

Shape Recognition and Pose Estimation for Mobile Augmented Reality

Nate Hagbi*, Oriel Bergig*, Jihad El-Sana*, and Mark Billinghurst†
*The Visual Media Lab, Ben-Gurion University, Israel

†The HIT Lab NZ, University of Canterbury, New Zealand

ABSTRACT

In this paper we present Nestor, a system for real-time recognition
and camera pose estimation from planar shapes. The system
allows shapes that carry contextual meanings for humans to be
used as Augmented Reality (AR) tracking fiducials. The user can
teach the system new shapes at runtime by showing them to the
camera. The learned shapes are then maintained by the system in
a shape library.

Nestor performs shape recognition by analyzing contour
structures and generating projective invariant signatures from
their concavities. The concavities are further used to extract
features for pose estimation and tracking. Pose refinement is
carried out by minimizing the reprojection error between sample
points on each image contour and its library counterpart. Sample
points are matched by evolving an active contour in real time. Our
experiments show that the system provides stable and accurate
registration, and runs at interactive frame rates on a Nokia N95
mobile phone.

KEYWORDS: In-Place Augmented Reality, handheld AR, shape
recognition, geometric projective invariance, 3D pose estimation,
vision-based tracking, free-hand sketching, shape dual perception.

INDEX TERMS: H.5.1 [Multimedia Information Systems]:
Artificial, augmented, and virtual realities; I.4.0 [Image
Processing and Computer Vision]: Scene Analysis – Tracking

1 INTRODUCTION

Model based visual tracking has become increasingly attractive in
recent years in many domains, such as robotics and Augmented
Reality (AR). In many of these domains visual tracking is often
combined with object recognition tasks. In AR applications,
model based recognition and 3D pose estimation are often used
for superposing computer-generated images over views of the real
world in real-time.

Fiducial based computer vision registration is popular in AR
applications due to the simplicity and robustness it offers.
Fiducials are of predefined shape, and commonly include a unique
pattern for identification. Fiducials are useful for various tasks,
such as prototyping and producing tangible interaction techniques
for better user interfaces [1, 2]. On the other hand, Natural Feature
Tracking (NFT) methods are becoming more common, as they are
less obtrusive and provide a more natural experience [3]. This is
achieved at the cost of increased computational complexity and

decreased accuracy, since little is assumed about the environment
to be tracked.

In this paper we describe a recognition and pose estimation
approach that is unobtrusive for various applications, and still
maintains the high levels of accuracy and robustness offered by
fiducial markers. We recognize and track shape contours by
analyzing their structure. We use contour concavities to generate
projective invariant signatures, which allow shape recognition
across different viewpoints. The concavities are further used to
extract shape features for real time pose estimation and tracking.
A nonlinear optimizer is finally used for refining the calculated
pose to the desired level of accuracy.

Shapes offer various benefits for AR. They lend themselves to
identification and pose estimation in cases of partial occlusion and
moderate projective distortion. Furthermore, they are flexible and
unobtrusive to use in many AR applications where natural shapes
carry contextual meanings, such as augmented books, catalogs,
and printed advertisements. The proposed approach is also
suitable for authoring in In-Place Augmented Reality (IPAR)
applications [4].

We have implemented the proposed approach in Nestor, a
system that operates in real-time on a mobile phone. The system
can read shape files, or perform a learning step in which the user
shows a new shape to the camera. The shape is analyzed and
inserted into a library, which is used to maintain the set of shapes
to be tracked and their properties, such as the models assigned to
them. When a learned shape is recognized at runtime, its pose is
estimated in each frame and augmentation can take place, as
depicted in Figure 1. Our experiments show the system performs
robust recognition and registration, maintains accurate tracking,
and operates in interactive frame rates on a mobile phone.

* {natios, bergig, el-sana}@cs.bgu.ac.il
† mark.billinghurst@hitlabnz.org

Figure 1. A hand-sketched shape contour and a printed shape
recognized, tracked, and augmented.

Since our feature extraction method is based on concavities, the
system is limited to recognizing non-convex shapes. To achieve
robust results, at least two concavities are often required. In
addition, the shape extraction step is based on thresholding, which
implies the shapes used must have high contrast relative to their
background.

The rest of this paper is structured as follows. In the next
section we describe background and related work. Section 4
provides a brief derivation of the algorithmic approaches used by
our system. Section 4 gives the details of our approach and
describes the operation of our system. Section 5 addresses the
context-based automation of the shape learning process. Section 7
describes our experiments with the system and the results.
Section 7 discusses possible applications for the approach, and
Section 8 concludes and outlines future work.

2 RELATED WORK

Object recognition and pose estimation are two central tasks in
computer vision and Augmented Reality. Object recognition
methods aim to identify objects in images according to their
known description. Model based pose estimation methods aim to
determine the six degrees of freedom of known objects in a
coordinate frame related to the camera’s coordinate frame.

The cores of AR applications are often based on recognition
and pose estimation to allow the appropriate virtual content to be
registered and augmented onto the real world. Fiducial based
registration methods have been used from the early days of AR,
mainly due to their robustness to different conditions of the
environment and computational simplicity [3]. Fiducials are
commonly of predefined shape and size, and are usually
integrated with an identification mechanism for recognizing them.

The first fiducials were based on points in predefined geometric
configurations [5, 6]. Planar fiducials then became popular,
offering superior accuracy and robustness to changing lighting
conditions. For example, ARToolKit [7] locates a square frame in
the image and calculates its pose. The frame is first used for
rectification of the pattern inside of it. Pattern matching is then
performed on the rectified pattern against a pattern library, which
determines the 3D model that should be rendered. The calculated
pose is then used to render the 3D model augmented on the square
frame. Fiala developed the ARTag library [8], which uses digital
coding theory to minimize false detection and inter-marker
confusion rates. ARTag requires a relatively small marker size
and avoids explicitly storing patterns for identification.
Studierstube Tracker [9] is a lightweight tracking library designed
to run on mobile platforms with low processing power and little
memory. It uses one of several known algorithms for pose
estimation and digitally encoded ids for fiducial identification.

