Steganalysis of LSB Matching Revisited for Consecutive Pixels Using B-Spline Functions

Shunquan Tan

School of Computer Science and Software Engineering Shenzhen University Shenzhen, China, 518060 tansg@szu.edu.cn

10th International Workshop on Digital-forensics and Watermarking

Shunquan Tan (Shenzhen University)

Steganalysis of LSBMRCP

IWDW 2011 1 / 20

Steganalyzing the LSBMR Algorithm for Consecutive Pixels

A D N A B N A B N

Shunquan Tan (Shenzhen University)

Steganalysis of LSBMRCP

IWDW 2011 2 / 20

- Least significant bit matching steganography (LSBM) is a tough target for steganalyzers.
 - The HCF COM method (proposed by Harmsen and Pearlman) and its descendants.
 - Universal steganalytic algorithms, including Shi 78-D, Farid 72-D, Moulin 156-D, and Li 110-D.
 - No detectors have yet proven universally reliable.
- Using a pair of pixels as an embedding unit, the least significant bit matching revisited algorithm (LSBMR) dramatically reduces modification rate when the payload holds.
- The edge adaptive image steganography based on LSB matching revisited (EALSBMR) is one of the recent important achievements in this field.

- Least significant bit matching steganography (LSBM) is a tough target for steganalyzers.
 - The HCF COM method (proposed by Harmsen and Pearlman) and its descendants.
 - Universal steganalytic algorithms, including Shi 78-D, Farid 72-D, Moulin 156-D, and Li 110-D.
 - No detectors have yet proven universally reliable.
- Using a pair of pixels as an embedding unit, the least significant bit matching revisited algorithm (LSBMR) dramatically reduces modification rate when the payload holds.
- The edge adaptive image steganography based on LSB matching revisited (EALSBMR) is one of the recent important achievements in this field.

IWDW 2011 3 / 20

- Least significant bit matching steganography (LSBM) is a tough target for steganalyzers.
 - The HCF COM method (proposed by Harmsen and Pearlman) and its descendants.
 - Universal steganalytic algorithms, including Shi 78-D, Farid 72-D, Moulin 156-D, and Li 110-D.
 - No detectors have yet proven universally reliable.
- Using a pair of pixels as an embedding unit, the least significant bit matching revisited algorithm (LSBMR) dramatically reduces modification rate when the payload holds.
- The edge adaptive image steganography based on LSB matching revisited (EALSBMR) is one of the recent important achievements in this field.

A D F A P F A D F A D F

- Least significant bit matching steganography (LSBM) is a tough target for steganalyzers.
 - The HCF COM method (proposed by Harmsen and Pearlman) and its descendants.
 - Universal steganalytic algorithms, including Shi 78-D, Farid 72-D, Moulin 156-D, and Li 110-D.
 - No detectors have yet proven universally reliable.
- Using a pair of pixels as an embedding unit, the least significant bit matching revisited algorithm (LSBMR) dramatically reduces modification rate when the payload holds.
- The edge adaptive image steganography based on LSB matching revisited (EALSBMR) is one of the recent important achievements in this field.

- Least significant bit matching steganography (LSBM) is a tough target for steganalyzers.
 - The HCF COM method (proposed by Harmsen and Pearlman) and its descendants.
 - Universal steganalytic algorithms, including Shi 78-D, Farid 72-D, Moulin 156-D, and Li 110-D.
 - No detectors have yet proven universally reliable.
- Using a pair of pixels as an embedding unit, the least significant bit matching revisited algorithm (LSBMR) dramatically reduces modification rate when the payload holds.
- The edge adaptive image steganography based on LSB matching revisited (EALSBMR) is one of the recent important achievements in this field.

- Least significant bit matching steganography (LSBM) is a tough target for steganalyzers.
 - The HCF COM method (proposed by Harmsen and Pearlman) and its descendants.
 - Universal steganalytic algorithms, including Shi 78-D, Farid 72-D, Moulin 156-D, and Li 110-D.
 - No detectors have yet proven universally reliable.
- Using a pair of pixels as an embedding unit, the least significant bit matching revisited algorithm (LSBMR) dramatically reduces modification rate when the payload holds.
- The edge adaptive image steganography based on LSB matching revisited (EALSBMR) is one of the recent important achievements in this field.

LSBMRCP: one of the LSBMR pixel pair selection schemes adopted by EALSBMR.

