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ABSTRACT 

In this paper we present Nestor, a system for real-time recognition 
and camera pose estimation from planar shapes. The system 
allows shapes that carry contextual meanings for humans to be 
used as Augmented Reality (AR) tracking fiducials. The user can 
teach the system new shapes at runtime by showing them to the 
camera. The learned shapes are then maintained by the system in 
a shape library. 

Nestor performs shape recognition by analyzing contour 
structures and generating projective invariant signatures from 
their concavities. The concavities are further used to extract 
features for pose estimation and tracking. Pose refinement is 
carried out by minimizing the reprojection error between sample 
points on each image contour and its library counterpart. Sample 
points are matched by evolving an active contour in real time. Our 
experiments show that the system provides stable and accurate 
registration, and runs at interactive frame rates on a Nokia N95 
mobile phone. 

 
KEYWORDS: In-Place Augmented Reality, handheld AR, shape 
recognition, geometric projective invariance, 3D pose estimation, 
vision-based tracking, free-hand sketching, shape dual perception. 
 
INDEX TERMS: H.5.1 [Multimedia Information Systems]: 
Artificial, augmented, and virtual realities; I.4.0 [Image 
Processing and Computer Vision]: Scene Analysis – Tracking 

1 INTRODUCTION 

Model based visual tracking has become increasingly attractive in 
recent years in many domains, such as robotics and Augmented 
Reality (AR). In many of these domains visual tracking is often 
combined with object recognition tasks. In AR applications, 
model based recognition and 3D pose estimation are often used 
for superposing computer-generated images over views of the real 
world in real-time.  

Fiducial based computer vision registration is popular in AR 
applications due to the simplicity and robustness it offers. 
Fiducials are of predefined shape, and commonly include a unique 
pattern for identification. Fiducials are useful for various tasks, 
such as prototyping and producing tangible interaction techniques 
for better user interfaces [1, 2]. On the other hand, Natural Feature 
Tracking (NFT) methods are becoming more common, as they are 
less obtrusive and provide a more natural experience [3]. This is 
achieved at the cost of increased computational complexity and 

decreased accuracy, since little is assumed about the environment 
to be tracked.  

In this paper we describe a recognition and pose estimation 
approach that is unobtrusive for various applications, and still 
maintains the high levels of accuracy and robustness offered by 
fiducial markers. We recognize and track shape contours by 
analyzing their structure. We use contour concavities to generate 
projective invariant signatures, which allow shape recognition 
across different viewpoints. The concavities are further used to 
extract shape features for real time pose estimation and tracking. 
A nonlinear optimizer is finally used for refining the calculated 
pose to the desired level of accuracy. 

Shapes offer various benefits for AR. They lend themselves to 
identification and pose estimation in cases of partial occlusion and 
moderate projective distortion. Furthermore, they are flexible and 
unobtrusive to use in many AR applications where natural shapes 
carry contextual meanings, such as augmented books, catalogs, 
and printed advertisements. The proposed approach is also 
suitable for authoring in In-Place Augmented Reality (IPAR) 
applications [4].  

We have implemented the proposed approach in Nestor, a 
system that operates in real-time on a mobile phone. The system 
can read shape files, or perform a learning step in which the user 
shows a new shape to the camera. The shape is analyzed and 
inserted into a library, which is used to maintain the set of shapes 
to be tracked and their properties, such as the models assigned to 
them. When a learned shape is recognized at runtime, its pose is 
estimated in each frame and augmentation can take place, as 
depicted in Figure 1. Our experiments show the system performs 
robust recognition and registration, maintains accurate tracking, 
and operates in interactive frame rates on a mobile phone. 
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Figure 1. A hand-sketched shape contour and a printed shape 
recognized, tracked, and augmented. 



 
 

Since our feature extraction method is based on concavities, the 
system is limited to recognizing non-convex shapes. To achieve 
robust results, at least two concavities are often required. In 
addition, the shape extraction step is based on thresholding, which 
implies the shapes used must have high contrast relative to their 
background. 

The rest of this paper is structured as follows. In the next 
section we describe background and related work. Section  4 
provides a brief derivation of the algorithmic approaches used by 
our system. Section 4 gives the details of our approach and 
describes the operation of our system. Section 5 addresses the 
context-based automation of the shape learning process. Section  7 
describes our experiments with the system and the results. 
Section  7 discusses possible applications for the approach, and 
Section 8 concludes and outlines future work. 

2 RELATED WORK 

Object recognition and pose estimation are two central tasks in 
computer vision and Augmented Reality. Object recognition 
methods aim to identify objects in images according to their 
known description. Model based pose estimation methods aim to 
determine the six degrees of freedom of known objects in a 
coordinate frame related to the camera’s coordinate frame.  

The cores of AR applications are often based on recognition 
and pose estimation to allow the appropriate virtual content to be 
registered and augmented onto the real world. Fiducial based 
registration methods have been used from the early days of AR, 
mainly due to their robustness to different conditions of the 
environment and computational simplicity [3]. Fiducials are 
commonly of predefined shape and size, and are usually 
integrated with an identification mechanism for recognizing them.  

