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Abstract—Anonymous wireless networking is studied when study the problem of anonymity in networks under a more
an adversary monitors the transmission timing of an unknown general adversary model, where anknownsubset of the
subset of the network nodes. For a desired quality-of-seree 4qeg are monitored by the adversary. The subset of moditore

(QoS), as measured by network throughput, the problem of . .
maximizing anonymity is investigated from a game-theoret nodes could depend on the physical location of the adversary

perspective. Quantifying anonymity using conditional entopy OF partial knowledge of network transmission protocolssit

of the routes given the adversary’s observation, the probim of also possible that in some public wireless networks, aertai
optimizing anonymity is posed as a two player zero-sum game nodes may have weaker physical protection than others, and
between the network designer and the adversary; the task of 4ra hence, more vulnerable to transmission monitoring.

the adversary is to choose a subset of nodes to monitor so that = twork desi ti th lis to desi
anonymity of routes is minimum whereas the task of the netwdk rom a network aesign perspective, the goal IS 1o design

designer is to maximize anonymity by Choosing a subset of ned transmission and I’elaylng Stl‘ategles SUCh that the des|red
to evade flow detection by generating independent transmigs1  level of network performance is guaranteed with maximum
schedules. o . ~anonymity of network routesProviding anonymity to the

In this two player game, it is shown that a unique saddle point 4 ta5 of data flow in a network requires modification of
equilibrium exists for a general category of finite networks At the L . -
saddle point, the strategy of the network designer is to ensa packet transmission schedules and additional transmissio
that any subset of nodes monitored by the adversary reveals Of dummy packets to confuse an external observer. These
identical amount of information about the routes. For a spedic modifications however reduce the achievable network perfor
class of parallel relay networks, the theory is applied to stdy mance, particularly in ad hoc wireless networks, where the
the optimal performance tradeoffs and equilibrium strateges. In scheduling needs to satisfy medium access constraintseon th

particular, when the nodes employ transmitter directed signaling, . - .
the tradeoff between throughput and anonymity is characteized shared channel. Therefore, depending on the desired yjualit

analytically as a function of the network parameters and the Of service (QoS), it is necessary to pick the optimal set of
fraction of nodes monitored. The results are applied to stug the nodes to modify transmission schedules so that anonymity is
relationships between anonymity, fraction of monitored réays maximized without violating QoS requirements.
and the fraction of hidden relays in large networks. . If the network designer were aware of which nodes of the
Keywords— anonymity, wireless networks, saddle point eqlib- twork bei itored by the ad th timal
rium, eavesdropper, traffic analysis network were being monitored by the adversary, the optima
set of nodes can be chosen such that minimum information
is revealed through the monitored nodes. However, if the
. INTRODUCTION adversary is aware of the set of nodes that the network design
A. Motivation has chosen to protect, then he can alter his choice of nodes
. . . to monitor so that maximum information about the network
The packet transmission timesf nodes in a network . : o "
routes is retrieved. This “interplay” between the network

can reveal significant information about the source-dastin desi d the ad is th . bi f thi K
airs and routes of traffic flow in the networkl [1]1[2] esigner and the adversary Is the main subject of this work,
P ‘and it is studied using a game-theoretic approach.

Equipped with such information, a malicious advers_,ary €aN since the set of monitored nodes is unknown to the net-

loarugcezigoorf spe?aiguIAigiCl:soigche?vio\r/l?r:mri]s()l?r;ejagg?m rk designer, a conservative approach would be to design
. ' ymou 9 € act Qhe scheduling strategy assuming an omniscient adversary.

communicating over a network without revealing the idéesit However, since the power of the adversaxy, the maximum

of source-destinations or the path of flow of packets, fraction of monitored nodes, is bounded, we would like to

The typical de_3|gn of anonymous networking prOt().COIF%vestigate if the strategies of the network designer amd th
models adversaries as omniscient and capable of monltor51

every single transmission in the network perfectly. From cﬂ/ersary can be analyzed jointly to get a better tradeoff
y sing . o pertectly. tween anonymity and network performance compared to that
practical standpoint, this is far too conservative, andhsuc _— . . .
universal information would be available only to the neﬂ«\/orunder the omniscient assumption (see Figure 1). To this end,
owner or a centralized controller. In this WOI’)|/( our goalas tWe propose a two-player zero sum game between the adversary
' ’ 9 and the network designer, where the payoff is anonymity, the
Parv Venkitasubramaniam is with the School of Electricadl &romputer aC“O_n _Of_the adversary is to chpose which nodes to m_onltor
Engineering, Lehigh University. _ - to minimize payoff and the action of the network designer
Co'-rigﬁ Jgir\‘lgerfi&””h the School of Electrical and Computer EBging. s to choose which nodes of the network to “hide” from
ITransmission time in this work refers to the time point ofnmission, the ad\{ersary to maximize the payOff SUbJeCt to the QoS
and not the duration or latency. constraint.



A dummy transmissions by the relays thus reducing the rate of
data packets forwarded by each relay.

A1 Bl Cl Al Bl Cl
s ® ° °
g . Aa By Co Ay B, &
> Increasing
o fraction of S=s S=s,
< njonitored nodes Fig. 2. 2—relay parallel network: Two possible sessions, each
containing two paths.s; = {(A1,B1,C1),(A2,B2,C2)}, 82 =

{(A1, B2,(C2), (A2,B1,C1)}.

Consider a scenario when the throughput requirement man-
> dates that at most one relay can generate independent sched-
ules (using dummy transmissions). If only relBy generates a
Performance transmission schedule that is statistically independktitat of
Fo 1 A et Tradeofr he fraction mbnitored A; and A, then the optimal strategy for the adversary would
U L oy Periomance Tradeoft s the ¥action S0 e to monitor(d, 2) of (A, By), either of which would
tradeoffs. help him perfectly determine the session. However, given
the knowledge that the adversary would monitot;, Bs)

The game-theoretic perspective can be understood usingPén(Az, Bz2), the optimal strategy of the network designer
example of @—relay parallel network as shown in Figdre 2would be to make the schedule éf, always independent
During any period of observation of the adversary, we assurtfié!S maximizing anonymity.
that the network operates in one of two configuratisnor A hatural question that arises is: is there a pair of strategi

s, (see Figur&l?) wherein, for the network designer and the adversary that neither has
any incentive to modify? In other words, if formulated as

s1 = {(A1,B1,C1), (A2, Ba, C2)}, a two-player zero-sum game between the adversary and the

so = {(A1,B,Cy), (A2, B1,Ch)} network designer with anonymity as the payoff, does a Nash

equilibrium exist? As will be shown in Section Ill, a saddle
are the set of active routes in each configuration (hendefofoint equilibrium does exist in the class of mixed strategie
referred to as anetwork session The adversary's goal is For this example, at the equilibrium point, the optimal tstgy
to |dent|fy Wh|Ch Of these SeSSionS iS Currently aCtiVe |fbr the network designer is to choose one of the re'ays
the network by monitoring the transmission timing of thqith probability 1 to generate independent schedules, and the
monitored nodes. optimal strategy for the adversary is to monitor each source