LSBMRCP embedding procedure

- Cover image \Rightarrow a serial I of embedding units (x_i, x_{i+1}) .
- Secret message \Rightarrow a serial M of bits (m_i, m_{i+1})
- After message embedding, (x_i, x_{i+1}) is modified as (x'_i, x'_{i+1}).
 - $m_i = \text{LSB}(x_i)$.
 - $m_{i+1} = f(x'_i, x'_{i+1}) = LSB(|x'_i/2| + x'_{i+1})$
- both an increase and a decrease of x_i or x_{i+1} by one will change the value of f(x'_i, x'_{i+1}).

LSBMRCP: one of the LSBMR pixel pair selection schemes adopted by EALSBMR.

- LSBMRCP embedding procedure
 - Cover image \Rightarrow a serial I of embedding units (x_i, x_{i+1}).
 - Secret message \Rightarrow a serial **M** of bits (m_i, m_{i+1}) .
 - After message embedding, (x_i, x_{i+1}) is modified as (x'_i, x'_{i+1}).
 w m = LSB(x'_i)
 - $m_{i+1} = f(x'_i, x'_{i+1}) = \text{LSB}(|x'_i/2| + x'_{i+1})$
 - both an increase and a decrease of x_i or x_{i+1} by one will change the value of f(x'_i, x'_{i+1}).

• • • • • • • • • • •

LSBMRCP: one of the LSBMR pixel pair selection schemes adopted by EALSBMR.

LSBMRCP embedding procedure

- Cover image \Rightarrow a serial I of embedding units (x_i, x_{i+1}).
- Secret message \Rightarrow a serial **M** of bits (m_i, m_{i+1}).
- After message embedding, (x_i, x_{i+1}) is modified as (x'_i, x'_{i+1}).
 m_i = LSB(x'_i).
 m_{i+1} = f(x'_i, x'_{i+1}) = LSB(|x'_i/2| + x'_{i+1}).
- both an increase and a decrease of x_i or x_{i+1} by one will change the value of f(x'_i, x'_{i+1}).

A D N A P N A D N A D

LSBMRCP: one of the LSBMR pixel pair selection schemes adopted by EALSBMR.

LSBMRCP embedding procedure

- Cover image \Rightarrow a serial I of embedding units (x_i, x_{i+1}).
- Secret message \Rightarrow a serial **M** of bits (m_i, m_{i+1}) .
- After message embedding, (x_i, x_{i+1}) is modified as (x'_i, x'_{i+1}) .

•
$$m_i = \text{LSB}(x'_i).$$

• $m_{i+1} = f(x'_i, x'_{i+1}) = \text{LSB}(\lfloor x'_i/2 \rfloor + x'_{i+1}).$

 both an increase and a decrease of x_i or x_{i+1} by one will change the value of f(x'_i, x'_{i+1}).

Shunquan Tan (Shenzhen University)

IWDW 2011 4 / 20

LSBMRCP: one of the LSBMR pixel pair selection schemes adopted by EALSBMR.

LSBMRCP embedding procedure

- Cover image \Rightarrow a serial I of embedding units (x_i, x_{i+1}).
- Secret message \Rightarrow a serial **M** of bits (m_i, m_{i+1}) .
- After message embedding, (x_i, x_{i+1}) is modified as (x'_i, x'_{i+1}) .

•
$$m_i = \text{LSB}(x'_i).$$

• $m_{i+1} = f(x'_i, x'_{i+1}) = \text{LSB}(\lfloor x'_i/2 \rfloor + x'_{i+1}).$

 both an increase and a decrease of x_i or x_{i+1} by one will change the value of f(x'_i, x'_{i+1}).

LSBMR embedding algorithm for a pixel pair

1: if $m_i = \text{LSB}(x_i)$ then		$\triangleright x_i$ remains untouched
2:	if $m_{i+1} \neq f(x_i, x_{i+1})$ then	
3:	$\mathbf{x}_{i+1}' = \mathbf{x}_{i+1} \pm 1$	$\triangleright x_{i+1}$ is modified
4:	else	
5:	$\mathbf{x}_{i+1}' = \mathbf{x}_{i+1}$	$\triangleright x_{i+1}$ remains untouched
6:	end if	
7:	$\mathbf{x}_i' = \mathbf{x}_i$	
	else	⊳ <i>x</i> i is modified
9:	if $m_{i+1} = f(x_i - 1, x_{i+1})$ then	
10:	$x'_{i} = x_{i} - 1$	
11:	else	
12:	$x'_{i} = x_{i} + 1$	
13:	end if	
14:	$\mathbf{x}_{i+1}' = \mathbf{x}_{i+1}$	▷ x _{i+1} remains untouched
15:	end if	
		(川大学

