorithm for different user-
assumed values of R. Clearly, the EKF approach is sen-
sitive to the assumed value of R, and hence is more dif-
ficult to tune than the polynomial chaos approach for
this simulation example.
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Fig. 2. Convergence of EKF algorithm to various assumed
values of R = 0.01, 0.02, 0.24. The dotted line is the true
value.

5 Conclusions

This paper derived a recursive approach based on poly-
nomial chaos theory for estimating the maximum likeli-
hood values of unknown parameters of state space sys-
tems. The derivation assumed that the noise in the sys-
tem output observations is additive and Gaussian and
that the observations are mutually independent. It also
assumed the uncertainty in the state equations is due
to the unknown parameters. The proposed method was
demonstrated using a simulation of a nonlinear Van der
Pol oscillator to illustrate the method and to show that
it has the potential to be less difficult to tune than the
filtering approach. Most importantly, because of its abil-
ity to recursively calculate the maximum likelihood val-
ues of unknown parameters in both linear and nonlinear
systems, the authors believe that the approach will be
valuable to a wide range of estimation problems.

Acknowledgements

This research was funded by the U.S. Army TARDEC
through its center for excellence in automotive modeling
and simulation.

References

[1] M.S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp. A
tutorial on particle filters for online nonlinear/non-gaussian
bayesian tracking. IEEE Trans. Sig. Proc., 50:174–188, 2002.

[2] E. Blanchard, A. Sandu, and C. Sandu. A polynomial-chaos-
based bayesian approach for estimating uncertain parameters
of mechanical systems. 19th Int. Conf. on Des. Theory and
Method.; 1st Int. Conf. on Micro- and Nanosys.; and 9th Int.
Conf. on Adv. Vehicle Tire Tech., Parts A and B, 3:1041–
1048, 2008.

[3] E. Blanchard, A. Sandu, and C. Sandu. A polynomial chaos-
based kalman filter approach for parameter estimation of
mechanical systems. Paper no. 061404, ASME J. of Dynamic
Systems Measurement and Control, Special Issue on Physical
System Modeling, 132, 2010.

[4] R. Ghanem and P. Spanos. Stochastic finite elements: A
spectral approach. Springer-Verlag, New York, 1991.

[5] P.A. Ioannou and J. Sun. Robust Adaptive Control. Prentice-
Hall, Inc, 1996.

[6] H.K. Khalil. Nonlinear Systems: Third Ed. Prentice Hall,
Inc., New Jersey, 2002.

[7] J. Li and D. Xiu. A generalized polynomial chaos based
ensemble kalman filter with high accuracy. J. of Comp.
Physics, 228:5454–5694, 2009.

[8] Y.M. Marzouk, N.N. Najm, and L.A. Rahn. Stochastic
spectral methods for efficient bayesian solution of inverse
problems. J. Comp. Physics, 224:560–586, 2007.

[9] Y.M. Marzouk and D. Xiu. A stochastic collocation approach
to bayesian inference in inverse problems. Comm. in Comp.
Physics, 6:826–847, 2009.

[10] T.K. Moon and W.C. Stirling. Mathematical Methods and
Algorithms for Signal Processing. Prentice-Hall, Inc, New
Jersey, 2000.

[11] B.L. Pence, H.K. Fathy, and J.L. Stein. A base-excitation
approach to polynomial chaos-based estimation of sprung
mass for off-road vehicles. Proc. ASME Dyn. Sys. and Control
Conference 2009, DSCC2009, n PART A:857–864, 2010.

[12] B. Ristic, S. Maskell, and N. Gordon. Beyond the Kalman
filter: particle filters for tracking applications. Artech House,
Boston, 2004.

[13] G. Saad, R. Ghanem, and S. Masri. Robust system
identification of strongly non-linear dynamics using a
polynomial chaos based sequential data assimilation
technique. Col. of Tech. Papers, 48th AIAA/ASME/
ASCE/AHS/ASC Struc., Struc. Dyn. and Mat. Conf.,
6:6005–6013, 2007.

[14] A. Sandu, C. Sandu, and M. Ahmadian. Modeling
multibody systems with uncertainties. part 1: theoretical and
computational aspects. Multibody Syst. Dyn., 15:373–395,
2006.

[15] S.K. Shimp. Vehicle sprung mass identification using an
adaptive polynomial-chaos method. Masters Thesis, 2008.

[16] D. Simon. Optimal State Estimation: Kalman, H infinity,
and Nonlinear Approaches. John Wiley and Sons Inc., New
Jersey, 2006.

[17] A.H. Smith, A. Monti, and F. Ponci. Indirect measurements
via a polynomial chaos observer. IEEE Trans. on Instr. and
Meas., 56:743–752, 2007.

[18] S.C. Southward. Real-time parameter id using polynomial
chaos expansions. Proc. of ASME Int. Mech. Eng. Congress
and Expo., 9:1167–1174, 2008.

[19] N. Wiener. The homogenous chaos. Amer. J. Math., 60:897–
936, 1938.

[20] D. Xiu. Efficient collocational approach for parametric
uncertainty analysis. Commun. Comput. Phys., 2:293–309,
2007.

[21] D. Xiu and G.E. Karniadakis. The wiener-askey polynomial
chaos for stochastic differential equations. SIAM J. on
Scientific Computing, 24:619–644, 2002.

6