The specific geometric configurations used in each of these and
other fiducial tracking libraries make them computationally cheap
and robust. Moreover, fiducials are natural to use in a variety of
AR applications that augment specific objects, rather than the
environment around the user. For example, in various AR
applications users make use of tangible objects to interact with
virtual content [1, 2]. Nevertheless, the obtrusive and monotonous
appearance of predefined shape fiducials often renders them
unattractive for use in AR applications, as they require the
application developer to ‘engineer the scene’.

Recognition of general planar shapes has been addressed in the
research literature from various directions. One of the most

elegant approaches to this problem is based on the concept of
geometric projective invariance, originally pioneered in computer
vision by Mundy, Zisserman, Rothwell, Forsyth, and others [10,
11]. Geometric invariants are properties of geometric
configurations that remain unchanged under certain classes of
transformations. As such, invariants form a powerful basis in
computer vision for object description and recognition. They
allow ignoring the current pose of an object relative to the camera
and calculating descriptors for it directly from world observations.
In this paper we use geometric invariant constructions to calculate
projective invariant signatures for shapes, which allow
recognizing them across different viewpoints.

Planar shapes have been used for tracking in several domains.
They can be reliably tracked amongst clutter and inherently offer
useful redundancy. Drummond and Cipolla [12] developed a
vision-based robot guidance system based on the Lie algebra of
the affine group. The camera, in that case, was mounted to the end
of a robot arm, which was guided to a target position by
integrating the local affine transformations of a contour being
imaged. The contour is first shown to the system, which then
begins to track it on a frame to frame basis. To compensate for the
inability of integrated affine transformations to account for
general projective transformations, the two non-affine warp
parameters are finally estimated according to the centroid of the
shape.

While the system in [12] is closed in a two dimensional loop
that integrates affine transformations, Ruiz et al. [13] proposed a
projective approach for estimating the 3D pose of shape contours.
Rather than first estimating the affine transformation parameters
and then the remaining non-affine parameters, they use an
invariant based frame construction similar to that in [10] for
extracting projective invariant features on the contour. These are
used for constructing a linear system of equations in
homogeneous coordinates that gives the camera pose. Although
theoretically more accurate than the construction originally
proposed in [10], the construction proposed in [13] limits the
scope of usable shapes by several assumptions on shape
concavities. In addition, no optimization step is performed once
the transformation is calculated and no running times are reported.

Iterative optimization is useful for performing registration as
well, or for refining a given pose estimate. Fitzgibbon [14]
proposed a registration method for point sets based on the
Levenberg-Marquardt nonlinear optimizer. As pointed out therein,
direct nonlinear optimization on point sets can be easily extended
to incorporate a robust estimator, such as Huber kernel, which
leads to more robust registration. It also has a wider basin of
convergence compared with traditional point set registration
methods, such as Iterative Closest Point. This method can also
account for curves as sets of points, although it makes no use of
the connectivity information offered by them. In our approach we
use an iterative optimization process to refine an initial pose
estimate. It differs from the method proposed in [14] by the way
correspondences are determined. We use the connectivity
information of the contour to match correspondences by evolving
an active contour between the library contour and image contour.

3 THEORETIC BACKGROUND

Nestor is based on several theoretic and algorithmic concepts. We
give here a brief discussion of each for the unfamiliar reader.
Readers who are familiar with the concepts are invited to skim
this section to synchronize the notation, and proceed to the next
section.

3.1 Recognition by Invariants

Out of the impressive literature written on object recognition, our
recognition approach is most related to the inspiring work on
projective shape invariance by Zisserman, Rothwell, Mundy, and
Forsyth.

A function ܫ(P) of a geometric configuration P is a scalar
invariant to a linear transformation of coordinates ݔᇱ = Tݔ if it
holds that ܫ(ݔᇱ) = In this paper we use invariants to planar .(ݔ)ܫ
projective transformations, i.e., in which T is a 3 × 3 non-singular
square matrix acting on homogeneous coordinates.

Similarly, relations between features of geometric
configurations that are not affected by projective transformations
are referred as invariant relations. For example, collinear sets of
points are transformed to collinear sets of points under projective
transformations, and hence collinearity is an invariant relation.
Tangency is also preserved under projective transformations,
which implies the projection of a line tangent to a curve is a line
tangent to the projected curve. Invariant relations are useful for
locating distinguished features of shapes. As proposed in [15], we
use curve bitangent lines as distinguished features to calculate the
homography a contour undergoes. This is achieved by a variation
of the DLT algorithm described in Section 3.2

Since projective invariants of algebraic curves can be measured
directly from their perspective projection, it is natural to
characterize and recognize such arrangements by their invariant
values. Invariants of such arrangements have also been used to
characterize non-algebraic curves by fitting to them algebraic
curves. This approach has been taken in [16] for affine invariance.
However, since fitting based methods tend to be global, they are
usually susceptible to occlusion of curve parts. Fitting algebraic
curves to partial sets of observations has also been pointed out to
be highly sensitive to noise [17], which introduces further error
into the invariant measurement process.

