
Robust Group Key Agreement Using Short Broadcasts

Stanisław Jarecki
Department of Computer

Science
University of California, Irvine

Irvine, CA 92697
stasio@ics.uci.edu

Jihye Kim
Department of Computer

Science
University of California, Irvine

Irvine, CA 92697
jihyek@ics.uci.edu

Gene Tsudik
Department of Computer

Science
University of California, Irvine

Irvine, CA 92697
gts@ics.uci.edu

ABSTRACT
A group key agreement protocol (GKA) allows a set of play-
ers to establish a shared secret key which can be used to se-
cure a subsequent communication. Several efficient constant-
round GKAs have been proposed. However, their perfor-
mance degrades if some players fail during protocol execu-
tion. This is a problem in practice, e.g. for mobile nodes
communicating over wireless media, which can loose con-
nectivity during the protocol execution. Current constant-
round GKA protocols are either efficient and non-robust or
robust but not efficient: Assuming a reliable broadcast com-
munication medium, the standard encryption-based group
key agreement protocol can be robust against arbitrary num-
ber of node faults, but the size of the messages broadcast by
every player is proportional to the number of players. In
contrast, non-robust group key agreement can be achieved
with each player broadcasting just constant-sized messages.

We propose a novel 2-round group key agreement proto-
col which tolerates up to T node failures using O(T)-sized
messages, for any T . To exemplify the usefulness of this flex-
ible trade-off between message size and fault tolerance, we
show that the new protocol implies a fully-robust group key
agreement with O(log n)-sized messages and expected round
complexity close to 2, assuming random node faults. The
proposed protocol is secure under the (standard) Decisional
Square Diffie-Hellman assumption.

Categories and Subject Descriptors
F.2 [Analysis of Algorithms and Problem Complex-
ity]: General; C.4 [Performance of Systems]: Reliability;
C.2.2 [Network Protocols]: Applications

General Terms
Algorithms, Reliability, Security

Keywords
group key agreement, fault tolerance

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CCS’07, October 29–November 2, 2007, Alexandria, Virginia, USA.
Copyright 2007 ACM 978-1-59593-703-2/07/0011 ...$5.00.

1. INTRODUCTION
The growth of group applications triggers the need for

group-oriented security mechanisms over insecure network
channels. The applications include IP telephony, collabo-
rative workspaces, secure conferences, as well as dynamic
coalitions common in law enforcement and disaster rescue
scenarios. Standard security services required in such group
settings, e.g. confidentiality of group-wide broadcasts, can be
very efficiently achieved if all group members share a group-
wide secret key.

A group key agreement protocol (GKA) allows n players
to create such shared secret key. There are several widely-
known efficient constant-round group key agreement proto-
cols [4, 8], but their performance degrades if some of the par-
ticipating players fail during the protocol execution. This is
a serious concern in practice, for example for mobile nodes
that communicate over a wireless media, but which can loose
connectivity during protocol execution.

Assuming a reliable broadcast medium, a GKA protocol
can trivially be made robust to node failures by re-starting
the protocol from scratch whenever a faulty player is de-
tected. However, this would multiply all protocol costs by
the number of faults, including the round complexity of
the protocol. Robust constant-round GKA protocols can be
achieved by executing parallel instances of any standard, i.e.
non-robust, constant-round GKA protocol, one instance for
every possible subset of non-faulty players. Such protocol
would be robust and constant-round, but its communica-
tion and computation costs would grow by an inadmissible
factor of 2n. This gives rise to the question whether there
exist constant-round GKA protocols that are robust to node
failures at more reasonable efficiency costs.

Previous Work on Robust GKA Protocols. Amir, et
al. [1] proposed the first robust GKA protocol based on a
group key agreement protocol (called GDH) introduced by
Steiner, et al. [9], and a view-based group communication
system (GCS) which provides the abstraction of consistent
group membership. Since the GCS can detect crashes among
the players during the execution of a GDH protocol, the pro-
tocol can react accordingly. However, its round complexity
is O(n) and it requires O(n2) broadcasts.

Subsequently, Cachin and Strobl (CS) proposed a constant-
round robust GKA protocol which works over asynchronous
networks [5], and hence in particular tolerates both node
and link failures. The exact communication and infrastruc-
ture assumptions of the CS protocol depend on the choice
of the consensus subprotocol which the CS protocol invokes.
However, assuming a reliable broadcast medium the CS pro-

tocol takes 2 rounds, and each player broadcasts O(n)-sized
messages and makes O(n) public key operations.1

Our Contributions. In this paper we investigate the issue
of efficiency versus robustness to node failures, for constant-
round GKA protocols working in a reliable broadcast com-
munication medium. As mentioned above, assuming reli-
able broadcast, the 2-round CS protocol is robust against
arbitrary number of node faults, but the size of the mes-
sages broadcast by each player is O(n). In contrast, the
group key agreement protocol of Burmester-Desmedt (BD)
[4] uses only constant-sized messages, but is not robust to
any node failures. In this paper we show how to achieve a
natural trade-off between message size and the desired level
of fault-tolerance in a GKA protocol. Namely, we propose
a new 2-round GKA scheme which tolerates up to T node
failures using O(T)-sized messages, for any T . The new pro-
tocol is secure in the standard model under the Decisional
Square Diffie-Hellman assumption. To exemplify the use-
fulness of this flexible trade-off between message size and
fault tolerance, we show that in a realistic setting of ran-
dom node faults, this protocol implies a fully-robust GKA
protocol with O(log n)-sized messages and expected round
complexity close to 2.

Organization. We present our protocols in a modular way:
We start from a basic protocol which helps to understand
how the proposed robust GKA protocol runs and why it is
provably secure. We then modify this basic protocol using
two bridge protocols, each of which improves the communi-
cation complexity of the previous one, leading to the flexible
protocol that supports fault tolerance against up to T fail-
ures using O(T)-sized messages.

The paper is organized as follows: Section 2 discusses our
communication and adversarial settings and presents a defi-
nition of a secure GKA protocol in these settings. Section 3
defines the cryptographic assumptions required by our con-
structions. Section 4 presents our robust GKA protocols.
Section 5 compares performance of the proposed scheme with
existing schemes, and Section 6 contains the detailed security
proof of the protocols presented in Section 4.

2. SECURITY MODEL
Our security model is a standard model for Group Key

Agreement protocols executed over authenticated links. Since
the players in our GKA protocols do not use long-term se-
crets, we define GKA security (following [4, 6]), as semantic
security of the session key created in a single instance of the
GKA protocol executed among honest parties.