The first fiducials were based on points in predefined geometric 
configurations [5, 6]. Planar fiducials then became popular, 
offering superior accuracy and robustness to changing lighting 
conditions. For example, ARToolKit [7] locates a square frame in 
the image and calculates its pose. The frame is first used for 
rectification of the pattern inside of it. Pattern matching is then 
performed on the rectified pattern against a pattern library, which 
determines the 3D model that should be rendered. The calculated 
pose is then used to render the 3D model augmented on the square 
frame. Fiala developed the ARTag library [8], which uses digital 
coding theory to minimize false detection and inter-marker 
confusion rates. ARTag requires a relatively small marker size 
and avoids explicitly storing patterns for identification. 
Studierstube Tracker [9] is a lightweight tracking library designed 
to run on mobile platforms with low processing power and little 
memory. It uses one of several known algorithms for pose 
estimation and digitally encoded ids for fiducial identification.  

The specific geometric configurations used in each of these and 
other fiducial tracking libraries make them computationally cheap 
and robust. Moreover, fiducials are natural to use in a variety of 
AR applications that augment specific objects, rather than the 
environment around the user. For example, in various AR 
applications users make use of tangible objects to interact with 
virtual content [1, 2]. Nevertheless, the obtrusive and monotonous 
appearance of predefined shape fiducials often renders them 
unattractive for use in AR applications, as they require the 
application developer to ‘engineer the scene’. 

Recognition of general planar shapes has been addressed in the 
research literature from various directions. One of the most 

elegant approaches to this problem is based on the concept of 
geometric projective invariance, originally pioneered in computer 
vision by Mundy, Zisserman, Rothwell, Forsyth, and others [10, 
11]. Geometric invariants are properties of geometric 
configurations that remain unchanged under certain classes of 
transformations. As such, invariants form a powerful basis in 
computer vision for object description and recognition. They 
allow ignoring the current pose of an object relative to the camera 
and calculating descriptors for it directly from world observations. 
In this paper we use geometric invariant constructions to calculate 
projective invariant signatures for shapes, which allow 
recognizing them across different viewpoints. 

Planar shapes have been used for tracking in several domains. 
They can be reliably tracked amongst clutter and inherently offer 
useful redundancy. Drummond and Cipolla [12] developed a 
vision-based robot guidance system based on the Lie algebra of 
the affine group. The camera, in that case, was mounted to the end 
of a robot arm, which was guided to a target position by 
integrating the local affine transformations of a contour being 
imaged. The contour is first shown to the system, which then 
begins to track it on a frame to frame basis. To compensate for the 
inability of integrated affine transformations to account for 
general projective transformations, the two non-affine warp 
parameters are finally estimated according to the centroid of the 
shape. 

While the system in [12] is closed in a two dimensional loop 
that integrates affine transformations, Ruiz et al. [13] proposed a 
projective approach for estimating the 3D pose of shape contours. 
Rather than first estimating the affine transformation parameters 
and then the remaining non-affine parameters, they use an 
invariant based frame construction similar to that in [10] for 
extracting projective invariant features on the contour. These are 
used for constructing a linear system of equations in 
homogeneous coordinates that gives the camera pose. Although 
theoretically more accurate than the construction originally 
proposed in [10], the construction proposed in [13] limits the 
scope of usable shapes by several assumptions on shape 
concavities. In addition, no optimization step is performed once 
the transformation is calculated and no running times are reported. 

Iterative optimization is useful for performing registration as 
well, or for refining a given pose estimate. Fitzgibbon [14] 
proposed a registration method for point sets based on the 
Levenberg-Marquardt nonlinear optimizer. As pointed out therein, 
direct nonlinear optimization on point sets can be easily extended 
to incorporate a robust estimator, such as Huber kernel, which 
leads to more robust registration. It also has a wider basin of 
convergence compared with traditional point set registration 
methods, such as Iterative Closest Point. This method can also 
account for curves as sets of points, although it makes no use of 
the connectivity information offered by them. In our approach we 
use an iterative optimization process to refine an initial pose 
estimate. It differs from the method proposed in [14] by the way 
correspondences are determined. We use the connectivity 
information of the contour to match correspondences by evolving 
an active contour between the library contour and image contour. 

3 THEORETIC BACKGROUND 

Nestor is based on several theoretic and algorithmic concepts. We 
give here a brief discussion of each for the unfamiliar reader. 
Readers who are familiar with the concepts are invited to skim 
this section to synchronize the notation, and proceed to the next 
section.  



 
 

3.1 Recognition by Invariants 

Out of the impressive literature written on object recognition, our 
recognition approach is most related to the inspiring work on 
projective shape invariance by Zisserman, Rothwell, Mundy, and 
Forsyth.  

A function ܫ(P)  of a geometric configuration P  is a scalar 
invariant to a linear transformation of coordinates ݔᇱ = Tݔ if it 
holds that ܫ(ݔᇱ) =  In this paper we use invariants to planar .(ݔ)ܫ
projective transformations, i.e., in which T is a 3 × 3 non-singular 
square matrix acting on homogeneous coordinates. 

Similarly, relations between features of geometric 
configurations that are not affected by projective transformations 
are referred as invariant relations. For example, collinear sets of 
points are transformed to collinear sets of points under projective 
transformations, and hence collinearity is an invariant relation. 
Tangency is also preserved under projective transformations, 
which implies the projection of a line tangent to a curve is a line 
tangent to the projected curve. Invariant relations are useful for 
locating distinguished features of shapes. As proposed in [15], we 
use curve bitangent lines as distinguished features to calculate the 
homography a contour undergoes. This is achieved by a variation 
of the DLT algorithm described in Section  3.2  

Since projective invariants of algebraic curves can be measured 
directly from their perspective projection, it is natural to 
characterize and recognize such arrangements by their invariant 
values. Invariants of such arrangements have also been used to 
characterize non-algebraic curves by fitting to them algebraic 
curves. This approach has been taken in [16] for affine invariance. 
However, since fitting based methods tend to be global, they are 
usually susceptible to occlusion of curve parts. Fitting algebraic 
curves to partial sets of observations has also been pointed out to 
be highly sensitive to noise [17], which introduces further error 
into the invariant measurement process. 

 Instead of measuring invariants directly from image 
observations, we first transform the image shape to its canonical 
representation, where every measurement is theoretically invariant 
[10]. This is done by extracting a set of distinguished features, and 
deriving the transformation that aligns them to a canonical frame. 
Applying this canonization transformation to the shape or its 
features yields the canonical representation of the shape with 
respect to the chosen frame. Care has to be taken regarding the 
spacing of the selected distinguished features, as the quality of the 
canonization transformation drops the closer the set of 
distinguished features is to degenerate, e.g., the closer the set of 
distinguished points is to collinear. In this paper we transform 
shape concavities to their canonical frames in order to calculate 
invariant shape signatures. 

3.2 Direct Linear Transformation (DLT) 

In this section we describe the Direct Linear Transformation 
algorithm, which is useful for estimating transformations from 
sets of corresponding measurements. We give here a derivation of 
the classic DLT algorithm for estimating the 2D homography 
between a pair of projective planes from a set of corresponding 
point pairs in the planes. Note that an equivalent derivation can be 
done based on lines instead of points, since a homography H that 
operates on points by ݔᇱ = Hݔ  operates similarly on lines by ݈ᇱ = H்݈ . For further details, we refer the interested reader to 
Hartley and Zisserman [18].  

We assume that for two corresponding points ݔᇱ  and ݔ , the 
homography H is given by ݔᇱ = Hݔ , up to multiplication by a 
scale factor. We have a set of ݊  corresponding homogeneous 

points ݔ௜  and ݔ௜ᇱ in ℙଶ, such that ݔ௜ ↔  ௜ᇱ, and we want to solveݔ
for H. We mark ݔ௜ = (ई௜, उ௜, ऊ௜), ݔ௜ᇱ = (ई௜ᇱ, उ௜ᇱ, ऊ௜ᇱ), and  

 Hଷ×ଷ = ൥ ℎଵ ℎଶ ℎଷℎସ ℎହ ℎ଺ℎ଻ ℎ଼ ℎଽ൩. 

 
A simple cross-product form that defines the operation of H on ݔ௜ 
and ݔ௜ᇱ, taking into account the scale factor, is 

௜ᇱݔ  × Hݔ௜ = 0. 
 

If we denote by h௝ the ݆-th row of H, Equation X translates to  
 ቌ उ௜ᇱhଷݔ௜ − ऊ௜ᇱhଶݔ௜ऊ௜ᇱhଵݔ௜ − ई௜ᇱhଷݔ௜ई௜ᇱhଶݔ௜ − उ௜ᇱhଵݔ௜ ቍ = 0. 

 
This gives a set of three equations in the entries of H in the form 
of A୧h = 0, 

 ቎ 0୘ −ऊ௜ᇱݔ௜் उ௜ᇱݔ௜்ऊ௜ᇱݔ௜் 0୘ −ई௜ᇱݔ௜்−उ௜ᇱݔ௜் ई௜ᇱݔ௜் 0୘ ቏ ቌ hଵ்hଶ்hଷ் ቍ = 0. 

 
Since the third line is linearly dependent on the first two, each pair 
of corresponding points contributes two equations. Denoting by ݊ 
the number of corresponding point pairs available, stacking these ݊ sets of equation pairs we get a 2݊ × 9 system of equations. We 
get a unique solution for H in the case ݊ = 4. In case ݊ > 4, due 
to noise and measurement errors there will generally be no single 
solution. However, in such case it makes sense to find the best 
solution by least squares as the solution that minimizes the 
homography error over all points. 

As discussed in [18], normalization of the features should be 
carried out before applying the DLT algorithm. Normalization 
makes the DLT algorithm invariant to similarity transformations 
of features, i.e., invariant to the coordinate system scale and 
origin. Normalization also meaningfully improves the accuracy of 
the estimated homography by reducing the effect of numerical 
errors. In our case, this process is applied to each shape 
separately. In practice, to normalize a set of points, we first rigidly 
translate the points so their centroid translates the origin. We then 
apply isotropic scaling that transforms the average distance of the 
points from the origin to √2.  