 Instead of measuring invariants directly from image
observations, we first transform the image shape to its canonical
representation, where every measurement is theoretically invariant
[10]. This is done by extracting a set of distinguished features, and
deriving the transformation that aligns them to a canonical frame.
Applying this canonization transformation to the shape or its
features yields the canonical representation of the shape with
respect to the chosen frame. Care has to be taken regarding the
spacing of the selected distinguished features, as the quality of the
canonization transformation drops the closer the set of
distinguished features is to degenerate, e.g., the closer the set of
distinguished points is to collinear. In this paper we transform
shape concavities to their canonical frames in order to calculate
invariant shape signatures.

3.2 Direct Linear Transformation (DLT)

In this section we describe the Direct Linear Transformation
algorithm, which is useful for estimating transformations from
sets of corresponding measurements. We give here a derivation of
the classic DLT algorithm for estimating the 2D homography
between a pair of projective planes from a set of corresponding
point pairs in the planes. Note that an equivalent derivation can be
done based on lines instead of points, since a homography H that
operates on points by ݔᇱ = Hݔ operates similarly on lines by ݈ᇱ = H்݈ . For further details, we refer the interested reader to
Hartley and Zisserman [18].

We assume that for two corresponding points ݔᇱ and ݔ , the
homography H is given by ݔᇱ = Hݔ , up to multiplication by a
scale factor. We have a set of ݊ corresponding homogeneous

points ݔ௜ and ݔ௜ᇱ in ℙଶ, such that ݔ௜ ↔ ௜ᇱ, and we want to solveݔ
for H. We mark ݔ௜ = (ई௜, उ௜, ऊ௜), ݔ௜ᇱ = (ई௜ᇱ, उ௜ᇱ, ऊ௜ᇱ), and

 Hଷ×ଷ = ൥ ℎଵ ℎଶ ℎଷℎସ ℎହ ℎ଺ℎ଻ ℎ଼ ℎଽ൩.

A simple cross-product form that defines the operation of H on ݔ௜
and ݔ௜ᇱ, taking into account the scale factor, is

௜ᇱݔ × Hݔ௜ = 0.

If we denote by h௝ the ݆-th row of H, Equation X translates to
 ቌ उ௜ᇱhଷݔ௜ − ऊ௜ᇱhଶݔ௜ऊ௜ᇱhଵݔ௜ − ई௜ᇱhଷݔ௜ई௜ᇱhଶݔ௜ − उ௜ᇱhଵݔ௜ ቍ = 0.

This gives a set of three equations in the entries of H in the form
of A୧h = 0,

 ቎ 0୘ −ऊ௜ᇱݔ௜் उ௜ᇱݔ௜்ऊ௜ᇱݔ௜் 0୘ −ई௜ᇱݔ௜்−उ௜ᇱݔ௜் ई௜ᇱݔ௜் 0୘ ቏ ቌ hଵ்hଶ்hଷ் ቍ = 0.

Since the third line is linearly dependent on the first two, each pair
of corresponding points contributes two equations. Denoting by ݊
the number of corresponding point pairs available, stacking these ݊ sets of equation pairs we get a 2݊ × 9 system of equations. We
get a unique solution for H in the case ݊ = 4. In case ݊ > 4, due
to noise and measurement errors there will generally be no single
solution. However, in such case it makes sense to find the best
solution by least squares as the solution that minimizes the
homography error over all points.

As discussed in [18], normalization of the features should be
carried out before applying the DLT algorithm. Normalization
makes the DLT algorithm invariant to similarity transformations
of features, i.e., invariant to the coordinate system scale and
origin. Normalization also meaningfully improves the accuracy of
the estimated homography by reducing the effect of numerical
errors. In our case, this process is applied to each shape
separately. In practice, to normalize a set of points, we first rigidly
translate the points so their centroid translates the origin. We then
apply isotropic scaling that transforms the average distance of the
points from the origin to √2.

3.3 Gauss-Newton Iteration

Once an initial pose has been estimated from the calculated
homography, a Gauss-Newton iteration refines the estimated pose
of a shape contour by minimizing the error vector resulting from
fitting its points to the corresponding points of the image contour.

We want to have at ݔ௜
 Hݔ௜ = .௜ᇱݔ

The algebraic error for ݔ௜ under H is then
 ϵ଴ = Hݔ௜ − .௜ᇱݔ

We approximate the operation of H as locally linear and get
 (H + ௜ݔ(∆ = Hݔ௜ + J∆,

where J is the Jacobian of Hݔ௜ according to H,
 J = பୌ௫೔பୌ .

We seek ∆ that minimizes
 (H + ௜ݔ(∆ − ௜ᇱݔ = Hݔ௜ + J∆ − ௜ᇱݔ = ϵ଴ + J∆.

This linear minimization problem can be solved using Least-
Squares minimization, or simply by using the pseudo-inverse of J,
leading to
 ∆= −Jାϵ଴.

One of the main challenges we need to face is accurately
determining the correspondence between contour points, which
allows calculating the error ϵ଴.

3.4 Active Contours

To establish the correspondence between the reprojected points of
the library contour and the points of the image contour, we use an
active contour model. Since introduced by Kass et al. [19], active
contours have become a widely used tool for various tasks in
computer vision, such as segmentation [20][21]. An active
contour is a parametric function

 c(s) = ൫x(s), y(s)൯ ∈ Rଶ, s ∈ ሾ0,1ሿ,

defined in an image I(x, y) . An active contour is assigned an
energy term, minimizing which balances between several
objectives. The energy of an active contour is commonly divided
to internal energy, which refers to the geometric properties of the
contour, and external energy, which refers to the properties of the
image where the contour resides. A simple internal energy term
that takes into account the stiffness and elasticity of the contour is
 E୧୬୲(c(s)) = α ฬ ∂∂s c(s)ฬଶ + β ቤ ∂ଶ∂sଶ c(s)ቤଶ.