Authenticated Links. Our paper is concerned with Group
Key Agreement (GKA) protocols in the authenticated links
model. Note that there are standard and inexpensive com-
pilation techniques which convert any group key agreement
protocol into an authenticated group key agreement by (1)
deriving a unique session-specific nonce at the beginning of
the protocol and (2) having each player sign its message to-
gether with this nonce [6]. Moreover, while the generic com-

1Assuming reliable broadcast, the CS protocol works as fol-
lows: First every player broadcasts its public encryption key.
Then every player picks its contribution to the shared key,
encrypts it under each broadcasted public key, and broad-
casts a message containing the resulting n ciphertexts. The
shared key is computed by each player as the sum of all
broadcasted contributions.

piler of [6] introduces an extra communication round into
the protocol to establish a unique session-specific nonce be-
fore the GKA protocol starts, we point out that in the case
of the protocols covered here this is unnecessary since the
first message of the GKA protocol can be used to derive the
unique session id, and hence the [6] compilation introduces
no overhead apart of the unavoidable costs of issuing and
verifying signatures.

Broadcast Communication and Player Failure. We
assume that all communication within the protocol takes
place over reliable (and authenticated) broadcast channel,
where all the non-faulty players have the same view of the
broadcasted message (which can be null if the sender is
faulty). We assume weak synchrony, i.e., the players have
synchronized clocks and execute the protocol in synchronized
rounds, and the messages from the non-faulty players must
arrive within some time window, which we assume is large
enough to accommodate clock skews and reasonable com-
munication delays. The assumption of reliable broadcast
communication might be realistic for certain communication
scenarios, e.g. Ethernet or wireless communication between
close-by players. Otherwise, reliable broadcast must be im-
plemented via a consensus protocol.

We assume an honest but curious adversary which can ad-
ditionally impose arbitrary stop faults on the (otherwise hon-
est) players participating in the protocol. In other words, we
do not consider a Byzantine adversary. (We note, however,
that using standard zero-knowledge proofs our protocols can
easily be strengthened to tolerate malicious insiders at small
constant factor increase in communication and computation
cost.) Additionally, the adversary can make each player stop
at an arbitrary moment in the protocol execution, but any
such node failure cannot violate the contract imposed by the
reliable broadcast assumption. Throughout the paper we as-
sume that these stop faults are scheduled in arbitrary way
by the adversary, except in the last section when we consider
a weaker model of random faults which occur independently
at every node with some fixed probability.

Definition 1. (GKA Security) Consider an adversary
algorithm A which observes an execution of the GKA pro-
tocol between n honest players, and, depending on bit b, is
given the session key computed by this protocol (if b = 1) or
a value chosen at random from the same domain as the ses-
sions keys (if b = 0). The adversary A outputs a single bit
b′. We define adversary’s advantage in attacking the GKA
protocol as:

Adv
GKA

A = |Pr[b′ = b]− 1/2 |

where the probability goes over the random execution of the
protocol, the adversary A, and the random choice of bit b.

We call a GKA protocol (ǫ, t)-secure if for all adversaries
A who run in time t it holds that Adv

GKA

A ≤ ǫ.

3. CRYPTOGRAPHIC SETTING
Let G be a cyclic group of prime order q, and let g be its

generator. We assume the DDH and Square-DDH problems
are hard in G. For example, G could be a subgroup of order
q in the group of modular residues Z

∗
p s.t. p − 1 divides q,

|p| = 1024 and |q| = 160, or it can be a group of points on
an elliptic curve with order q for |q| = 160. For more ex-
amples of groups where DDH and square-DDH assumptions
are assumed to hold see [2].

Definition 2. The DDH problem is (ǫ, t)-hard in G if for
every algorithm A running in time t we have:

| Pr[x, y ← Zq : A(g, gx, gy, gxy) = 1] −

Pr[x, y, z ← Zq : A(g, gx, gy, gz) = 1] | ≤ ǫ

Definition 3. The Square-DDH problem is (ǫ, t)-hard in
G if for every A running in time t we have:

| Pr[x← Zq : A(g, gx, gx2

) = 1] −

Pr[x, z ← Zq : A(g, gx, gz) = 1] | ≤ ǫ

4. ROBUST GROUP KEY AGREEMENT
PROTOCOLS

We describe our two-rounds robust GKA protocol that tol-
erates T faults with O(T)-sized messages, in three steps: In
Sections 4.1 and 4.2, solely for presentation purposes, we
explain how the non-robust GKA protocol of Burmester-
Desmedt (BD) [4] generalizes to a (fully) robust 2-round
GKA protocol at the cost of increasing the length of the
constant-sized messages of the BD protocol to O(n2)-sized
messages. We call this robust generalization of the BD pro-
tocol BD-RGKA and show that the protocol remains secure
under the same DDH assumption required for the underly-
ing BD protocol. Next, in Section 4.3, using the technique of
node-doubling we show that the BD-RGKA protocol can be
modified to retain full robustness with message size reduced
to 2n group elements. Moreover, with randomness re-use
we can further reduce the message size to just n group el-
ements per player. We call the resulting protocol RGKA
and show that it is secure under the Square-DDH assump-
tion. This leads to our main contribution, the T-RGKA
protocol shown in Section 4.4.1, which is a version of the
above RGKA protocol in which each player broadcasts only
2T group elements. This protocol remains secure under the
same Square-DDH assumption, but its resilience is reduced
to O(T) faults. (More precisely, the T-RGKA protocol tol-
erates all faults except two separate sequences of T or more
consecutive faults.) Finally, we exemplify the usefulness of
the efficiency vs. fault-tolerance trade-off offered by the T-
RGKA protocol by showing that it implies a fully robust
GKA protocol with 2 + δ expected rounds and messages of
size O(log n + log(1/δ)), if the node faults are random and
occur at a constant rate.

4.1 Overview: Adding Robustness to
Burmester-Desmedt GKA

Since our fault-tolerant protocol is based on the GKA pro-
tocol proposed by Burmester and Desmedt (BD) [4], we need
to first overview the BD GKA protocol to describe our modi-
fications of it. The BD GKA protocol proceeds in two rounds
(see Figure 1): First each player Pi broadcasts a public coun-
terpart zi = gti of its contribution ti to the key. In the sec-
ond round each Pi broadcasts X[i−1,i,i+1] = gtiti+1−ti−1ti

(which it can compute as X[i−1,i,i+1] = (zi+1/zi)
ti). Given

the set of values X[n,1,2], X[1,2,3], ..., X[n−1,n,1], each player Pi

can use its contribution ti to locally compute the common
session key sk = gt1t2+t2t3+...+tnt1 .

We will call value X[i−1,i,i+1] a gadget, the titi+1 part of
its exponent the left hand, and the ti−1ti part of the expo-
nent, which is multiplied by minus one, the right hand of

[Round 1]:

Each player Pi picks a random ti ∈ Zq and broad-
casts zi = gti .

[Round 2]:

Each Pi broadcasts its gadget value X[i−1,i,i+1] =

(zi+1/zi−1)
ti , where the indices are taken in a cycle.

