
A Client Oriented, IP Level Redirection Mechanism�Sumit GuptaA. L. Narasimha ReddyDept. of Elec. Engg.Texas A & M UniversityCollege Station, TX 77843-3128AbstractThis paper introduces a new approach for implementing transparent client access to networkservices. Ever increasing load on the Internet has made it essential to design services thatare fast, reliable, easily manageable, transparent to access, and that can scale gracefully withload. A common way of achieving this has been replicating services across multiple servers andredirecting clients to di�erent servers depending upon various criteria. Existing schemes areeither entirely server or network based. This scheme involves the client network layer actively inredirection. The paper describes the redirection protocol in detail and the basic implementationof the testbed. The performance of the mechanism is measured by experiments on the testbedand analyzed. The advantages and disadvantages of client based network level redirection arediscussed and some useful applications that it enables are described.1 IntroductionThe recent explosive increase in the size and popularity of the Internet is straining both networksand servers. Most Internet sites were originally not designed to handle the request tra�c that theyare experiencing. It has become critical to �nd solutions to alleviate the network and the serverlevel congestion at these sites with high tra�c. A common solution to solve these problems is touse multiple servers to o�er services - a scheme called Service Replication. Schemes have beenproposed that transparently \redirect" a client's service request to one of the replicated servers. Itis possible to improve the quality of the delivered service by redirecting the client more intelligentlybased on the server load or network throughput. These methods perform client redirection at�This work was supported in part by a Texas ATP grant and by an NSF Career Award1



various levels in the protocol stack and at various points in the network. Each method has itsadvantages and limitations.The objective of this paper is to introduce a new approach for transparent redirection of clientsto replicated servers. Almost all existing schemes take an entirely server based approach i.e., allthe work is done by the specialized servers or routers. This work implements a client-orientedredirection scheme that operates in the Internet Protocol (IP) [1, 2] in which the client IP layeris actively involved in the redirection of a local client. A client based IP level scheme not onlyperforms well for tra�c redirection, but with slight modi�cations can be cast into a variety ofpotentially useful scenarios and applications.Section 2 describes some of the existing schemes for client redirection. Section 3 introduces ourapproach. Section 4 goes into the advantages and disadvantages of our scheme as compared to theones described in section 2. Section 5 explains the implementation in detail and section 6 discussesthe results. Section 7 touches upon how such a scheme can be used to enhance the features of avariety of applications on the Internet. Section 8 discusses future work and concludes the paper.2 Background and Related WorkThere are several implementations of client redirection mechanisms available today. The designspace for providing transparent access to scalable network services includes clients, network, routers,and the service site. All the existing mechanisms can be broadly categorized according to the levelin the protocol stack where redirection is implemented and the entity which does most of the work.DNS Server Based Solutions: An example of a DNS (Domain Name Service) [3, 4, 2]level redirection mechanism is the HTTP [5] server prototype developed by the National Centerfor Super-computing Applications [6]. In this scheme, one host-name alias is used for the site. Theauthoritative DNS server for the domain maintains a one-to-many mapping of the server name tothe IP address of each of the servers. When clients send name resolution queries, the name-serverreturns each of the addresses in a round-robin fashion. Clients are served by one of the servers andthe round-robin name resolution may result in balancing the load among the servers. Local cachingby DNS servers makes the load less than perfectly balanced among the servers. Another problemwith round robin DNS schemes is that as DNS servers know nothing about network topology, serveravailability or server capacity (powerful multiprocessor or a low end PC), users might be connectedto a distant, unavailable, or overloaded server.Server Based IP Level Solutions: Both the Magic-router [7] and Local Director [8] fallunder this category. In these schemes, services are replicated across a cluster of machines on asingle subnet with a modi�ed router. Only one logical IP address is advertised for the site and therouter maps the incoming client requests to one of the hidden servers by inspecting and modifying2