< 6 b

LSBMR embedding algorithm for a pixel pair

1: if $m_i = \text{LSB}(x_i)$ then		$\triangleright x_i$ remains untouched
2:	if $m_{i+1} eq f(x_i, x_{i+1})$ then	
3:	$\mathbf{x}_{i+1}' = \mathbf{x}_{i+1} \pm 1$	$\triangleright x_{i+1}$ is modified
4:	else	
5:	$\mathbf{x}_{i+1}' = \mathbf{x}_{i+1}$	$\triangleright x_{i+1}$ remains untouched
6:	end if	
7:	$\mathbf{x}'_i = \mathbf{x}_i$	
8: e	else	$\triangleright x_i$ is modified
9:	if $m_{i+1} = f(x_i - 1, x_{i+1})$ then	
10:	$\mathbf{x}'_i = \mathbf{x}_i - 1$	
11:	else	
12:	$\mathbf{x}'_i = \mathbf{x}_i + 1$	
13:	end if	
14:	$x'_{i+1} = x_{i+1}$	$\triangleright x_{i+1}$ remains untouched
15: end if		
		深圳大学

< //2 > < ∃ >

- EALSBMR is a region adaptive spatial domain LSB steganography.
- It uses the absolute difference between two adjacent pixels as the criterion for region selection, and adopt LSBMRCP as the data hiding algorithm.
- Decision of threshold T:
 - $EU(t) = \{(x_i, x_{i+1}) | |x_i x_{i+1}| \ge t, \forall (x_i, x_{i+1}) \in V\}$
 - $T = \operatorname{argmax}_t \{2 \times |EU(t)| \ge |M|\}$
- Cover image is first divided into blocks. Block size Bz ∈ {1,4,8,12}. When Bz > 1, blocks are rotated with a random degree in the range of {0,90,180,270} in order to improve the security.

- EALSBMR is a region adaptive spatial domain LSB steganography.
- It uses the absolute difference between two adjacent pixels as the criterion for region selection, and adopt LSBMRCP as the data hiding algorithm.
- Decision of threshold T:
 - $EU(t) = \{(x_i, x_{i+1}) | |x_i x_{i+1}| \ge t, \forall (x_i, x_{i+1}) \in V\}$ • $T = \operatorname{argmax}_t \{2 \times |EU(t)| \ge |M|\}$
- Cover image is first divided into blocks. Block size $Bz \in \{1, 4, 8, 12\}$. When Bz > 1, blocks are rotated with a random degree in the range of $\{0, 90, 180, 270\}$ in order to improve the security.

- EALSBMR is a region adaptive spatial domain LSB steganography.
- It uses the absolute difference between two adjacent pixels as the criterion for region selection, and adopt LSBMRCP as the data hiding algorithm.
- Decision of threshold T:
 - $EU(t) = \{(x_i, x_{i+1}) | |x_i x_{i+1}| \ge t, \forall (x_i, x_{i+1}) \in V\}$
 - $T = \operatorname{argmax}_t \{2 \times |EU(t)| \ge |M|\}$

 Cover image is first divided into blocks. Block size Bz ∈ {1,4,8,12}. When Bz > 1, blocks are rotated with a random degree in the range of {0,90,180,270} in order to improve the security.

IWDW 2011 6 / 20

- EALSBMR is a region adaptive spatial domain LSB steganography.
- It uses the absolute difference between two adjacent pixels as the criterion for region selection, and adopt LSBMRCP as the data hiding algorithm.
- Decision of threshold T:
 - $EU(t) = \{(x_i, x_{i+1}) | |x_i x_{i+1}| \ge t, \forall (x_i, x_{i+1}) \in V\}$
 - $T = \operatorname{argmax}_t \{2 \times |EU(t)| \ge |M|\}$
- Cover image is first divided into blocks. Block size Bz ∈ {1,4,8,12}. When Bz > 1, blocks are rotated with a random degree in the range of {0,90,180,270} in order to improve the security.

