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Abstract—Anonymous wireless networking is studied when
an adversary monitors the transmission timing of an unknown
subset of the network nodes. For a desired quality-of-service
(QoS), as measured by network throughput, the problem of
maximizing anonymity is investigated from a game-theoretic
perspective. Quantifying anonymity using conditional entropy
of the routes given the adversary’s observation, the problem of
optimizing anonymity is posed as a two player zero-sum game
between the network designer and the adversary; the task of
the adversary is to choose a subset of nodes to monitor so that
anonymity of routes is minimum whereas the task of the network
designer is to maximize anonymity by choosing a subset of nodes
to evade flow detection by generating independent transmission
schedules.

In this two player game, it is shown that a unique saddle point
equilibrium exists for a general category of finite networks. At the
saddle point, the strategy of the network designer is to ensure
that any subset of nodes monitored by the adversary reveals
identical amount of information about the routes. For a specific
class of parallel relay networks, the theory is applied to study
the optimal performance tradeoffs and equilibrium strategies. In
particular, when the nodes employ transmitter directed signaling,
the tradeoff between throughput and anonymity is characterized
analytically as a function of the network parameters and the
fraction of nodes monitored. The results are applied to study the
relationships between anonymity, fraction of monitored relays
and the fraction of hidden relays in large networks.
Keywords– anonymity, wireless networks, saddle point equilib-
rium, eavesdropper, traffic analysis

I. I NTRODUCTION

A. Motivation

The packet transmission times1 of nodes in a network
can reveal significant information about the source-destination
pairs and routes of traffic flow in the network [1], [2].
Equipped with such information, a malicious adversary can
launch more powerful attacks such as wormhole, jamming
or denial of service. Anonymous networking is the act of
communicating over a network without revealing the identities
of source-destinations or the path of flow of packets.

The typical design of anonymous networking protocols
models adversaries as omniscient and capable of monitoring
every single transmission in the network perfectly. From a
practical standpoint, this is far too conservative, and such
universal information would be available only to the network
owner or a centralized controller. In this work, our goal is to
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1Transmission time in this work refers to the time point of transmission,
and not the duration or latency.

study the problem of anonymity in networks under a more
general adversary model, where anunknownsubset of the
nodes are monitored by the adversary. The subset of monitored
nodes could depend on the physical location of the adversary,
or partial knowledge of network transmission protocols. Itis
also possible that in some public wireless networks, certain
nodes may have weaker physical protection than others, and
are hence, more vulnerable to transmission monitoring.

From a network design perspective, the goal is to design
transmission and relaying strategies such that the desired
level of network performance is guaranteed with maximum
anonymity of network routes. Providing anonymity to the
routes of data flow in a network requires modification of
packet transmission schedules and additional transmissions
of dummy packets to confuse an external observer. These
modifications however reduce the achievable network perfor-
mance, particularly in ad hoc wireless networks, where the
scheduling needs to satisfy medium access constraints on the
shared channel. Therefore, depending on the desired quality
of service (QoS), it is necessary to pick the optimal set of
nodes to modify transmission schedules so that anonymity is
maximized without violating QoS requirements.

If the network designer were aware of which nodes of the
network were being monitored by the adversary, the optimal
set of nodes can be chosen such that minimum information
is revealed through the monitored nodes. However, if the
adversary is aware of the set of nodes that the network designer
has chosen to protect, then he can alter his choice of nodes
to monitor so that maximum information about the network
routes is retrieved. This “interplay” between the network
designer and the adversary is the main subject of this work,
and it is studied using a game-theoretic approach.

Since the set of monitored nodes is unknown to the net-
work designer, a conservative approach would be to design
the scheduling strategy assuming an omniscient adversary.
However, since the power of the adversary,i.e. the maximum
fraction of monitored nodes, is bounded, we would like to
investigate if the strategies of the network designer and the
adversary can be analyzed jointly to get a better tradeoff
between anonymity and network performance compared to that
under the omniscient assumption (see Figure 1). To this end,
we propose a two-player zero sum game between the adversary
and the network designer, where the payoff is anonymity, the
action of the adversary is to choose which nodes to monitor
to minimize payoff and the action of the network designer
is to choose which nodes of the network to “hide” from
the adversary to maximize the payoff subject to the QoS
constraint.
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Fig. 1. Anonymity-Performance Tradeoff: as the fraction ofmonitored
nodes gets smaller, we wish to compute the improvement in theperformance
tradeoffs.

The game-theoretic perspective can be understood using an
example of a2−relay parallel network as shown in Figure 2.
During any period of observation of the adversary, we assume
that the network operates in one of two configurationss1 or
s2 (see Figure 2) wherein,

s1 = {(A1, B1, C1), (A2, B2, C2)},

s2 = {(A1, B2, C2), (A2, B1, C1)}

are the set of active routes in each configuration (henceforth
referred to as anetwork session). The adversary’s goal is
to identify which of these sessions is currently active in
the network by monitoring the transmission timing of the
monitored nodes.

Consider a transmitter directed signaling model, where each
node transmits on a unique orthogonal channel such that
transmissions of multiple nodes are non interfering. Under
this signaling scheme, merely detecting the transmission times
of packets by a node will not reveal the identity of the
intended receiver. Suppose in this setup, the adversary can
only afford to monitor the transmissions of two nodes. An
adversary would therefore have to detect correlations across
transmission schedules of a source and a relay to identify
the flow of traffic. For example, ifB1 forwarded packets as
and when they arrived from the source, then during network
sessions1, the transmission schedules ofA1 andB1 would
be highly correlated, whereas, durings2, the schedules of
A1 andB1 would be statistically independent. An adversary
who merely monitors nodesA1 and B1 would therefore be
able to identify the network session perfectly by detecting
the dependence between schedules. Suppose, instead, the
relays B1 and B2 always use transmission schedules that
are statistically independent of the arrival schedules from
the sources. Then, no information about the session can be
obtained by monitoring the transmission schedules of any
pair of nodes. Using independent schedules, however, requires

dummy transmissions by the relays thus reducing the rate of
data packets forwarded by each relay.

x

A1 A1

A2 A2

B1 B1

B2 B2

C1 C1

C2 C2

S = s1 S = s2

Fig. 2. 2−relay parallel network: Two possible sessions, each
containing two paths.s1 = {(A1, B1, C1), (A2, B2, C2)}, s2 =
{(A1, B2, C2), (A2, B1, C1)}.

Consider a scenario when the throughput requirement man-
dates that at most one relay can generate independent sched-
ules (using dummy transmissions). If only relayB1 generates a
transmission schedule that is statistically independent of that of
A1 andA2, then the optimal strategy for the adversary would
be to monitor(A2, B2) or (A1, B2), either of which would
help him perfectly determine the session. However, given
the knowledge that the adversary would monitor(A1, B2)
or (A2, B2), the optimal strategy of the network designer
would be to make the schedule ofB2 always independent
thus maximizing anonymity.

A natural question that arises is: is there a pair of strategies
for the network designer and the adversary that neither has
any incentive to modify? In other words, if formulated as
a two-player zero-sum game between the adversary and the
network designer with anonymity as the payoff, does a Nash
equilibrium exist? As will be shown in Section III, a saddle
point equilibrium does exist in the class of mixed strategies.
For this example, at the equilibrium point, the optimal strategy
for the network designer is to choose one of the relays
with probability 1

2 to generate independent schedules, and the
optimal strategy for the adversary is to monitor each source-
relay pair with probability1

4 . By definition, at this operating
point, neither the network designer nor the adversary have any
incentive to modify their strategies (See Theorem3).