the destination IP addresses of all packets going through it. Both techniques provide transparentredirection and load balancing. The TCP router (Transmission Control Protocol Router) [9] takesa very similar approach but con�gures the cluster nodes so that they can send packets directlyback to the client. The front end router is a single point of failure and also can easily becomea bottleneck as the number of clients increases. Moreover, all the servers actually providing theservice have to be geographically localized to be on the hidden internal network which does notgive too much improvement in the quality of service to a distant client if the bandwidth betweenthe site and the client is the bottleneck.Protocol Speci�c Redirection: This refers to redirection mechanisms that use features ofparticular protocols to achieve redirection. For instance, the Distributed Director [10], in its HTTPmode, forces redirection of HTTP requests by issuing a HTTP \302 Temporarily Moved" statuscode to the client, along with the URL for the server. HTTP Redirect Mechanism [5] also providesa protocol speci�c redirection mechanism.Active Networks These schemes place the responsibility and mechanisms for redirection onthe network [11, 12, 13]. Intermediate routers are kept up-to-date about the availability, load etc.of replicated servers and are designed to perform customized computations and modi�cations onpackets owing through them. The routers transparently re-route packets meant for the originalserver to one of the replicas. However, depending on the network topology and the distance ofthe translation point from the client and the replicated server, the packets might undergo dog-legrouting. Moreover, it is di�cult to provide information about servers for each application in therouters, not to mention the amount of memory needed in the router to store this information alongwith translation tables for all the ows through it.Smart Clients: This refers to schemes where the intelligence for redirection is built into theclient applications themselves. One current implementation [14] consists of an API that providesa level of abstraction between a logical service and the physical servers. When a user requestsa service, a bootstrapping mechanism is used to retrieve a service speci�c Java applet which hasinformation about servers o�ering that service, their load, and their availability etc. The currentversions include a web based front end for Telnet and FTP (File Transfer Protocol) to a network ofworkstations. This scheme can provide good load balancing, fault tolerance and has good featureslike generic naming. However, smart client schemes are highly application speci�c. A new frontend has to be designed and deployed for each application.In our scheme, only one IP address is advertised for the site. The server with this IP addressacts as the redirctor and also provides service to some clients. When a client requests service, theserver determines if the client supports our redirection mechanism. If the client has support for thisscheme, then it is redirected to another server using our protocol. If it does not support redirection,the redirector itself provides the requested service. The redirection protocol works at the IP layerand is quite versatile. The exact mechanism is described in detail in the following sections.3
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Figure 1: The Protocol Stack3 The Redirection Protocol3.1 The Big PictureIn this scheme, both the clients and redirector have to be running the IP Redirection protocol(IPRP), which exists at the same level as the Internet Control Message Protocol (ICMP) [15, 2]or the Internet Group Management Protocol (IGMP) [16, 2]. It is conceptually a part of IP, buthas its own protocol number, just like any other transport protocol. Figure 1 shows the logicalpositioning of di�erent protocols in a stack and the place where this redirection protocol �ts in.Broadly, the redirection handshake works as follows: All supporting clients have the ability tocreate and maintain redirection bindings, which specify how a local application should be redirected.When the client contacts the redirector for service, the redirector requests the client IP, through arequest packet, to create a new binding and map packets destined for the redirector to a particularserver. The client then con�rms this binding with the redirector by sending a check message thatincludes a randomly generated key which must be echoed by the redirector for the client to con�rmthe binding. Once the redirector con�rms the binding, all packets of that ow in either directionare translated by the client IP and directly travel between the client and the redirected server.The actual message format is discussed in the next subsection. Figure 2 shows the redirectionhandshake and the level in the protocol stack where each message is processed.Figure 3 shows the format of the redirection messages. The Type �eld is a 16 bit �eld containing4
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The redirector functions in the following way. If the received packet's service (port number) isnot con�gured to be redirected or if the redirector has accepted to provide service to this client (inthe accept table), the packet is passed up to the transport layer.Else, if an entry exists in the redirection table, it indicates that the connection is in the processof being redirected. In this case, the packet is forwarded to the replicated server after suitablemodi�cations of destination address and the TCP/UDP checksums. The arrival of this packetmight also be due to the fact that earlier redirection request or con�rmation packets did not reachthe client. If the state of the entry in the redirection table is IPRP SENT, a duplicate redirectionrequest is sent to the client and if the state is IPRP CONFIRMED, a duplicate con�rmation issent.Else, this packet is the �rst packet from a new client and the redirector begins a redirectionattempt. A replicated server is chosen from the list, and the client is sent an IPRP REQ messagerequesting redirection to that server. Then, a new entry is inserted in the redirection table for thisclient.When the redirector receives an IPRP CHK - a check message from a client requesting con�r-mation of a redirection request, the redirector checks if a matching IPRP SENT entry is presentin the redirection table. If there is a matching entry, the random key is copied from the checkmessage into the entry. Then, an IPRP CFM message is sent to the client that includes the key,and the state of the corresponding entry is changed to IPRP CONFIRMED. If no entry is found,an IPRP ALM message is sent indicating a fake redirection attempt at the client site.The IPRP protocol also has a slow time-out function which is called periodically (every 500 ms).This function deletes entries from accept and redirection tables which have expired last activitytimestamps. On the other hand, if only the last client response timer has expired, then the entryis moved to the accept table because that indicates that the client cannot support IPRP.3.3 The ClientLike the redirector, the clients also maintain a Redirection table that has entries identifying clientshave either been redirected successfully or are in the process of being redirected. The structure ofan entry in the client's redirection table is similar to the redirector's entry shown in �g 4 exceptfor the Client IP Address �eld is replaced by Original Server IP Address which maintains the IPaddress of the redirector. The Status �eld denotes the redirection state of the connection from theclient's point of view, and is either IPRP CHECKING (uncon�rmed entry) or IPRP CONFIRMED(con�rmed entry). Besides its redirection table, a client also maintains a queue of bu�ers. Thesebu�ers are used to temporarily hold packets that arrive from a replicated server if the entry in theredirection table corresponding to that ow is not yet con�rmed.7



A client takes the following actions on receipt of di�erent kinds of packets. When a client receivesan IPRP REQ from the redirector, it ignores this packet if there is an existing entry matching thereceived packet in the IPRP CHECKING state. If a matching entry does not exist in the redirectiontable, a new one is created and marked IPRP CHECKING. The client generates a random key,stores it in the Key �eld of the entry, and sends an IPRP CHK message to the redirector with thekey. This step is required to avoid malicious hosts masquerading as a redirector.While a redirection is being con�rmed, the client can potentially receive packets from thereplicated server as a response to the initial packets sent by the client. The client IP layer bu�ersall such packets in a common bu�er queue to reduce connection establishment latency. Bu�eredpackets are released to the transport layer only when the redirection is con�rmed to avoid securityproblems.The client compares the keys in its redirection table and the received packet on receipt of anIPRP CFM message. If the keys match, then the entry's state is marked IPRP CONFIRMED.If the con�rmation is a valid one, the client searches through the queue of bu�ered packets, andforwards any packets of this ow to the transport layer. If an IPRP ALM message is received, thecorresponding entry is immediately deleted from the table since it is a spurious one.Similar to the redirector, the client IPRP protocol has a slow time out function which periodi-cally checks the redirection table and expires entries that have not seen any activity for more thanthe timeout period.Once a session's redirection is con�rmed, the IP layer begins translating packets in eitherdirection. If a con�rmed binding is found for an outgoing packet, the destination address in the IPheader is changed to the replicated server address in the entry and the checksums are appropriatelymodi�ed. Similarly, an incoming packet belonging to that session from the replicated server istranslated. The source address in the IP header is changed to the original redirector's address andthe checksums are modi�ed. Since all the translation happens in the IP layer, the client transportand higher layers are unaware of any underlying redirection, thus achieving the important goal oftransparency. The translation mechanism is abstracted in �gure 5.4 Advantages and DisadvantagesThis section compares our scheme with the existing methods described in section 2. It also describessome new features possible by using client based mechanisms and highlights its drawbacks. Thereare several advantages of using a client based IP Redirection scheme.Incremental Scalability: In this architecture, more servers can be added to deal withextremely high demands by simply adding the address of a cooperating server to the list maintained8
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much less memory compared to schemes where the server needs to maintain the mapping for eachclient accessing the site.Unlike the Magic Router [7], this scheme does not place any topological restriction on the serversto be geographically localized. Since redirection is performed for each client, this scheme eliminatesthe problem of cached bindings being used by multiple clients causing skewed loads on the servers,as is the case in DNS based redirection [6].An inherent advantage of performing redirection at the IP layer is that it is protocol orapplication independent. It is a general mechanism that an application can use without havinga customized redirection mechanism in place. As is discussed in section 7, the mechanism can bemassaged to serve well in a variety of scenarios.Client oriented IP redirection has the following drawbacks:Deployment:Since this scheme requires client operating systems to be modi�ed to supportredirection, It is relatively di�cult to deploy. However, many popular operating systems likeWindows NT, Windows 95 and Linux allow the TCP/IP stack to be loaded like any driver modulewithout having to recompile or reinstall a new operating system. For these systems, a compliantstack can be released as an independent, upgraded module. Moreover, the scheme does not renderthe service unavailable to legacy clients, but they do not derive any special bene�t from it either.Connection Latency: Clients encounter longer connection establishment latencies with redi-recting servers. However, the average delay is much less once the client is redirected to a nearer orfaster server. A legacy client would not experience any additional connection establishment delaysince the redirector would not redirect that client if the type of service �eld is used to indicate thelack of redirection support.Processing Overhead: Since the host IP layer maintains the redirection bindings of localclients and implements the translation of source and destination addresses, all packets undergosome extra processing in the IP layer. This overhead can be minimized by e�cient implementationand as is discussed in section 6, results show that the overhead is not substantial.5 ImplementationFor the purpose of taking measurements, a testbed was implemented which consisted of Pentiumbased PCs running FreeBSD, Release 2.2.2 [17]. One machine was con�gured as the redirector andthe others as clients supporting redirection. The actual servers that the clients were redirected towere a mix of workstations running Solaris and PCs running FreeBSD or Linux. FreeBSD kernelwas modi�ed to support IPRP. This section highlights the key portions of the implementation of10