Consider a transmitter directed signaling model, wheré eag|ay pair with probabilityi. By definition, at this operating

node transmits on a unique orthogonal channel such th@int, neither the network designer nor the adversary haye a
transmissions of multiple nodes are non interfering. Undgicentive to modify their strategies (See Theorgn
this signaling scheme, merely detecting the transmissioest ~ The example discussed above involves a simple scenario
of packets by a node will not reveal the identity of thgyith only two possible network sessions and the adversary
intended receiver. Suppose in this setup, the adversary ¢ two kinds of observations: a pair of dependent or a pair
only afford to monitor the transmissions of two nodes. Agf independent schedules. In a general multihop network,
adversary would therefore have to detect correlationssacrgnonymiw based on partial information about the session ca
transmission schedules of a source and a relay to identiy quantified using Shannon’s equivocatibh [3], [4], and our
the flow of traffic. For example, i3, forwarded packets as goal in this work is to optimize the tradeoff between the
and when they arrived from the source, then during netwoggsired network throughput and the achievable anonymity as
SESSionsl, the transmission schedules ﬂfl and Bl would a function of the adversary’s monitoring Capabmty
be highly correlated, whereas, during, the schedules of
A; and B; would be statistically independent. An adversar& ] o
who merely monitors noded; and B, would therefore be B- Main Contributions
able to identify the network session perfectly by detecting In this work, we consider a game-theoretic formulation of
the dependence between schedules. Suppose, instead,atftmymous networking in a general class of finite wireless ne
relays B; and By always use transmission schedules thatorks when the number of nodes monitored by an adversary
are statistically independent of the arrival schedulesnfromodel is bounded by a known constant. We pose the design
the sources. Then, no information about the session cangeblem as a two player zero sum game with equivocation
obtained by monitoring the transmission schedules of afgonditional entropy) of the network session as the payoff;
pair of nodes. Using independent schedules, however,nexjuthe adversary’s strategy is to pick a random subset of nodes



to monitor, and the network designer’s strategy is to pick [A1] has been used in a wide range of multi-agent problems
random subset of nodes to generate independent scheddtesp economics to networking. In the context of network
thus avoid detection. For the class of finite multihop neksor security, earlier applications were focused on jammingaBa
considered, we prove that a saddle point equilibrium alwagsnsidered the problem of jamming in Gaussian chanhels [12]
exists in the class of centralized stratedieNote that since where it was shown that the optimal jamming strategy is
anonymity, as defined by conditional entropy, is a non-lineaither a linear function of jammer’s observation or an adelit
function of the probabilities of mixing multiple strategig¢he independent Gaussian noise. Borden, Mason and McEliece
existence of Nash equilibria in classical two-player zeuoa [13] considered the information theoretic saddlepointshef
games[[5], where payoff of mixed strategies are weighted sjamming game under hard/soft quantization schemes. More
of pure strategy payoffs, does not directly apply. recent work along this line includ&[14]=[16]. Game-theire

To demonstrate the applicability of the game-theoretmodels have also been used to model problems related to
model, we consider a general class of parallel relay netsvorklistributed intrusion detection [17]_[1L8], where the gasl
For a symmetric relay model, we characterize analytichley tto design attacking and detection strategies with prolbil
throughput-anonymity tradeoff as a function of the adwersa of detection as the payoff. In [19], game-theory was used to
power and using the results on player strategies, derive #tady attacker and defense strategies on a graphical médel o
saddle point strategies which are understandably symeneta network, where the attackers choose nodes to compromise
We then introduce asymmetry into the properties of the relayhile the defender picks links to “clean up”. To the best of
rate and the information model, and using the derived resultur knowledge, ours is the first application of game-theory t
on saddle point strategies, demonstrate the gain of the -gamieling traffic flows in the presence of eavesdroppers. Théwor
theoretic approach over naive intuitive strategies. We alslosest to ours in this regard is that of information coniceggl
show that the game-theoretic approach can be used to stgdynes using finite dimensional dafal[20] where one of the
large parallel relay networks, by characterizing the aggtip players (the adversary) chooses a subset of availablercesou
relationships among anonymity, the fraction of monitorem hide, while the opponent (the network user) chooses a

relays and the fraction of covert relays. subset of resources based on the revealed observation to max
imize his utility. The authors identify conditions under iaim
C. Related Work Nash equilibria exist and provide approximation techngioe

Anonymous communication over the Internet is fairly welfompute the equilibria. Conceptually, this problem has esom
studied, where many applications have been designed bagiilarities to our strategy of choosing covert relays, vettbe
on the concept of traffic mixes proposed by David chauRetwork designer chooses to hide a subset of relays, whereas
[6]. Mixes are routers or proxy servers that collect packete adversary chooses a subset of relays to monitor. In our
from multiple users and transmit them after reencryptiod afnodel, the adversary’s observation depends on the actions o
random delays so that, incoming and outgoing packets canR6th the players which are decided apriori, and the payoff is
be matched by an external observer. While mix-based solitigd Non-linear function of the probabilities of mixing strgites,
have been used in applications such as anonymous emaiftbs different from classical mixed strategy modeéls [5].
browsing, it has been shown that when long streams of packet©ur mathematical model for anonymity is based on the
with latency or buffer constraints are forwarded througkesj framework proposed i [10], where conditional entropy @ th
it is possible to correlate incoming and outgoing streani§twork session was proposed as a metric for anonymity. En-
almost perfectly[[7]. tropy and measures related to entropy such as K-L divergence
In wireless networks, an alternative solution to Mixingtist have been proposed as payoffs in games of compleixity [21].
use of cover traffic[8],[[9], which ensures that, irrespeztf Entropy in such contexts were used as metrics of complexity,
the active routes, the transmission schedules of all nodes Eather than a measure of uncertainty.
fixed apriori. If a node does not have any data packets, the
transmission schedule is maintained by transmitting dummy Il. SYSTEM MODEL

packets. While the fixed scheduling strategy provides cetepl Notation: Let the network be represented by a directed graph
anonymity to the routes at all times, it was found to bg — (V &), whereV is the set of nodes in the network and
inefficient [€] due to high rate of dummy transmissions, and - 1 x V is the set of directed link§4, B) is an element of
the implementation required synchronization across alleso ¢ if and only if nodeB can receive transmissions from node
which is not practical in ad hoc wireless networks. In this| A sequence of nodeB = (V4,--- ,V,) is avalid pathin

work, the technique used to provide anonymity is similar tg (Vi, Vig1) € €, Vi < n. The set of all loop-less paths is
that in [10], where a subset of relays (referred tocasert denoted byP(G)

relayg generate independent transmission schedules using
dummy transmissions.
The general adversary model considered here necessit

a game-theoretic formulation of the problem. Game theory During any network observation by the adversary, a subset
of nodes communicate using a fixed set of paths. This set

2Centralized strategies are strategies which require dimated action of pathsS c 92P(9) is referred to as a networkession The

across all nodes of the network. Such strategies can be rimeplied using d , li hi b . id ifv th
a single central controller, the use of shared randomnesssanodes, or adversary’s goal Is to use his observation to identity the

limited message passing between nodes session. We mode$ as an i.i.d. random variabl8 ~ p(s).