A traditional external energy term that refers to the amount of
contrast along the contour is based on the gradient of the
smoothed image
 Eୣ୶୲(c(s)) = −γ|∇I(c(s))|ଶ.

Minimizing according to
 E(c(s)) = E୧୬୲(c(s)) + Eୣ୶୲(c(s))

leads the active contour towards strong edges in I(x, y) while
keeping it relatively smooth and elastic.

4 NESTOR

Nestor is a recognition and 3D pose tracking system for planar
shapes. The main goal of Nestor is to serve as a 3D registration
solution for AR applications, which allows augmenting shapes
with virtual content. Nestor can be used to augment shapes that
have visual meanings to humans with 3D models having
contextual correspondence to them, as depicted in Figure 1. We
first give an outline of the system, and then proceed to describe
each of its steps in detail.

Nestor operates by analyzing the live video feed provided by a
handheld camera. Each frame goes through a series of filters that
extract shapes which should be tracked. A projective invariant
signature is then calculated for each of the contour concavities.
Each such signature is used to generate a hypothesis for a single
library shape. Features extracted from each concavity are then
used to generate a first estimate for the homography between each
hypothesized library shape and the image shape. The estimated
homography is next used to reproject each hypothesized shape on
the image contour to perform verification, which results in a
single recognized shape. We then calculate an estimate of the
homography between the image and library shape using features
from all concavities. Finally, we refine the estimated
transformation to the desired level of accuracy by nonlinear
optimization on corresponding sample points along the
reprojected library contour and the image contour. We determine
the correspondence between these sample points by evolving an
active contour from the unprojected image contour towards the
library contour.

4.1 Shape Recognition

We begin shape recognition by applying adaptive thresholding to
the image using integral images. The contour of each image shape
is then extracted as a list of points ܥூ = ,ଵ݌) ,ଶ݌ … , ௡). We filter݌
image contours in the beginning of the recognition process by
removing contours with small area or length, as well as contours
that are convex or close to convex.

We then proceed to construct frames that are preserved under
projection for each extracted contour ܥூ. We use a construction
similar to the one proposed in [10], which is based on the
bitangent lines to the contour, illustrated in Figure 2(a). Each
bitangent line ݈ gives two tangency points, ݌௔ and ݌௕ , which
segment a concavity from the rest of the curve, known as the M-
curve. The interesting property of the bitangent line ݈ and the
points ݌௔ and ݌௕ is that their position relative to the curve remains
unchanged under a change of viewpoint. We extract bitangent
lines and their bitangency points by analyzing deviations from the
convex hull of the contour.

Two additional points, ݌௖ and ݌ௗ , for each concavity are
extracted by casting from ݌௔ and ݌௕ lines tangent to the
concavity. The extraction of these additional cast tangency points
can be done while traversing the contour for bitangent lines. This
process of extracting invariant feature points can be repeated
recursively on nested concavities. These nested feature points can
then be used for pose estimation in addition to the ones described
above. However, the location accuracy of nested feature points on
the contour drops with the size of the concavity.

 (a) (b)

Figure 2. Canonical frame construction for a contour concavity.
(a) Distinguished features on a contour concavity. (b) The
canonical frame of the concavity.

The four extracted points ݌௔ ௕݌ , ௖݌ , , and ݌ௗ , along with the
bitangent line ݈ and the cast tangent lines, are referred as the
distinguished features of the concavity. The four distinguished
points form a projective invariant frame for the concavity. The
projective transformation that maps these points to the four
corners of the unit square gives the canonical representation of the
concavity. This transformation is calculated and then applied to
all of the concavity points, yielding the canonical representation
of the concavity, as depicted in Figure 2(b) for the lower right
concavity of the contour in Figure 2(a). The selection of the unit
square is arbitrary and different selections are possible as well.

We proceed to calculate a signature for each concavity of ܥூ
from its canonical representation. We use a construction similar to
shape footprints, originally proposed by Lamdan et al. [22]. Our
signature is based on the areas bounded between the transformed
concavity curve and a set of rays ሼ݅ݎሽ cast in constant polar
intervals from a point ݌௕௔௦௘ in the basis of the concavity canonical
frame, midway between the transformed ݌௔ and ݌௕. The signature
coordinate values are set to be the bounded areas normalized by
the total area bounded by the concavity in the canonical frame and
the ݔ-axis. Let us denote by ݅ݎ the ith ray cast from ݌௕௔௦௘, and by ܽ݅ the area bounded by the concavity, ݅ݎ, and 1+݅ݎ. The signature
is then ݏ =< ,ଵݏ ,ଶݏ … , ௠ݏ >,

where ݏ௝ = ௝ܽ ∑ ܽ௜௠ିଵ௜ୀଵ⁄ and ݉ is the number of polar intervals.
The nearest neighbor of ݏ is then found in the shape library using
a hash map, and a hypothesis is generated for it.

The final step in the recognition process is hypothesis
verification, where each hypothesized library shape is reprojected
and tested against the image shape ܥூ. The homography used for
reprojection is calculated according to the same features used for
constructing the canonical frames. The hypothesized library shape ܥ௅ with minimal reprojection error to ܥூ is selected, where we use
the fraction of area common to the image shape ܥூ and the
reprojected library shape as the error metric. Next, we turn to
describe the calculation of the pose of the image shape using the
recognized library shape ܥ௅.

4.2 Pose Estimation

We begin pose estimation by calculating a first estimate of the
homography H between the recognized library shape ܥ௅ and the
corresponding image shape ܥூ . For this purpose, we use the
Direct Linear Transformation (DLT) algorithm [18] on the
distinguished features of ܥூ and ܥ௅.

The DLT algorithm provides a good initial homography
estimate. Figure 3(a) depicts the reprojection of a library shape on
the image shape using the estimated homography. We next use a

Gauss-Newton iteration to minimize the error between the
reprojected contour and the image contour. The error we
minimize is a function of the Euclidean distance between
corresponding sample points on both contours. We use a
calibrated camera and minimize the error of the camera external
parameters, as described in [3].

To measure the error vector and perform the minimization, we
first determine a point correspondence between ܥூ and ܥ௅. In [12]
it has been proposed to cast rays from sample points on the
reprojected contour in the normal direction and find the
intersections of the rays with the image contour. The intersection
points can then be used as corresponding to the origins of the rays,
and the error they exhibit can be calculated, for example, as their
Euclidean distance.

Here we take on a different strategy, based on evolving an
active contour from the reprojected library contour towards the
image contour. To guide the active contour, we use an external
energy term that depends on the distance transform of the image
contour. Evolving solely according to this term has a similar
effect to the ray casting operation, since each point evolves
according to the gradient of the distance transform in that point,
which is the normal to the reprojected curve. We add internal
terms to preserve the stiffness and elasticity of the contour, and
get the following energy functional

 E(c(s)) = α|DT(I(C୍))|ଶ + β ቚ பபୱ c(s)ቚଶ + γ ቚ பమபୱమ c(s)ቚଶ
,

where c(s) denotes the reprojected library contour, I(∙) denotes
the binary image of a contour, DT(∙) denotes the distance
transform of a binary image, and α , β , and γ are weighting
coefficients. An evolved contour point ceases to move when the
distance it has traveled in a single iteration is smaller than a
predefined threshold, or when a predefined number of iterations
has been reached. The former condition helps preventing the
active contour points from moving along the contour. The
resulting correspondence is depicted in Figure 3(b), where
corresponding points are connected by line segments.

Our experiments show that the internal energy terms make the
active contour less susceptible to image noise, which can corrupt
the normals at contour points, and maintain the structure of the
contour. The proposed method can also take into account
additional useful constraints. For example, it can be extended to
integrate the known prior model of the contour, as proposed in
[23], as well as other structural constraints.

The nice properties of this correspondence matching strategy do
not come for free. Calculating the distance transform of an image
is a relatively expensive task, even when using only fixed point
operations. However, it is only necessary to calculate the distance
transform in a narrow band around the reprojected contour ܥ௅.

 (a) (b)

Figure 3. Contour point correspondence matching. (a) Library
contour reprojected using the homography estimate. (b)
Correspondence matching using the distance transform as external
energy, and stiffness and elasticity internal energy terms.
Corresponding sample points are marked by connecting lines.

Figure 4. The effect of partial occlusion on the extracted contour,
marked in blue.

Masking the distance transform calculation to a narrow band
meaningfully reduces the per-frame processing time.

An even more effective scheme can be used to completely
avoid the distance transform calculation in each frame.
Correspondence information can be calculated by unprojecting ܥூ
using the inverse homography Hିଵ, and then evolving it towards ܥ௅, rather than the other way around. In this way, the distance
transform image of ܥ௅ is calculated and stored once when it is
learned by the system. Any subsequent image contours identified
as matching ܥ௅ will then use this distance transform image for
correspondence matching. Using this scheme the calculation of
the distance transform image in each frame is avoided.

4.3 Recursive Tracking

A simple strategy can be used for tracking shapes on a frame to
frame basis, which allows skipping the recognition step for most
shapes in most frames. This is achieved by maintaining for each
shape a set of simple properties that can be efficiently and
robustly tested to see if the shape corresponds to any shape in the
previous frame. For each image shape, we calculate its centroid,
length, and area. In each frame we attempt to find the
corresponding shape from the previous constant number of frames
according to these properties.

In fact, we can skip the DLT step as well by using a motion
model to get a first estimate of the contour in this frame, or simply
by using the transformation calculated for ܥ௅ in the last frame as a
first estimate. The minimization process can then carry on as
described above. In the case of jerky movement, the active
contour can lose track of the image contour. In this case we
reapply the DLT algorithm from scratch.

To filter noise in the final estimated homography, we use
Double Exponential Smoothing (DESP) [24]. This is useful in
cases of severe noise or bad lighting. Using DESP gives results
that are comparable to more powerful methods, such as Kalman
filtering, in a small fraction of the processing time [25].

4.4 Partial Occlusion

Partially occluding ܥூ effectively changes the contour extracted
from the image. Depending on the brightness of the occluding
object, ܥூ may be extended or shrunk, with only part of it faithful
to the corresponding library shape ܥ௅. Figure 4 depicts a shape
partially occluded by a hand and the extracted contour in blue.
The occluded part may contain concavities that point to different
library shapes. However, the recognition method described above
deals with partially occluded shapes in a straightforward manner
as long as enough faithful concavities remain visible. It thus
remains to deal with partial occlusion through the pose estimation
process.

Since we assume ܥூ has been recognized, its visible features
still provide us with a first estimate for the pose of ܥூ. Even if
there are not enough visible features for pose estimation from
scratch, the pose of the shape can be assumed to be the one from
the last frame, or extrapolated according to a motion model.

The main challenge is thus to reduce the effect of unfaithful
parts of ܥூ in the error minimization process. We can achieve this
by treating the points of these contour parts as outliers that should
be identified and ignored through the minimization process. This
can be achieved using RANSAC [26], which detects and filters
outliers by randomizing a basis for estimating the homography
between the contours and then checks the fraction of remaining
points that conform to this estimate. Effectively, it is sufficient to
check this conformance only for a small portion of the contour
points sampled uniformly.