The example discussed above involves a simple scenario
with only two possible network sessions and the adversary
has two kinds of observations: a pair of dependent or a pair
of independent schedules. In a general multihop network,
anonymity based on partial information about the session can
be quantified using Shannon’s equivocation [3], [4], and our
goal in this work is to optimize the tradeoff between the
desired network throughput and the achievable anonymity as
a function of the adversary’s monitoring capability.

B. Main Contributions

In this work, we consider a game-theoretic formulation of
anonymous networking in a general class of finite wireless net-
works when the number of nodes monitored by an adversary
model is bounded by a known constant. We pose the design
problem as a two player zero sum game with equivocation
(conditional entropy) of the network session as the payoff;
the adversary’s strategy is to pick a random subset of nodes
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to monitor, and the network designer’s strategy is to pick a
random subset of nodes to generate independent schedules,
thus avoid detection. For the class of finite multihop networks
considered, we prove that a saddle point equilibrium always
exists in the class of centralized strategies2. Note that since
anonymity, as defined by conditional entropy, is a non-linear
function of the probabilities of mixing multiple strategies, the
existence of Nash equilibria in classical two-player zero-sum
games [5], where payoff of mixed strategies are weighted sum
of pure strategy payoffs, does not directly apply.

To demonstrate the applicability of the game-theoretic
model, we consider a general class of parallel relay networks.
For a symmetric relay model, we characterize analytically the
throughput-anonymity tradeoff as a function of the adversary’s
power and using the results on player strategies, derive the
saddle point strategies which are understandably symmetric.
We then introduce asymmetry into the properties of the relay
rate and the information model, and using the derived results
on saddle point strategies, demonstrate the gain of the game-
theoretic approach over naive intuitive strategies. We also
show that the game-theoretic approach can be used to study
large parallel relay networks, by characterizing the asymptotic
relationships among anonymity, the fraction of monitored
relays and the fraction of covert relays.

C. Related Work

Anonymous communication over the Internet is fairly well
studied, where many applications have been designed based
on the concept of traffic mixes proposed by David Chaum
[6]. Mixes are routers or proxy servers that collect packets
from multiple users and transmit them after reencryption and
random delays so that, incoming and outgoing packets cannot
be matched by an external observer. While mix-based solutions
have been used in applications such as anonymous email or
browsing, it has been shown that when long streams of packets
with latency or buffer constraints are forwarded through mixes,
it is possible to correlate incoming and outgoing streams
almost perfectly [7].

In wireless networks, an alternative solution to Mixing is the
use of cover traffic [8], [9], which ensures that, irrespective of
the active routes, the transmission schedules of all nodes are
fixed apriori. If a node does not have any data packets, the
transmission schedule is maintained by transmitting dummy
packets. While the fixed scheduling strategy provides complete
anonymity to the routes at all times, it was found to be
inefficient [8] due to high rate of dummy transmissions, and
the implementation required synchronization across all nodes
which is not practical in ad hoc wireless networks. In this
work, the technique used to provide anonymity is similar to
that in [10], where a subset of relays (referred to ascovert
relays) generate independent transmission schedules using
dummy transmissions.

The general adversary model considered here necessitates
a game-theoretic formulation of the problem. Game theory

2Centralized strategies are strategies which require co-ordinated action
across all nodes of the network. Such strategies can be implemented using
a single central controller, the use of shared randomness across nodes, or
limited message passing between nodes

[11] has been used in a wide range of multi-agent problems
from economics to networking. In the context of network
security, earlier applications were focused on jamming. Basar
considered the problem of jamming in Gaussian channels [12]
where it was shown that the optimal jamming strategy is
either a linear function of jammer’s observation or an additive
independent Gaussian noise. Borden, Mason and McEliece
[13] considered the information theoretic saddlepoints ofthe
jamming game under hard/soft quantization schemes. More
recent work along this line include [14]–[16]. Game-theoretic
models have also been used to model problems related to
distributed intrusion detection [17], [18], where the goalis
to design attacking and detection strategies with probability
of detection as the payoff. In [19], game-theory was used to
study attacker and defense strategies on a graphical model of
a network, where the attackers choose nodes to compromise
while the defender picks links to “clean up”. To the best of
our knowledge, ours is the first application of game-theory to
hiding traffic flows in the presence of eavesdroppers. The work
closest to ours in this regard is that of information concealing
games using finite dimensional data [20] where one of the
players (the adversary) chooses a subset of available resources
to hide, while the opponent (the network user) chooses a
subset of resources based on the revealed observation to max-
imize his utility. The authors identify conditions under which
Nash equilibria exist and provide approximation techniques to
compute the equilibria. Conceptually, this problem has some
similarities to our strategy of choosing covert relays, where the
network designer chooses to hide a subset of relays, whereas
the adversary chooses a subset of relays to monitor. In our
model, the adversary’s observation depends on the actions of
both the players which are decided apriori, and the payoff is
a non-linear function of the probabilities of mixing strategies,
thus different from classical mixed strategy models [5].

Our mathematical model for anonymity is based on the
framework proposed in [10], where conditional entropy of the
network session was proposed as a metric for anonymity. En-
tropy and measures related to entropy such as K-L divergence
have been proposed as payoffs in games of complexity [21].
Entropy in such contexts were used as metrics of complexity,
rather than a measure of uncertainty.

II. SYSTEM MODEL

Notation: Let the network be represented by a directed graph
G = (V , E), whereV is the set of nodes in the network and
E ⊂ V×V is the set of directed links.(A,B) is an element of
E if and only if nodeB can receive transmissions from node
A. A sequence of nodesP = (V1, · · · , Vn) is a valid path in
G if (Vi, Vi+1) ∈ E , ∀i < n. The set of all loop-less paths is
denoted byP(G).

A. Adversary Observation and Inference

During any network observation by the adversary, a subset
of nodes communicate using a fixed set of paths. This set
of pathsS ∈ 2P(G) is referred to as a networksession. The
adversary’s goal is to use his observation to identify the
session. We modelS as an i.i.d. random variableS ∼ p(s).
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The prior p(s) on sessions is assumed to be available to
the adversary. The set of possible sessionsS is given by
S = {s ∈ P(G) : p(s) > 0}. (See example sessions in Figure
2).

Transmitter Directed Signaling The adversary’s observation
would depend on the underlying physical layer signaling
model. In this work, we consider orthogonal transmitter
directed signaling at the physical layer, where each node
utilizes a unique orthogonal signaling scheme such that a
transmission schedule detected by the adversary would reveal
only the transmitting node and not the intended receiving node.

Observable SessionThe goal of the network designer is to
modify transmission schedules of the nodes in every session
such that the monitored nodes reveal as little information
about the actual session as possible. For instance, if a subset
of relays always generate independent transmission schedules
then it is not possible for the adversary to determine which
paths pass through them. In effect, the set of (broken)
paths observable would be a distorted version of the actual
session. Let̂S (henceforth referred to asobservable session)
denote the set of paths as observed by an omniscient adversary.

A1

A2

A3

A4

D1

D2

D3

D4

B1
B2

B3
B4

Fig. 3. Switching Network:{Ai} transmit to{Ci} through relays{Bi}.

For example, consider the switching network in Figure
3, where every session is defined by a unique pairing of
sources and destinations (eachAi sends packets to a unique
Dj through intermediate relays). In this network, consider a
sessions1 given by the set of paths:

s1 = {
(A1, B1, B4, D3), (A2, B1, B2, D2),
(A3, B3, B2, D1), (A4, B3, B4, D4)

}.

Suppose nodeB1 generated an independent schedule regard-
less of the arrival times fromA1, A2. Then, an omniscient
adversary would not be able to identify the paths of the packet
streams fromA1 andA2 after they reachB1. Therefore, the
observable session would contain the set of paths:

Ŝ = {
A1, A2, (B1, B4, D3), (B1, B2, D2),
(A3, B3, B2, D1), (A4, B3, B4, D4)

}. (1)

Adversary Observation Under a general adversary model,
packet transmission times of a subset of nodes are observed
by the adversary. Specifically, the adversary randomly
chooses any subset of nodes, denoted byNa, to monitor.