ée éAdversary Observation and Inference



The prior p(s) on sessions is assumed to be available The maximum number of monitored nodes is denoted:by

the adversary. The set of possible sessiohss given by (also referred to apower of the adversajy We modelIN,,

S ={s e P(G) :p(s) > 0}. (See example sessions in Figuras a random variable where the random distributioiNgfis

2). chosen by the adversary to maximize his payoff. Depending
on the observable sessi¢hand the set of monitored nodes

Transmitter Directed Signaling The adversary’s observationN,, the adversary’s observatioS, would be a further

would depend on the underlying physical layer signalingistorted version of the underlying sessi®nThe adversary’s

model. In this work, we consider orthogonal transmittemet observation can be represented by a set of fithand

directed signaling at the physical layer, where each nodeuld be given by a deterministic functiofy (S, N,). (Note

utilizes a unique orthogonal signaling scheme such thatthat f,(S,V) = S).

transmission schedule detected by the adversary wouldlreve

only the transmitting node and not the intended receivirdeno  In the switching network example of Figuié 3, 184 be
covert in sessiors;. Then [1) provides the observable ses-

Observable SessiorThe goal of the network designer is tosion (omniscient adversary). If the adversary monitorsesod

modify transmission schedules of the nodes in every sessidn, A3, B; and B3, then

such that the monitored nodes reveal as little information

about the actual session as possible. For instance, if @&subs

of relays always generate independent transmission stesedu

then it is not possible for the adversary to determine whig® performance Metrics: Anonymity and Throughput

paths pass through them. In effect, the set of (broken) . . . .
paths observable would be a distorted version of the actu IThe task of the network designer is to design the probability

session. LeS (henceforth referred to asbservable sessiyn distribution of observable sessions, denotedghis|s), such

denote the set of paths as observed by an omniscient aoyaerstgf’lt a desired QoS is achieved while the adversary obtains

minimum information about the sessi@by observingS,.
The task of the adversary, on the other hand, is to design
A B . D the probabilitiesq,(N,) of choosing nodes to monitor s.t.
' .\B.l ‘/ ! maximum information is obtained by observiSy.
—_—
./ \’ D, Anonymity We quantify anonymity using Shannon’s equivo-
Az cation [3] which measures the uncertainty of the underlying
session given the adversary’s observation.
. . D Definition 1: We define theanonymity A(g,,q,) for a
As \ 3 network strategyg, (S|s) w.r.t adversary strategy,(n,) as
._> the normalized conlditional entropy of the sessions given th
‘/ \ . adversary observation:
Dy
Aqn, qa)

S. = {A1, Bi, (A3, B3)}.

A4 H(S[S,)

H(S)

For example, consider the switching network in Figure The normalization ensures that the anonymity is always
B, where every session is defined by a unique pairing bétween0 and1. The motivation behind the above definition
sources and destinations (eadh sends packets to a uniquecomes from Fano’s inequality which lower bounds the
D, through intermediate relays). In this network, consider adversary's probability of error by the conditional entop
sessions; given by the set of paths: [22]. Note that previous entropy-based definitions of

anonymity [4], [10] in the context of omniscient adversarie
s1=1{ (A1, By, By, D3), (A2, B, By, D2), I are special cases of Definitidn(whenN, = V).
(A3, B3, Ba, D1), (A4, B3, B4, Dy)

Suppose nodé; generated an independent schedule regartihroughput Since distorting the observable session requires
less of the arrival times fromd;, A>. Then, an omniscient modification of transmission schedules, the latency andiban
adversary would not be able to identify the paths of the plack&idth constraints in the network would require transmissio
streams fromA4; and A, after they reachB;. Therefore, the of dummy packets and result in a reduced rate of data

1>

)

Fig. 3. Switching Network{A;} transmit to{C;} through relays{B; }.

observable session would contain the set of paths: packets delivered from the sources to destinationsALgts)
represent the sum-rate of packets deliverable from soueces
S={ Ay, Az, (By, Ba, Ds), (B, Ba, Da), }. (1) destinations when the actual sessiorsiand the observable

(As, B3, B, D1), (A1, Bs, Ba, Da) session iss. Note thatA(s,8) < A(s,s).

Adversary Observation Under a general adversary model, Definition 2: The throughputY(g,) of a scheduling strat-
packet transmission times of a subset of nodes are obseregyl ¢,,(S|S) is defined as

by the adversary. Specifically, the adversary randomly .

chooses any subset of nodes, denotedNay, to monitor. T(gn) =E (A(S,S)) 3)



where the expectation is over the joint pdf$fandS. We model the set of covert relays in a session by a random
Anonymity and throughput are essentially two opposingariableB,, with conditional distribution{¢, (b,|s)} and the
paradigms in the design of the optimal scheduling strattass of covert relaying strategies is defined by the set of
egy; transmitting more dummy packets increases anonymiéty probability distributions{g, (b, |s)}. Note that this is a
whereas higher throughput necessitates fewer dummy trarestrictive action space where it may not be possible tozeal
missions. Unlike the omniscient adversary setup, since thk observable sessions #F(9) for any sessiors.
power of the adversary is bounded, the uncertainty in theAs expected, maintaining independent schedules would re-
identities of the monitored nodeise. the randomness ilN,, quire covert relays to drop packets or add dummy packets con-
necessitates the game-theoretic formulation, as wagrdlesl sequently reducing the rate of relayed data packets, wherea
in the example in Sectiofl I. In the following section, wevisible relays can relay every packet that arrives without
formulate this problem as a two-player zero sum game, aady loss in rate. The loss in rate at a covert relay would
establish the existence of a saddle point equilibrium. be a function of the probability distributions of transniiss
schedules, delay and bandwidth constraints, and the ngjayi
strategy. In a sessios, let A’(s,b,,) denote the achievable
sum-rate when the relays in the detare covert. Note that
sinces, b perfectly determine the observable sesgipn
Consider a two-player zero sum garfig, defined by a
I

3—tuple (A,, A.,¢) where A, and A, denote the action A'(s,bpn) = A(s, fo(s, bn)).
spaces of the network designer and the adversary resigctive 1he characterization of the exact rate loss is not necessary
andg : Ay, x A, — [0, 1] is the payoff function for the network ¢, this exposition, and we will treat it as an abstract qitgnt
designer (the adversary's payoffisp(-, -)). In the subsequent section, where we study parallel relay net

works, we shall use specific scheduling and relaying stieseg
A. Action Spaces and provide an analytical characterization of the rate foss

) ) that class of networks.
In its most general form, the action space for the network For a given strategy, (bn|s)

designer would include the set of all probability distribuats
4n(S|S) over the space of all loop-less paths In this work,
we restrict the set of observable sessions to those acléevab T(qn) = Zp(s) Z ¢n(b[s)A'(s, b).
using the set otovert relaying strategiesvhere each relay ses beaV

node belongs to one of two categoriesvertor visible

IIl. Two PLAYER GAME USING COVERT RELAYING
STRATEGY

, the throughputY can be
expressed as a linear function:

By restricting ourselves to the class of covert relaying

__strategies, we define the action spaces for the networkersig
Covert relay A covert relay B generates an outgoing,.q the adversary in the game as follows

transmission schedule that is statistically independénhe The action of the network designer is to select the probabil-

schedules of all nodes occurring previously in paths th@ mass functiony,, (b, |s) that chooses covert relays in each

contain 5. Due to statistic_:al independence, no adversa@éssiors. The key constraint in this design is the throughput
can detect the flow of traffic through a covert relay. Covef&quirement’(‘(q ) > 7). Accordingly

relaying is a modification to the transmission scheduling
which provides anonymity and yet adheres to the medium
access and delay constraints of the system. {gn(bnls) :s € S,b, CV}:
A = T(qn) > v
Visible relay A visible relay B transmits every received " ¢n(bnls) > 0,7s, b,
packet immediately upon arrival thereby ensuring all amgv 2 b, dn(Pnls) = 1,s
packets are relayed successfully within the latency caimtr  The action of the adversary is to design the probability
HOWeVer, the traffic flow through the visible I’elay Operatingistribution qa(na) of p|ck|ng nodes to monitor during the

under this highly correlated schedule is easily detected B¥ssion, subject to the constraint on the maximum number of
an eavesdropper. (A statistically consistent detectortfie8 monitored nodest(, € V*«). Therefore,

purpose has been designed[in][23].)
{qa(na) : n(l e Vka}
»Aa = qa(na) Z O,\V/Ila
Zna qa(na) =1