Finally, since we are tracking recursively, a shape can be
tracked from previous frames even when only a small and
unrecognizable portion of it remains visible. This is achieved by
continuing to apply the minimization process in Section 4.2 to the
visible part of the contour.

4.5 Shape Library

The system maintains a shape library that contains the shapes
learned so far. The system can load a directory of shape files and
learn them. The user can also teach the system new shapes at
runtime, for example by sketching. To teach the system a new
shape, the user presents it to the camera in a frontal view. The
system then analyzes the shape contour and adds it to the shape
library. The user can now attach a virtual model to be augmented
to the new shape and modify its different properties, such as scale
and rotation.

When teaching the system a new shape, the image goes through
the same recognition step described in the Shape Recognition
Section, and its signatures are hashed. The curve, its signatures,
and additional required information are stored in the shape library.
These are later used in the recognition step in real-time. Since we
use shape contours, the system works for curves and solid blobs in
the same manner. For curves, double edges can be detected and
inner edges ignored in order to perform recognition and tracking
according to outer edges.

Our shape library is based on three lists of shapes, which
provide two caching levels to avoid searching through the entire
shape library in every frame. The shape list contains all the shapes
known to the system. The visible shape list points to shapes that
are visible in the current image. The shapes in this list are tracked
and updated in each frame. In addition, we maintain an execution
shape list, which contains the shapes that have been recognized in
the current execution. When a shape becomes invisible, it is
moved from the visible shape list to the execution shape list.
When a shape becomes visible, it is first searched for in the
execution shape list. In case it is not found, it is searched for in
the shape list. Once the shape is found, it is moved into the visible
shape list. This way, the shape library is searched for each shape
once per execution, when the shape first appears. This strategy
can be useful when only a few shapes are visible in a single
frame, and when only a small number of shapes are used through
a single execution.

5 CONTEXTUAL SHAPE LEARNING

So far, to teach the system a new shape, the user has to explicitly
1) show it frontally to the camera and 2) assign a model to it. In
this section we address the automation of this shape learning
process. The former step can be integrated into the application
usage by automatically rectifying a new shape according to the
plane it lies in, which is inferred from a previously learned shape
that is coplanar with the new shape. The latter step can be
performed automatically by classifying the new shape to one of
the shape classes and suggesting contextual model assignments to
the user.

Figure 5. Shape class representatives used to automatically assign
virtual content to new shapes.

5.1 Automatic Shape Rectification

To learn an unknown shape appearing in the image, for example
upon user request, we automatically perform rectification
according to the rectifying transformation recovered from a
tracked known shape that lies in the same plane. This allows the
development of sketching applications where the user draws
different shapes on the same page according to the applicative
visual language rules and context.

Upon user request to learn a new shape in the image, e.g., by
clicking it with a mouse, the nearest tracked shape ܰܥ to the new
shape ܥ is found according to the shapes’ centroids. To project ܥ
to the image plane, we apply to ܥ the rectifying transformation of ܰܥ, which is the inverse of the projection homography of ܰܪ ,ܥே஼ିଵ . This projects ܥ to the image plane outside of the image
bounds and to a scale that depends on its location relative to ܥ in
the world. We apply a similarity transformation to centralize the
rectified contour of ܥ and normalize its scale.

Figure 6(a) shows the result of this automatic rectification
process. This step allows Nestor to learn the new dog shape in
Figure 6(b) according to the previously learned camel shape. The
dog model that is augmented on top was automatically assigned to
the shape by the system according to a shape class library that
links between the general shape class of dogs and its 3D model.
This automatic assignment is explained next.

5.2 Contextual Model Assignment

According to the applicative context, the class of a newly learned
shape can be determined, giving rise to the assignment of the
appropriate virtual content to it. For example, when the user
sketches a flower, Nestor consults the shape class library and
finds the class the flower sketch belongs to. Nestor then
automatically assigns a model to the newly learned shape
according to a shape class library that correlates between shape
classes and their meaning, i.e., their virtual content. This is
although the system has not yet seen the specific shape being
learned.

To classify a new shape to one of the shape classes, we measure
the similarity of the new shape to the representative shapes of the
shape classes. Figure 5 depicts some of the class representative
shapes used by Nestor. We calculate a Shape Context descriptor
[27] for each of the class representative shapes in advance. When
a new is learned, we calculate its descriptor and find the class
library shape that is most similar. We assume the deformation
between the shape the user sketches and its corresponding class
representative is an articulated deformation that maintains local
similarity and topology. This motivates the use of the Inner-
Distance as a metric for calculating the Shape Context descriptors,
as proposed in [28].

Depending on the application, the meaning given to new shapes
can depend on nearby shapes. The scope of shapes to recognize
from is then meaningfully reduced, increasing recognition success
rate. This allows dealing with much larger shape class libraries,
since the scope of possible shapes in each step is narrower and
context-dependant.

6 EXPERIMENTAL RESULTS

We benchmarked and tested Nestor on a Nokia N95 mobile phone
and a Dell Latitude D630 notebook computer. The Nokia N95 is
equipped with a 330MHz processor and a camera that captures
320×240 pixel images. The Dell notebook is equipped with a
2.19GHz processor and a Logitech QuickCam webcam that
provides 640×480 pixel images.

We measured the relation between the number of tracked
shapes in each frame and tracking time. Figure 8 shows the
average tracking time in the PC and Nokia N95 configurations for
different numbers of shapes being tracked in each frame. For
testing the system we used solid blobs, each containing 2 to 8
concavities. As can be seen, as the number of shapes that are
tracked increases, so does the tracking time (from 28.3ms on an
N95 phone for one shape to 40.4ms for six shapes). The library
consisted of 100 shapes taken from the MPEG-7 shape dataset.