3.3 Gauss-Newton Iteration 

Once an initial pose has been estimated from the calculated 
homography, a Gauss-Newton iteration refines the estimated pose 
of a shape contour by minimizing the error vector resulting from 
fitting its points to the corresponding points of the image contour.  

We want to have at ݔ௜ 
 Hݔ௜ =  .௜ᇱݔ

 
The algebraic error for ݔ௜ under H is then 
 ϵ଴ = Hݔ௜ −  .௜ᇱݔ
 
We approximate the operation of H as locally linear and get 
 (H + ௜ݔ(∆ = Hݔ௜ + J∆, 



 
 

 
where J is the Jacobian of Hݔ௜ according to H, 
 J = பୌ௫೔பୌ . 

 
We seek ∆ that minimizes 
 (H + ௜ݔ(∆ − ௜ᇱݔ = Hݔ௜ + J∆ − ௜ᇱݔ = ϵ଴ + J∆. 
 
This linear minimization problem can be solved using Least-
Squares minimization, or simply by using the pseudo-inverse of J, 
leading to 
 ∆= −Jାϵ଴. 
 

One of the main challenges we need to face is accurately 
determining the correspondence between contour points, which 
allows calculating the error ϵ଴. 

3.4 Active Contours 

To establish the correspondence between the reprojected points of 
the library contour and the points of the image contour, we use an 
active contour model. Since introduced by Kass et al. [19], active 
contours have become a widely used tool for various tasks in 
computer vision, such as segmentation [20][21]. An active 
contour is a parametric function 

 c(s) = ൫x(s), y(s)൯ ∈ Rଶ, s ∈ ሾ0,1ሿ, 
 

defined in an image I(x, y) . An active contour is assigned an 
energy term, minimizing which balances between several 
objectives. The energy of an active contour is commonly divided 
to internal energy, which refers to the geometric properties of the 
contour, and external energy, which refers to the properties of the 
image where the contour resides. A simple internal energy term 
that takes into account the stiffness and elasticity of the contour is 
 E୧୬୲(c(s)) = α ฬ ∂∂s c(s)ฬଶ + β ቤ ∂ଶ∂sଶ c(s)ቤଶ. 
 
A traditional external energy term that refers to the amount of 
contrast along the contour is based on the gradient of the 
smoothed image 
 Eୣ୶୲(c(s)) = −γ|∇I(c(s))|ଶ. 
 
Minimizing according to 
 E(c(s)) = E୧୬୲(c(s)) + Eୣ୶୲(c(s)) 
 
leads the active contour towards strong edges in I(x, y)  while 
keeping it relatively smooth and elastic. 

4 NESTOR 

Nestor is a recognition and 3D pose tracking system for planar 
shapes. The main goal of Nestor is to serve as a 3D registration 
solution for AR applications, which allows augmenting shapes 
with virtual content. Nestor can be used to augment shapes that 
have visual meanings to humans with 3D models having 
contextual correspondence to them, as depicted in Figure 1. We 
first give an outline of the system, and then proceed to describe 
each of its steps in detail. 

Nestor operates by analyzing the live video feed provided by a 
handheld camera. Each frame goes through a series of filters that 
extract shapes which should be tracked. A projective invariant 
signature is then calculated for each of the contour concavities. 
Each such signature is used to generate a hypothesis for a single 
library shape. Features extracted from each concavity are then 
used to generate a first estimate for the homography between each 
hypothesized library shape and the image shape. The estimated 
homography is next used to reproject each hypothesized shape on 
the image contour to perform verification, which results in a 
single recognized shape. We then calculate an estimate of the 
homography between the image and library shape using features 
from all concavities. Finally, we refine the estimated 
transformation to the desired level of accuracy by nonlinear 
optimization on corresponding sample points along the 
reprojected library contour and the image contour. We determine 
the correspondence between these sample points by evolving an 
active contour from the unprojected image contour towards the 
library contour. 

4.1 Shape Recognition 

We begin shape recognition by applying adaptive thresholding to 
the image using integral images. The contour of each image shape 
is then extracted as a list of points ܥூ = ,ଵ݌) ,ଶ݌ … ,  ௡). We filter݌
image contours in the beginning of the recognition process by 
removing contours with small area or length, as well as contours 
that are convex or close to convex. 

We then proceed to construct frames that are preserved under 
projection for each extracted contour ܥூ. We use a construction 
similar to the one proposed in [10], which is based on the 
bitangent lines to the contour, illustrated in Figure 2(a). Each 
bitangent line ݈  gives two tangency points, ݌௔  and ݌௕ , which 
segment a concavity from the rest of the curve, known as the M-
curve. The interesting property of the bitangent line ݈  and the 
points ݌௔ and ݌௕ is that their position relative to the curve remains 
unchanged under a change of viewpoint. We extract bitangent 
lines and their bitangency points by analyzing deviations from the 
convex hull of the contour.  

Two additional points, ݌௖  and ݌ௗ , for each concavity are 
extracted by casting from ݌௔  and ݌௕  lines tangent to the 
concavity. The extraction of these additional cast tangency points 
can be done while traversing the contour for bitangent lines. This 
process of extracting invariant feature points can be repeated 
recursively on nested concavities. These nested feature points can 
then be used for pose estimation in addition to the ones described 
above. However, the location accuracy of nested feature points on 
the contour drops with the size of the concavity.  

  
 (a)  (b) 

 
Figure 2. Canonical frame construction for a contour concavity. 
(a) Distinguished features on a contour concavity. (b) The 
canonical frame of the concavity. 



 
 

The four extracted points ݌௔ ௕݌ , ௖݌ , , and ݌ௗ , along with the 
bitangent line ݈  and the cast tangent lines, are referred as the 
distinguished features of the concavity. The four distinguished 
points form a projective invariant frame for the concavity. The 
projective transformation that maps these points to the four 
corners of the unit square gives the canonical representation of the 
concavity. This transformation is calculated and then applied to 
all of the concavity points, yielding the canonical representation 
of the concavity, as depicted in Figure 2(b) for the lower right 
concavity of the contour in Figure 2(a). The selection of the unit 
square is arbitrary and different selections are possible as well. 

We proceed to calculate a signature for each concavity of ܥூ 
from its canonical representation. We use a construction similar to 
shape footprints, originally proposed by Lamdan et al. [22]. Our 
signature is based on the areas bounded between the transformed 
concavity curve and a set of rays ሼ݅ݎሽ  cast in constant polar 
intervals from a point ݌௕௔௦௘  in the basis of the concavity canonical 
frame, midway between the transformed ݌௔ and ݌௕. The signature 
coordinate values are set to be the bounded areas normalized by 
the total area bounded by the concavity in the canonical frame and 
the ݔ-axis. Let us denote by ݅ݎ the ith ray cast from ݌௕௔௦௘, and by ܽ݅ the area bounded by the concavity, ݅ݎ, and 1+݅ݎ. The signature 
is then ݏ =< ,ଵݏ ,ଶݏ … , ௠ݏ >, 

  
where ݏ௝ = ௝ܽ ∑ ܽ௜௠ିଵ௜ୀଵ⁄  and ݉  is the number of polar intervals. 
The nearest neighbor of ݏ is then found in the shape library using 
a hash map, and a hypothesis is generated for it. 

The final step in the recognition process is hypothesis 
verification, where each hypothesized library shape is reprojected 
and tested against the image shape ܥூ. The homography used for 
reprojection is calculated according to the same features used for 
constructing the canonical frames. The hypothesized library shape ܥ௅ with minimal reprojection error to ܥூ is selected, where we use 
the fraction of area common to the image shape ܥூ  and the 
reprojected library shape as the error metric. Next, we turn to 
describe the calculation of the pose of the image shape using the 
recognized library shape ܥ௅. 

4.2 Pose Estimation 

We begin pose estimation by calculating a first estimate of the 
homography H between the recognized library shape ܥ௅  and the 
corresponding image shape ܥூ . For this purpose, we use the 
Direct Linear Transformation (DLT) algorithm [18] on the 
distinguished features of ܥூ and ܥ௅. 

The DLT algorithm provides a good initial homography 
estimate. Figure 3(a) depicts the reprojection of a library shape on 
the image shape using the estimated homography. We next use a 

Gauss-Newton iteration to minimize the error between the 
reprojected contour and the image contour. The error we 
minimize is a function of the Euclidean distance between 
corresponding sample points on both contours. We use a 
calibrated camera and minimize the error of the camera external 
parameters, as described in [3]. 

To measure the error vector and perform the minimization, we 
first determine a point correspondence between ܥூ and ܥ௅. In [12] 
it has been proposed to cast rays from sample points on the 
reprojected contour in the normal direction and find the 
intersections of the rays with the image contour. The intersection 
points can then be used as corresponding to the origins of the rays, 
and the error they exhibit can be calculated, for example, as their 
Euclidean distance. 

Here we take on a different strategy, based on evolving an 
active contour from the reprojected library contour towards the 
image contour. To guide the active contour, we use an external 
energy term that depends on the distance transform of the image 
contour. Evolving solely according to this term has a similar 
effect to the ray casting operation, since each point evolves 
according to the gradient of the distance transform in that point, 
which is the normal to the reprojected curve. We add internal 
terms to preserve the stiffness and elasticity of the contour, and 
get the following energy functional 

 E(c(s)) = α|DT(I(C୍))|ଶ + β ቚ பபୱ c(s)ቚଶ + γ ቚ பమபୱమ c(s)ቚଶ
, 

 
where c(s)  denotes the reprojected library contour, I(∙)  denotes 
the binary image of a contour, DT(∙)  denotes the distance 
transform of a binary image, and α , β , and γ  are weighting 
coefficients. An evolved contour point ceases to move when the 
distance it has traveled in a single iteration is smaller than a 
predefined threshold, or when a predefined number of iterations 
has been reached. The former condition helps preventing the 
active contour points from moving along the contour. The 
resulting correspondence is depicted in Figure 3(b), where 
corresponding points are connected by line segments. 

Our experiments show that the internal energy terms make the 
active contour less susceptible to image noise, which can corrupt 
the normals at contour points, and maintain the structure of the 
contour. The proposed method can also take into account 
additional useful constraints. For example, it can be extended to 
integrate the known prior model of the contour, as proposed in 
[23], as well as other structural constraints.  

The nice properties of this correspondence matching strategy do 
not come for free. Calculating the distance transform of an image 
is a relatively expensive task, even when using only fixed point 
operations. However, it is only necessary to calculate the distance 
transform in a narrow band around the reprojected contour  ܥ௅. 

        
 (a) (b) 

 
Figure 3. Contour point correspondence matching. (a) Library 
contour reprojected using the homography estimate. (b) 
Correspondence matching using the distance transform as external 
energy, and stiffness and elasticity internal energy terms. 
Corresponding sample points are marked by connecting lines. 

       
   

Figure 4. The effect of partial occlusion on the extracted contour, 
marked in blue. 



 
 

Masking the distance transform calculation to a narrow band 
meaningfully reduces the per-frame processing time.  

An even more effective scheme can be used to completely 
avoid the distance transform calculation in each frame. 
Correspondence information can be calculated by unprojecting ܥூ 
using the inverse homography Hିଵ, and then evolving it towards ܥ௅, rather than the other way around. In this way, the distance 
transform image of ܥ௅  is calculated and stored once when it is 
learned by the system. Any subsequent image contours identified 
as matching ܥ௅  will then use this distance transform image for 
correspondence matching. Using this scheme the calculation of 
the distance transform image in each frame is avoided. 

4.3 Recursive Tracking 

A simple strategy can be used for tracking shapes on a frame to 
frame basis, which allows skipping the recognition step for most 
shapes in most frames. This is achieved by maintaining for each 
shape a set of simple properties that can be efficiently and 
robustly tested to see if the shape corresponds to any shape in the 
previous frame. For each image shape, we calculate its centroid, 
length, and area. In each frame we attempt to find the 
corresponding shape from the previous constant number of frames 
according to these properties. 

In fact, we can skip the DLT step as well by using a motion 
model to get a first estimate of the contour in this frame, or simply 
by using the transformation calculated for ܥ௅ in the last frame as a 
first estimate. The minimization process can then carry on as 
described above. In the case of jerky movement, the active 
contour can lose track of the image contour. In this case we 
reapply the DLT algorithm from scratch. 

To filter noise in the final estimated homography, we use 
Double Exponential Smoothing (DESP) [24]. This is useful in 
cases of severe noise or bad lighting. Using DESP gives results 
that are comparable to more powerful methods, such as Kalman 
filtering, in a small fraction of the processing time [25]. 

4.4 Partial Occlusion 

Partially occluding ܥூ  effectively changes the contour extracted 
from the image. Depending on the brightness of the occluding 
object,  ܥூ may be extended or shrunk, with only part of it faithful 
to the corresponding library shape ܥ௅. Figure 4 depicts a shape 
partially occluded by a hand and the extracted contour in blue. 
The occluded part may contain concavities that point to different 
library shapes. However, the recognition method described above 
deals with partially occluded shapes in a straightforward manner 
as long as enough faithful concavities remain visible. It thus 
remains to deal with partial occlusion through the pose estimation 
process. 

Since we assume ܥூ  has been recognized, its visible features 
still provide us with a first estimate for the pose of ܥூ. Even if 
there are not enough visible features for pose estimation from 
scratch, the pose of the shape can be assumed to be the one from 
the last frame, or extrapolated according to a motion model. 

The main challenge is thus to reduce the effect of unfaithful 
parts of ܥூ in the error minimization process. We can achieve this 
by treating the points of these contour parts as outliers that should 
be identified and ignored through the minimization process. This 
can be achieved using RANSAC [26], which detects and filters 
outliers by randomizing a basis for estimating the homography 
between the contours and then checks the fraction of remaining 
points that conform to this estimate. Effectively, it is sufficient to 
check this conformance only for a small portion of the contour 
points sampled uniformly. 

Finally, since we are tracking recursively, a shape can be 
tracked from previous frames even when only a small and 
unrecognizable portion of it remains visible. This is achieved by 
continuing to apply the minimization process in Section  4.2 to the 
visible part of the contour. 

4.5 Shape Library 

The system maintains a shape library that contains the shapes 
learned so far. The system can load a directory of shape files and 
learn them. The user can also teach the system new shapes at 
runtime, for example by sketching. To teach the system a new 
shape, the user presents it to the camera in a frontal view. The 
system then analyzes the shape contour and adds it to the shape 
library. The user can now attach a virtual model to be augmented 
to the new shape and modify its different properties, such as scale 
and rotation.  

When teaching the system a new shape, the image goes through 
the same recognition step described in the Shape Recognition 
Section, and its signatures are hashed. The curve, its signatures, 
and additional required information are stored in the shape library. 
These are later used in the recognition step in real-time. Since we 
use shape contours, the system works for curves and solid blobs in 
the same manner. For curves, double edges can be detected and 
inner edges ignored in order to perform recognition and tracking 
according to outer edges. 