In a given session, if the set of covert relays ib,, then
the observable sessiagncan be expressed as a deterministic
function f,(s, b,,). For a transmitter directed signaling model,
fo(s,by) is a set of paths such that: for every pathsn
which hask covert relays,f,(s,b,) containsk + 1 paths, B. Payoff and Saddle Point
each beginning at the source or a covert relay and term@atin For a given observable sessién= f.(s,b), the adversary
one relay before the subsequent covert relay or the déstinat observations, would be restricted to the paths between
This is because covert relay schedules prevent the adyersabnitored nodes im,. In other words
from detecting any correlation between the schedule ofa pri A
node in the path with that of the relay. Sa = fa(8;m,) = {pﬂna :p €8}



Define F, : 2P(9) x 2¥ — 25%2" to be the adversary’s adversary is also important, and particularly helpful itweek

uncertainty set: scenarios where additional protection can be provided tieso
. . that are more likely to be monitored.
Fa(8a,ma) = {(8,b) : fa(fo(s,b),na) = 8a}. Note that the omniscient adversary setup is a specific

In other words, if the adversary monitats, 7, (p,n,) is the instance of this game, when the adversary has exactly one
set of possible pairs of session and covert relays that wo@gtion: monitor all nodes. The existence of an equilibrism i

lead to the observatiop through the nodes.,,. trivial and the operating point is given by the rate distanti
For a given pair of strategie$s,,q.) € (A, x A,), optimization [4]:
the_p_qyoff f.unc_tionqS(qn,qa) is the anonymity which from é(v) = H(S) — inf I(S;S). @)
Definition 1 is given by: an (S18): T (qn) <y
H(S|S.) The uniqueness of the equilibrium follows from the zero-
O(qn:qa) = TH(S) sum property of the game. Note that while the pair of stragi
1 that achieves the saddle point anonymity is not unique, the
= 0 S —gama)p(s) x saddle point anonymity in the two-player zero-sum game is
n,€2Y se€S,b, €2V indeed unique. This game is also an example of an incomplete

gn(br|s)log qap (s, fo(fo(s,br),n,.),bs{4) information game[[18] where the adversary does not have
complete access to the session or the realization of theonletw

R A Zb.f (fo(5,b),na)=5 qn(b|s)p(s) designer’'s randomness, while the network designer does not
whereq, (S,Sa,l’la) = E— (5) izati ’

P S e brer (o b dn(0']8)D(S) have access to the realization of the adversary’s rand@snnes
. o (s N J€Fa(Sab) ~_Although computing saddle point strategies is hard sinee th
is the a posteriori probability that the current sessioms is action spaces are continuous, properties of player steateg
given the adversary observgg through the nodes,. can be derived by studying the conditions.

In a zero-sum game, we know that the interests of ttae
network designer and the adversary are exactly oppositiée wh™ ) ) ) ) )
the network designer would prefer to make the monitored !N this section, we investigate the properties of the saddle
nodes covert, the adversary would prefer to monitor théldsi POINt player strategies using the conditions for equilibri
nodes. We wish to determine if there is an operating point in ) ) )
the pair of action spaces, where neither the network nor th@rtial Information For a given subset of nodés we define
adversary has any incentive to change their strategy, ierotf€ partial uncertainty from the adversary’s perspectie a
words, if this game has a saddle point equilibrium. _

Definition 3: A pair of strategies(g,,q.) € A, x A, Hy(B) Zp(s)qn(bn|s) 108 Gap(s, Ja(fo(S, br), ma), b),
constitutes ssaddle point equilibriunif:

Insights into Player Strategies

s,8

where ¢, is the a posteriori probability defined ifil (5). The
O(qnsqa) = sup é(q,qa) = inf d(qn,q)- (6) partial uncertainty represents the uncertainty of theisess
a€An 94 when the adversary monitors a particular subset of nodes.
Note that, although it is well known that two player zero
sum standard matrix games as definedCin [5], always havénédormation Leakage Rate For a given action by the network
Nash equilibrium in the class of mixed strategies, the tesulesigner— making a set of relalgscovert in a sessios— the
does not extend to the game defined here. In fact, evenrate of information leakage is defined as:
modeled as a continuous-kernel game asin [24], the existenc
i g . o do(gn ga)
of saddle point equilibrium when action spaces are compact L(s,b) To (s b) (8)
does not directly apply here. The reason being, the payoff fo an(s, b)
a mixed strategy in such two player games is a weighted sumrheorem 2:For the two player zero-sum ganig,, at the
of pure strategy payoffs, in our setup, the payoff is a nogaddle point(qy, q;),
linear function of the pure strategy payoffs and the mixing 1) Vbl , b2 s.t. ¢’ (bl), ¢ (b2) > 0,
probabilities (see[{4)). The existence of a saddle poinhis t 1 9
1 i 1 H (ba) = H (ba)'
game is shown in the following theorem. P P
Theorem 1:1. For the two player zero-sum gan@, 2) Vs, if Jby,ba, s.t. ¢i(s,b1),¢ (s,bs) > 0 and
defined by the action spaces,, A, and payoff functiong, A(s,b1) = A(s, bs), then
there exists a unique saddle point equilibrium.
E(S, bl) = ,C(S, b2) (9)

Proof: Refer to Appendix. O 3) Vs, if 3by,by, sit. ¢i(s,b1),¢i(s,b2) > 0 and
A(S, bl) 7§ A(S, b2), then
The equilibrium condition guarantees that at the operating
; L(s,b1) — L(s,b2)
point, the adversary can use no other strategy to decrease th
anonymity of the session. In addition to proving the existen Als,b1) — As, b2)
of a saddle point, characterizing the optimal strategy fiar t Proof :Refer to Appendix.

is a constant. (10)




The above theorem states that, at the saddle point, &murce nodes and relays, is the set of edges between relays
every subset of nodes monitored by the adversary (with namd the destinations.
zero probability), the partial uncertainty of the undemlyi  We make the following two assumptions in the model:
session is identical. In other words, the set of covert relag. Full connectivity Every source is connected to every relay,
are chosen such that any monitored subset reveals ecura every relay is connected to every destination.
information about the session. At this operating pointjrfro 2. Symmetry The probability of a source-relay-destination
the perspective of the adversary, any probability distidou connection is identical across sources, relays or degiimsat
over these “degenerate” subsets would give rise to the sam&lote that these assumptions, while not critical to the
anonymity. There, however, exists a unique distribution tnalytical tractability helps to provide broader insiglgo
choose nodes to monitor, which when employed, gives tbgtimal strategies for the network designer and the aduersa
network designer no incentive to deviate. At this point, the
difference in information leakage rates for any pair of@usi Session Modelln each session, every source i picks a
is proportional to the difference in throughput. In otherrdg distinct destination in’¢ and a distinct intermediate relay in
the throughput cost per unit change in uncertainty is idahti V" to forward its packets, such that all sources and relays
for every choice of covert relays (by the network designer)are transmitting in every session. From a graph-theoretic
Although the conditions in{9)[[(10) appear complicated tperspective, each session corresponds to a unique pair of
analyze owing to aposterior probabilities, in many netwgdtk bipartite matchings from the sources to the relays and from
is possible to utilize network structure and session mottelsthe relays to the destinations.
analyze the condition and characterize the optimal thrpugh ~ Owing to the symmetry assumption, each sessidras an

anonymity tradeoffs. identical prior probability:
In the following section, we consider one such class of
parallel relay networksto demonstrate the applicability of p(s) = PR

the game-theoretic ap_proach. Specifically, we use th(.e@t‘kri\f\/ledium Access Constraints We consider a transmitter
resglts on saddle point strategies to study thg optimal b(ﬁFected signaling model, where every node (source or
haviour of network nodes and th_e adversary, and in the psocq%lay) has an independent transmission rate constrairit. Le

P& denote the transmission rate constraint for any source

theoretic approach over naive intuitive playe_r strategiw ar'd letC™ denote the transmission rate constraint for any relay.
also use apply the formulation to characterize fundamenta

asymptotic relationships between anonymity, throughmt aTransmission and Relaying strategy For purposes of

adlv?rsarzlcapabmty |nfp|arallt(er: re(ljay .netwc])crk?. Tthe.amg analytical characterization, we consider independensd@oi
relationships areé useiul in e design ot stralegies inelar chedules, where all source schedules and covert relay

_netwo_rks where numerical computation becomes_practlca ¢hedules are generated according to independent Poisson
!nfea§|ble. In fact , we demonstrate that the maximum Iofﬁocesses. The relaying strategy used by any covert relay is
n using _the asymptotic Lesults ona- node parallel relay the Bounded Greedy Match algorithm[25], which was shown
network is bounded WEL' to maximize the sum-rate of relayed data packets.

V. PARALLEL RELAY NETWORKS Throughput Given the transmission rates of the relay and the
A. Network Model source nodes, Theoreiin [4] characterizes the maximum
achievable data rate when the BGM algorithm is used as the
relaying strategy. Since all routes in the parallel relagvoek
are 2—hop routes, the sum-ratk(s, b,,) in a sessiors when
relays inb,, are covert is expressible as a sum of achievable
rates for each source destination pair:

A(s,b) = (n — [b]) min(C*,C") + [b|A*(C*,C"),
beA(bfa) b

o
beAb—a) _ g

is the maximum achievable rate for a covert relay using
independent Poisson schedules under a strict delay cortstra

where\*(a,b) =

Sources Relays Destinations

Fig. 4. Parallel Relay Network Model. of A seconds per packet.][4].
Consider aparallel relay networkas shown in Figur€l4, 1he throughput, as defined in Sectioh I, is given by:
where the set of nodes in the network can be divided into T(g) = ps)Y gu(bnls)A(s, by).
3 subsetsV®, V", V¥ such thatV® = {A;,---, A, } is the set zs: g
of source nodesy? = {D,---, D, } is the set of destination

The maximum achievable throughpiit,.. when all relays

nodes, and” = {Ry,--- , R, } is the set of intermediate relayare visible is given by:

nodes the network. The set of edgesan similarly be divided
into 2 setsé&, &, where&, denotes the set of edges between T ax = nmin(C?, C").



Note that sum-rate here is used as a specific scalar measapresent the NE anonymity-throughput tradeoff.
of performance to define the strategy space of the networkTheorem 3:For an omniscient adversary, the NE through-
nodes. In general any function of capacity region can be usgdt anonymity tradeoff is given by:

to define the strategy space of the network, and the results (Tonae — 7)

here can be extended to such models as well. A*(y) = —=—2

Adversary Model The adversary monitors a subset of the e

nodes, which we denote by a pair of random variabiésN”, wheree = min(C*, C") — A*(C*,C").

whereN; andNy denote the sources and relays that are mog; - Refer to Appendix 0

itored respectively. For every monitored node, the advgrsa

has perfect knowledge of the packet transmission times. Wep o throughput-anonymity tradeoff under an omniscient
"”OV.V that|N;§|_+ |1_\IZ| < k‘?' ) adversary is linear, which is a consequence of 2hehop
Given the bipartite session model, at every monitored relay,;re and symmetry in the network model. The constant
the schedule ob_served by the adversa_ry is either Correlafgsresents the per node rate loss. As mentioned earlier, thi
to th_at of a monitored source node, or independent of ev%ﬁerating point represents a trivial equilibrium. Agairst
monitored source node. In effect, the adversary observatigyiscient adversary, the optimal strategy for the network

fa(fo(s,bn),na) = p5" U p; Up;, where: designer is to make all relays covert together with prolitgbil
i. p5" is a set of source-relay pairs with dependent schedules;
ii. p5 is a set of source nodes whose schedules are not an(Vs) = Tmax_W’vs_

ne

correlated with that of any monitored relay;
iii. p. is a set of relays whose schedules are not correlat€de general idea behind this strategy is as follows: If in
with that of any monitored source; a sessionk relays are covert, then the anonymity from an
omniscient adversary’s perspective would be restrictethéo
For example, consider a session i aource parallel-relay k relays and cannot exceddgk!. The corresponding loss
network, where sourcé; communicates with destinatioR; in throughput for the network designer is. The optimal
through relayR;. Let the network designer make reldy; network design strategy would therefore correspond to -mini
covert and the adversary monitor the nodég A,, R, R, mizing the throughput cost per unit gain in anonymity.
and Rs. In this example, the adversary observation can be

written aspy" U pg U p;, where B. General Adversary Model

py" ={(A2,R2)}, p; = {A1},p, = {R1, R3}. Consider the simplest case bf = 2. Whenk, = 2, the
A i B | toring the t . f th only way the adversary can obtain non-zero information is if
nonymity by merely monitoring the transmissions ot In&, ,o ot the monitored nodes is a relay and the other is a source.

nodes in the network, an adversary can at most ident ue to the symmetry assumption, intuition suggests that the

every source-relay pair. Since the network utilizes trans.moptimal strategy for the adversary would be to monitor every

ter directed signaling, using transmission timing alonds i source-relay pair with equal probability.

impossible to determine any final destination. We, themsfor Whenk, > 2, there is an additional challenge in determin-

measure anonymity using the set of source-relay pairs per- . :
fectly identifiable by the adversary. L& denote the set of ﬁ]g the ratio of relays and sources that should be monitoyed b

source-relay pairs in the session. We can write the adversary. In general, the optimal ratio need not be fixed
u y pars| 1on. wi and could be a random quantity, as long as the total number
H(S|S,) = H(S'|S.) + H(S|S.,9"). of monitored nodes does not exceled However, optimizing
] , ] o . ] the adversary and network strategies reveals that the aptim
SinceS’ contains all the source relay pairings ahdcontains girateqy would in fact have a fixed ratio. This is shown in
i 1 1 1 / — / . . . A
no information about destinations (S[S',S.) = H(S|S"), the following theorem which characterizes the equilibrium

which is a constant irrespective of the set of monitored BOd?hroughput-anonymity tradeoff for the general adversary.
We therefore modify the payoff in the two player game as:  Theorem 4:Let pe = Tmax=y p L%“J, k= (%1 and

0= H(S) w(m) = { —oktm)l Fa =7
0 o.W

It is easy to see that the total anonymity as defined in Seffiion ) _ - _
has a monotonic one-one relationship to the above definitiden, there exists a unique equilibrium throughput-anatym
Our goal is study the saddle point strategies and throughptigideoff which is given by:

anonymity tradeoffs of this network model by jointly opti- . w(0)(1 — p,)

mizing the covert probability functior{q,(b,|s)} and the A°(7) = { et T} log (w(0)(1 = pe) + nlpc))
adversary strategy, (n,) subject to the throughput constraint (n! — w(0)) '

Y(¢,) > v and the adversary powsr,. If ¢, q: denote + P log pe

the NE probability distributions of the network designedan T,LC

adversary respectively, then let

_|_

S (0 (5 2 putm gl

A*(v) = 9(an, 43) (ka—n—1)t+1



Proof: Refer to Appendix O

The anonymity at the saddle point is composed of two

components. The first term represents the uncertainty ir 1.0{ TITY
determining which of the monitored relays are covert; since 1 *\*NH*N
only a subset of sources are monitored, independence acro g, 0.8] \.* ’***,**
schedules does not necessarily imply that the relay is tover E, I, _, *\* *“w
The remaining component of the anonymity is the uncertainty & 9-6 - ’ e
due to the unobserved nodes in the network. The quantit £ 04 ka=4 **\

e~ -o LS

pe represents the average probability with each a relay T T ka=s *a
is covert, and this probability is influenced by the level
of throughput required. The relationship is similar to the 1
omniscient adversary case. As the network size incredses, t ) ol—ta=L

first component converges to a constant, and the anonymit 375 40 425 45 475 50
is dominated by the missing information from unobserved Throughput
nodes (see Section V). (@) 5 relay parallel networkC*® = C™ = 1, A = 3.

Saddle Point StrategiesThe optimal strategy for the adver-
sary at the saddle point, as revealed in the proof, is to raonit
equal number of relays and sources such that é?clsize
subsets of relays and sources are chosen uniformly randoml
Whenk, is odd, the adversary monitors one additional relay.
The intuitive argument for this strategy is as follows: Ieth
number of sources monitored exceeded the number of mon
tored relays by2 or more, then by removing one monitored
source and adding a monitored relay, the number of possibl
routes that can be discovered only stands to increase.

The optimal strategy for the network designer is to make
all the relays to be covert with probability:

o
fos)

Anonymity
o
\‘

o
o)

Ty~ 05

qn(Vls) = %avs' k=45 |
At first glance, this may be surprising since the adversary 0'%0 35 40 45 50 55 60
only monitors a subset of nodes in any session. Howevel Throughput
if all relays were not covert, then the fraction of monitored (b) 60 relay parallel networkC's = C™ =1, A = 1.

relays that are visible provide more information per unistco

in throughput than that obtained from sessions when nofig- - Tradeoffs for Parallel Relay Networks

of the relays are covert. Furthermore, uniform probabiiti

qn(byn|s) across sessions result in a uniform aposterieapacities of the relays are unequal, and networks where the
probability over all sessions which maximizes entropy. number of sources catered by the relays are unequal.

Figure[5 plots the throughput anonymity tradeoff for twezsymmetry in Covert Relay Rates:Consider first the case of
parallel relay networks. The gain in anonymity due to thgnp parallel-relay network, where the transmission capagitie
game-theoretic approach over the omniscient strategy is ¥ relaysB;, - - - , B,, are unequal. Specifically, there exists at
ident from the plots. Note that in the small network, whilgeast two relaysB;, B, such that the loss in data rates# e;.
the tradeoff is linear for an omniscient adversary (TheoremTheorem 5:For an n relay parallel network, where an
2), it is not so in general. For a large network, however, th@jversary monitor, = 2 nodes, if rate losses due to covert
tradeoffs are mostly linear, except for small valueg:of This  rejaying for the relays are given by, - - - e, respectively,
“‘asymptotic” linearity is shown analytically in Section V. there exists a unique saddle point where

1. qn(Bils) = %Vz <n

C. Asymmetric Networks 2. qa(Ay, Bj) = —4—.
In the results thus far, the symmetry in the underlying '
network model resulted in symmetric strategies for thieroof: Refer to Appendix O

adversary and the network designer. When asymmetry is

introduced in the networks, naive intuitions may not previd Interestingly, although the model is asymmetric, the cover
the saddle point strategies. To understand the effect relaying strategy is symmetric. This is because each relay,
asymmetry on the strategies, we consider two kinds wihen visible, reveals equal amount of information. Therefo
asymmetric networks: networks where the transmissi@amy asymmetry in the retrievable information from the two
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relays induced by the network strategy would automaticalbf them every session, and the remaining- 2k relays are

force the adversary to monitor the less protected (or mamen-multiplexing relays with exactly source transmitting to

informative) relay exclusively. Such a pair of strategiasmot each of them in every session. The capacities of relays are

constitute a saddle point. chosen such that each relay, when covert incurs an identical
When the network design strategy is symmetric, the paydffroughput loss. We consider &—player game where the

is a constant regardless of the adversary’s probability aflversary monitors at mo8tnodes.

monitoring each source-relay pair. However, there is omlg o  Theorem 6:For ann — 1 relay asymmetric parallel relay

strategy, at which point the optimal strategy for the nelwisr network, where an adversary monitdts = 2 nodes, then

symmetric, thus resulting in an equilibrium. In particyldre there exists a unique saddle point, where

probability of monitoring a relay is proportional to theeat 1) The optimal strategy of the network is to make a non-

loss at the relay. As intuition would suggest, the more rate  multiplexing relay covert with probability;! and a

loss, the less likely a relay is to be covert and consequeantly multiplexing relay covert with probability? where

greater incentive for it to be monitored. In effect, at thddia 1 1 1 1

point, the adversary’s strategy is to choose the probisilif 4, log(q;) — (¢ +n —1)log(q, +n —1)

monitor each relay so that the network is forced to make all = 2¢7log(2q;) — (2¢7 +n —2)log(2¢; +n —2) — 2.

relays covert with equal likelihood. . 2) The optimal adversary strategy is to monitor a source-
Under such an asymmetric model, if a network designer multiplexing relay pair with probability; and a source

were to assume naively that the adversary’s strategy were non-multiplexing relay pair with probability, such
symmetric, then for a required level of throughput, the op- {5t

timal strategy would be to make relays with lower through- (n— 2k)10g( i a, )
put losse; covert with higher probability so that the same P q;+”_1
level of throughput can be achieved with higher anonymity P2 (k) log (#)

(w.r.t. the uniform adversary). However, the optimal adeey
would then employ unequal probabilities of monitoring thg>r
relays which would eventually result in lower than expecte%
anonymity. The difference between the anonymity due f

the naive networking strategy and the equilibrium strate bability i th id inf i h
is shown in FigureJ6 and clearly demonstrates the ben [ePabrity since they provides more information, whereas

of using the game theoretic approach. The figure also pk;l@lve network designer would choose to hide all relays with

the tradeoff when the adversary employs the naive stratégye ual probability since all relays provide identical thgbput

uniform monitoring, and the network designer optimizes tHQtSSt' Fl_gur:] Ff[IOtti the |mprt(?1vemetnt n anonyr:nlty overnave
choice of covert relays assuming the uniform adversary. strategies due 1o the game-theoretic approach.

oof: Refer to Appendix. 0.