Recognition performance is related to the number of shapes in
the shape library and the slant of the viewed shape. To assess this
relation we measured the recognition rate of the system with
different shape library sizes and slants. Figure 9 shows the
recognition rate as a function of the number of shapes in the
library for different slants. The experiment was performed using
the notebook configuration described above, with the camera
fixed approximately 40cm from the shapes. The system was
trained with solid blob shapes from the MPEG-7 shape dataset,
each containing 2 to 8 concavities. For each library size, the
recognition rate was tested on all of the shapes in the library. As
the slant angle increases, the amount of information contained in
the image of each concavity drops, which reduces the recognition
rate.

 (a) (b)

Figure 6. Automatic rectification and model assignment (a) A new
sketched dog shape automatically rectified according to a
previously learned camel shape (b) The new shape is automatically
assigned a 3D model by classification.

Figure 8. Average tracking time per frame in milliseconds on a Dell
Latitude notebook and a Nokia N95 as a function of the number of
shapes tracked in each frame.

We also measured the reprojection error for different distances

of the camera from imaged shapes. Figure 10 shows the average
reprojection error over ten different shapes in a distance ranging
between 20cm and 100cm. For most shapes the average
reprojection error was smaller than one pixel when positioned 1m
away from the camera. As can be seen, Nestor has about half the
error of ARToolKit.

Figure 9. Recognition rate as a function of the number of shapes in
the shape library. Different slant degrees are depicted by lines of
different colors.

Since our recognition approach is based on concavity features
and pose is refined iteratively using an active contour, it was
interesting to test the system on shapes which are close to planar.
We found that in most cases such shapes are successfully
recognized, and that the estimated pose in such cases is subject to
small and stable offset error. Figure 7(b) shows a logo of The HIT
Lab NZ printed on the side of an oval shaped mug. Although the

mug side on which the logo is printed is not entirely flat, the
shape is recognized and stable augmentation is performed.

Figure 10. Average reprojection error in pixels as a function of the
distance of the camera from an imaged shape in centimeters.

7 APPLICATIONS

Augmented Reality applications that make use of fiducial based
registration can be found nowadays in various domains. In most
cases the fiducials are of predefined shape, such as square frame.
For most of these applications, augmentation of planar shapes of
non-predefined and non-uniform structure can be useful. Dual
perception is another benefit of the method, where the shape
conveys an idea in a given context even without using a device,
yet the experience can be further enhanced by virtual content
when using the AR application. Here we give examples for
existing applications that can use natural shape registration, as
well as new applications.

AR advertising is a fast growing domain, in which the most
difficult part is sparking interest in people before the AR
experience actually begins. From our experience, square fiducials
are often too monotonous for users to make any effort and view
them using an AR device. In this context, shapes can be designed
to be attractive from the first glance.

Augmenting books has been proposed in different domains as
well, such as education and guidance. Books often contain object
figures contrasted from their background, which can be
augmented using the proposed approach, e.g., toddler animal
books and flower handbooks. The shape library, in this case, can
be downloaded when starting to browse the book. Figure 7(c)
depicts an example of a motorbike catalog page. The outline of
the motorbike photo is used for augmenting a 3D model of a
motorbike on top of the book page.

0

10

20

30

40

50

1 2 3 4 5 6

PC

N95

70

75

80

85

90

95

100

10 25 50 75 100

0º
30º
45º
60º
75º

0

0.5

1

1.5

2

2.5

20 30 40 50 60 70 80 90 100

Nestor
ARToolkit

(a) (b) (c)

Figure 7. Shape augmentation in different contexts.

T
ra

ck
in

g
ti

m
e

(m
s)

Number of shapes

R
ep

ro
je

ct
io

n
er

ro
r

(p
ix

el
)

Distance (cm)

R
ec

og
ni

ti
on

 r
at

e

Library size

The proposed approach is also useful for developing AR
applications based on logos, which can be found on different
kinds of media. A business card could point to a 3D model that
downloads in real-time and appears on top. Figure 7(b)
demonstrates augmentation of The HIT Lab NZ logo printed on
the side of a mug.

Another interesting direction is enabling the development of
applications that combine sketching and AR. Sketching can be
used for authoring AR content, for interacting with existing
virtual content, or simply for creating AR fiducials on-the-fly.
Nestor allows tracking from hand sketches, to which 3D virtual
content can be assigned according to the application. Figure 11
shows the augmentation of a teddy bear sketched on a hand palm.
A virtual teddy bear model that was assigned to the sketch appears
on top.

8 CONCLUSION AND FUTURE WORK

We have described Nestor, a recognition and pose estimation
system for planar shapes. The system operates in interactive frame
rates on a Nokia N95 mobile phone. It performs robust
recognition of shapes and maintains accurate and stable 3D
registration.

Due to the redundancy of shape contours, it is natural to extend
the system to deal with partial occlusion. One of the points that
require attention in this case is the optimization process, in which
outlying correspondences resulting from occlusion must be
identified and ignored. This can be achieved, for example, by
introducing a robust estimator in the optimization process.

To support large shape libraries, we intend to introduce a linear
classifier on our raw signatures. A training step will be used to
teach the classifier the different shapes it should recognize. The
signature space will then be transformed to a new basis that
allows distinguishing between signatures more robustly.

Nestor allows planar shapes to be used for registration as
flexible fiducials for AR. This allows the development of sketch-
based applications that do not require any additional means for
registration, such as predefined shape fiducials.

ACKNOWLEDGMENTS

This work was supported by the Lynn and William Frankel Center
for Computer Sciences.