the testbed. It mentions the main areas of the FreeBSD source that were modi�ed. It also brieydiscusses the client and redirector protocol module implementations.5.1 FreeBSD IP ProcessingIn the FreeBSD kernel, the IP processing for an incoming packet is implemented in the ip inputfunction and the output processing in the ip output function. The ip input function is called by thedevice drivers, and is passed an mbuf containing the packet. An mbuf is a kernel data structurein FreeBSD used to manipulate packets [18]. Similarly, the ip output function is called by anymodule that wants to send a packet over the network. A global inetsw array is used by ip input tode-multiplex incoming packets and pass them to the appropriate protocol input functions [18].For the clients, both ip input and ip output were modi�ed to add support for redirection. Forthe redirector, only ip input was changed. The redirection protocol itself was implemented byadding another entry to the inetsw array with pointers to the protocol input function ipredr inputand the slow time out function ipredr timo. A protocol number of 99, de�ned by the constantIPPROTO REDR, was used. Essentially, the redirection protocol was implemented like a higherlevel protocol but conceptually remains an extension to IP. The actions performed by these functionsvary in the clients and the redirector.Once a binding has been con�rmed, the input and output IP layer processing of a client modi�esthe source and destination �elds in the IP headers of packets of that session respectively. Theredirector IP input layer also needs to modify the destination in the initial packets from a clientand forward them to one of the replicated servers. Changing these headers requires that the theIP checksum as well as the TCP and UDP checksums be updated. Instead of recomputing theentire checksum, which is expensive, the checksums can be incrementally updated. A procedure isdescribed in [19] for incrementally updating Internet checksums which was corrected and improvedby [20] and [21]. Our implementation is based on the method described in [21].5.2 Redirector ImplementationThe most important data structures that a redirector maintains are its lookup tables - the redirec-tion table and the accept table. To facilitate e�cient insertions, deletions and searches, the tablesare implemented as hash tables with doubly linked lists as collision resolution chains. The sizes ofthe hash table arrays are con�gurable parameters. Each entry uniquely identi�es a session. Entriesare hashed into the tables using the IP address of the client as the key.Figure 6 shows the way di�erent functions in the redirector kernel code interact with eachother. An incoming packet is processed by ip input. It uses the function hash search to searchfor entries in the accept table and the redirection table. A redirection protocol message is passed11
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Figure 11: TCP Connection Establishment Time for Non-Redirected Session and Redirected Sessionwith Forwarding and Bu�eringinitial SYN packet. This takes one round trip time and that is why the connection establishmentlatencies for a regular TCP connection in �gure 11 are close to the RTT values for all serverdistances (the extra time is the processing delay). These measurements serve as the base case forcomparison as these would be seen for any normal connection.In �gure 11, the redirected connection establishment times (with forwarding and bu�ering) alsoincrease with increasing redirector distance as expected but remain of the same order of magnitudeas the RTT. The measurements strongly bring out the bene�t of forwarding and bu�ering. Withoutforwarding and bu�ering, the TCP timeout mechanism determines the connection establishmentlatency and hence typically resulted in a 3 second delay. Redirected connection establishmentlatency always exceeds that for a regular TCP connection by approximately one RTT. This isbecause redirection requires an extra check and con�rmation message to be exchanged, which takesan extra round trip time. Redirection proceeds in parallel with connection establishment. Anypackets from the replicated server before the redirection is con�rmed are bu�ered at the client andthus connection establishment time is lower bounded only by twice the round trip propagationdelay between the client and the redirector. 17
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Figure 12: TCP Connection Establishment Latency for a Non-Redirectable Client with VaryingClient Response Timeout6.2.2 Latency for Legacy ClientsThe redirector also attempts redirection for clients that do not support redirection and accepts theservice requests itself when it realizes that the client is a legacy client. This happens through thevalue of the last Client Response �eld in the redirector's redirection table. The timeout value canbe con�gured by the site administrator. Figure 12 shows the connection establishment latency ofa non-supporting client requesting service from the redirector. Since TCP retransmits the initialSYN segments after approximately 3ms, 9ms and 21ms, the latency is the maximum of the timeoutvalue and the retransmission period for a TCP connection.An improvement over this approach is the use of the type of service �eld in the IP headerto indicate whether a client supports redirection or not. The redirector then would not attemptredirection for a legacy client. This would result in legacy clients seeing no extra connectionestablishment latency. 18



0

50000

100000

150000

200000

250000

300000

350000

400000

450000

3 10 50

Server Distance in RTT (ms)

M
ill

is
e
c
o

n
d

s

1 KB

10 KB

100 KB

1 MB

10 MB

0

2000

4000

6000

8000

10000

12000

14000

3 10 50

Redirector Distance in RTT (ms)

M
ill

is
ec

o
n

d
s

1 KB

10 KB

100 KB

1 MB
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7 ApplicationsThis section discusses some useful applications that a client based IP level redirection scheme can becast into and some future enhancements that are possible. As mentioned earlier, IP level redirectionis a fairly general mechanism that can be massaged to �t into di�erent scenarios. We outline anumber of possible applications of IP level redirection.
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proxy address and informs its home agent of this address. Since a correspondent host is unawareof the location of the mobile host, it sends packets on the home IP address of the host. The homeagent intercepts these packets and tunnels them to the foreign agent using IP-in-IP encapsulation[22]. The foreign agent decapsulates the packet and passes it directly to the mobile host using itsphysical interface address. Packets from the mobile host can go directly to the correspondent host.A basic scheme such as this su�ers from dog-leg routing for packets from the correspondent host tothe mobile host. To avoid dog-leg routing, protocols like the Internet Mobile Host Protocol (IMHP)[23] suggest the use of cache agents. These are entities which reside either on the correspondenthost (if the host is IMHP compliant) or on intermediate routers. Cache agents maintain bindingsabout the current point of attachment of mobile hosts and instead of forwarding packets to thehome agent, perform encapsulation themselves and send packets to the foreign agent directly. Thisis depicted in �gure 14(a). This eliminates the dog-leg to a certain extent.An implementation based on IP redirection would work as follows. Every time a correspondenthost tries to contact a mobile host at its home address, the home agent, which has the functionalityof a redirector, invokes the redirection handshake to create a binding at the client. Thus thecorrespondent host IP layer translates future packets destined for the home IP address to the currentlocation of the mobile host, eliminating the dog-leg in the forward direction. The mobile host sendsoutgoing packets with its current address as the source. These go directly to the correspondent hostwhere they are translated before being handed to the upper layers to seem as if they came fromthe home IP address. This mechanism would work even if the mobile host joins a network with a�rewall since packets in either direction use the local, dynamically assigned address. Figure 14(b)shows this idea. Another advantage of our implementation over earlier schemes is that packetsare not encapsulated with another IP header, but the header itself is translated. The procedure ismore e�cient than encapsulation, does not increase the size of the packet, and avoids unnecessaryadditional fragmentation.7.2 Reliable MulticastingRMTP [24] is a reliable multicast protocol based on a hierarchical structure in which receivers aregrouped into local regions and each region has a special receiver called the designated receiver.The designated receiver sends acknowledgments periodically to the sender, processes messages andacknowledgments from receivers in its region and retransmits lost packets to them. Since retrans-missions are done locally, latency is low and as the sender only receives a common acknowledgmentfrom the designated receiver, acknowledgment implosion is not a problem. Receivers choose theclosest designated receiver through periodic polls and if a designated receiver dies, the next closestone is chosen. RMTP requires that clients be made aware of designated receivers and support theextra functionality required to determine the closest live designated receiver.An IP level redirection based approach, as shown in �gure 15, works as follows: The receivers21
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REDRFigure 15: Hierarchical Reliable Multicastingare initially aware only of the sender. When the �rst response from a receiver arrives at the sender,it invokes the redirection protocol and redirects the receivers to send their future responses andretransmission requests to the designated receiver closest to them, which the sender determines.The receivers don't send any packets to the designated receiver explicitly, but that happenstransparently. Another advantage of doing this is that if the current designated receiver decidesto leave the group, it can redirect the receivers in its domain to another or next-in-line designatedreceiver before leaving. The receivers would not detect any changes and would still send requestsand acks to the sender's address. This illustrates that the same IP level redirection protocol canbe used to enhance a multicast protocol into a hierarchical multicast protocol.7.3 Interactive On-Line GamesOn line games between geographically separated players are very popular on the Internet. Thereare a number of sites that users can log on to and play against other present users. In almost allapplications though, all packets between the two players have to go through the site. However, iftwo users want to play a highly interactive game on-line, and if there exists a direct, shorter pathbetween them, they could experience a much better playing environment if packets were to traversedirectly to and fro, avoiding the additional delay in going through the central site. The playersshould not be asked to reconnect to their opponent, though, so transparency is important. Allthis is possible if the clients support redirection since the redirector can be con�gured to redirectopponents to each other. Naturally, the gaming applications have to be designed to use this facility.7.4 Location Independent Video TransmissionIPRP allows an application to be redirected to a di�erent server while the application is in progress(with necessary support at the servers). The cascaded redirection feature possible with this schemeallows a user to be transparently redirected repeatedly if required. For example, a user can contacta central site for live video. When the live video needs to be transmitted from a di�erent location(from a site in city A to another site in city B in a new year celebration video, for example), the22