In this setup, the theorem states that the optimal strategy f
e network designer is asymmetric as well. A naive advgrsar
ould choose to monitor non-multiplexing relays with highe

1.007 0.98f
0.98 0.96f
] 0.94;
0.961 -~
. 945 .EO. 92¢
] £ 0.9/
0.921 R <0, 88/ \
17 Saddle Point AN 0. 86| "
0907 -~ Naive Adversary ™~ ' Saddie P y
|| — i addle Point 3
oggl—NaveNetwork J 0.84 72 Nawe Adversary %
S5 a0 45 " &0 4 Lmeme t
35 4.0 4.5 5.0 0. 82l ‘ :"'-II\IP e \I\I(:\I’ | “
3.2 3.4 3. 3.8
Thr oughput

Fig. 6. Asymmetric Rate Loss Model with = 5 relays: Comparison with

naive strategies. Fig. 7. Asymmetric Relay Information Model with sources and relays:

Asymmetry in Relay Information In the asymmetric mode| Comparison with naive strategies.

discussed above, the saddle point strategy for the networkrhe intuition behind the optimal strategies is similar te th
designer was symmetric since each relay when monitorasymmetric rate loss model. The more information provided b
provided the same amount of information. We now considarrelay, the more likely the adversary is to monitor thatyela
a modification of the parallel network structure and introelu and a greater incentive to make it covert. At the saddle point
asymmetry in the amount of information provided by a relayhe network increases the probability of non-multiplexing
Specifically, let the number of relays le- k, wherek relays relays being covert just enough so that the adversary abtain
are multiplexing relays witi2 sources transmitting to eachequal information from any relay.
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for a fixed anonymityA, the fraction of covert relays per
rsession@ is given by

D. Large Networks

In this section, we use the derived results to study eqialib
in large networks. When the fraction of monitored nodes B—1_ 1-
is a constant, the anonymity monotonically increases with a o2

but asymptoticallzl converges towards a constant. ~ Furthermore, if3(n) is the exact fraction of covert relays
Theorem 7:If 5= = « is a constant, then the anonymityrequired for a network of size, it is easily shown that:
for a fixed throughput ratio/* = x'— converges as:
max 10gn
-

lim A(y*)=1— Oﬂw.

n—00 €

A

This is of particular relevance to large wireless sensor
networks where the number of covert relays (relays gemerati
dummy transmissions) is directly related to energy ovethea
Figure[8 plots this relationship for finite networks in compa
ison with the asymptotic relationship.

Proof: Refer to Appendix

10
09 V. CONCLUDING REMARKS
. 081 In this work, we considered the problem of providing
%’07; anonymity to network communication when adversaries moni-
§ 0'6; / tor or compromise an unknown subset of nodes in the network.
g f We presented a game-theoretic formulation and proved the
g existence of saddle point equilibria. Using the class oafbelr
50-4’ — Asymptotic relay networks, we demonstrated that this approach can be
& 0.3 o used to obtain optimal strategies for the network designer
= 02 = 16000 and the adversary, as well as provide insights into anoryymit
014 T m=d000 throughput tradeoffs in large networks. The problem of com-
o [n=1W0 puting the equilibria has not been dealt with in this workt bu
01 02 03 04 05 06 07 08 09 10 efficient algorithms for this purpose would fortify the rétsu
Fraction of Monitored Nodes here, and is part of ongoing research. In this work, we have
. . used specific classes of networks, and assumed knowledge of
Fig. 8. Covert vs. Monitored Relays: The three sets of cuaresplotted

topology and sessions. A similar approach for random net-

works with random connections could shed valuable insights
According to the theorem, for a fixed throughput, the logato scaling behaviour of anonymous networking.

in anonymity is proportional to the square of the fraction

of monitored relays. Put in another perspective, for a fixed

number of monitored relays, the anonymity asymptotically1

converges td as : g
1

The intuition for this relationship can be understood byiag

at the maximum throughput case* = 1. At that operating
point, A(v*) 1 — o2. In the largen regime, the total
uncertainty is approximately, logn. Every monitored relay

for A =0.8,0.95,0.98.
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APPENDIX
A. Proof of Theorerhll

In order to prove the existence of a saddle point in the tw

player game, it is sufficient to show the following:

1) A, and A, are closed convex and bounded sets.
2) The payoff is continuous in the domai, x A,.
3) For everyq, € A, ¢(z,q,) IS concave inc.

4) For everyq, € A,, —¢(qn,y) iS concave iny.

12

2) Since the payoff is linear ing, and is an entropy
function ofg,,, the continuity of the payoff can be easily
shown (the details are omitted here).

) In order to show the concavity @fw.r.t. tog,,, we need
to show that for anyy’, q? € A,.q, € A,

ad(qy, q,)+(1—a)p(qs, q,) < d(aq),+(1-a)q;, q,).

Consider the following modification to the setup, where
apart from the topology and set of network sessions, the
network designer and the adversary are given access to a
common Bernoulli random variablé ~ B(«). Consider
any qt,q> € A,. The network designer utilizes the
following strategy: If the observed variable = 1, then

the distributiong}, is used to make relays covert, and if
Z =0, g2 is used. Since is observed by the adversary
as well, this strategy would amount the anonymity being
equal to the conditional entrop§/ (S|S, Z).

Now, suppose the Bernoulli variable were only avail-
able to the network designer, and he utilizes the same
strategy. Since the adversary has no knowledgée’ of
his entropy would bef (S|S) where the distribution of
covert relays would be the effective distribution:

+(1-a)g

. Since conditioning reduces entrop#i (S|S, Z) <
H(S|S, and therefore,

O[Qs(q}w qa)+(1_a)¢(q7217 qa) < ¢(aq}1+(1_a)q$w qa)'

4) For anyg,, ¢(q,,,q,) is a linear function ofgq,, and
therefore,

a¢(qn7 qi)+(1_a)¢(qn7 qi) = ¢(qn7 04‘1(11"'(1_0‘)‘1§)a

which establishes the required concavity.

1
aq,

For uniqueness, consider two pairs of strategig$, ql)
and (¢2, ¢%) which achieve saddle point equilibrium. By the
definition of saddle point, we know that:

(ar.q:) < ¢(ar,a2) < o(q?,q%) < (a2, qs) < d(an. qr).

The above sequence of inequalities establishes the urégsen
of the payoff. O

B. Proof of Theorerhl2

If the 2—player game satisfies the above conditions, then occording to the definition of payoﬁ

it constitutes a genera—player concave game, which was

shown to have a guaranteed Nash equilibriuniin [26].
1) Convexity of action spaces:The spaceA, is a finite-

constraint:
R(q,) >

is closed.R(-) is a linear function ofg,. Therefore, for
any pair of probability vectorg’, g2

aR(q,) + (1 - a)R(q})

which proves the convexity oft,,.

= R(aq, + (1 — a)q2),

H(qn,qa) =

dimensional simplex, which is closed, bounded and

convex.4,, is a subset of the simplex with the additional
From the adversary’s perspective, the goal is to chagse

such that¢(qn, g.) is minimized. Sincey, is a probability
distribution, using Lagrange multipliers, we can write:
Since the constraint is not a strict inequality, the space

(SlS

H( ZZ Qa na

n, s,b,

qn(s,bn)logqap( ,fa(fo(s,bn),na),

b.(11)

Ly = ¢(Qn7 Qa) + Ba Z Qa(na)-

ng

At the minimizing distribution, we know that

dL,

—— = 0Vn,.
dg.(ng)
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Therefore, for any subset of nodag for which ¢,(n,) > 0 Therefore, for any throughput
H,(n}) + B, is a constant, H(S|B) < Linax — log(n!).
ne

which proves the first part of the theorem.

From the network designer’s perspective, the goal is
designg, (b,,) such thaty(¢,, ¢,) is maximized, while main-
taining a throughpu. Again, using Lagrange multipliers, we
can define:

;rhe above inequality is achievable by making all relays cove
Wtn probability p,,, and hence proves the theorem.