A D N A P N A D N A D

1: if
$$m_i = LSB(x_i)$$
 then
2: if $m_{i+1} \neq f(x_i, x_{i+1})$ then
3: $x'_{i+1} = x_{i+1} \pm 1$
4: else
5: $x'_{i+1} = x_{i+1}$
6: end if
7: $x'_i = x_i$
8: else
9: if $m_{i+1} = f(x_i - 1, x_{i+1})$ then
10: $x'_i = x_i - 1$
11: else
12: $x'_i = x_i + 1$
13: end if
14: $x'_{i+1} = x_{i+1}$
15: end if

1: if
$$m_i = LSB(x_i)$$
 then
2: if $m_{i+1} \neq f(x_i, x_{i+1})$ then
3: $x'_{i+1} = x_{i+1} \pm 1$
4: else x_i remains untouched, with probability 0.5
5: $x'_{i+1} = x_{i+1}$
6: end if
7: $x'_i = x_i$
8: else
9: if $m_{i+1} = f(x_i - 1, x_{i+1})$ then
10: $x'_i = x_i - 1$
11: else
12: $x'_i = x_i + 1$
13: end if
14: $x'_{i+1} = x_{i+1}$
15: end if

Shunquan Tan (Shenzhen University)

Steganalysis of LSBMRCP

IWDW 2011 7 / 20

Shenzhen University

An illustration of the imbalance

a

Shunquan Tan (Shenzhen University)

Steganalysis of LSBMRCP

IWDW 2011 8 / 20

- Data embedding ⇔ add additive noise to the cover image. The more pixels get modified, the more the power of the additive stegonoise is added to the cover image.
- The power of the stegonoise in $\{x_i\}$ should be larger than that in $\{x_{i+1}\}$.
- For a given stegonoise series {ε_i}, its power is defined as its L² norm:

$$\mathcal{IF} \triangleq \|\{\varepsilon_i\}\| = (\sum_{i=0}^n (\varepsilon_i^2))^{\frac{1}{2}}$$

- Data embedding ⇔ add additive noise to the cover image. The more pixels get modified, the more the power of the additive stegonoise is added to the cover image.
- The power of the stegonoise in $\{x_i\}$ should be larger than that in $\{x_{i+1}\}$.
- For a given stegonoise series {ε_i}, its power is defined as its L² norm:

$$\mathcal{IF} \triangleq \|\{\varepsilon_i\}\| = (\sum_{i=0}^n (\varepsilon_i^2))^{\frac{1}{2}}$$

- Data embedding ⇔ add additive noise to the cover image. The more pixels get modified, the more the power of the additive stegonoise is added to the cover image.
- The power of the stegonoise in $\{x_i\}$ should be larger than that in $\{x_{i+1}\}$.
- For a given stegonoise series {ε_i}, its power is defined as its L² norm:

$$\mathcal{IF} \triangleq \|\{\varepsilon_i\}\| = (\sum_{i=0}^n (\varepsilon_i^2))^{\frac{1}{2}}$$

Shunquan Tan (Shenzhen University)

IWDW 2011 9 / 20

- Data embedding ⇔ add additive noise to the cover image. The more pixels get modified, the more the power of the additive stegonoise is added to the cover image.
- The power of the stegonoise in $\{x_i\}$ should be larger than that in $\{x_{i+1}\}$.
- For a given stegonoise series {ε_i}, its power is defined as its L² norm:

$$\mathcal{IF} \triangleq \|\{\varepsilon_i\}\| = (\sum_{i=0}^n (\varepsilon_i^2))^{\frac{1}{2}}$$

But, how to get the good estimation of the stegonoise series for {*x_i*} and {*x_{i+1}*}?

IWDW 2011 9 / 20

- For a given suspected stego image, good estimation of the stegonoise series ⇒ good estimation of the original pixel series from the suspected stego one.
- Let the approximation of the original pixel series be a polynomial spline which can be constructed from a weighted sum of shifted B-splines.
- The polynomial spline establishes a sort of compromise between approximation and smoothness, which is controlled by an intuitive parameter *S* and can be calibrated depending on the variance of stegonoise σ^2 .

- For a given suspected stego image, good estimation of the stegonoise series ⇒ good estimation of the original pixel series from the suspected stego one.
- Let the approximation of the original pixel series be a polynomial spline which can be constructed from a weighted sum of shifted B-splines.
- The polynomial spline establishes a sort of compromise between approximation and smoothness, which is controlled by an intuitive parameter *S* and can be calibrated depending on the variance of stegonoise σ^2 .

- For a given suspected stego image, good estimation of the stegonoise series ⇒ good estimation of the original pixel series from the suspected stego one.
- Let the approximation of the original pixel series be a polynomial spline which can be constructed from a weighted sum of shifted B-splines.
- The polynomial spline establishes a sort of compromise between approximation and smoothness, which is controlled by an intuitive parameter S and can be calibrated depending on the variance of stegonoise σ^2 .

• • • • • • • • • • • •

- For a given suspected stego image, good estimation of the stegonoise series ