
A Client Oriented, IP Level Redirection Mechanism�Sumit GuptaA. L. Narasimha ReddyDept. of Elec. Engg.Texas A & M UniversityCollege Station, TX 77843-3128AbstractThis paper introduces a new approach for implementing transparent client access to networkservices. Ever increasing load on the Internet has made it essential to design services thatare fast, reliable, easily manageable, transparent to access, and that can scale gracefully withload. A common way of achieving this has been replicating services across multiple servers andredirecting clients to di�erent servers depending upon various criteria. Existing schemes areeither entirely server or network based. This scheme involves the client network layer actively inredirection. The paper describes the redirection protocol in detail and the basic implementationof the testbed. The performance of the mechanism is measured by experiments on the testbedand analyzed. The advantages and disadvantages of client based network level redirection arediscussed and some useful applications that it enables are described.1 IntroductionThe recent explosive increase in the size and popularity of the Internet is straining both networksand servers. Most Internet sites were originally not designed to handle the request tra�c that theyare experiencing. It has become critical to �nd solutions to alleviate the network and the serverlevel congestion at these sites with high tra�c. A common solution to solve these problems is touse multiple servers to o�er services - a scheme called Service Replication. Schemes have beenproposed that transparently \redirect" a client's service request to one of the replicated servers. Itis possible to improve the quality of the delivered service by redirecting the client more intelligentlybased on the server load or network throughput. These methods perform client redirection at�This work was supported in part by a Texas ATP grant and by an NSF Career Award1

various levels in the protocol stack and at various points in the network. Each method has itsadvantages and limitations.The objective of this paper is to introduce a new approach for transparent redirection of clientsto replicated servers. Almost all existing schemes take an entirely server based approach i.e., allthe work is done by the specialized servers or routers. This work implements a client-orientedredirection scheme that operates in the Internet Protocol (IP) [1, 2] in which the client IP layeris actively involved in the redirection of a local client. A client based IP level scheme not onlyperforms well for tra�c redirection, but with slight modi�cations can be cast into a variety ofpotentially useful scenarios and applications.Section 2 describes some of the existing schemes for client redirection. Section 3 introduces ourapproach. Section 4 goes into the advantages and disadvantages of our scheme as compared to theones described in section 2. Section 5 explains the implementation in detail and section 6 discussesthe results. Section 7 touches upon how such a scheme can be used to enhance the features of avariety of applications on the Internet. Section 8 discusses future work and concludes the paper.2 Background and Related WorkThere are several implementations of client redirection mechanisms available today. The designspace for providing transparent access to scalable network services includes clients, network, routers,and the service site. All the existing mechanisms can be broadly categorized according to the levelin the protocol stack where redirection is implemented and the entity which does most of the work.DNS Server Based Solutions: An example of a DNS (Domain Name Service) [3, 4, 2]level redirection mechanism is the HTTP [5] server prototype developed by the National Centerfor Super-computing Applications [6]. In this scheme, one host-name alias is used for the site. Theauthoritative DNS server for the domain maintains a one-to-many mapping of the server name tothe IP address of each of the servers. When clients send name resolution queries, the name-serverreturns each of the addresses in a round-robin fashion. Clients are served by one of the servers andthe round-robin name resolution may result in balancing the load among the servers. Local cachingby DNS servers makes the load less than perfectly balanced among the servers. Another problemwith round robin DNS schemes is that as DNS servers know nothing about network topology, serveravailability or server capacity (powerful multiprocessor or a low end PC), users might be connectedto a distant, unavailable, or overloaded server.Server Based IP Level Solutions: Both the Magic-router [7] and Local Director [8] fallunder this category. In these schemes, services are replicated across a cluster of machines on asingle subnet with a modi�ed router. Only one logical IP address is advertised for the site and therouter maps the incoming client requests to one of the hidden servers by inspecting and modifying2

the destination IP addresses of all packets going through it. Both techniques provide transparentredirection and load balancing. The TCP router (Transmission Control Protocol Router) [9] takesa very similar approach but con�gures the cluster nodes so that they can send packets directlyback to the client. The front end router is a single point of failure and also can easily becomea bottleneck as the number of clients increases. Moreover, all the servers actually providing theservice have to be geographically localized to be on the hidden internal network which does notgive too much improvement in the quality of service to a distant client if the bandwidth betweenthe site and the client is the bottleneck.Protocol Speci�c Redirection: This refers to redirection mechanisms that use features ofparticular protocols to achieve redirection. For instance, the Distributed Director [10], in its HTTPmode, forces redirection of HTTP requests by issuing a HTTP \302 Temporarily Moved" statuscode to the client, along with the URL for the server. HTTP Redirect Mechanism [5] also providesa protocol speci�c redirection mechanism.Active Networks These schemes place the responsibility and mechanisms for redirection onthe network [11, 12, 13]. Intermediate routers are kept up-to-date about the availability, load etc.of replicated servers and are designed to perform customized computations and modi�cations onpackets owing through them. The routers transparently re-route packets meant for the originalserver to one of the replicas. However, depending on the network topology and the distance ofthe translation point from the client and the replicated server, the packets might undergo dog-legrouting. Moreover, it is di�cult to provide information about servers for each application in therouters, not to mention the amount of memory needed in the router to store this information alongwith translation tables for all the ows through it.Smart Clients: This refers to schemes where the intelligence for redirection is built into theclient applications themselves. One current implementation [14] consists of an API that providesa level of abstraction between a logical service and the physical servers. When a user requestsa service, a bootstrapping mechanism is used to retrieve a service speci�c Java applet which hasinformation about servers o�ering that service, their load, and their availability etc. The currentversions include a web based front end for Telnet and FTP (File Transfer Protocol) to a network ofworkstations. This scheme can provide good load balancing, fault tolerance and has good featureslike generic naming. However, smart client schemes are highly application speci�c. A new frontend has to be designed and deployed for each application.In our scheme, only one IP address is advertised for the site. The server with this IP addressacts as the redirctor and also provides service to some clients. When a client requests service, theserver determines if the client supports our redirection mechanism. If the client has support for thisscheme, then it is redirected to another server using our protocol. If it does not support redirection,the redirector itself provides the requested service. The redirection protocol works at the IP layerand is quite versatile. The exact mechanism is described in detail in the following sections.3