D. Proof of Theoreml4

Consider the following adversary strategy: During every
Ly = ¢(4n, 4a)+51 Zp(s)q"(sv b)A(s, bHZ p(s) Z P2(s)dgdgsttn, the adversary picks source-relay pairs with uniform
s b

s,b probability. We characterize the optimal network stratégy
At the maximizing distribution, for every(s,b) > 0, this adversary, and show that the adversary can do no better
dL, by changing his strategy, thus priving equilibrium.
dnb) 0. For a given set of monitored nod& < (V°)* x (V")*, let
AT Xg be a random variable that denotes the set of communi-
=Y qa(na) [p(s) + p(s)10g(gn(s, bn)) — p(s) cating source relay pairs within the set of monitored nodes.
Ng Then, for a given covert relaying strategy(), the anonymity
for the specified adversary can be expressed as:
—p(s)lo n(s', bl )p(s’ . . .
pellos | 2 s Bnts) H(SIS.) = D(H(XulS.) + H(S[S.: Xn,)
+51(A(s, b, s) = 0. b .
| AAED R = 0 = Y (H(Xp[S,) + H(S|Xb),
Equating the values of,, 52(b), the conditions are obtained. b
- where the second equality is because, given the communica-
tions within the monitored nodes, the uncertainty of thd res
C. Proof of Theorerhl3 of the network does not depend on the observation.
Definepy, = Zs_b;|b|:kp(s)%(b|s)- Due to the symmetric ~ Furthremore, given the set of communicating pairs within
rates, the throughput achievable by a strategys: the set of monitored nodes, the uncertainty in the unobderve
portion of the network would be independent of any strategy,
T(gn) = Tmax — Zpkkfa and therefore a constant.

k Accordingly, consider maximizind_ H (Xg|S.) subject to
wheree = min(C", C*) — f(C", C*). the throughput constraint. This maximization is akin to the
For a given strategyy,, the anonymity for an omniscientomniscient case; the uncertainty refers to the commuwicati
adversary can be written as: within the monitored nodes. The difference comes from the

fact that since there are unobserved nodes in the network,
H(S|B) = Z <ZP(S)Qn(b|S)> H(S|B =b). some of the monitored sources or relays can communicate
beealv \s with nodes outside the set of monitored nodes. Neverthdtess

For a given realization oB, the omniscient adversary canc@n be shown that the optimal network strategy is not aftecte
by this modification. We prove this fdt, = 2, the proof for

perfectly correlate the flows through all relays W\B, . : e .
therefore, the information lost due to independent Scmugeneralka is a straightforward generalization. Define
can be upper bounded by: p°(b) = Zp(s)(l _ Z q(B|S).

H(S|B =b) < log(|b|"). S BbNBZ
In other wordsp®(b) is the probability that a flow through
is visible. Therefore,

= H(SB) < Z(Zp(s)qn(bls)> log([bl!) H(Xu[S.) = h(p“(b)
S b[Pa) = )

b
= Zpk log(k!) whereh(p) is the binary entropy function. Due to the through-
k put requirement, we know that}, p°(b) is a constant. Since
Consider maximizing",. px log(k!) subject to finite entropy is bounded by the size of the alphabet,
- 1
> ke < Yoo — 7. > H(Xp[Sa) <n’h(=),
k beVs xyr K

If Ymax — 7 = ne, it is easy to see thag, = 1. When where the equality is achieved wheb, p¢(b) is identical.

Yumax—7 > ne, since’®6) s increasing ik, the maximizing ~ Furthermore, since(B|S) is independent o8,

{px} is given by: H(S|Xp) = log((n — 1)1).
Tmax -7

Pk =0,k <n, p, = e which is independent of the covert relaying strategy.
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The optimal covert relaying strategy is therefore symraetrprobabilities of an adversary monitoring a non-multiphexi
across all relays and sessions. Using the two derived conalitd multiplexing relay, then

tions, the maximizing anonymity is given by: g
) 1 ¢ = 1-i—=lalog(a) — (g +n—1)log(q; +n—1)]
H(S[S,) = h(=) + log((n — 1)) o&(5r)

For the derived covert relaying strategy, the anonymitytw.r _10;3%) [2¢% log(2¢?) + 2 — (2¢7 +n — 2) log(2¢° +n — 2)],
to a general adversary can be written as: . _ )

X X where St = 3 is the total number of sessions. Applying the

H(S|S,) = Z ¢a(b)(H(Xp|Sa) + H(S|Xb,) conditions in Theorer]2 to the expression above, the theorem
beVsxYr is proved. Details are omitted due to paucity of spaceO.

whereg, (b2) is the probability that the adversary monitors the

source-relay paib. Due to the symmetry in covert relaying®- Proof of Theoreri]7

strategy,H (Xy) and H(S|X3,) are identical across paits. We know from Theoren3 that the anonymityd(+) can be
Therefore, for any probability mass functiofy,(-)}, the written as:

total information gained (or lost) would be no different for A(y) = M7
the adversary. In other words, there is no incentive for the nlogn
adversary to deviate from the uniform monitoring strategy where
that pair of strategies is therefore, a saddle point. a. w(0)(1 — pe
M) = [pe+ POUZP g (o)1 o) 4 ipe)
E. Proof of Theorerhl5 (n! —w(0))
. . . . . +——7—logpc
Since uniform probability maximizes entropy, we can write n!
k
= - kN K\ m!
an(Bils1) = 1Vs, ¢n(Bals) = g2, Vs. As(y) = > <m> <m) — (1= pejw(m)log(w(m)).
ThenX max — 7 = qre1 + g2€2. If the adversary monitors3; max(1,2k—n)
with probability p, then Using Stirling’s approximation for large, we can write:
1 1+q¢) 1 w0)  ((n—an)!)?
o(p,(q1,q2)) = p {5 log < > + 5 log (1+ QI)] LT i —2an)
1 1+q¢ ) 1 ] (n — an)?=2on, /(1 — )2n2472e—2nt2an
+(1 — —1lo + —log (1 + . s
(1-7) [2 & ( 1 2 gl +a) n"(n — 2an)?—2en, /(1 — 2a)n?4mr2e—2n+2an
_If q1 > q2, thenp = O_is optimal for the adv_ersary. However, _ (1— a)2e”[(2*2°‘> log(1—a) — (1—2a) log(1—2a)]
if p =0, then the optimal network strategy is to make= 0, 1—2a
which is a contradiction. Hence —0 foranyac (0,1).
G =qo = M Therefore lim A;(y) = pe. (12)
€1 + €2 n—oo
If px is the saddle point strategy for the adversary, then Using Stirling’s approximation otog w(m), for largen
must necessarily satisfy (from Theorem 2) logw(m) = 2log((n —k)!) —log((n — 2k +m)!)
i¢(p*,(Q1,M)) —0, = 2(n—k)log(n —k) — (n— 2k +m)log(n — 2k + m)
dqy € 1 (n — k)?
v o . . o . o +-log| ——————— ) +0(1)
whereq, = —2=—2. It is easily verified thap™ = <~ is 2 n—2k+m
the unique solution to the above equation. 1
= n—m+§ logn + O(1)
F. Proof of Theorer]6 Sincem < an, we can write
The adversary has choices: either monitor a source and a k ,
. . ; . k\ (k" m!
non-multiplexing relay, or a source and a multiplexing yela A»(y) = Z — (1 = pc)w(m) log(w(m))
Within the set of relays, condition 1 in Theordh 2 requires m=max(1,2k—n) myn

that the amount of information available through each réday
identical. In other words, within the set of multiplexindags,
the probability of covertness would be identical. Consexdjye

: (_n)pc zk: (Z) <: _ Ti) (n —m)logn

k m=max(2k—n,1)

within the set of multiplexing relays, the probability of an (1—pe)logn n k n

adversary monitoring any particular multiplexing relayuiab = o [(” —k) <k> +—(n—k) (k)]

be identical. Likewise, the argument applies to the set of ) kg

non-multiplexing relays as well. Therefore, df, ¢> refer to _ M-k (1 —p.)logn. (13)
n

the respective probabilities of monitoring a non-multihe o _
and multiplexing relay, and ip;, p» refers the the respective Combining [I2) and{13), the result is proven. 0.
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