Our shape library is based on three lists of shapes, which 
provide two caching levels to avoid searching through the entire 
shape library in every frame. The shape list contains all the shapes 
known to the system. The visible shape list points to shapes that 
are visible in the current image. The shapes in this list are tracked 
and updated in each frame. In addition, we maintain an execution 
shape list, which contains the shapes that have been recognized in 
the current execution. When a shape becomes invisible, it is 
moved from the visible shape list to the execution shape list. 
When a shape becomes visible, it is first searched for in the 
execution shape list. In case it is not found, it is searched for in 
the shape list. Once the shape is found, it is moved into the visible 
shape list. This way, the shape library is searched for each shape 
once per execution, when the shape first appears. This strategy 
can be useful when only a few shapes are visible in a single 
frame, and when only a small number of shapes are used through 
a single execution. 

5 CONTEXTUAL SHAPE LEARNING 

So far, to teach the system a new shape, the user has to explicitly 
1) show it frontally to the camera and 2) assign a model to it. In 
this section we address the automation of this shape learning 
process. The former step can be integrated into the application 
usage by automatically rectifying a new shape according to the 
plane it lies in, which is inferred from a previously learned shape 
that is coplanar with the new shape. The latter step can be 
performed automatically by classifying the new shape to one of 
the shape classes and suggesting contextual model assignments to 
the user. 

 
 

Figure 5. Shape class representatives used to automatically assign 
virtual content to new shapes.  



 
 

5.1 Automatic Shape Rectification 

To learn an unknown shape appearing in the image, for example 
upon user request, we automatically perform rectification 
according to the rectifying transformation recovered from a 
tracked known shape that lies in the same plane. This allows the 
development of sketching applications where the user draws 
different shapes on the same page according to the applicative 
visual language rules and context. 

Upon user request to learn a new shape in the image, e.g., by 
clicking it with a mouse, the nearest tracked shape ܰܥ to the new 
shape ܥ is found according to the shapes’ centroids. To project ܥ 
to the image plane, we apply to ܥ the rectifying transformation of ܰܥ, which is the inverse of the projection homography of ܰܪ ,ܥே஼ିଵ . This projects ܥ to the image plane outside of the image 
bounds and to a scale that depends on its location relative to ܥ in 
the world. We apply a similarity transformation to centralize the 
rectified contour of ܥ and normalize its scale.  

Figure 6(a) shows the result of this automatic rectification 
process. This step allows Nestor to learn the new dog shape in 
Figure 6(b) according to the previously learned camel shape. The 
dog model that is augmented on top was automatically assigned to 
the shape by the system according to a shape class library that 
links between the general shape class of dogs and its 3D model. 
This automatic assignment is explained next. 

5.2 Contextual Model Assignment 

According to the applicative context, the class of a newly learned 
shape can be determined, giving rise to the assignment of the 
appropriate virtual content to it. For example, when the user 
sketches a flower, Nestor consults the shape class library and 
finds the class the flower sketch belongs to. Nestor then 
automatically assigns a model to the newly learned shape 
according to a shape class library that correlates between shape 
classes and their meaning, i.e., their virtual content. This is 
although the system has not yet seen the specific shape being 
learned.  

To classify a new shape to one of the shape classes, we measure 
the similarity of the new shape to the representative shapes of the 
shape classes. Figure 5 depicts some of the class representative 
shapes used by Nestor. We calculate a Shape Context descriptor 
[27] for each of the class representative shapes in advance. When 
a new is learned, we calculate its descriptor and find the class 
library shape that is most similar. We assume the deformation 
between the shape the user sketches and its corresponding class 
representative is an articulated deformation that maintains local 
similarity and topology. This motivates the use of the Inner-
Distance as a metric for calculating the Shape Context descriptors, 
as proposed in [28].  

Depending on the application, the meaning given to new shapes 
can depend on nearby shapes. The scope of shapes to recognize 
from is then meaningfully reduced, increasing recognition success 
rate. This allows dealing with much larger shape class libraries, 
since the scope of possible shapes in each step is narrower and 
context-dependant. 

6 EXPERIMENTAL RESULTS 

We benchmarked and tested Nestor on a Nokia N95 mobile phone 
and a Dell Latitude D630 notebook computer. The Nokia N95 is 
equipped with a 330MHz processor and a camera that captures 
320×240 pixel images. The Dell notebook is equipped with a 
2.19GHz processor and a Logitech QuickCam webcam that 
provides 640×480 pixel images. 

We measured the relation between the number of tracked 
shapes in each frame and tracking time. Figure 8 shows the 
average tracking time in the PC and Nokia N95 configurations for 
different numbers of shapes being tracked in each frame. For 
testing the system we used solid blobs, each containing 2 to 8 
concavities. As can be seen, as the number of shapes that are 
tracked increases, so does the tracking time (from 28.3ms on an 
N95 phone for one shape to 40.4ms for six shapes). The library 
consisted of 100 shapes taken from the MPEG-7 shape dataset. 