client can again be redirected to expect the packets from the second server. This is not possiblein most live video transmissions on the Internet currently, which are restricted to one locationprimarily. This idea can be used to provide location dependent services in a mobile environmentby redirecting the client to a di�erent server as he/she moves around.7.5 Layered Video TransmissionSome schemes for streaming video on the Internet use a layered encoding mechanism where abase encoding layer provides the minimum acceptable picture quality and an enhancement layerimproves the quality. Typically, the base and enhancement layers are streamed over parallel sessionsbut from the same server. This can cause congestion on the network since video streams requireslarge amounts of bandwidth. An IPRP based scheme could redirect the sessions such that the twolayers are delivered by two di�erent servers. The streams take di�erent paths to the client reducingthe chances of congestion and improving the overall throughput. The application would howeverhave to take care of synchronization issues.8 Conclusions and Future WorkThe paper introduced the idea of involving the client IP layer actively in redirecting a localapplication. This approach is di�erent from most other redirection approaches which rely entirelyon the server or the network. The main drawbacks of this approach have been discussed and waysto overcome the problems have been suggested. The performance of the protocol is measured interms of bulk transfer times and connection latencies. The impact of a redirection-supportingkernel and multiple parallel redirected sessions on regular connections is also studied. The resultsshow that the overhead introduced in the client IP layers due to redirection is not signi�cant.The connection establishment latencies are also acceptable for redirected connections because ofredirector forwarding and client bu�ering. Latency for a legacy client can also be minimized byusing the TOS �eld. The paper also presented various possible Internet based applications wherea client based network level redirection scheme can be used.There are ways that the current implementation can be made more versatile and e�cient. Theredirector can be modi�ed to periodically poll the replicated servers to detect if they are alive. If itdetects a dead server, it could try and redirect clients that were initially sent to this server. Addingthis would involve issues of service migration.A \wild-card" redirection mechanism can be incorporated. This refers to the situation wherethe redirector might want to redirect all clients on certain hosts to a particular server. Instead ofredirecting each client individually, redirection could occur only once. Moreover, if the client IPdetects an existing wild-card entry for a site, it should start mapping packets for a new session23
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