[Key Computation]:

Each Pi computes the key as ski = (zi−1)
nti ·Xn−1

i ·
Xn−2

i+1 · · ·Xi−2, where Xi = X[i−1,i,i+1].

(Note that for all i we have ski = gt1t2+t2t3+...+tnt1 .)

Figure 1: Burmester-Desmedt’s Group Key Agree-
ment Protocol (BD GKA)

this gadget. A gadget X[i−1,i,i+1] corresponds to a path of
length two connecting nodes Pi−1, Pi, and Pi+1. Using this
graph terminology, we say that two gadgets are connectable
if the left hand of one gadget is the same as the right hand
of the other. For example, for every i, gadgets X[i−1,i,i+1]

and X[i,i+1,i+2] are connectable. We say that a sequence of
gadgets forms a path through the graph if each two consecu-
tive gadgets in the sequence are connectable. By inspecting
the formula for deriving the secret key in the BD GKA pro-
tocol we can observe that each player derives the same key
because the set of gadgets broadcasted in the second round
of the protocol forms a Hamiltonian cycle (a.k.a. a “circu-
lar path”) through the graph of all players. In Figure 2 we
show an example of four gadgets X[4,1,2], X[1,2,3], X[2,3,4],
and X[3,4,1], created by the BD GKA protocol executed in a
group of four players.

1

2
2 3

3

1

3

4
1

3

4

4

1

2

41

2

4

Gadgets X[4,1,2], X[1,2,3], X[2,3,4], X[3,4,1], sent in a BD
GKA protocol involving four players, form a
Hamiltonian cycle in the graph of four nodes.

Figure 2: Gadgets in a BD GKA Protocol for n = 4

Idea for Adding Robustness to the BD GKA Proto-
col. The reason why the BD GKA protocol is not robust
against any single fault is that missing a gadget would break
the circular path in the graph of players, and without a se-
quence of connectable gadgets which covers the set of all
nodes it’s not clear how to compute a common secret key.
However, such a circular path would always exist if in the
second round the players sent out additional gadget values
in such a way that even if some players exhibit faults in the
broadcast stage the gadgets broadcasted by the alive players
can be ordered so that they form a circular path through all
alive players. This indeed would trivially be the case if in-
stead of broadcasting just the X[i−1,i,i+1] gadget, each player

Pi broadcasted n2 gadgets X[k,i,j] for all k, j in [1, ..., n]: For
any set of alive players which complete this broadcast round,
one can form a circular path which transverses all of them
from the gadgets broadcast by these players.

4.2 Robust GKA with O(n2) Message Size
We show the GKA protocol which follows the above idea,

denoted BD-RGKA, in Figure 3. The protocol is robust
against any set of faults, and it remains secure under the
same DDH assumption used by the basic BD GKA protocol.
In other words, broadcasting all the additional information
in the second round does not diminish the security of the
protocol.

Note that in the BD GKA protocol the session key sk =
gt1t2+t2t3+...+tnt1 is computed according to a fixed circu-
lar order among the participating players while in the BD-
RGKA protocol the session key is computed as sk = gta1

ta2
+

+ta2
ta3

+...+tam ta1 , where Pa1
, ..., Pam are players which re-

main alive after the second broadcast round. Note that since
we assume reliable broadcast and synchrony, each player has
the same view of the list of alive players and their messages.
The alive players are ordered s.t. a1 < a2 < ... < am, but
this order is arbitrary: It can be determined by player id’s,
but it can also be determined, for example, according to the
zi values sent in the first round of the protocol.

[Round 1]:

1.1 Each Pi picks a random ti ∈ Zq and broadcasts
zi = gti .

[Round 2]:

2.1 Let ActiveList be the list of indices of all players
who complete Round 1.

2.3 Each Pi computes X[k,i,j] = (zj/zk)ti for all
pairs (k, j) s.t. k, j ∈ ActiveList and k 6= j.

2.3 Each Pi broadcasts {X[k,i,j]}k,j∈ActiveList.

[Key Computation]:

3.1 Let ActiveList be the list of indices of all players
who complete Round 2.

3.2 Each Pi sorts the players in ActiveList in the
same order; wlog, we assume that the live players
are ordered as {Pa1

, ..., Pam}, where m ≤ n.

3.3 Each Pai
computes the session key skai

=
(zai−1

)m·tai ·Xm−1
ai
·Xm−2

ai+1
·· · · ·Xai−2

, where Xai
=

X[ai−1,ai,ai+1].

(Note that skai
= gta1

ta2
+ta2

ta3
+...+tamta1 .)

Figure 3: The BD-RGKA Protocol: Robust GKA
with O(n2)-sized Messages

For the proof of the following theorem, see Section 6.

Theorem 1. Assuming that the DDH problem is (ǫddh, tddh)-
hard in group G, the BD-RGKA protocol is a (ǫ′, t′)-secure
Group Key Agreement for ǫ′ ≤ n2 ·ǫddh and t′ = tddh−O(n2) ·
tex, where tex is the cost of exponentiation in G.

4.3 Robust GKA with O(n) Message Size

Step 1: n2 → 2n Reduction by Node-Doubling. The
BD-RGKA protocol achieves full robustness by increasing

the message size by a factor of n2, but this overhead can
be reduced to the factor of n as follows. In the BD-RGKA
protocol every player Pi created n2 separate gadgets X[k,i,j],
for every pair Pk, Pj of a possible left and a possible right
neighbor in the cycle that eventually spans all the players
remaining alive. We can decrease the number of gadgets
created by every player to 2n and yet handle any possible
pattern of node failure if we split each network node into two
nodes, and we ask every player Pi to operate on behalf of
two consecutive nodes U2i−1 and U2i. The gadgets Pi creates
correspond to n gadgets of the form X[2k,2i−1,2i] , for all k,
which are made “on behalf of” node U2i−1, and n gadgets
of the form X[2i−1,2i,2j−1] , for any j, made “on behalf of”
node U2i. In other words, all gadgets made for U2i−1 have
U2i fixed as their right neighbor and all gadgets made for
U2i have U2i−1 fixed as their left neighbor. In this way, the
protocol can still handle any set of player failures because,
for any i, nodes U2i−1 and U2i either both fail or they are
both alive, since both are operated by the same player Pi.

1P

2P 3P

in

out

out

1P

2P 3P

out

in

in

(a) General Model (b) Node-doubling Model

Figure 4: Two different models of fully connected
network for 3 players.

Figure 4 shows pictorially how this node-doubling tech-
nique works. We show the edges between the nodes as di-
rected edges, and every pair of edges (Pk, Pi) and (Pi, Pj)
corresponds to a gadget X[k,i,j]. In part (a) we see the reg-
ular graph made by 3 players each operating a single node,
and in part (b) we see the same set of players but now each
player Pi operates two nodes, the in node U2i−1 and the out
node U2i. Each in and out pair within the same player is
connected by an edge, and each in node has n − 1 incom-
ing edges while each out node has n − 1 outgoing edges.
Observe that one can form a Hamiltonian cycle connecting
any set of nodes Pa1

, ..., Pam using a proper set of these
directed edges. Therefore the players can perform the BD-
RGKA protocol where (1) each player Pi plays the part of
two consecutive nodes U2i−1 and U2i, and (2) in step (2.3)
of the protocol player Pi broadcasts a restricted set of gad-
gets, namely X[2k,2i−1,2i] and X[2i−1,2i,2j−1] , for each k and
j. Thus there’s only 2(n − 1) gadgets broadcasted by each
player, and the protocol remains robust against any pattern
of player failures, while the security of this protocol is im-
plied by the security of the BD-RGKA protocol, since the
latter reveals strictly more information.

Step 2: Re-using the Secret Contributions. We can
reduce the message size of the above protocol by a factor of
two by having the two virtual nodes U2i−1 and U2i use the
same secret contributions t2i−1 = t2i. This change implies
that the gadgets created for the in nodes are inverses of the
corresponding gadgets created for the out nodes. If we de-
note the indices of two internal nodes administered by Pi as i
and i′ (instead of 2i−1 and 2i, respectively) and both use the

same contribution, i.e, ti = ti′ , then we have X[i′,i,2k−1] =

(X[2k,i′,i])
−1 because X[i′,i,2k−1] = gtit2k−1−titi′ = (gtiti′−

tit2k−1)−1 = (X[2k−1,i,i′])
−1, but the last term is equal to

(X[2k,i,i′])
−1 because player Pk also sets t2k−1 = t2k. We

show the resulting protocol RGKA in Figure 5, describing
only the substeps which are different from BD-RGKA in Fig-
ure 3. In the protocol description, the indices of node in and
out in Pi are i, i′, respectively.

[Round 1]: same as in BD-RGKA in Figure 3.

[Round 2]: same as in BD-RGKA in Figure 3, except:

2.3 Each Pi broadcasts X[k,i,i′] = (zi/zk)ti for all

k ∈ ActiveList. Define X[i,i′,k] as (X[k,i,i′])
−1.

[Key Computation]: same as in BD-RGKA, except:

3.3 Each Pai
computes skai

= (zai−1
)m·tai ·Xm−1

ai
·

Xm−2
ai+1

· · · · ·Xai−2
as in the BD-RGKA protocol,

but here Xai
is defined as Xai

= X[ai−1,ai,ai′]
·

X[ai,ai′ ,ai+1].

(Note that the resulting key is exactly as in BD-RGKA

protocol because Xai
= gtai

tai+1
−tai−1

tai .)

Figure 5: The RGKA Protocol: Robust GKA with
O(n)-sized Messages

The adversary’s view of the RGKA protocol is similar to a
subset of adversary’s view of the BD-RGKA protocol, but it
is not the same because in this version of the BD-RGKA pro-
tocol the contributions of two consecutive nodes are equal.
Therefore the new protocol requires a separate security ar-
gument to show that this pattern of correlations between
players’ contributions does not impinge on the security of
the agreed-on key, and we show that the protocol is indeed
secure, but under the Square-DDH assumption instead of the
standard DDH assumption. For the proof of the following
theorem, see Section 6.

Theorem 2. Assuming that the Square-DDH problem is
(ǫ, t)-hard in group G, protocol RGKA is a (ǫ′, t′)-secure
Group Key Agreement for ǫ′ ≤ (n2 + n) · ǫ and t′ = t −
O(n2) · tex, where tex is the cost of exponentiation in G.

4.4 Further Reduction of Message Size
In this section we show two robust GKA protocols, T-

RGKA and RGKA’. The first protocol, T-RGKA, is the
main contribution of this paper, and it is a 2-round pro-
tocol with O(T)-sized messages which tolerates up to T fail-
ures for any T < n. (In fact, it tolerates a much larger
class of failures, as explained below.) Second, we use this
T -robust protocol to construct a fully robust GKA protocol
RGKA’, with O(log n + log(1/δ)) communication complex-
ity and with expected 2 + δ number of rounds, assuming
the random fault model where each player can fail with some
fixed constant probability ν. The RGKA’ protocol simply
repeats the T-RGKA protocol, with T set to approximately
(log n + 1/2 log(1/δ))/(log(1/ν)), until the T-RGKA proto-
col succeeds. Intuitively, T is set in such a way that the
chance that the T-RGKA protocol fails is about 1/δ, so that
the expected number of protocol repetitions until success is
δ, resulting in 2 + δ expected number of rounds.

4.4.1 T-robust GKA with O(T) Message Size
Here we describe a partially robust GKA protocol T-RGKA

which has O(T)-sized messages and tolerates all patterns of
player faults except if there are two separate sequences of con-
secutive players who all fail and both sequences have at least
T players. Thus in particular the protocol is secure against
any set of 2T failures. The T-RGKA protocol is a very simple
modification of the RGKA protocol of the previous section:
The T-RGKA protocol proceeds just like BD-RGKA, except
each player Pi broadcasts only T gadgets instead of n − 1,
namely it broadcasts only gadgets X[k,i,i′] for |k − i| ≤ T ,
instead of for all k. (We assume, for simplicity of notation,
that all players successfully pass the first round of the proto-
col.) Using graph terminology, the gadgets created by each
player form a partially connected graph instead of a fully
connected graph. More precisely, the resulting graph is the
T -th power of circle among n nodes, denoted CT

n :

Definition 4. The Tth power of a graph G, denoted GT ,
is a transitive closure of graph G applied T times. Namely,
G1 = G, and GT is defined recursively for every T ≥ 2 as
follows: (u, v) ∈ GT if and only if either (u, v) ∈ GT−1 or
there exists w s.t. (u, w) ∈ GT−1 and (w, v) ∈ G. Hence the
Tth power of a circle, CT

n is defined as CT
n = {(i, j) s.t. |j −

i| ≤ T}.

For example, here are graphs C1
10, C2

10, and C3
10:

(a) 1
10C (b) 2

10C (c) 3
10C

Figure 6: Examples of the T -th power of a circle.

In the T th power of a circle, there is always a circular path
that connects all alive players unless T consecutive players
fail. For example, assuming the players are indexed as 1,...,10
in order, if players 1, 2, 5, and 7 are faulty in C3

10 then one
of possible circular paths connecting the remaining nodes is
3− 4− 6− 8− 9− 10− 3.