IP Redirection
ICMP

IP

ARP RARP

Network Interface Driver

Network

Application

UDPTCP

IGMP

Figure 1: The Protocol Stack3 The Redirection Protocol3.1 The Big PictureIn this scheme, both the clients and redirector have to be running the IP Redirection protocol(IPRP), which exists at the same level as the Internet Control Message Protocol (ICMP) [15, 2]or the Internet Group Management Protocol (IGMP) [16, 2]. It is conceptually a part of IP, buthas its own protocol number, just like any other transport protocol. Figure 1 shows the logicalpositioning of di�erent protocols in a stack and the place where this redirection protocol �ts in.Broadly, the redirection handshake works as follows: All supporting clients have the ability tocreate and maintain redirection bindings, which specify how a local application should be redirected.When the client contacts the redirector for service, the redirector requests the client IP, through arequest packet, to create a new binding and map packets destined for the redirector to a particularserver. The client then con�rms this binding with the redirector by sending a check message thatincludes a randomly generated key which must be echoed by the redirector for the client to con�rmthe binding. Once the redirector con�rms the binding, all packets of that ow in either directionare translated by the client IP and directly travel between the client and the redirected server.The actual message format is discussed in the next subsection. Figure 2 shows the redirectionhandshake and the level in the protocol stack where each message is processed.Figure 3 shows the format of the redirection messages. The Type �eld is a 16 bit �eld containing4

CLIENT

Application

TCP/UDP

IP

REDIRECTOR

TCP/UDP

IP

x.y.z.1

Replicated Server IP Address - x.y.z.2

 IPRP_REDR

IPRP_REQ, x.y.z.2

IPRP_CHK, x.y.z.2, KEY

IPRP_CFM, x.y.z.2, KEY

 IPRP_REDR

Figure 2: The Redirection Handshake Procedurea constant that identi�es the type of the message - IPRP REQ (Redirection Request), IPRP CHK(Redirection Check), IPRP CFM (Redirection Con�rm) or IPRP ALM (Alarm). Protocol Numberis the protocol number specifying whether the redirected connection is a TCP or UDP connection.Client Port is the TCP or UDP port at the client and Server Port is the port at the redirector andthe server (which also represents the service being requested). The Replicated Server IP Address�eld contains the 32 bit IP address of the server that the client is being redirected to and Keycontains the 32 bit secure key used for redirection.
0 15 16 31

Server Port

Type

Client Port

Replicated Server IP Address

Key

Protocol NumberFigure 3: Redirection Message Format5

0 15 16 31

Status Protocol Number

Client Port Server Port

Client IP Address

Last Activity Timestamp

Last Response Timestamp

Replicated Server IP Address

KeyFigure 4: Redirector's Table Entry Format3.2 The RedirectorThe redirector maintains two tables. A Redirection table stores entries identifying clients that arein the process of being redirected. Similarly, an Accept table keeps track of clients for whom theredirector decides to provide the requested service itself. These might be clients that don't supportredirection or for whom the redirection process failed for some reason.Figure 4 shows the structure of an entry in the redirector's tables. The Status �eld denotesthe redirection state of the connection from the server's point of view, and is either IPRP SENT(redirection request sent) or IPRP CONFIRMED (redirection binding con�rmed with key). As inthe message format, Protocol Number denotes whether the connection is TCP or UDP. Server Portidenti�es the requested service. The redirector uses Client IP Address, Client Port, and ProtocolNumber to uniquely identify a client. The redirector also stores the random key used in redirectionin the Key �eld. The server may use this key later to send control messages to the client (if needbe), without having to agree on a new key. Replicated Server IP Address is the address of theserver that this particular client was redirected to. The Last Activity Timestamp is used by theredirector to judge if a connection has been successfully redirected or has died, and if it is time forthe entry to be deleted. The Last Response Timestamp �eld stores the last time a response wasreceived from the client. This is used for retransmissions.The accept table has exactly the same structure as the redirection table. In fact, entries aremoved from the redirection table to the Accept table if the redirection attempt fails. However, notall the �elds in an entry structure are relevant in the context of the accept table. Besides these twotables, the redirector also maintains an array of the IP addresses of replicated servers for each ofthe services that it wishes to redirect. 6

The redirector functions in the following way. If the received packet's service (port number) isnot con�gured to be redirected or if the redirector has accepted to provide service to this client (inthe accept table), the packet is passed up to the transport layer.Else, if an entry exists in the redirection table, it indicates that the connection is in the processof being redirected. In this case, the packet is forwarded to the replicated server after suitablemodi�cations of destination address and the TCP/UDP checksums. The arrival of this packetmight also be due to the fact that earlier redirection request or con�rmation packets did not reachthe client. If the state of the entry in the redirection table is IPRP SENT, a duplicate redirectionrequest is sent to the client and if the state is IPRP CONFIRMED, a duplicate con�rmation issent.Else, this packet is the �rst packet from a new client and the redirector begins a redirectionattempt. A replicated server is chosen from the list, and the client is sent an IPRP REQ messagerequesting redirection to that server. Then, a new entry is inserted in the redirection table for thisclient.When the redirector receives an IPRP CHK - a check message from a client requesting con�r-mation of a redirection request, the redirector checks if a matching IPRP SENT entry is presentin the redirection table. If there is a matching entry, the random key is copied from the checkmessage into the entry. Then, an IPRP CFM message is sent to the client that includes the key,and the state of the corresponding entry is changed to IPRP CONFIRMED. If no entry is found,an IPRP ALM message is sent indicating a fake redirection attempt at the client site.The IPRP protocol also has a slow time-out function which is called periodically (every 500 ms).This function deletes entries from accept and redirection tables which have expired last activitytimestamps. On the other hand, if only the last client response timer has expired, then the entryis moved to the accept table because that indicates that the client cannot support IPRP.3.3 The ClientLike the redirector, the clients also maintain a Redirection table that has entries identifying clientshave either been redirected successfully or are in the process of being redirected. The structure ofan entry in the client's redirection table is similar to the redirector's entry shown in �g 4 exceptfor the Client IP Address �eld is replaced by Original Server IP Address which maintains the IPaddress of the redirector. The Status �eld denotes the redirection state of the connection from theclient's point of view, and is either IPRP CHECKING (uncon�rmed entry) or IPRP CONFIRMED(con�rmed entry). Besides its redirection table, a client also maintains a queue of bu�ers. Thesebu�ers are used to temporarily hold packets that arrive from a replicated server if the entry in theredirection table corresponding to that ow is not yet con�rmed.7