The maximum number of monitored nodes is denoted byka
(also referred to aspower of the adversary). We modelNa

as a random variable where the random distribution ofNa is
chosen by the adversary to maximize his payoff. Depending
on the observable session̂S and the set of monitored nodes
Na, the adversary’s observation̂Sa would be a further
distorted version of the underlying sessionS. The adversary’s
net observation can be represented by a set of pathsŜa and
would be given by a deterministic functionfa(Ŝ,Na). (Note
that fa(Ŝ,V) = Ŝ).

In the switching network example of Figure 3, letB1 be
covert in sessions1. Then (1) provides the observable ses-
sion (omniscient adversary). If the adversary monitors nodes
A1, A3, B1 andB3, then

Ŝa = {A1, B1, (A3, B3)}.

B. Performance Metrics: Anonymity and Throughput

The task of the network designer is to design the probability
distribution of observable sessions, denoted byqn(ŝ|s), such
that a desired QoS is achieved while the adversary obtains
minimum information about the sessionS by observingŜa.
The task of the adversary, on the other hand, is to design
the probabilitiesqa(Na) of choosing nodes to monitor s.t.
maximum information is obtained by observingŜa.

Anonymity We quantify anonymity using Shannon’s equivo-
cation [3] which measures the uncertainty of the underlying
session given the adversary’s observation.

Definition 1: We define theanonymity A(qn, qa) for a
network strategyqn(ŝ|s) w.r.t adversary strategyqa(na) as
the normalized conditional entropy of the sessions given the
adversary observation:

A(qn, qa)
△
=

H(S|Ŝa)

H(S)
. (2)

The normalization ensures that the anonymity is always
between0 and1. The motivation behind the above definition
comes from Fano’s inequality which lower bounds the
adversary’s probability of error by the conditional entropy
[22]. Note that previous entropy-based definitions of
anonymity [4], [10] in the context of omniscient adversaries
are special cases of Definition1 (whenNa ≡ V).

Throughput Since distorting the observable session requires
modification of transmission schedules, the latency and band-
width constraints in the network would require transmission
of dummy packets and result in a reduced rate of data
packets delivered from the sources to destinations. LetΛ(s, ŝ)
represent the sum-rate of packets deliverable from sourcesto
destinations when the actual session iss and the observable
session iŝs. Note thatΛ(s, ŝ) ≤ Λ(s, s).

Definition 2: The throughputΥ(qn) of a scheduling strat-
egy qn(Ŝ|S) is defined as

Υ(qn) = E

(

Λ(S, Ŝ)
)

(3)
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where the expectation is over the joint pdf ofS and Ŝ.
Anonymity and throughput are essentially two opposing

paradigms in the design of the optimal scheduling strat-
egy; transmitting more dummy packets increases anonymity
whereas higher throughput necessitates fewer dummy trans-
missions. Unlike the omniscient adversary setup, since the
power of the adversary is bounded, the uncertainty in the
identities of the monitored nodes,i.e. the randomness inNa,
necessitates the game-theoretic formulation, as was illustrated
in the example in Section I. In the following section, we
formulate this problem as a two-player zero sum game, and
establish the existence of a saddle point equilibrium.

III. T WO PLAYER GAME USING COVERT RELAYING

STRATEGY

Consider a two-player zero sum gameGa, defined by a
3−tuple (An,Aa, φ) where An and Aa denote the action
spaces of the network designer and the adversary respectively,
andφ : An×Aa 7→ [0, 1] is the payoff function for the network
designer (the adversary’s payoff is−φ(·, ·)).

A. Action Spaces

In its most general form, the action space for the network
designer would include the set of all probability distributions
qn(Ŝ|S) over the space of all loop-less pathsP . In this work,
we restrict the set of observable sessions to those achievable
using the set ofcovert relaying strategieswhere each relay
node belongs to one of two categories:covertor visible.

Covert relay A covert relay B generates an outgoing
transmission schedule that is statistically independent of the
schedules of all nodes occurring previously in paths that
contain B. Due to statistical independence, no adversary
can detect the flow of traffic through a covert relay. Covert
relaying is a modification to the transmission scheduling
which provides anonymity and yet adheres to the medium
access and delay constraints of the system.

Visible relay A visible relay B transmits every received
packet immediately upon arrival thereby ensuring all arriving
packets are relayed successfully within the latency constraint.
However, the traffic flow through the visible relay operating
under this highly correlated schedule is easily detected by
an eavesdropper. (A statistically consistent detector forthis
purpose has been designed in [23].)

In a given sessions, if the set of covert relays isbn then
the observable session̂s can be expressed as a deterministic
functionfo(s,bn). For a transmitter directed signaling model,
fo(s,bn) is a set of paths such that: for every path ins
which hask covert relays,fo(s,bn) containsk + 1 paths,
each beginning at the source or a covert relay and terminating
one relay before the subsequent covert relay or the destination.
This is because covert relay schedules prevent the adversary
from detecting any correlation between the schedule of a prior
node in the path with that of the relay.

We model the set of covert relays in a session by a random
variableBn with conditional distribution{qn(bn|s)} and the
class of covert relaying strategies is defined by the set of
all probability distributions{qn(bn|s)}. Note that this is a
restrictive action space where it may not be possible to realize
all observable sessions in2P(G) for any sessions.

As expected, maintaining independent schedules would re-
quire covert relays to drop packets or add dummy packets con-
sequently reducing the rate of relayed data packets, whereas
visible relays can relay every packet that arrives without
any loss in rate. The loss in rate at a covert relay would
be a function of the probability distributions of transmission
schedules, delay and bandwidth constraints, and the relaying
strategy. In a sessions, let Λ′(s,bn) denote the achievable
sum-rate when the relays in the setb are covert. Note that
sinces,b perfectly determine the observable sessionŝ,

Λ′(s,bn) = Λ(s, fo(s,bn)).

The characterization of the exact rate loss is not necessary
for this exposition, and we will treat it as an abstract quantity.
In the subsequent section, where we study parallel relay net-
works, we shall use specific scheduling and relaying strategies,
and provide an analytical characterization of the rate lossfor
that class of networks.

For a given strategyqn(bn|s), the throughputΥ can be
expressed as a linear function:

Υ(qn) =
∑

s∈S

p(s)
∑

b∈2V

qn(b|s)Λ
′(s,b).

By restricting ourselves to the class of covert relaying
strategies, we define the action spaces for the network designer
and the adversary in the game as follows.

The action of the network designer is to select the probabil-
ity mass functionqn(bn|s) that chooses covert relays in each
sessions. The key constraint in this design is the throughput
requirement (Υ(qn) ≥ γ). Accordingly

An =















{qn(bn|s) : s ∈ S,bn ⊂ V} :
Υ(qn) ≥ γ

qn(bn|s) ≥ 0, ∀s,bn
∑

bn
qn(bn|s) = 1, ∀s

The action of the adversary is to design the probability
distribution qa(na) of picking nodes to monitor during the
session, subject to the constraint on the maximum number of
monitored nodes (na ∈ Vka ). Therefore,

Aa =







{qa(na) : na ∈ Vka}
qa(na) ≥ 0, ∀na
∑

na
qa(na) = 1

B. Payoff and Saddle Point

For a given observable sessionŝ = fo(s,b), the adversary
observation ŝa would be restricted to the paths between
monitored nodes inna. In other words

ŝa = fa(ŝ,na)
△
= {p

⋂

na : p ∈ ŝ}.
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Define Fa : 2P(G) × 2V 7→ 2S×2V to be the adversary’s
uncertainty set:

Fa(ŝa,na) = {(s,b) : fa(fo(s,b),na) = ŝa}.