However, the resulting algorithm in fact can handle a
larger class of failures. Namely, it can withstand all fail-
ures except of two separate sequences of consecutive T (or
more) failures. To enable this stronger robustness we relax
the way the key is computed, so that the key is associated not
necessarily with a Hamiltonian cycle but just with a Hamil-
tonian path through the graph. To make minimal changes
to the algorithm, we can identify Hamiltonian paths with
cycles in which every node is visited twice: once in the for-
ward direction and then once more on the way back. For
example, if 4 consecutive players 1, 2, 3, and 4 are faulty
in C1

10, there is a Hamiltonian path 5 − 6 − 7 − 8 − 9 − 10
among the remaining players, and the corresponding “cycle”
is 5 − 6 − 7 − 8 − 9 − 10 − 9 − 8 − 7 − 6 − 5. This change
enables robustness against a larger class of failures because
given any subset of alive players S in the T th power of a
circle CT

n , there is always a Hamiltonian path that connects
the players in S except when the set of faulty players CT

n \S
includes two separate sequences of nodes, each containing T

(or more) nodes. We depict the resulting T-RGKA protocol
in Figure 7.

[Round 1]: same as in RGKA in Figure 5.

[Round 2]: same as in RGKA in Figure 5 except:

2.3 Each Pi broadcasts X[k,i,i′] = (zi/zk)ti for T
nearest neighbors to the right and T nearest neigh-
bors to the left among players k ∈ ActiveList.

[Key Computation]: same as in RGKA in Figure 5,
except that the cycle through the alive nodes can
be constructed either from a true Hamiltonian cycle
or from a Hamiltonian path taken twice (see an
example in the text above). Wlog, we assume that
the path is formed as {Pa1

, Pa2
, · · · , Pam}, where

for some i, j we can have ai = aj .

Figure 7: The T-RGKA Protocol: T -robust GKA
with O(T)-Sized Messages

The security of the T-RGKA protocol which uses a Hamil-
tonian cycle to compute the key is implied by the security
argument for the BD-RGKA protocol. If the T-RGKA pro-
tocol constructs a key by making an artificial cycle from a
Hamiltonian path taken twice, as explained above, a very
similar security argument still applies: The only difference
is that the resulting key contains each contribution of the
form tai

tai+1
twice, but that corresponds to squaring the key

that is created if a true Hamiltonian path is used instead.
Since squaring in a prime-order group is a permutation of
the group elements, the security argument given for the BD-
RGKA scheme implies the security of the key computed in
this way as well.

4.4.2 Fully Robust GKA Protocol with O(log n) Mes-
sages in the Random Fault Model

In this section, we show another robust GKA protocol,
called RGKA’, which is fully robust but not constant-round.
RGKA’ simply repeats the T-RGKA protocol above, with
some parameter T , which we fix below, until T-RGKA suc-
ceeds. (In fact, only the second round of the T-RGKA proto-
col needs to be repeated, since the security of the BD-RGKA
protocol implies that the same contribution ti can be used
in all these instances of the T-RGKA protocol.) Repeating
the protocol increases the number of rounds and the pro-
tocol communication complexity. However, we will argue
that if the faults are random and occur with rate ν, then
for any parameter δ, the expected number of rounds in the
RGKA’ protocol can be 2+ δ, and the expected communica-
tion complexity per player can be 2(T + δ) group elements,
for T = O((log n + log(1/δ))/ log(1/ν)). Assuming that the
node faults are random and that they are independent of
each other might seem unrealistic, but recall that the order
among the participating players can be determined by the
messages sent in the first round of the protocol, and there-
fore the usual dependencies between failures of nodes which
are physical neighbors do not apply to the neighbors in the
logical order created by in the protocol.

We claim that if we set T ≈ (log n+1/2 log(1/δ))/ log(1/ν)
then the expected number of rounds in RGKA’ is 2+δ. Since
a T-RGKA protocol succeeds exists except if at least two
sequences of T consecutive nodes fail, the probability that
a single execution of the T-RGKA protocol fails is upper-

bounded by

f ≤ n2/2 ∗ ν2T (1)

The expected number of rounds is then δ = 2(1/(1−f))−2 =
2f/(1 − f) ≈ 2f . Therefore by equation 1, we can upper-
bound threshold T necessary to achieve parameters δ and ν
as T ≤ (log n + 1/2 log(1/δ))/ log(1/ν).

5. EFFICIENCY ANALYSIS
We first summarize the relevant aspects of protocol effi-

ciency.

Performance Criteria.

• Resilience: the number or pattern of faults that the
protocol tolerates.

• Round Complexity: the number of rounds.

• Communication Complexity: the (expected) total
bit-length of all messages sent in the protocol. (Since
we assume a broadcast communication medium, we
measure the bit-length of messages sent over a broad-
cast channel.)

• Computational Complexity: the amount of com-
putation that must be performed per player in the pro-
tocol. We will restrict ourselves to counting only the
number of cryptographic operations (e.g. exponentia-
tions and public-key operations) since these operations
dominate the computational cost.

We compare the protocols we propose with non-robust BD
protocol [4] and the encryption-based group key agreement
protocol - the simplified version of CS protocol [5]. (Re-
fer to Section 1.) Table 1 compares efficiency of the BD,
the encryption-based GKA, denoted by “CS”, and the BD-
RGKA, RGKA, T-RGKA, and RGKA’ protocols shown in
the previous section. Of these six protocols, BD is not ro-
bust against even a single failure, T-RGKA is robust against
at least 2T failures (see subsection 4.4.1 above for the exact
robustness condition), and all others are fully robust. The
costs of all the protocols except RGKA’ are independent of
the failure pattern, while the efficiency parameters given for
the RGKA’ protocol are expected values, where the expecta-
tion is taken given random player faults, occurring at some
fixed rate given by constant ν.

Throughout the comparison we assume the same commu-
nication model of reliable broadcast and weak synchrony. We
denote the number of players participating in the protocol
as n. In measuring the broadcast communication complex-
ity, we use t, the security parameter, to denote the size of a
single group element and/or a public-key ciphertext, since in
practice these are comparable. For the computation costs,
pk stands for public key operations, such as encryption and
decryption, and ex stands for an exponentiation operation
in group G.