REFERENCES

[1] Kato, H., Billinghurst, M., Pouipyrev, I., Imamoto, K., and Tachibana,
K., Virtual Object Manipulation on a Table-Top AR Environment,
International Symposium on Augmented Reality, pp. 111-119, 2000.

[2] Lee, G.A., Nelles, C., Billinghurst, M., and Kim, G.J., Immersive
Authoring of Tangible Augmented Reality Applications. Proceedings of
the 3rd IEEE/ACM International Symposium on Mixed and Augmented
Reality, pp. 172-181, 2004.

[3] Lepetit, V. and Fua, P., Monocular Model-Based 3D Tracking of Rigid
Objects: A Survey. Foundations and Trends in Computer Graphics and
Vision, pp. 1-89, 2005.

[4] Hagbi, N., Bergig, O., El-Sana, J., Kedem, K., and Billinghurst, M., In-
Place Augmented Reality, International Symposium on Mixed and
Augmented Reality 2008, pp. 135-138,

[5] Hoff, W.A., Nguyen, K., and Lyon, T., Computer vision-based
registration techniques for augmented reality, Proceedings of Intelligent
Robots and Control Systems XV, Intelligent Control Systems and
Advanced Manufacturing, pp. 538–548, 1996.

[6] State, A., Hirota, G., Chen, D., Garett, W., and Livingston, M.,
Superior augmented reality registration by integrating landmark tracking
and magnetic tracking, Computer Graphics, SIGGRAPH Proceedings, pp.
429–438, 1996.

[7] Kato, H. and Billinghurst, M., Marker Tracking and HMD Calibration
for a video-based Augmented Reality Conferencing System, 2nd
International Workshop on Augmented Reality, 1999.

[8] Fiala, M., ARTag, An Improved Marker System Based on ARToolkit,
NRC Institute for Information Technology, NRC 47166/ERB-1111, 2004.

[9] Schmalstieg, D. and Wagner, D., Experiences with Handheld
Augmented Reality, The Sixth IEEE and ACM International Symposium
on Mixed and Augmented Reality, 2007.

[10] Rothwell, C.A., Zisserman, A., Forsyth, D.A., and Mundy, J.L.,
Canonical Frames for Planar Object Recognition, Proceedings of the
Second European Conference on Computer Vision, pp. 757-772, 1992.

[11] Zisserman, A., Forsyth, D., Mundy, J., Rothwell, C., Liu, J., and
Pillow, N., 3D object recognition using invariance. Artificial Intelligence,
pp. 239-288, 1995.

[12] Drummond, T. and Cipolla, R., Visual tracking and control using Lie
algebras, Computer Vision and Pattern Recognition, pp. 652-657, 1999.

[13] Alberto Ruiz, Pedro E. López de Teruel and Lorenzo Fernández.,
Robust Homography Estimation from Planar Contours Based on
Convexity, European Conference on Computer Vision, pp. 107-120, 2006.

[14] Andrew W. Fitzgibbon., Robust registration of 2D and 3D point sets,
In Proc. British Machine Vision Conference, volume II, pp. 411-420, 2001.

[15] Rothwell, C.A., Zisserman, A., Forsyth, D., and Mundy, J., Planar
Object Recognition using Projective Shape Representation. International
Journal of Computer Vision, pp. 57-99, 1995.

Figure 11. Augmentation of a teddy bear sketch on a hand palm.

[16] Carlsson, S., Projectively Invariant Decomposition and Recognition
of Planar Shapes. International Journal of Computer Vision, pp. 193 - 209,

[17] Fitzgibbon, A.W., Pilu, M., and Fisher, R.B., Direct least-squares
fitting of ellipses. IEEE Transactions on Pattern Analysis and Machine
Intelligence, pp. 476-480, 1999.

[18] Hartley, R. and Zisserman, A., Multiple view geometry in computer
vision. 2003.

[19] Kass, M., Witkin, A., and Terzopoulos, D., Snakes: Active contour
models. International Journal of Computer Vision, pp. 321-331, 1988.

[20] Chan, T.F. and Vese, L.A., Active Contours without Edges. IEEE
Transactions on Image Processing, pp. 266‐277, 2001.

[21] Caselles, V., Kimmel, R., and Sapiro, G., Geodesic Active Contours.
International Journal of Computer Vision, pp. 61-79, 1997.

[22] Lamdan, Y., Schwartz, J.T., and Wolfson, H.J., Object Recognition
by Affine Invariant Matching, Computer Vision and Pattern Recognition.,
pp. 335-344, 1988.

[23] Riklin, T.R., Sochen, N., and Kiryati, N., Mutual segmentation with
level-sets. Proceedings of the 2006 Conference on Computer Vision and
Pattern Recognition Workshop, 2006.

[24] LaViola, J.J., Jr., Double exponential smoothing: an alternative to
Kalman filter-based predictive tracking, Proceedings of the workshop on
Virtual environments, pp. 199-206, 2003.

[25] LaViola, J.J., Jr., An experiment comparing double exponential
smoothing and Kalman filter-based predictive tracking algorithms, Proc.
IEEE Virtual Reality, pp. 283-284, 2003.

[26] Martin, A.F. and Robert, C.B., Random Sample Consensus: A
Paradigm for Model Fitting with Applications to Image Analysis and
Automated Cartography. Communications of the ACM, pp. 381–395, 1981.

[27] Belongie, S. and Malik, J., Matching with Shape Contexts, IEEE
Workshop on Contentbased Access of Image and Video Libraries, pp. 20,
2000.

[28] Ling, H. and Jacobs, D.W., Shape Classification Using the Inner-
Distance. Pattern Analysis and Machine Intelligence, IEEE Transactions
on, pp. 286-299, 2007.