In other words, if the adversary monitorsna, Fa(p,na) is the
set of possible pairs of session and covert relays that would
lead to the observationp through the nodesna.

For a given pair of strategies(qn, qa) ∈ (An × Aa),
the payoff functionφ(qn, qa) is the anonymity which from
Definition 1 is given by:

φ(qn, qa) =
H(S|Ŝa)

H(S)

=
1

H(S)

∑

na∈2V

∑

s∈S,bn∈2V

−qa(na)p(s)×

qn(bn|s) log qap(s, fa(fo(s,bn),na),ba)(4)

whereqap(s, ŝa,na)
△
=

∑

b:fa(fo(s,b),na)=ŝa
qn(b|s)p(s)

∑

(s′,b′)∈Fa(ŝa,b)
qn(b′|s′)p(s′)

(5)

is the a posteriori probability that the current session iss

given the adversary observesŝa through the nodesna.

In a zero-sum game, we know that the interests of the
network designer and the adversary are exactly opposite; while
the network designer would prefer to make the monitored
nodes covert, the adversary would prefer to monitor the visible
nodes. We wish to determine if there is an operating point in
the pair of action spaces, where neither the network nor the
adversary has any incentive to change their strategy, in other
words, if this game has a saddle point equilibrium.

Definition 3: A pair of strategies(qn, qa) ∈ An × Aa

constitutes asaddle point equilibriumif:

φ(qn, qa) = sup
q∈An

φ(q, qa) = inf
q∈Aa

φ(qn, q). (6)

Note that, although it is well known that two player zero
sum standard matrix games as defined in [5], always have a
Nash equilibrium in the class of mixed strategies, the result
does not extend to the game defined here. In fact, even if
modeled as a continuous-kernel game as in [24], the existence
of saddle point equilibrium when action spaces are compact
does not directly apply here. The reason being, the payoff for
a mixed strategy in such two player games is a weighted sum
of pure strategy payoffs, in our setup, the payoff is a non-
linear function of the pure strategy payoffs and the mixing
probabilities (see (4)). The existence of a saddle point in this
game is shown in the following theorem.

Theorem 1:1. For the two player zero-sum gameGa

defined by the action spacesAn,Aa and payoff functionφ,
there exists a unique saddle point equilibrium.

Proof: Refer to Appendix. 2

The equilibrium condition guarantees that at the operating
point, the adversary can use no other strategy to decrease the
anonymity of the session. In addition to proving the existence
of a saddle point, characterizing the optimal strategy for the

adversary is also important, and particularly helpful in network
scenarios where additional protection can be provided to nodes
that are more likely to be monitored.

Note that the omniscient adversary setup is a specific
instance of this game, when the adversary has exactly one
action: monitor all nodes. The existence of an equilibrium is
trivial and the operating point is given by the rate distortion
optimization [4]:

φ(γ) = H(S)− inf
qn(Ŝ|S):Υ(qn)≤γ

I(S; Ŝ). (7)

The uniqueness of the equilibrium follows from the zero-
sum property of the game. Note that while the pair of strategies
that achieves the saddle point anonymity is not unique, the
saddle point anonymity in the two-player zero-sum game is
indeed unique. This game is also an example of an incomplete
information game [18] where the adversary does not have
complete access to the session or the realization of the network
designer’s randomness, while the network designer does not
have access to the realization of the adversary’s randomness.

Although computing saddle point strategies is hard since the
action spaces are continuous, properties of player strategies
can be derived by studying the conditions.

C. Insights into Player Strategies

In this section, we investigate the properties of the saddle
point player strategies using the conditions for equilibrium.

Partial Information For a given subset of nodesb, we define
the partial uncertainty from the adversary’s perspective as:

Hp(b) =
∑

s,ŝ

p(s)qn(bn|s) log qap(s, fa(fo(s,bn),na),b),

whereqap is the a posteriori probability defined in (5). The
partial uncertainty represents the uncertainty of the session
when the adversary monitors a particular subset of nodes.

Information Leakage Rate For a given action by the network
designer– making a set of relaysb covert in a sessions— the
rate of information leakage is defined as:

L(s,b)
△
=

dφ(qn, qa)

dqn(s,b)
(8)

Theorem 2:For the two player zero-sum gameGa, at the
saddle point(q∗n, q

∗
a),

1) ∀b1
a,b

2
a s.t. q∗a(b

1
a), q

∗
a(b

2
a) > 0,

Hp(b
1
a) = Hp(b

2
a).

2) ∀s, if ∃b1,b2, s.t. q∗n(s,b1), q
∗
n(s,b2) > 0 and

Λ(s,b1) = Λ(s,b2), then

L(s,b1) = L(s,b2) (9)

3) ∀s, if ∃b1,b2, s.t. q∗n(s,b1), q
∗
n(s,b2) > 0 and

Λ(s,b1) 6= Λ(s,b2), then

L(s,b1)− L(s,b2)

Λ(s,b1)− Λ(s,b2)
is a constant. (10)

Proof :Refer to Appendix.
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The above theorem states that, at the saddle point, for
every subset of nodes monitored by the adversary (with non-
zero probability), the partial uncertainty of the underlying
session is identical. In other words, the set of covert relays
are chosen such that any monitored subset reveals equal
information about the session. At this operating point, from
the perspective of the adversary, any probability distribution
over these “degenerate” subsets would give rise to the same
anonymity. There, however, exists a unique distribution to
choose nodes to monitor, which when employed, gives the
network designer no incentive to deviate. At this point, the
difference in information leakage rates for any pair of actions
is proportional to the difference in throughput. In other words,
the throughput cost per unit change in uncertainty is identical
for every choice of covert relays (by the network designer).

Although the conditions in (9), (10) appear complicated to
analyze owing to aposterior probabilities, in many networks it
is possible to utilize network structure and session modelsto
analyze the condition and characterize the optimal throughput-
anonymity tradeoffs.

In the following section, we consider one such class of
parallel relay networksto demonstrate the applicability of
the game-theoretic approach. Specifically, we use the derived
results on saddle point strategies to study the optimal be-
haviour of network nodes and the adversary, and in the process,
demonstrate the performance improvement due to the game-
theoretic approach over naive intuitive player strategies. We
also use apply the formulation to characterize fundamental
asymptotic relationships between anonymity, throughput and
adversary capability in parallel relay networks. The asymptotic
relationships are useful in the design of strategies in large
networks where numerical computation becomes practically
infeasible. In fact , we demonstrate that the maximum loss
in using the asymptotic results on an− node parallel relay
network is bounded bylogn

n
.

IV. PARALLEL RELAY NETWORKS

A. Network Model

Sources Relays Destinations

Fig. 4. Parallel Relay Network Model.

Consider aparallel relay networkas shown in Figure 4,
where the set of nodesV in the network can be divided into
3 subsetsVs,Vr,Vd such thatVs = {A1, · · · , An} is the set
of source nodes,Vd = {D1, · · · , Dn} is the set of destination
nodes, andVr = {R1, · · · , Rn} is the set of intermediate relay
nodes the network. The set of edgesE can similarly be divided
into 2 setsEs, Er, whereEs denotes the set of edges between

source nodes and relays,Er is the set of edges between relays
and the destinations.

We make the following two assumptions in the model:
1. Full connectivity Every source is connected to every relay,
and every relay is connected to every destination.
2. Symmetry The probability of a source-relay-destination
connection is identical across sources, relays or destinations.

Note that these assumptions, while not critical to the
analytical tractability helps to provide broader insightsinto
optimal strategies for the network designer and the adversary.

Session ModelIn each session, every source inVs picks a
distinct destination inVd and a distinct intermediate relay in
Vr to forward its packets, such that all sources and relays
are transmitting in every session. From a graph-theoretic
perspective, each session corresponds to a unique pair of
bipartite matchings from the sources to the relays and from
the relays to the destinations.

Owing to the symmetry assumption, each sessions has an
identical prior probability:

p(s) =
1

n!n!
.

Medium Access Constraints We consider a transmitter
directed signaling model, where every node (source or
relay) has an independent transmission rate constraint. Let
Cs denote the transmission rate constraint for any source
and letCr denote the transmission rate constraint for any relay.

Transmission and Relaying strategy For purposes of
analytical characterization, we consider independent Poisson
schedules, where all source schedules and covert relay
schedules are generated according to independent Poisson
processes. The relaying strategy used by any covert relay is
the Bounded Greedy Match algorithm [25], which was shown
to maximize the sum-rate of relayed data packets.

Throughput Given the transmission rates of the relay and the
source nodes, Theorem1 in [4] characterizes the maximum
achievable data rate when the BGM algorithm is used as the
relaying strategy. Since all routes in the parallel relay network
are2−hop routes, the sum-rateΛ(s,bn) in a sessions when
relays inbn are covert is expressible as a sum of achievable
rates for each source destination pair:

Λ(s,b) = (n− |b|)min(Cs, Cr) + |b|λ∗(Cs, Cr),

whereλ∗(a, b) = a
be∆(b−a) − b

be∆(b−a) − a

is the maximum achievable rate for a covert relay using
independent Poisson schedules under a strict delay constraint
of ∆ seconds per packet. [4].

The throughput, as defined in Section II, is given by:

Υ(qn) =
∑

s

p(s)
∑

bn

qn(bn|s)Λ(s,bn).

The maximum achievable throughputΥmax when all relays
are visible is given by:

Υmax = nmin(Cs, Cr).
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Note that sum-rate here is used as a specific scalar measure
of performance to define the strategy space of the network
nodes. In general any function of capacity region can be used
to define the strategy space of the network, and the results
here can be extended to such models as well.
Adversary Model The adversary monitors a subset of the
nodes, which we denote by a pair of random variablesNs

a,N
r
a,

whereNs
a andNr

a denote the sources and relays that are mon-
itored respectively. For every monitored node, the adversary
has perfect knowledge of the packet transmission times. We
know that|Ns

a|+ |Nr
a| ≤ ka.

Given the bipartite session model, at every monitored relay,
the schedule observed by the adversary is either correlated
to that of a monitored source node, or independent of every
monitored source node. In effect, the adversary observation
fa(fo(s,bn),na) = ps,r

a ∪ ps
a ∪ pr

a where:
i. ps,r

a is a set of source-relay pairs with dependent schedules;
ii. ps

a is a set of source nodes whose schedules are not
correlated with that of any monitored relay;
iii. pr

a is a set of relays whose schedules are not correlated
with that of any monitored source;

For example, consider a session in a3 source parallel-relay
network, where sourceAi communicates with destinationDi

through relayRi. Let the network designer make relayR1

covert and the adversary monitor the nodesA1, A2, R1, R2

and R3. In this example, the adversary observation can be
written asps,r

a ∪ ps
a ∪ pr

a where

ps,r
a = {(A2, R2)},p

s
a = {A1},p

r
a = {R1, R3}.

Anonymity By merely monitoring the transmissions of the
nodes in the network, an adversary can at most identify
every source-relay pair. Since the network utilizes transmit-
ter directed signaling, using transmission timing alone, it is
impossible to determine any final destination. We, therefore,
measure anonymity using the set of source-relay pairs per-
fectly identifiable by the adversary. LetS′ denote the set of
source-relay pairs in the session. We can write

H(S|Ŝa) = H(S′|Ŝa) +H(S|Ŝa,S
′).

SinceS′ contains all the source relay pairings andŜa contains
no information about destinationsH(S|S′, Ŝa) = H(S|S′),
which is a constant irrespective of the set of monitored nodes.
We therefore modify the payoff in the two player game as:

φ =
H(S′)|Ŝa)

H(S′)
.

It is easy to see that the total anonymity as defined in SectionII
has a monotonic one-one relationship to the above definition.

Our goal is study the saddle point strategies and throughput-
anonymity tradeoffs of this network model by jointly opti-
mizing the covert probability function{qn(bn|s)} and the
adversary strategyqa(na) subject to the throughput constraint
Υ(qn) ≥ γ and the adversary powerka. If q∗n, q

∗
a denote

the NE probability distributions of the network designer and
adversary respectively, then let

A∗(γ) = φ(q∗n, q
∗
a)

represent the NE anonymity-throughput tradeoff.
Theorem 3:For an omniscient adversary, the NE through-

put anonymity tradeoff is given by:

A∗(γ) =
(Υmax − γ)

nǫ
,

whereǫ = min(Cs, Cr)− λ∗(Cs, Cr).

Proof: Refer to Appendix 2

The throughput-anonymity tradeoff under an omniscient
adversary is linear, which is a consequence of the2−hop
nature and symmetry in the network model. The constantǫ

represents the per node rate loss. As mentioned earlier, this
operating point represents a trivial equilibrium. Againstan
omniscient adversary, the optimal strategy for the network
designer is to make all relays covert together with probability

qn(V|s) =
Υmax − γ

nǫ
, ∀s.

The general idea behind this strategy is as follows: If in
a session,k relays are covert, then the anonymity from an
omniscient adversary’s perspective would be restricted tothe
k relays and cannot exceedlog k!. The corresponding loss
in throughput for the network designer iskǫ. The optimal
network design strategy would therefore correspond to mini-
mizing the throughput cost per unit gain in anonymity.

B. General Adversary Model

Consider the simplest case ofka = 2. Whenka = 2, the
only way the adversary can obtain non-zero information is if
one of the monitored nodes is a relay and the other is a source.
Due to the symmetry assumption, intuition suggests that the
optimal strategy for the adversary would be to monitor every
source-relay pair with equal probability.

Whenka > 2, there is an additional challenge in determin-
ing the ratio of relays and sources that should be monitored by
the adversary. In general, the optimal ratio need not be fixed
and could be a random quantity, as long as the total number
of monitored nodes does not exceedka. However, optimizing
the adversary and network strategies reveals that the optimal
strategy would in fact have a fixed ratio. This is shown in
the following theorem which characterizes the equilibrium
throughput-anonymity tradeoff for the general adversary.

Theorem 4:Let pc =
Υmax−γ

nǫ
, k = ⌊ka

2 ⌋, k′ = ⌈ka

2 ⌉ and

w(m) =

{

((n−k)!)2

(n−2k+m)! ka ≤ n

0 o.w
.

Then, there exists a unique equilibrium throughput-anonymity
tradeoff which is given by:

A∗(γ) =

[

pc +
w(0)(1 − pc)

n!

]

log (w(0)(1 − pc) + n!pc))

+
(n!− w(0))

n!
pc log pc

+

k
∑

(ka−n−1)++1

(

k

m

)(

k′

m

)

m!

n!
(1− pc)w(m) log(w(m)).
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Proof: Refer to Appendix 2

The anonymity at the saddle point is composed of two
components. The first term represents the uncertainty in
determining which of the monitored relays are covert; since
only a subset of sources are monitored, independence across
schedules does not necessarily imply that the relay is covert.
The remaining component of the anonymity is the uncertainty
due to the unobserved nodes in the network. The quantity
pc represents the average probability with each a relay
is covert, and this probability is influenced by the level
of throughput required. The relationship is similar to the
omniscient adversary case. As the network size increases, the
first component converges to a constant, and the anonymity
is dominated by the missing information from unobserved
nodes (see Section V).

Saddle Point StrategiesThe optimal strategy for the adver-
sary at the saddle point, as revealed in the proof, is to monitor
equal number of relays and sources such that eachka

2 size
subsets of relays and sources are chosen uniformly randomly.
Whenka is odd, the adversary monitors one additional relay.
The intuitive argument for this strategy is as follows: If the
number of sources monitored exceeded the number of moni-
tored relays by2 or more, then by removing one monitored
source and adding a monitored relay, the number of possible
routes that can be discovered only stands to increase.

The optimal strategy for the network designer is to make
all the relays to be covert with probability:

qn(V|s) =
Υmax − γ

nǫ
, ∀s.

At first glance, this may be surprising since the adversary
only monitors a subset of nodes in any session. However,
if all relays were not covert, then the fraction of monitored
relays that are visible provide more information per unit cost
in throughput than that obtained from sessions when none
of the relays are covert. Furthermore, uniform probabilities
qn(bn|s) across sessions result in a uniform aposterior
probability over all sessions which maximizes entropy.

Figure 5 plots the throughput anonymity tradeoff for two
parallel relay networks. The gain in anonymity due to the
game-theoretic approach over the omniscient strategy is ev-
ident from the plots. Note that in the small network, while
the tradeoff is linear for an omniscient adversary (Theorem
2), it is not so in general. For a large network, however, the
tradeoffs are mostly linear, except for small values ofka. This
“asymptotic” linearity is shown analytically in Section V.

C. Asymmetric Networks

In the results thus far, the symmetry in the underlying
network model resulted in symmetric strategies for the
adversary and the network designer. When asymmetry is
introduced in the networks, naive intuitions may not provide
the saddle point strategies. To understand the effect of
asymmetry on the strategies, we consider two kinds of
asymmetric networks: networks where the transmission
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Fig. 5. Tradeoffs for Parallel Relay Networks

capacities of the relays are unequal, and networks where the
number of sources catered by the relays are unequal.

Asymmetry in Covert Relay Rates:Consider first the case of
ann parallel-relay network, where the transmission capacities
of relaysB1, · · · , Bn are unequal. Specifically, there exists at
least two relaysBi, Bj such that the loss in data ratesǫi 6= ǫj .

Theorem 5:For an n relay parallel network, where an
adversary monitorska = 2 nodes, if rate losses due to covert
relaying for the relays are given byǫ1, · · · , ǫn respectively,
there exists a unique saddle point where
1. qn(Bi|s) =

Υmax−γ∑
i ǫi

∀i ≤ n

2. qa(Ai, Bj) =
ǫj

n
∑

i
ǫi

.

Proof: Refer to Appendix 2

Interestingly, although the model is asymmetric, the covert
relaying strategy is symmetric. This is because each relay,
when visible, reveals equal amount of information. Therefore,
any asymmetry in the retrievable information from the two
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relays induced by the network strategy would automatically
force the adversary to monitor the less protected (or more
informative) relay exclusively. Such a pair of strategies cannot
constitute a saddle point.

When the network design strategy is symmetric, the payoff
is a constant regardless of the adversary’s probability of
monitoring each source-relay pair. However, there is only one
strategy, at which point the optimal strategy for the network is
symmetric, thus resulting in an equilibrium. In particular, the
probability of monitoring a relay is proportional to the rate
loss at the relay. As intuition would suggest, the more rate
loss, the less likely a relay is to be covert and consequently, a
greater incentive for it to be monitored. In effect, at the saddle
point, the adversary’s strategy is to choose the probabilities of
monitor each relay so that the network is forced to make all
relays covert with equal likelihood.

Under such an asymmetric model, if a network designer
were to assume naively that the adversary’s strategy were
symmetric, then for a required level of throughput, the op-
timal strategy would be to make relays with lower through-
put loss ǫi covert with higher probability so that the same
level of throughput can be achieved with higher anonymity
(w.r.t. the uniform adversary). However, the optimal adversary
would then employ unequal probabilities of monitoring the
relays which would eventually result in lower than expected
anonymity. The difference between the anonymity due to
the naive networking strategy and the equilibrium strategy
is shown in Figure 6 and clearly demonstrates the benefit
of using the game theoretic approach. The figure also plots
the tradeoff when the adversary employs the naive strategy of
uniform monitoring, and the network designer optimizes the
choice of covert relays assuming the uniform adversary.

3.5 4.0 4.5 5.0
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0.98

1.00

Saddle Point
Naive Adversary

Naive Network

Fig. 6. Asymmetric Rate Loss Model withn = 5 relays: Comparison with
naive strategies.

Asymmetry in Relay Information In the asymmetric model
discussed above, the saddle point strategy for the network
designer was symmetric since each relay when monitored
provided the same amount of information. We now consider
a modification of the parallel network structure and introduce
asymmetry in the amount of information provided by a relay.
Specifically, let the number of relays ben−k, wherek relays
are multiplexing relays with2 sources transmitting to each

of them every session, and the remainingn − 2k relays are
non-multiplexing relays with exactly1 source transmitting to
each of them in every session. The capacities of relays are
chosen such that each relay, when covert incurs an identical
throughput lossǫ. We consider a2−player game where the
adversary monitors at most2 nodes.

Theorem 6:For ann − 1 relay asymmetric parallel relay
network, where an adversary monitorska = 2 nodes, then
there exists a unique saddle point, where

1) The optimal strategy of the network is to make a non-
multiplexing relay covert with probabilityq1r and a
multiplexing relay covert with probabilityq2r where

q1r log(q
1
r)− (q1r + n− 1) log(q1r + n− 1)

= 2q2r log(2q
2
r)− (2q2r + n− 2) log(2q1r + n− 2)− 2.

2) The optimal adversary strategy is to monitor a source-
multiplexing relay pair with probabilityp1 and a source
non-multiplexing relay pair with probabilityp2 such
that:

p1

p2
=

(n− 2k) log
(

q1r
q1r+n−1

)

(k) log
(

2q2r
2q2r+n−2

) .

Proof: Refer to Appendix. 2.
In this setup, the theorem states that the optimal strategy for

the network designer is asymmetric as well. A naive adversary
would choose to monitor non-multiplexing relays with higher
probability since they provides more information, whereasa
naive network designer would choose to hide all relays with
equal probability since all relays provide identical throughput
loss. Figure 7 plots the improvement in anonymity over naive
strategies due to the game-theoretic approach.
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Fig. 7. Asymmetric Relay Information Model with4 sources and3 relays:
Comparison with naive strategies.

The intuition behind the optimal strategies is similar to the
asymmetric rate loss model. The more information provided by
a relay, the more likely the adversary is to monitor that relay,
and a greater incentive to make it covert. At the saddle point,
the network increases the probability of non-multiplexing
relays being covert just enough so that the adversary obtains
equal information from any relay.
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D. Large Networks

In this section, we use the derived results to study equilibria
in large networks. When the fraction of monitored nodeska

2n
is a constant, the anonymity monotonically increases withn

but asymptotically converges towards a constant.
Theorem 7:If ka

2n = α is a constant, then the anonymity
for a fixed throughput ratioγ∗ = γ

Υmax
converges as:

lim
n→∞

A(γ∗) = 1− α2 (γ
∗ − (1− ǫ))+

ǫ
.

Proof: Refer to Appendix 2
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According to the theorem, for a fixed throughput, the loss
in anonymity is proportional to the square of the fraction
of monitored relays. Put in another perspective, for a fixed
number of monitored relays, the anonymity asymptotically
converges to1 as :

A = 1−O

(

1

n2

)

.