A client takes the following actions on receipt of di�erent kinds of packets. When a client receivesan IPRP REQ from the redirector, it ignores this packet if there is an existing entry matching thereceived packet in the IPRP CHECKING state. If a matching entry does not exist in the redirectiontable, a new one is created and marked IPRP CHECKING. The client generates a random key,stores it in the Key �eld of the entry, and sends an IPRP CHK message to the redirector with thekey. This step is required to avoid malicious hosts masquerading as a redirector.While a redirection is being con�rmed, the client can potentially receive packets from thereplicated server as a response to the initial packets sent by the client. The client IP layer bu�ersall such packets in a common bu�er queue to reduce connection establishment latency. Bu�eredpackets are released to the transport layer only when the redirection is con�rmed to avoid securityproblems.The client compares the keys in its redirection table and the received packet on receipt of anIPRP CFM message. If the keys match, then the entry's state is marked IPRP CONFIRMED.If the con�rmation is a valid one, the client searches through the queue of bu�ered packets, andforwards any packets of this ow to the transport layer. If an IPRP ALM message is received, thecorresponding entry is immediately deleted from the table since it is a spurious one.Similar to the redirector, the client IPRP protocol has a slow time out function which periodi-cally checks the redirection table and expires entries that have not seen any activity for more thanthe timeout period.Once a session's redirection is con�rmed, the IP layer begins translating packets in eitherdirection. If a con�rmed binding is found for an outgoing packet, the destination address in the IPheader is changed to the replicated server address in the entry and the checksums are appropriatelymodi�ed. Similarly, an incoming packet belonging to that session from the replicated server istranslated. The source address in the IP header is changed to the original redirector's address andthe checksums are modi�ed. Since all the translation happens in the IP layer, the client transportand higher layers are unaware of any underlying redirection, thus achieving the important goal oftransparency. The translation mechanism is abstracted in �gure 5.4 Advantages and DisadvantagesThis section compares our scheme with the existing methods described in section 2. It also describessome new features possible by using client based mechanisms and highlights its drawbacks. Thereare several advantages of using a client based IP Redirection scheme.Incremental Scalability: In this architecture, more servers can be added to deal withextremely high demands by simply adding the address of a cooperating server to the list maintained8

IP

SRC x.y.z.1 DEST x.y.z.1

DEST x.y.z.2

Mapping

Client Transport and Higher Layers

Layer

x.y.z.1 / x.y.z.2

Redirector

IP

Redirection

Protocol

x.y.z.1

SRC x.y.z.2

x.y.z.2
Replicated Server

 IPRP

 IPRPFigure 5: Post-Redirection Translationby the Redirector.Transparency: The redirection procedure itself is transparent to the clients since it is per-formed at the IP layer and even the transport layers are unaware of it. This implies that existingapplications need not be modi�ed to bene�t from this method. For example, our implementationcan transparently redirect regular Telnet and FTP clients to connect to and retrieve data from areplicated server.Service Speci�c Redirection: This mechanism has the exibility to allow service speci�credirection. This implies that clients can be redirected to specialized servers depending uponthe kind of service they request. For instance, an FTP request could be redirected to a hostmaintaining all FTP data and an HTTP request might be redirected to one maintaining all theHTML documents. It is not possible to do this in DNS based schemes since name resolution doesnot reveal the nature of the client application.Cascaded Redirection: It is easy to extend this scheme to incorporate cascaded redirection.This means that the client can be repeatedly redirected transparently from one server to anotherif the server chooses to do so. Although a practical implementation of this feature has to deal withissues regarding the transfer of server side TCP state or application state, it is a distinctive featurethat has many potential uses. It would simplify the transparent migration of services. A migratingservice can �rst be installed on a host server, the clients connected to the old server redirected, andthe old host can then transparently be decomissioned.Since the central redirector is involved only in the initial redirection and does not process everypacket, it does not become a bottleneck with increased load which is a problem faced by schemeswhere a single server does all the work. Also, since each client maintains its own list of redirectionbindings, the Redirector needs to maintain bindings only for non-redirected clients which requires9