The conclusion we’d like to draw from this comparison is
the following. First of all, all protocols run in two rounds,
and RGKA’ runs in expected 2 + δ rounds, for any δ, if T is
set as O(log n+ log(1/δ)). (See Section 4.4.2 above for more
discussion.) Given the comparable round complexities, the
remaining important criterion is communication complex-
ity. (It is also computational complexity per player, but as
the table shows, the latter follows the communication very

Rounds Communication Computation

BD 2 2nt 3 ex

CS 2 (n + n2)t 2n pk

BD-RGKA 2 n3t n2 ex

RGKA 2 n2t n ex
T-RGKA 2 (1 + 2T)nt (2 + 2T) ex
RGKA’ 2 + δ O(log n, log(1/δ))nt O(log n) ex

Table 1: Complexity Comparison between provably secure protocols for robust GKA protocols.

closely). In this aspect, the O(log n) communication com-
plexity of the RGKA’ protocol is vastly superior over the
O(n) complexity of the CS protocol. In exact terms, the
communication complexity of the RGKA’ protocol is very
close to 2T + 1 group elements, where T is approximately
(log n + log(1/δ))/ log(1/ν). For example, if the player fail-
ure probability ν is bounded by 0.1 and n = 103, the T-
RGKA protocol works successfully with probability at least
99% (in which case the expected number of rounds in RGKA’
is about 2.01), with only T = 4. If ν = 0.01 and everything
else is the same then already T = 2 is enough. If the player
failure probability is very high, e.g. ν = 0.5, our T grows only
to T = 13, and the message size of 2T group elements is still
very small compared to the O(n) message sizes incurred by
the CS protocol.

BD’
CS
RGKA’ 3 4 5 6

log n

10

20

30

40

50
Message Size

Figure 8: Message Size Comparison with ν = 1/4

BD’
CS
RGKA’ 1 2 3 4 5 6 7

log 1/v

5

10

15

20

Message Size

Figure 9: Message Size Comparison with n = 10

We also compare RGKA’ with CS and repeated BD, called
BD’, for (n, ν) pairs. BD’ simply repeats the BD protocol
until BD succeeds. In particular, we extract T value op-
timal in message size for each (n, ν) pair and compare the
message size. We do not compare round complexities but
the expected number of rounds in the RGKA’ protocol is at
most about 2.1 for optimal T values, assuming player fault

BD’

CS

RGKA’

log 1/v

log n

Figure 10: Best Scheme from the point of view of
Communication Complexity

rate ν of at most 1/2. On the other hand, for large ν and/or
n values, the round complexity of the BD’ protocol can be
very high.

Figure 8 shows the message sizes of each protocol for dif-
ferent n’s and a fixed ν, taking ν = 1/4 as an example. The
message size in BD significantly increases, that in CS less,
and that in RGKA’ is the least. Figure 9 shows the message
sizes of each protocol for different ν’s and a fixed n, taking
n = 10 as an example. BD’ provides slightly better commu-
nication complexity than RGKA’ for low rate of faults, but
its performance significantly degrades for higher fault rates.

Figure 10 shows which protocol outperforms the others
in terms of communication complexity, for different (n, ν)
parameters. CS has the smallest message size only if ν is
very high while BD’ outperforms the other schemes at very
low fault rates. However, even there the RGKA’ protocol
has only slightly higher message complexity, while it beats
BD’s in expected round complexity.

6. SECURITY PROOFS
In this section we show the proofs of the security claims

about the robust GKA protocols presented in Section 4.

6.1 Theorem 1: Security of the BD-RGKA Pro-
tocol

Proof. Consider adversary’s view of a single execution of
the BD-RGKA protocol among n players. Let {Pa1

, ..., Pam}
be the set of live players in the final key computation step.
The joined distribution of the transcript T of the protocol
and the resulting session key sk is as follows. (To simplify
notation we define Xai

= Xai−1,ai,ai+1
.)

Real =8>>>>>>><>>>>>>>: t1, ..., tn ← Zq; z1 = gt1 , ..., zn = gtn

X2,1,3 = gt3t1

gt2t1
,, Xn−2,n,n−1 = g

tn−1tn

g
tn−2tn

T = (z1, ..., zn, X2,1,3, ..., Xn−2,n,n−1)

sk = (gta1
ta2)m

· (Xa2
)m−1

· · ·Xam

: (T, sk)

9>>>>>>>=>>>>>>>; .

Consider the following modified distribution Fake1, which is
like Real, except that all occurrences of t1t2 are replaced by
c1,2.

Fake1 =8>>>>>>>>><>>>>>>>>>: c1,2, t1, ..., tn ← Zq; z1 = gt1 , ..., zn = gtn

X2,1,3 = gt3t1

g
c1,2

,, Xn−2,n,n−1 = g
tn−1tn

g
tn−2tn

T = (z1, ..., zn, X2,1,3, ..., Xn−2,n,n−1)

sk =

�
(gca1,a2)m

· (Xa2
)m−1

· · ·Xam if (a1, a2) = (1, 2);

(gta1
ta2)m

· (Xa2
)m−1

· · ·Xam Otherwise.

: (T, sk)

9>>>>>>>>>=>>>>>>>>>; .

A standard reduction argument shows that for any algo-
rithm A′ running in time tddh −O(n2) · ǫex we have:

|Pr[(T, sk) ← Real : A′(T, sk) = 1] − Pr[(T, sk) ← Fake1 :
A′(T, sk) = 1]| ≤ ǫddh.

We next make the following additional modification Fake2,
which is like Fake1, except that all occurrences of t1t3 are
replaces by c1,3.

Fake2 =8>>>>>>>>>>><>>>>>>>>>>>: c1,2, c1,3, t1, ..., tn ← Zq; z1 = gt1 , ..., zn = gtn

X2,1,3 = g
c1,3

g
c1,2

,, Xn−2,n,n−1 = g
tn−1tn

g
tn−2tn

T = (z1, ..., zn, X2,1,3, ..., Xn−2,n,n−1)
sk =�
(gca1,a2)m

· (Xa2
)m−1

· · ·Xam if (a1, a2) = (1, 2) or (1, 3);

(gta1
ta2)m

· (Xa2
)m−1

· · ·Xam Otherwise.

: (T, sk)

9>>>>>>>>>>>=>>>>>>>>>>>; .

Again, a standard argument shows that for any algorithm
A′ running in time tddh −O(n2) · ǫex we have:

|Pr[(T, sk)← Fake1 : A′(T, sk) = 1]− Pr[(T, sk)← Fake2 :
A′(T, sk) = 1]| ≤ ǫddh.

Proceeding in the similar way, since the number of all pos-
sible DH tuples is n(n − 1)/2, we acquire the following dis-
tribution:

Faken(n−1)/2 =8>>>>>><>>>>>>: c1,2, c1,3, ..., cn−2,n, cn−1,n, t1, ..., tn ← Zq ; z1 = gt1 , ..., zn = gtn

X2,1,3 = g
c1,3

g
c1,2

,,Xn−2,n,n−1 = g
cn−1,n

g
cn−2,n

T = (z1, ..., zn, X2,1,3, ..., Xn−2,n,n−1)
sk = (gca1,a2)m

· (Xa2
)m−1

· · ·Xam

: (T, sk)

9>>>>>>=>>>>>>; .

It follows, by the standard hybrid argument, for any A′

running in time tddh −O(n2) · ǫex we have:

|Pr[(T, sk)← Real : A′(T, sk) = 1]−Pr[(T, sk)← Faken(n−1)/2 :

A′(T, sk) = 1]| ≤ n(n−1)
2
· ǫddh.

(2)

In experiment Faken(n−1)/2, the values c1,2,...,cn−1,n are
constrained by T according to the following n(n−1)(n−2)/2
equations:

logg X2,1,3 = c1,3 − c1,2

logg X2,1,4 = c1,4 − c1,2

logg X2,1,5 = c1,5 − c1,2

...
logg Xn−3,n,n−2 = cn−2,n − cn−3,n

logg Xn−3,n,n−1 = cn−1,n − cn−3,n

logg Xn−2,n,n−1 = cn−1,n − cn−2,n

Fact 1. In the above set of equations, there are at most
n(n− 1)/2 − 1 linearly independent equations.

Proof. Set n(n− 1)(n− 2)/2 to be lr and n(n− 1)/2 to
be lc. We rewrite the set of the above lr equations using a
single lr × lc matrix equation:

b = Ax

where b = (logg X2,1,3, logg X2,1,4, · · · , logg Xn−2,n,n−1), x =
(c1,2, c1,3, · · · , cn−2,n, cn−1,n),

A =

0BBBBBBB� −1 1 0 0 · · · 0
−1 0 1 0 · · · 0
−1 0 0 1 · · · 0

...
0 · · · −1 0 1 0
0 · · · −1 0 0 1
0 · · · 0 0 −1 1

1CCCCCCCA .

To compute the number of linearly independent equations,
we compute the dimension of either the row space or the
column space of A. Note that for a matrix, the row space
and the column space have the same dimension (called the
rank of the matrix). Since there are fewer columns than
rows, we consider the column space. The matrix A can be
represented by lc vertical lr-vectors, i.e.,

A = (v1, v2, ..., vlc)

where vi is the i-th column vector. Since

v1 + v2 + ... + vlc = 0,

one of the column vectors can be expressed by the rest of
the vectors, e.g , v1 = −v2 − v3 − ... − vlc . Therefore, the
rank of A, rank(M) ≤ lc − 1, where lc = n(n− 1)/2.

Fact 2. In the above set of equations, there are at least
n(n− 1)/2 − 1 linearly independent equations.

Proof. Given a solution of any variable, e.g, ci,j , all the
other variables can be solved as well: Note that ci,j leads
to c1,i, · · · , cn,i from equations of Xk,i,j where k 6= i, k < j
and Xj,i,k where k 6= i, k > j. In this way we can compute
all the remaining variables c1,2, · · · , cn−1,n. Therefore, since
given a solution to one variable ci,j all other n(n− 1)/2− 1
variables in the x vector can be recovered given b = Mx, the
rank of M must be at least n(n− 1)/2− 1.

Finally, sk is defined as gca1,a2
+ca2,a3

+···+cam,a1 ; equivalently,
we have

logg sk = ca1,a2
+ ca2,a3

+ · · ·+ cam,a1

This equation is independent from the set of equations de-
termining all the values X. The reason is as in Fact 2 above:
Given the value logg(sk) and the vector b of X values allows
one to recover at least one variable ci,j (e.g. the sum of the
first n − 1 rows and logg(sk) reveals c1,2, which, following
the observation of Fact 2, leads to a recovery of all the other

variables c in vector x. Since all n(n−1)/2 variables c can be
recovered from values X together with sk, matrix M together
with the equation for sk must have rank n(n−1)/2. Since by
Facts 1 and 2 matrix M by itself has rank n(n− 1)/2− 1, it
follows that the equation for sk is linearly independent from
the others. Consequently, key sk must be distributed inde-
pendently from view T. This implies that for any adversary
A we have:

Pr[(T, sk0)← Faken(n−1)/2; sk1 ← G; b← {0, 1} : A′(T, skb)
= b] = 1/2.

In other words, no adversary can tell a real from random
key in game Faken(n−1)/2. Since by equation (2) we know that
views Real and Faken(n−1)/2 are distance n(n− 1)/2 apart, a
simple hybrid argument implies that for any algorithm A′

running in time tddh −O(n2) · ǫex we have:

|Pr[(T, sk0)← Real; sk1 ← G : A′(T, sk0) = 0]−Pr[(T, sk0)
← Real; sk1 ← G : A′(T, sk1) = 1]| ≤ n(n− 1) · ǫddh.

6.2 Theorem 2: Security of the RGKA Protocol

Proof. The proof is similar with that of Theorem 1, ex-
cept the square-DDH assumption is additionally required in
the hybrid argument. Again we denote the set of live players
in the final key computation step by {Pa1

, ..., Pam} where
m ≤ n. To simplify notation we define Xai

=Xai−1,ai,ai
·

Xai,ai,ai+1
. The distribution of the transcript T and the

resulting session key sk is given by:

Real =8>>>>>>><>>>>>>>: t1, ..., tn ← Zq; z1 = gt1 , ..., zn = gtn

X1,1,2 = gt2t1

g
t2
1

, X1,1,3 = gt3t1

g
t2
1

,, Xn,n,n−1 = g
tn−1tn

g
t2n

T = (z1, ..., zn, X1,1,2, X1,1,3, ..., Xn,n,n−1)

sk = (gta1
ta2)m

· (Xa2
)m−1

· · ·Xam

: (T, sk)

9>>>>>>>=>>>>>>>; .

Consider the following modified distribution Fake1, which is
like Real, except that all occurrences of t1t2 are replaced by
c1,2.

Fake1 =8>>>>>>>>><>>>>>>>>>: c1,2, t1, ..., tn ← Zq; z1 = gt1 , ..., zn = gtn

X1,1,2 = g
c1,2

g
t2
1

, X1,1,3 = gt3t1

g
t2
1

,, Xn,n,n−1 = g
tn−1 tn

g
t2n

T = (z1, ..., zn, X1,1,2, X1,1,3, ..., Xn,n,n−1)

sk =

�
(gca1,a2)m

· (Xa2
)m−1

· · ·Xam if (a1, a2) = (1, 2);

(gta1
ta2)m

· (Xa2
)m−1

· · ·Xam Otherwise.

: (T, sk)

9>>>>>>>>>=>>>>>>>>>; .

A standard argument shows that for any algorithm A′ run-
ning in time tddh −O(n2) · ǫex we have:

|Pr[(T, sk) ← Real : A′(T, sk) = 1] − Pr[(T, sk) ← Fake1 :
A′(T, sk) = 1]| ≤ ǫddh.

Proceeding in the similar way, since the number of all pos-
sible DH tuples is n(n − 1)/2, we acquire the following dis-
tribution:

Faken(n−1)/2 =8>>>>>>><>>>>>>>: c1,2, · · · , cn−1,n, t1, ..., tn ← Zq; z1 = gt1 , ..., zn = gtn

X1,1,2 = g
c1,2

g
t2
1

, X1,1,3 = g
c1,3

g
t2
1

,, Xn,n,n−1 = g
cn−1,n

g
t2n

T = (z1, ..., zn, X1,1,2, X1,1,3, ..., Xn,n,n−1)

sk = (gca1,a2)m
· (Xa2

)m−1
· · ·Xam

: (T, sk)

9>>>>>>>=>>>>>>>; .

By the standard hybrid argument, for any A′ running in
time tddh −O(n2) · ǫex:

|Pr[(T, sk)← Real : A′(T, sk) = 1]−Pr[(T, sk)← Faken(n−1)/2 :

A′(T, sk) = 1]| ≤ n(n−1)
2
· ǫddh.

We next consider the following different modification Fake
′
1,

which is like Faken(n−1)/2, except that all occurrences of t21
are replaced by c1,1.

Fake
′
1 =8>>>>>>><>>>>>>>: c1,1, c1,2, · · · , cn−1,n, t1, ..., tn ← Zq ; z1 = gt1 , ..., zn = gtn

X1,1,2 = g
c1,2

g
c1,1

, X1,1,3 = g
c1,3

g
c1,1

,, Xn,n,n−1 = g
cn−1,n

g
t2n

T = (z1, ..., zn, X1,1,2, X1,1,3, ..., Xn,n,n−1)

sk = (gca1,a2)m
· (Xa2

)m−1
· · ·Xam

: (T, sk)

9>>>>>>>=>>>>>>>; .

Proceeding in the similar way, we replace all t2i by ci,i, and
the final distribution is:

Fake
′
n =8>>>>>>>><>>>>>>>>: c1,1, · · · , cn,n, c1,2, · · · cn−1,n, t1, ..., tn ← Zq ;

z1 = gt1 , ..., zn = gtn

X1,1,2 = g
c1,2

g
c1,1

, X1,1,3 = g
c1,3

g
c1,1

,, Xn,n,n−1 = g
cn−1,n

g
cn,n

T = (z1, ..., zn, X1,1,2, X1,1,3, ..., Xn,n,n−1)
sk = (gca1,a2)m

· (Xa2
)m−1

· · ·Xam

: (T, sk)

9>>>>>>>>=>>>>>>>>; .

By simple reduction argument, for all i:

|Pr[(T, sk)← Fake
′
i : A′(T, sk) = 1]−Pr[(T, sk)← Fake

′
i+1 :

A′(T, sk) = 1]| ≤ ǫsddh.

Taking all the above, by the standard hybrid argument,
for any A′ running in time tsddh −O(n2) · ǫex, we have:

|Pr[(T, sk) ← Real : A′(T, sk) = 1] − Pr[(T, sk) ← Fake
′
n :

A′(T, sk) = 1]| ≤ n(n−1)
2
· ǫddh + n · ǫsddh ≤ n(n + 1)/2ǫsddh

(3)

(The last inequality follows because by trivial reduction
of the DDH problem to the Square DDH problem we have
ǫddh ≤ ǫsddh, for an adversary making two additional expo-
nentiation operations.)

Now, in experiment Fake
′
n, the values c1,1, · · · , cn−1,n are

constrained by T according to the following n(n − 1) equa-
tions:

logg X1,1,2 = c1,2 − c1,1

logg X1,1,3 = c1,3 − c1,1

...
logg X1,n,n−1 = cn−1,n − cn,n

Fact 3. In the set of above equations, there are n(n +
1)/2− 1 linearly independent equations.

We omit the proof of fact 3 because it is based on the same
logic as in the proof of fact 1 and fact 2. Similarly, the fact
that the equation for logg(sk):

logg sk = ca1,a2
+ ca2,a3

+ · · ·+ cam,a1
,

is linearly independent from the above n(n + 1)/2 equations
implies that the value of sk is independent of the view T.
This implies that, for any adversary A:

Pr[(T, sk0) ← Fake
′
n; sk1 ← G; b ← {0, 1} : A(T, skb) =

b] = 1/2.

As in the proof of theorem 1, it follows from the above
equation and equation (3), that for any A′ running in time
tsddh −O(n2 · ǫex), we have:

|Pr[(T, sk0)← Real; sk1 ← G : A′(T, sk0) = 0]−Pr[(T, sk0)←
Real; sk1 ← G : A′(T, sk1) = 1]| ≤ n(n−1)·ǫddh+2n·ǫsddh.

7. CONCLUSION
In this paper, we proposed a novel 2-round Group Key

Agreement protocol that tolerates up to T node failures us-
ing (reliable) broadcasts of O(T)-sized messages. To authors’
knowledge, it is the first GKA protocol that offers a natural
trade-off between message size and the desired level of fault-
tolerance. In particular, we showed that the new protocol
implies a fully-robust group key agreement with O(log n)-
sized messages and expected round complexity close to 2,
assuming random faults. The new protocol is secure under
the (standard) Decisional Square Diffie-Hellman assumption.

8. REFERENCES
[1] Y. Amir, Y. Kim, C. Nita-Rotaru, J. Schultz, J.

Stanton, and G. Tsudik. Exploring robustness in group
key agreement. In Proc. 21st IEEE International
Conference on Distributed Computing Systems, pp.
399.409, 2001.

[2] D. Boneh. The decision Diffie-Hellman problem. In
Proc. of Third Algorithmic Number Theory
Symposium, LNCS vol. 1423, pages 48–63, 1998.

[3] E. Bresson, O. Chevassut, D. Pointcheval, and
J. Quisquater. Provably Authenticated Group
Diffie-Hellman Key Exchange In Proceedings of the 8th
ACM conference on Computer and communications
security (CCS’01), 2001

[4] M. Burmester and Y. Desmedt. A secure and efficient
conference key distribution system. In Advances in
Cryptology - EUROCRYPT 1994, 1994.

[5] C. Cachin and R. Strobl. Asynchronous group key
exchange with failures. In Proc. 23rd ACM Symposium
on Principles of Distributed Computing (PODC 2004),
pages 357-366, July 2004.

[6] J. Katz and M. Yung. Scalable Protocols for
Authenticated Group Key Exchange In Advances in
Cryptology - ASIACRYPT 2003. 2003

[7] Y. Kim, A. Perrig, and G. Tsudik. Group Key
Agreement Efficient in Communication. IEEE
Transactions on Computers, 53(7):905.921, July 2004.

[8] D. Steer, L. Strawczynski, W. Diffie, and M. Wiener.
A Secure Audio Teleconference System. Advances in
Cryptology | Crypto ’98, LNCS vol. 403,
Springer-Verlag, 1990, pp. 520-528.

[9] M. Steiner, G. Tsudik, and M. Waidner. Key
Agreement in Dynamic Peer Groups. IEEE Trans. on
Parallel and Distributed Systems 11(8): 769-780
(2000).