The intuition for this relationship can be understood by looking
at the maximum throughput case:γ∗ = 1. At that operating
point, A(γ∗) = 1 − α2. In the largen regime, the total
uncertainty is approximatelyn logn. Every monitored relay
reduces uncertainty bylogn if the corresponding source is
also monitored. If the corresponding source is not among
the monitored nodes, then the reduction in uncertainty is
negligible. For every relay, the corresponding source would be
monitored with approximate probabilityk

n
. Sincek relays are

monitored, the net reduction in uncertainty is approximately
k2

n2 , thus resulting in the square law of the theorem.
Asymptotic relationships can be used to design approximate

strategies for large networks. In particular, it would be useful
to characterize the asymptotic relationship between the frac-
tion of covertly relays and the fraction of monitored relays. As
the number of monitored relays increases, the fraction of relays
that are covert per session would also increase. We can use
Theorem4 to obtain the asymptotic relationship. Specifically,

for a fixed anonymityA, the fraction of covert relays per
sessionβ is given by

β = 1−
1−A

α2
.

Furthermore, ifβ(n) is the exact fraction of covert relays
required for a network of sizen, it is easily shown that:

β(n)− β = O

(

logn

n

)

.

This is of particular relevance to large wireless sensor
networks where the number of covert relays (relays generating
dummy transmissions) is directly related to energy overhead.
Figure 8 plots this relationship for finite networks in compar-
ison with the asymptotic relationship.

V. CONCLUDING REMARKS

In this work, we considered the problem of providing
anonymity to network communication when adversaries moni-
tor or compromise an unknown subset of nodes in the network.
We presented a game-theoretic formulation and proved the
existence of saddle point equilibria. Using the class of parallel
relay networks, we demonstrated that this approach can be
used to obtain optimal strategies for the network designer
and the adversary, as well as provide insights into anonymity-
throughput tradeoffs in large networks. The problem of com-
puting the equilibria has not been dealt with in this work, but
efficient algorithms for this purpose would fortify the results
here, and is part of ongoing research. In this work, we have
used specific classes of networks, and assumed knowledge of
topology and sessions. A similar approach for random net-
works with random connections could shed valuable insights
into scaling behaviour of anonymous networking.
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APPENDIX

A. Proof of Theorem 1

In order to prove the existence of a saddle point in the two
player game, it is sufficient to show the following:

1) An andAa are closed convex and bounded sets.
2) The payoff is continuous in the domainAn ×Aa.
3) For everyqa ∈ Aa, φ(x, qa) is concave inx.
4) For everyqn ∈ An, −φ(qn, y) is concave iny.

If the 2−player game satisfies the above conditions, then
it constitutes a general2−player concave game, which was
shown to have a guaranteed Nash equilibrium in [26].

1) Convexity of action spaces:The spaceAa is a finite-
dimensional simplex, which is closed, bounded and
convex.An is a subset of the simplex with the additional
constraint:

R(qa) ≥ r.

Since the constraint is not a strict inequality, the space
is closed.R(·) is a linear function ofqa. Therefore, for
any pair of probability vectorsq1

a, q
2
a

αR(q1
a) + (1− α)R(q2

a) = R(αq1
a + (1− α)q2

a),

which proves the convexity ofAn.

2) Since the payoff is linear inqa and is an entropy
function ofqn, the continuity of the payoff can be easily
shown (the details are omitted here).

3) In order to show the concavity ofφ w.r.t. toqn, we need
to show that for anyq1

n, q
2
n ∈ An,qa ∈ Aa,

αφ(q1
n, qa)+(1−α)φ(q2

n, qa) ≤ φ(αq1
n+(1−α)q2

n, qa).

Consider the following modification to the setup, where
apart from the topology and set of network sessions, the
network designer and the adversary are given access to a
common Bernoulli random variableZ ∼ B(α). Consider
any q

1
n, q

2
n ∈ An. The network designer utilizes the

following strategy: If the observed variableZ = 1, then
the distributionq1

n is used to make relays covert, and if
Z = 0, q2

n is used. SinceZ is observed by the adversary
as well, this strategy would amount the anonymity being
equal to the conditional entropyH(S|Ŝ, Z).
Now, suppose the Bernoulli variable were only avail-
able to the network designer, and he utilizes the same
strategy. Since the adversary has no knowledge ofZ,
his entropy would beH(S|Ŝ) where the distribution of
covert relays would be the effective distribution:

αq1
n + (1− α)q2

n

. Since conditioning reduces entropy,H(S|Ŝ, Z) ≤
H(S|Ŝ, and therefore,

αφ(q1
n, qa)+(1−α)φ(q2

n, qa) ≤ φ(αq1
n+(1−α)q2

n, qa).

4) For anyqn, φ(qn, qa) is a linear function ofqa, and
therefore,

αφ(qn, q
1
a)+(1−α)φ(qn, q

2
a) = φ(qn, αq

1
a+(1−α)q2

a),

which establishes the required concavity.
For uniqueness, consider two pairs of strategies(q1

n, q
1
a)

and (q2
n, q

2
a) which achieve saddle point equilibrium. By the

definition of saddle point, we know that:

φ(q1
n, q

1
a) ≤ φ(q1

n, q
2
a) ≤ φ(q2

n, q
2
a) ≤ φ(q2

n, q
1
a) ≤ φ(q1

n, q
1
a).

The above sequence of inequalities establishes the uniqueness
of the payoff. 2

B. Proof of Theorem 2

According to the definition of payoff:

φ(qn, qa) =
H(S|Ŝa)

H(S)
=

1

H(S)

∑

na

∑

s,bn

−qa(na)p(s)×

qn(s,bn) log qap(s, fa(fo(s,bn),na),ba)(11)

From the adversary’s perspective, the goal is to chooseqa
such thatφ(qn, qa) is minimized. Sinceqa is a probability
distribution, using Lagrange multipliers, we can write:

La = φ(qn, qa) + βa

∑

na

qa(na).

At the minimizing distribution, we know that

dLa

dqa(na)
= 0∀na.
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Therefore, for any subset of nodesna for which qa(na) > 0

Hp(n
1
a) + βa is a constant,

which proves the first part of the theorem.
From the network designer’s perspective, the goal is to

designqn(bn) such thatφ(qn, qa) is maximized, while main-
taining a throughputγ. Again, using Lagrange multipliers, we
can define:

Ln = φ(qn, qa)+β1

∑

s,b

p(s)qn(s,b)Λ(s,b)+
∑

s

p(s)
∑

b

β2(s)qn(s,b).

At the maximizing distribution, for everyq(s,b) > 0,

dLn

dqn(bn)
= 0.

⇒
∑

na

qa(na) [p(s) + p(s) log(qn(s,bn))− p(s)

−p(s) log





∑

s′,b′
n

qn(s
′,b′

n)p(s
′)









+β1(Λ(s,bn)) + β2(s) = 0.

Equating the values ofβ1, β2(b), the conditions are obtained.
2

C. Proof of Theorem 3

Definepk =
∑

s,b:|b|=k p(s)qn(b|s). Due to the symmetric
rates, the throughput achievable by a strategyqn is:

Υ(qn) = Υmax −
∑

k

pkkǫ,

whereǫ = min(Cr, Cs)− f(Cr, Cs).
For a given strategyqn, the anonymity for an omniscient

adversary can be written as:

H(S|B) =
∑

b⊂calV r

(

∑

s

p(s)qn(b|s)

)

H(S|B = b).

For a given realization ofB, the omniscient adversary can
perfectly correlate the flows through all relays inVr\B,
therefore, the information lost due to independent schedules
can be upper bounded by:

H(S|B = b) ≤ log(|b|!).

⇒ H(S|B) ≤
∑

b

(

∑

s

p(s)qn(b|s)

)

log(|b|!)

=
∑

k

pk log(k!)

Consider maximizing
∑

k pk log(k!) subject to
∑

k

pkkǫ ≤ Υmax − γ.

If Υmax − γ ≥ nǫ, it is easy to see thatqn = 1. When
Υmax−γ ≥ nǫ, sincelog(k!)

k
is increasing ink, the maximizing

{pk} is given by:

pk = 0, k < n, pn =
Υmax − γ

nǫ
.