much less memory compared to schemes where the server needs to maintain the mapping for eachclient accessing the site.Unlike the Magic Router [7], this scheme does not place any topological restriction on the serversto be geographically localized. Since redirection is performed for each client, this scheme eliminatesthe problem of cached bindings being used by multiple clients causing skewed loads on the servers,as is the case in DNS based redirection [6].An inherent advantage of performing redirection at the IP layer is that it is protocol orapplication independent. It is a general mechanism that an application can use without havinga customized redirection mechanism in place. As is discussed in section 7, the mechanism can bemassaged to serve well in a variety of scenarios.Client oriented IP redirection has the following drawbacks:Deployment:Since this scheme requires client operating systems to be modi�ed to supportredirection, It is relatively di�cult to deploy. However, many popular operating systems likeWindows NT, Windows 95 and Linux allow the TCP/IP stack to be loaded like any driver modulewithout having to recompile or reinstall a new operating system. For these systems, a compliantstack can be released as an independent, upgraded module. Moreover, the scheme does not renderthe service unavailable to legacy clients, but they do not derive any special bene�t from it either.Connection Latency: Clients encounter longer connection establishment latencies with redi-recting servers. However, the average delay is much less once the client is redirected to a nearer orfaster server. A legacy client would not experience any additional connection establishment delaysince the redirector would not redirect that client if the type of service �eld is used to indicate thelack of redirection support.Processing Overhead: Since the host IP layer maintains the redirection bindings of localclients and implements the translation of source and destination addresses, all packets undergosome extra processing in the IP layer. This overhead can be minimized by e�cient implementationand as is discussed in section 6, results show that the overhead is not substantial.5 ImplementationFor the purpose of taking measurements, a testbed was implemented which consisted of Pentiumbased PCs running FreeBSD, Release 2.2.2 [17]. One machine was con�gured as the redirector andthe others as clients supporting redirection. The actual servers that the clients were redirected towere a mix of workstations running Solaris and PCs running FreeBSD or Linux. FreeBSD kernelwas modi�ed to support IPRP. This section highlights the key portions of the implementation of10

the testbed. It mentions the main areas of the FreeBSD source that were modi�ed. It also brieydiscusses the client and redirector protocol module implementations.5.1 FreeBSD IP ProcessingIn the FreeBSD kernel, the IP processing for an incoming packet is implemented in the ip inputfunction and the output processing in the ip output function. The ip input function is called by thedevice drivers, and is passed an mbuf containing the packet. An mbuf is a kernel data structurein FreeBSD used to manipulate packets [18]. Similarly, the ip output function is called by anymodule that wants to send a packet over the network. A global inetsw array is used by ip input tode-multiplex incoming packets and pass them to the appropriate protocol input functions [18].For the clients, both ip input and ip output were modi�ed to add support for redirection. Forthe redirector, only ip input was changed. The redirection protocol itself was implemented byadding another entry to the inetsw array with pointers to the protocol input function ipredr inputand the slow time out function ipredr timo. A protocol number of 99, de�ned by the constantIPPROTO REDR, was used. Essentially, the redirection protocol was implemented like a higherlevel protocol but conceptually remains an extension to IP. The actions performed by these functionsvary in the clients and the redirector.Once a binding has been con�rmed, the input and output IP layer processing of a client modi�esthe source and destination �elds in the IP headers of packets of that session respectively. Theredirector IP input layer also needs to modify the destination in the initial packets from a clientand forward them to one of the replicated servers. Changing these headers requires that the theIP checksum as well as the TCP and UDP checksums be updated. Instead of recomputing theentire checksum, which is expensive, the checksums can be incrementally updated. A procedure isdescribed in [19] for incrementally updating Internet checksums which was corrected and improvedby [20] and [21]. Our implementation is based on the method described in [21].5.2 Redirector ImplementationThe most important data structures that a redirector maintains are its lookup tables - the redirec-tion table and the accept table. To facilitate e�cient insertions, deletions and searches, the tablesare implemented as hash tables with doubly linked lists as collision resolution chains. The sizes ofthe hash table arrays are con�gurable parameters. Each entry uniquely identi�es a session. Entriesare hashed into the tables using the IP address of the client as the key.Figure 6 shows the way di�erent functions in the redirector kernel code interact with eachother. An incoming packet is processed by ip input. It uses the function hash search to searchfor entries in the accept table and the redirection table. A redirection protocol message is passed11

Accept
Table

Redirection
Table

Network
Interface

ipredr_timo

adjchksum

ip_input ip_output

ipredr_send

ipredr_input
Transport Protocols

and ICMP, IGMP etc.

hash_search

Figure 6: Redirector Implementation Functionson to the protocol input function ipredr input, which processes it as speci�ed by the protocol.ipredr input sends any redirection message through the ipredr send function which calls ip output.The function ip input also may call ip output after calling adjchksum to forward initial packetsfrom the client to the replicated server. The function ipredr timo is the protocol timeout functionwhich is called periodically and deletes expired entries from the tables. It may also call ipredr sendfor retransmitting redirection messages.5.3 Client ImplementationA client's redirection table is also implemented as a hash table with doubly linked lists for collisionresolution. Entries are hashed into the table using the replicated server's IP address as the key.Figure 7 depicts the way di�erent functions in the client kernel code relate to each other. Theinteraction is quite similar to the redirector with some changes. However, the processing insideeach of the functions is di�erent in the clients and the redirector.An incoming packet is processed similarly as in the redirector. The redirection table is keyedby the replicated server's address since only packets from a replicated server are mapped on input.Whenever a packet is passed to ip output from the transport layers for output processing, thefunction uses the linear search method linear search to check the redirection table for a binding.If a con�rmed binding is found, the destination of the packet is mapped according to the �eld inthe entry and the appropriate checksums are updated using adjchksum before the packet is sent tothe interface driver. The output processing has to search the redirection table linearly instead ofusing a hash search method since entries in the table are hashed with the replicated server address12

Network
Interface

Redirection
Table

ip_input ip_output

buffer_insert

buffer_release

Packet Buffer

ipredr_input
Transport Protocols

and ICMP, IGMP etc.

ipredr_timohash_search linear_search

ipredr_send

adjchksumFigure 7: Client Implementation Functionsas the key and before actually searching the table, the replicated server to which this packetsshould be mapped is not known. This can be overcome by implementing the redirection table as a"two-dimensional" hash table.The clients also maintain a queue to bu�er packets that arrive from a replicated server beforethe corresponding entry is con�rmed. This is implemented as a singly linked list represented bythe global bufq. The ip input function uses the function bu�er insert to insert an mbuf containingsuch a packet into the queue. Bu�ered packets are only released when the entry is con�rmedthrough a con�rmation message from the redirector and the protocol input function ipredr inputcalls bu�er release. The function bu�er release simply removes the packet from the chain andpasses it to the transport layers just like the IP layer would.6 Performance MeasurementsThe performance of any applications based on IPRP will depend upon the overhead involved inredirection. The main focus of this section is to measure and discuss the overheads involved inIPRP based redirection.6.1 Processing OverheadThe redirection mechanism requires support in the client IP layers which involves searches throughthe redirection table, periodic timeouts, protocol message processing and address translations etc.Since extra processing means additional delays, it is important to measure the IP input and outputprocessing time for a redirected connection and compare it to that for a packet going through a13

0

10

20

30

40

50

60

M
ic

ro
se

co
n

d
s

IP, Normal

No P.R.C.

5 P.R.C.

25 P.R.C.

45 P.R.C.

IP-UDP-App., NormalFigure 8: IP Input Processing Time for a Non-Redirected Session with Parallel RedirectedConnections (P.R.C.)regular stack. Since packets that belong to non-redirected sessions also have to go through someof this processing, the overhead introduced for incoming and outgoing packets for non-redirectedsessions is measured as well.Figure 8 shows the average time spent in the IP layer by an incoming packet of a non-redirectedow while there are multiple parallel redirected telnet sessions from the same machine. The left-most bar is the time a packet for such a ow would have spent in an unmodi�ed IP layer, whichserves as a comparison base. The second bar from the left is the time it takes even when there areno parallel redirected sessions. The di�erence of this value from the regular processing time is theminimum overhead every non-redirected packet goes through (2:33�s on an average), irrespective ofthe number of parallel sessions. As the graph shows, the overhead increases with increased numberof parallel redirected sessions. This is expected since a higher number of redirected sessions impliesthat more entries in the redirection table need to be searched. However, the increase is not linearbecause hash based searches are fairly e�cient. Even with 45 parallel redirected sessions (whichis fairly high and is unlikely to be typical), the overhead is not substantial (6:23�s average). In-fact, the extra time spent in the IP layer is negligible when compared to the total time spent bythe packet in going from the IP layer to the application layer, as shown by the right-most bar.Moreover, the right-most bar is the time through a UDP stack, which involves much less processingthan in TCP. Overhead for a non-redirected ow can be further reduced by increasing the numberof hash chains.Figure 9 shows the overhead experienced by a packet from a non-redirected session in the IPlayer output processing. The left-most bar is the average output processing time for a packet in14

0

10

20

30

40

50

60

70

M
ic

ro
se

co
n

d
s

IP, Normal

No P.R.C.

5 P.R.C.

25 P.R.C.

45 P.R.C.

App.-UDP-IP, NormalFigure 9: IP Output Processing Time for a Non-Redirected Session with Parallel RedirectedConnections (P.R.C.)an unmodi�ed IP layer and the right-most one is the time taken in going from the applicationlayer to the end of IP output processing in a redirection compliant kernel. The di�erence betweenthe �rst and the second bars from the left is the minimum overhead involved (1:42�s average)and as expected, the overhead increases with increasing number of parallel redirected sessions.However, the overhead is higher for output processing than in input processing. This is becausethe redirection table is searched in a linear fashion during output processing since the key i.e. thereplicated server address is not known a priori. A reduction in both the average overhead andthe rate of increase in overhead can be achieved by implementing the client redirection table as a\two-dimensional" hashed chain structure. This would facilitate e�cient searches during outputalso. The overhead is not substantial compared to the total time spent in the UDP/IP stack, andwould be even less so for a TCP packet.Packets that actually belong to a redirected session undergo more processing in both input andoutput at the IP layer than non-redirected session packets since they need to be modi�ed. Figure10 shows both the average input and output processing time for a redirected packet and comparesit against the processing time in a regular IP layer. The time taken from the application to IPlayer through UDP (and reverse direction, for input packets) in a supporting kernel is also shownin �gure 10. These measurements are for a single redirected connection with no parallel redirectedsession running, and thus the overhead for the redirected packets represents the overhead due topacket translation only (average overhead of 3:70�s for input processing and 4:65�s for outputprocessing). The overhead is not substantial and is worth the bene�ts that can be derived fromredirection. 15

0

10

20

30

40

50

60

70

Input Processing Output Processing

M
ic

ro
se

co
n

d
s

IP, Normal

IP, Redirected

IP-UDP-App./App.-UDP-IP

Figure 10: IP Processing Time for Single Redirected Session6.2 Connection Establishment LatencyThe redirector begins the redirection handshake for every new client. The extra processing andpropagation delays involved in the message exchange introduces latency in the establishment of aconnection. It is important to measure this delay since it is critical to the client's perception of afast service.6.2.1 Latency for Supporting ClientsFigure 11 plots TCP connection establishment times with varying redirector distance. In all cases,the replicated servers where the clients were redirected to were on the same subnet as the clientsto isolate the impact of latency of redirection. Due to experimental setup restrictions, it was notpossible to actually place the redirector and the clients far apart so forced delays were introducedin the redirector kernel to simulate propagation delays. Thus, distance is expressed in terms of theround trip time (RTT) between the client and the redirector.In each of the clusters in �gure 11, the left bar represents the regular TCP connection estab-lishment time between a client and a server that are separated by varying distances. Althoughthe establishment of a TCP connection involves a three-way handshake between the client and theserver, the client considers the connection established when it receives an acknowledgment for the16

0

20

40

60

80

100

120

3 10 50

Redirector (Server for Non-Redirected) Distance in RTT (ms)

M
ill

is
ec

on
ds

Non-Redirected Session

Redirected Session

Figure 11: TCP Connection Establishment Time for Non-Redirected Session and Redirected Sessionwith Forwarding and Bu�eringinitial SYN packet. This takes one round trip time and that is why the connection establishmentlatencies for a regular TCP connection in �gure 11 are close to the RTT values for all serverdistances (the extra time is the processing delay). These measurements serve as the base case forcomparison as these would be seen for any normal connection.In �gure 11, the redirected connection establishment times (with forwarding and bu�ering) alsoincrease with increasing redirector distance as expected but remain of the same order of magnitudeas the RTT. The measurements strongly bring out the bene�t of forwarding and bu�ering. Withoutforwarding and bu�ering, the TCP timeout mechanism determines the connection establishmentlatency and hence typically resulted in a 3 second delay. Redirected connection establishmentlatency always exceeds that for a regular TCP connection by approximately one RTT. This isbecause redirection requires an extra check and con�rmation message to be exchanged, which takesan extra round trip time. Redirection proceeds in parallel with connection establishment. Anypackets from the replicated server before the redirection is con�rmed are bu�ered at the client andthus connection establishment time is lower bounded only by twice the round trip propagationdelay between the client and the redirector. 17

0

5

10

15

20

25

3 10 50

Redirector Distance in RTT (ms)

S
ec

o
n

d
s Timeout 2s

Timeout 5s

Timeout 10s

Timeout 20s

Figure 12: TCP Connection Establishment Latency for a Non-Redirectable Client with VaryingClient Response Timeout6.2.2 Latency for Legacy ClientsThe redirector also attempts redirection for clients that do not support redirection and accepts theservice requests itself when it realizes that the client is a legacy client. This happens through thevalue of the last Client Response �eld in the redirector's redirection table. The timeout value canbe con�gured by the site administrator. Figure 12 shows the connection establishment latency ofa non-supporting client requesting service from the redirector. Since TCP retransmits the initialSYN segments after approximately 3ms, 9ms and 21ms, the latency is the maximum of the timeoutvalue and the retransmission period for a TCP connection.An improvement over this approach is the use of the type of service �eld in the IP headerto indicate whether a client supports redirection or not. The redirector then would not attemptredirection for a legacy client. This would result in legacy clients seeing no extra connectionestablishment latency. 18

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

3 10 50

Server Distance in RTT (ms)

M
ill

is
e
c
o

n
d

s

1 KB

10 KB

100 KB

1 MB

10 MB

0

2000

4000

6000

8000

10000

12000

14000

3 10 50

Redirector Distance in RTT (ms)

M
ill

is
ec

o
n

d
s

1 KB

10 KB

100 KB

1 MB

10 MB(a) Non-redirected (b) RedirectedFigure 13: Bulk Transfer Time Over a TCP Connection6.3 Bulk Transfer Time MeasurementsFigure 13(a) shows the time taken to transfer �les of varying sizes from a remote server by anunmodi�ed client over a TCP connection. The transfer times are less than a second for smaller�les but increase sharply as the �le size and the server distance increases. In fact, for a server forwhich the RTT is 50 ms, it takes time of the order of several minutes to download a 10 MB �le.This is because each packet experiences higher propagation delay with increasing server distance.Similarly, �gure 13(b) shows the bulk transfer times over a redirected connection. The redirectordistance is varied but the replicated server is always maintained on the client's network to studythe impact of redirection latency. This is a best case analysis since the replicated server could bedistant. The �gure shows marked improvement over the non-redirected case. The transfer timesare slightly higher for smaller �les since the overhead involved in redirection and translation is morethan the transfer time itself. However, as the �le size and the redirector distance increases, thetransfer times are much less than with no redirection. This shows the bene�ts of redirection andproviding service close to the client. 19

7 ApplicationsThis section discusses some useful applications that a client based IP level redirection scheme can becast into and some future enhancements that are possible. As mentioned earlier, IP level redirectionis a fairly general mechanism that can be massaged to �t into di�erent scenarios. We outline anumber of possible applications of IP level redirection.
Corsp. Host

Home
Agent

IP dataDST x.y.z.1

IP dataSRC x.y.z.1

IP dataDST x.y.z.1

IP DST x.y.z.3

IP dataDST x.y.z.1

IP DST x.y.z.3

IP dataDST x.y.z.1

Foreign
Agent

Mobile Host

Cache
Agent

x.y.z.3

x.y.z.1

x.y.z.3

Mobile Host

Home
Network

x.y.z.1

Foreign Network

Corsp. Host

Home
Agent

Mobile Host

x.y.z.1

Home
Network

IP dataDST x.y.z.1

IP dataDST x.y.z.2

IP dataDST x.y.z.2

Mobile Host

Foreign Network

x.y.z.2

IPPROTO_REDR

IP dataSRC x.y.z.2(a)IMHP (b) IPRPFigure 14: Support for Mobility7.1 Mobile IP ImplementationsMost proposed schemes and implementations share a common approach to IP mobility. A mobilehost has a constant home IP address regardless of its current location. A correspondent host isa host communicating with the mobile host, which could itself be mobile. The home agent is astationary entity which is responsible for keeping track of the mobile host's current location. Aforeign agent is an entity assumed to be present in every network that the mobile host visits, whichis aware of all guest hosts in its network and also serves as a temporary point of attachment forthem.A mobile host uses the IP address of the foreign agent of the network it is presently in as its20

proxy address and informs its home agent of this address. Since a correspondent host is unawareof the location of the mobile host, it sends packets on the home IP address of the host. The homeagent intercepts these packets and tunnels them to the foreign agent using IP-in-IP encapsulation[22]. The foreign agent decapsulates the packet and passes it directly to the mobile host using itsphysical interface address. Packets from the mobile host can go directly to the correspondent host.A basic scheme such as this su�ers from dog-leg routing for packets from the correspondent host tothe mobile host. To avoid dog-leg routing, protocols like the Internet Mobile Host Protocol (IMHP)[23] suggest the use of cache agents. These are entities which reside either on the correspondenthost (if the host is IMHP compliant) or on intermediate routers. Cache agents maintain bindingsabout the current point of attachment of mobile hosts and instead of forwarding packets to thehome agent, perform encapsulation themselves and send packets to the foreign agent directly. Thisis depicted in �gure 14(a). This eliminates the dog-leg to a certain extent.An implementation based on IP redirection would work as follows. Every time a correspondenthost tries to contact a mobile host at its home address, the home agent, which has the functionalityof a redirector, invokes the redirection handshake to create a binding at the client. Thus thecorrespondent host IP layer translates future packets destined for the home IP address to the currentlocation of the mobile host, eliminating the dog-leg in the forward direction. The mobile host sendsoutgoing packets with its current address as the source. These go directly to the correspondent hostwhere they are translated before being handed to the upper layers to seem as if they came fromthe home IP address. This mechanism would work even if the mobile host joins a network with a�rewall since packets in either direction use the local, dynamically assigned address. Figure 14(b)shows this idea. Another advantage of our implementation over earlier schemes is that packetsare not encapsulated with another IP header, but the header itself is translated. The procedure ismore e�cient than encapsulation, does not increase the size of the packet, and avoids unnecessaryadditional fragmentation.7.2 Reliable MulticastingRMTP [24] is a reliable multicast protocol based on a hierarchical structure in which receivers aregrouped into local regions and each region has a special receiver called the designated receiver.The designated receiver sends acknowledgments periodically to the sender, processes messages andacknowledgments from receivers in its region and retransmits lost packets to them. Since retrans-missions are done locally, latency is low and as the sender only receives a common acknowledgmentfrom the designated receiver, acknowledgment implosion is not a problem. Receivers choose theclosest designated receiver through periodic polls and if a designated receiver dies, the next closestone is chosen. RMTP requires that clients be made aware of designated receivers and support theextra functionality required to determine the closest live designated receiver.An IP level redirection based approach, as shown in �gure 15, works as follows: The receivers21

S - Sender
Rv - Receiver
MR - Multicast Router
DR - Designated Receiver

S

Rv Rv

Rv Rv

DRDR MRMR

MR

IPPROTO_
REDRFigure 15: Hierarchical Reliable Multicastingare initially aware only of the sender. When the �rst response from a receiver arrives at the sender,it invokes the redirection protocol and redirects the receivers to send their future responses andretransmission requests to the designated receiver closest to them, which the sender determines.The receivers don't send any packets to the designated receiver explicitly, but that happenstransparently. Another advantage of doing this is that if the current designated receiver decidesto leave the group, it can redirect the receivers in its domain to another or next-in-line designatedreceiver before leaving. The receivers would not detect any changes and would still send requestsand acks to the sender's address. This illustrates that the same IP level redirection protocol canbe used to enhance a multicast protocol into a hierarchical multicast protocol.7.3 Interactive On-Line GamesOn line games between geographically separated players are very popular on the Internet. Thereare a number of sites that users can log on to and play against other present users. In almost allapplications though, all packets between the two players have to go through the site. However, iftwo users want to play a highly interactive game on-line, and if there exists a direct, shorter pathbetween them, they could experience a much better playing environment if packets were to traversedirectly to and fro, avoiding the additional delay in going through the central site. The playersshould not be asked to reconnect to their opponent, though, so transparency is important. Allthis is possible if the clients support redirection since the redirector can be con�gured to redirectopponents to each other. Naturally, the gaming applications have to be designed to use this facility.7.4 Location Independent Video TransmissionIPRP allows an application to be redirected to a di�erent server while the application is in progress(with necessary support at the servers). The cascaded redirection feature possible with this schemeallows a user to be transparently redirected repeatedly if required. For example, a user can contacta central site for live video. When the live video needs to be transmitted from a di�erent location(from a site in city A to another site in city B in a new year celebration video, for example), the22

client can again be redirected to expect the packets from the second server. This is not possiblein most live video transmissions on the Internet currently, which are restricted to one locationprimarily. This idea can be used to provide location dependent services in a mobile environmentby redirecting the client to a di�erent server as he/she moves around.7.5 Layered Video TransmissionSome schemes for streaming video on the Internet use a layered encoding mechanism where abase encoding layer provides the minimum acceptable picture quality and an enhancement layerimproves the quality. Typically, the base and enhancement layers are streamed over parallel sessionsbut from the same server. This can cause congestion on the network since video streams requireslarge amounts of bandwidth. An IPRP based scheme could redirect the sessions such that the twolayers are delivered by two di�erent servers. The streams take di�erent paths to the client reducingthe chances of congestion and improving the overall throughput. The application would howeverhave to take care of synchronization issues.8 Conclusions and Future WorkThe paper introduced the idea of involving the client IP layer actively in redirecting a localapplication. This approach is di�erent from most other redirection approaches which rely entirelyon the server or the network. The main drawbacks of this approach have been discussed and waysto overcome the problems have been suggested. The performance of the protocol is measured interms of bulk transfer times and connection latencies. The impact of a redirection-supportingkernel and multiple parallel redirected sessions on regular connections is also studied. The resultsshow that the overhead introduced in the client IP layers due to redirection is not signi�cant.The connection establishment latencies are also acceptable for redirected connections because ofredirector forwarding and client bu�ering. Latency for a legacy client can also be minimized byusing the TOS �eld. The paper also presented various possible Internet based applications wherea client based network level redirection scheme can be used.There are ways that the current implementation can be made more versatile and e�cient. Theredirector can be modi�ed to periodically poll the replicated servers to detect if they are alive. If itdetects a dead server, it could try and redirect clients that were initially sent to this server. Addingthis would involve issues of service migration.A \wild-card" redirection mechanism can be incorporated. This refers to the situation wherethe redirector might want to redirect all clients on certain hosts to a particular server. Instead ofredirecting each client individually, redirection could occur only once. Moreover, if the client IPdetects an existing wild-card entry for a site, it should start mapping packets for a new session23

automatically, without even sending the �rst packets to the original site and triggering anotherredirection handshake.In the current implementation, entries in the client redirection table are hashed using the repli-cated server address as the key. As suggested earlier, output processing can be made more e�cientby organizing the redirection table as a two-dimensional hash table, which would allow searchesusing either the redirector's address or the server's address as a key. Current implementation onlysupports a weak security model which depends upon the exchange of a random key. It is still opento attacks from malicious hosts that might be snooping on the network and who might pick up therandom key. A better implementation could support a more secure authentication mechanism.Another possible enhancement could be the use of the type of service �eld in the IP header forclients to indicate to the redirector if they support redirection. The redirector would not attemptredirection for a client that does not support it, thus avoiding higher connection establishmentlatency for the client.A number of new applications as suggested in section 7 are being currently implemented tovalidate the versatility of IPRP.References[1] J. Postel, \RFC 791: Internet Protocol," Sept. 1981. ftp://ftp.internic.net/rfc/rfc791.txt, accessed onJuly 15, 1997.[2] R. W. Stevens, TCP/IP Illustrated, Volume 1: The Protocols. Addison Wesley, Menlo Park, CA, 1994.[3] P. Mockapetris, \Domain names - implementation and speci�cation," Tech. Rep. RFC 1035, NetworkWorking Group, Nov. 1987. http://info.internet.isi.edu/in-notes/rfc/�les/rfc1035.txt, accessed on July25, 1997.[4] D. B. Terry, M. Painter, D. W. Riggle, and S. Zhou, \The Berkeley Internet name domain server," inProceedings of the USENIX Association and Software Tools Users Group Summer Conference: SaltLake City, UT, USA (Software Tools Users Group, ed.), pp. 23{31, Summer 1984.[5] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, and T. Berners-Lee, \RFC 2068: Hypertext TransferProtocol - HTTP/1.1," Jan. 1997. ftp://ftp.internic.net/rfc/rfc2068.txt, accessed on Aug 1, 1997.[6] E. Katz, M. Butler, and R. McGrath, \A scalable HTTP server: The NCSA prototype," tech. rep.,National Center for Supercomputing Applications, University of Illinois, Urbana-Champaign, Il, 1994.http://www.ncsa.uiuc.edu/InformationServers/Conferences/CERNwww94/www94.ncsa.html, accessedon July 20, 1997.[7] E. Anderson, D. Patterson, and E. Brewer, \The magicrouter, an application of fast packetinterposing." http://www.cs.berkeley.edu/�eanders/magicrouter/osdi96-mr-submission.ps, accessedon July 21, 1997. 24

[8] Local Director, http://www.cisco.com/warp/public/751/lodir/literature.shtml, accessed on Sept. 10,1997.[9] C. Attanasio and S.E.Smith, \A virtual multiprocessor implemented by an encapsulated cluster ofloosely coupled computers," tech. rep., IBM RC18442, April 1992.[10] Distributed Director, http://www.cisco.com/warp/public/751/distdir/literature.shtml, accessed onSept. 10, 1997.[11] D. L. Tennenhouse, J. M. Smith, W. D. Sincoskie, D. J. Wetherall, and G. J. Minden, \A surveyof active network research," IEEE Communications Magazine, vol. 35, pp. 80{86, Jan. 1997. http://www.tns.lcs.mit.edu/publications/ieeecomms97.html, accessed on July 20, 1997.[12] D. Wetherhall and D. Tennenhouse, \The active IP option," in 7th ACM SIGOPS European Workshop,Connemara, Ireland, September 1996, Sep 1996.[13] H. Chawla and R. Bettati, \Replicating IP services," tech. rep., Department of Computer Science, TexasA&M University, September 1997.[14] C. Yoshikawa, B. Chun, P. Eastham, A. Vahdat, T. Anderson, and D. Culler, \Using smart clientsto build scalable services," in 1997 Annual Technical Conference, January 6-10, 1997. Anaheim, CA(USENIX, ed.), (Berkeley, CA, USA), pp. 105{117, USENIX, Jan. 1997.[15] J. Postel, \RFC 792: Internet Control Message Protocol," Sept. 1981. ftp://ftp.internic.net/rfc/rfc792.txt, accessed on Oct. 11, 1997.[16] W. Fenner, \RFC 2236: Internet Group Management Protocol, version 2," Nov. 1997. ftp://ftp.internic.net/rfc/rfc2236.txt, accessed on Oct. 11, 1997.[17] FreeBSD, http://www.freebsd.org, accessed on Sept. 3, 1997.[18] W. R. Stevens, TCP/IP Illustrated, Volume 2: The Implementation. Addison Wesley, Menlo Park, CA,1994.[19] B. Braden, D. Borman, and C. Partridge, \RFC 1071: Computing the Internet checksum," Sept. 1988.ftp://ftp.internic.net/rfc/rfc1071.txt, accessed on Nov. 15, 1997.[20] T. Mallory and A. Kullberg, \RFC 1141: Incremental updating of the Internet checksum," Jan. 1990.ftp://ftp.internic.net/rfc/rfc1141.txt, accessed on No. 15, 1997.[21] A. Rijsinghani, \RFC 1624: Computation of the Internet checksum via incremental update," May 1994.ftp://ftp.internic.net/rfc/rfc1624.txt, accessed on Nov. 15, 1997.[22] W. Simpson, \RFC 1853: IP in IP tunneling," Oct. 1995. ftp://ftp.internic.net/rfc/rfc1853.txt, accessedon Oct. 15, 1997.[23] C. Perkins, A. Myles, and D. Johnson, \The Internet mobile host protocol (IMHP)." ftp://ftp.mpce.mq.edu.au/pub/elec/dist/mobile/imhp/jenc94/inet94.ps, accessed on Apr. 10, 1998.[24] J. C. Lin and S. Paul, \RMTP: A reliable multicast transport protocol," in IEEE INFOCOM 1996,pp. 1414{1424, 1996. 25