Recognition performance is related to the number of shapes in 
the shape library and the slant of the viewed shape. To assess this 
relation we measured the recognition rate of the system with 
different shape library sizes and slants. Figure 9 shows the 
recognition rate as a function of the number of shapes in the 
library for different slants. The experiment was performed using 
the notebook configuration described above, with the camera 
fixed approximately 40cm from the shapes. The system was 
trained with solid blob shapes from the MPEG-7 shape dataset, 
each containing 2 to 8 concavities. For each library size, the 
recognition rate was tested on all of the shapes in the library. As 
the slant angle increases, the amount of information contained in 
the image of each concavity drops, which reduces the recognition 
rate. 
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Figure 6. Automatic rectification and model assignment (a) A new 
sketched dog shape automatically rectified according to a 
previously learned camel shape (b) The new shape is automatically 
assigned a 3D model by classification.  



 
 

 
 
Figure 8. Average tracking time per frame in milliseconds on a Dell 
Latitude notebook and a Nokia N95 as a function of the number of 
shapes tracked in each frame. 

 
We also measured the reprojection error for different distances 

of the camera from imaged shapes. Figure 10 shows the average 
reprojection error over ten different shapes in a distance ranging 
between 20cm and 100cm. For most shapes the average 
reprojection error was smaller than one pixel when positioned 1m 
away from the camera. As can be seen, Nestor has about half the 
error of ARToolKit. 

 
 
Figure 9. Recognition rate as a function of the number of shapes in 
the shape library. Different slant degrees are depicted by lines of 
different colors. 
 

Since our recognition approach is based on concavity features 
and pose is refined iteratively using an active contour, it was 
interesting to test the system on shapes which are close to planar. 
We found that in most cases such shapes are successfully 
recognized, and that the estimated pose in such cases is subject to 
small and stable offset error. Figure 7(b) shows a logo of The HIT 
Lab NZ printed on the side of an oval shaped mug. Although the 

mug side on which the logo is printed is not entirely flat, the 
shape is recognized and stable augmentation is performed.  

 

 
Figure 10. Average reprojection error in pixels as a function of the 
distance of the camera from an imaged shape in centimeters. 

7 APPLICATIONS 

Augmented Reality applications that make use of fiducial based 
registration can be found nowadays in various domains. In most 
cases the fiducials are of predefined shape, such as square frame. 
For most of these applications, augmentation of planar shapes of 
non-predefined and non-uniform structure can be useful. Dual 
perception is another benefit of the method, where the shape 
conveys an idea in a given context even without using a device, 
yet the experience can be further enhanced by virtual content 
when using the AR application. Here we give examples for 
existing applications that can use natural shape registration, as 
well as new applications. 

AR advertising is a fast growing domain, in which the most 
difficult part is sparking interest in people before the AR 
experience actually begins. From our experience, square fiducials 
are often too monotonous for users to make any effort and view 
them using an AR device. In this context, shapes can be designed 
to be attractive from the first glance.  

Augmenting books has been proposed in different domains as 
well, such as education and guidance. Books often contain object 
figures contrasted from their background, which can be 
augmented using the proposed approach, e.g., toddler animal 
books and flower handbooks. The shape library, in this case, can 
be downloaded when starting to browse the book. Figure 7(c) 
depicts an example of a motorbike catalog page. The outline of 
the motorbike photo is used for augmenting a 3D model of a 
motorbike on top of the book page. 
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Figure 7. Shape augmentation in different contexts. 
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The proposed approach is also useful for developing AR 
applications based on logos, which can be found on different 
kinds of media. A business card could point to a 3D model that 
downloads in real-time and appears on top. Figure 7(b) 
demonstrates augmentation of The HIT Lab NZ logo printed on 
the side of a mug. 

Another interesting direction is enabling the development of 
applications that combine sketching and AR. Sketching can be 
used for authoring AR content, for interacting with existing 
virtual content, or simply for creating AR fiducials on-the-fly. 
Nestor allows tracking from hand sketches, to which 3D virtual 
content can be assigned according to the application. Figure 11 
shows the augmentation of a teddy bear sketched on a hand palm. 
A virtual teddy bear model that was assigned to the sketch appears 
on top.  

8 CONCLUSION AND FUTURE WORK 

We have described Nestor, a recognition and pose estimation 
system for planar shapes. The system operates in interactive frame 
rates on a Nokia N95 mobile phone. It performs robust 
recognition of shapes and maintains accurate and stable 3D 
registration. 

Due to the redundancy of shape contours, it is natural to extend 
the system to deal with partial occlusion. One of the points that 
require attention in this case is the optimization process, in which 
outlying correspondences resulting from occlusion must be 
identified and ignored. This can be achieved, for example, by 
introducing a robust estimator in the optimization process. 

To support large shape libraries, we intend to introduce a linear 
classifier on our raw signatures. A training step will be used to 
teach the classifier the different shapes it should recognize. The 
signature space will then be transformed to a new basis that 
allows distinguishing between signatures more robustly. 

Nestor allows planar shapes to be used for registration as 
flexible fiducials for AR. This allows the development of sketch-
based applications that do not require any additional means for 
registration, such as predefined shape fiducials. 
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