Therefore, for any throughputt,

H(S|B) ≤
Υmax − γ

nǫ
log(n!).

The above inequality is achievable by making all relays covert
with probability pn, and hence proves the theorem.

D. Proof of Theorem 4

Consider the following adversary strategy: During every
session, the adversary pickska

2 source-relay pairs with uniform
probability. We characterize the optimal network strategyfor
this adversary, and show that the adversary can do no better
by changing his strategy, thus priving equilibrium.

For a given set of monitored nodesB ∈ (Vs)k × (Vr)k, let
XB be a random variable that denotes the set of communi-
cating source relay pairs within the set of monitored nodes.
Then, for a given covert relaying strategyqn(), the anonymity
for the specified adversary can be expressed as:

H(S|Ŝa) =
∑

b

(H(Xb|Ŝa) +H(S|Ŝa, XB2
)

=
∑

b

(H(Xb|Ŝa) +H(S|Xb),

where the second equality is because, given the communica-
tions within the monitored nodes, the uncertainty of the rest
of the network does not depend on the observation.

Furthremore, given the set of communicating pairs within
the set of monitored nodes, the uncertainty in the unobserved
portion of the network would be independent of any strategy,
and therefore a constant.

Accordingly, consider maximizing
∑

H(XB|Ŝa) subject to
the throughput constraint. This maximization is akin to the
omniscient case; the uncertainty refers to the communications
within the monitored nodes. The difference comes from the
fact that since there are unobserved nodes in the network,
some of the monitored sources or relays can communicate
with nodes outside the set of monitored nodes. Nevertheless, it
can be shown that the optimal network strategy is not affected
by this modification. We prove this forka = 2, the proof for
generalka is a straightforward generalization. Define

pc(b) =
∑

S

p(S)(1 −
∑

B:b∩B6=φ

q(B|S).

In other wordspc(b) is the probability that a flow throughb
is visible. Therefore,

H(Xb|Ŝa) = h(pc(b)),

whereh(p) is the binary entropy function. Due to the through-
put requirement, we know that

∑

b
pc(b) is a constant. Since

finite entropy is bounded by the size of the alphabet,
∑

b∈Vs×Vr

H(Xb|Ŝa) ≤ n2h(
1

n
),

where the equality is achieved when∀b, pc(b) is identical.
Furthermore, sinceq(B|S) is independent ofS,

H(S|XB) = log((n− 1)!).

which is independent of the covert relaying strategy.
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The optimal covert relaying strategy is therefore symmetric
across all relays and sessions. Using the two derived condi-
tions, the maximizing anonymity is given by:

H(S|Ŝa) = h(
1

n
) + log((n− 1)!)

For the derived covert relaying strategy, the anonymity w.r.t
to a general adversary can be written as:

H(S|Ŝa) =
∑

b∈Vs×Vr

qa(b)(H(Xb|Ŝa) +H(S|Xb2
)

whereqa(b2) is the probability that the adversary monitors the
source-relay pairb. Due to the symmetry in covert relaying
strategy,H(Xb) andH(S|Xb) are identical across pairsb.
Therefore, for any probability mass function{qa(·)}, the
total information gained (or lost) would be no different for
the adversary. In other words, there is no incentive for the
adversary to deviate from the uniform monitoring strategy,and
that pair of strategies is therefore, a saddle point. 2.

E. Proof of Theorem 5

Since uniform probability maximizes entropy, we can write

qn(B1|s1) = q1∀s, qn(B2|s) = q2, ∀s.

Then,Υmax − γ = q1ǫ1 + q2ǫ2. If the adversary monitorsB1

with probabilityp, then

φ(p, (q1, q2)) = p

[

1

2
log

(

1 + q1

q1

)

+
1

2
log (1 + q1)

]

+(1− p)

[

1

2
log

(

1 + q1

q1

)

+
1

2
log (1 + q1)

]

.

If q1 > q2, thenp = 0 is optimal for the adversary. However,
if p = 0, then the optimal network strategy is to makeq1 = 0,
which is a contradiction. Hence

q1 = q2 =
Υmax − γ

ǫ1 + ǫ2
.

If p∗ is the saddle point strategy for the adversary, thenp∗

must necessarily satisfy (from Theorem 2)

d

dq1
φ(p∗, (q1,

Υmax − γ − q1ǫ1

ǫ2
)) = 0,

whereq1 = Υmax−γ
ǫ1+ǫ2

. It is easily verified thatp∗ = ǫ1
ǫ1+ǫ2

is
the unique solution to the above equation.

F. Proof of Theorem 6

The adversary has2 choices: either monitor a source and a
non-multiplexing relay, or a source and a multiplexing relay.
Within the set of relays, condition 1 in Theorem 2 requires
that the amount of information available through each relayis
identical. In other words, within the set of multiplexing relays,
the probability of covertness would be identical. Consequently,
within the set of multiplexing relays, the probability of an
adversary monitoring any particular multiplexing relay would
be identical. Likewise, the argument applies to the set of
non-multiplexing relays as well. Therefore, ifq1r , q

2
r refer to

the respective probabilities of monitoring a non-multiplexing
and multiplexing relay, and ifp1, p2 refers the the respective

probabilities of an adversary monitoring a non-multiplexing
and multiplexing relay, then

φ = 1−
q1a

log(ST )
[q1r log(q

1
r )− (q1r + n− 1) log(q1r + n− 1)]

−
q2a

log(ST )
[2q2r log(2q

2
r) + 2− (2q2r + n− 2) log(2q2r + n− 2)],

whereST = n!
2k

is the total number of sessions. Applying the
conditions in Theorem 2 to the expression above, the theorem
is proved. Details are omitted due to paucity of space2.

G. Proof of Theorem 7

We know from Theorem3 that the anonymityA(γ) can be
written as:

A(γ) =
A1(γ) +A2(γ)

n logn
,

where

A1(γ) =

[

pc +
w(0)(1 − pc)

n!

]

log (w(0)(1 − pc) + n!pc))

+
(n!− w(0))

n!
log pc

A2(γ) =
k
∑

max(1,2k−n)

(

k

m

)(

k′

m

)

m!

n!
(1− pc)w(m) log(w(m)).

Using Stirling’s approximation for largen, we can write:

w(0)

n!
=

((n− αn)!)2

n!(n− 2αn)!

≈
(n− αn)2n−2αn

√

(1− α)2n24π2e−2n+2αn

nn(n− 2αn)n−2αn
√

(1− 2α)n24π2e−2n+2αn

=

√

(1− α)2

1− 2α
en[(2−2α) log(1−α)−(1−2α) log(1−2α)]

→ 0 for anyα ∈ (0, 1).

Therefore lim
n→∞

A1(γ) = pc. (12)

Using Stirling’s approximation onlogw(m), for largen

logw(m) = 2 log((n− k)!)− log((n− 2k +m)!)

= 2(n− k) log(n− k)− (n− 2k +m) log(n− 2k +m)

+
1

2
log

(

(n− k)2

n− 2k +m

)

+O(1)

=

(

n−m+
1

2

)

logn+O(1)

Sincem ≤ αn, we can write

A2(γ) =
k
∑

m=max(1,2k−n)

(

k

m

)(

k′

m

)

m!

n!
(1− pc)w(m) log(w(m))

=
1− pc
(

n
k

)

k
∑

m=max(2k−n,1)

(

k

m

)(

n− k

k −m

)

(n−m) logn

=
(1− pc) logn

(

n
k

)

[

(n− k)

(

n

k

)

+
k

n
(n− k)

(

n

k

)]

=
n2 − k2

n
(1− pc) log n. (13)

Combining (12) and (13), the result is proven. 2.
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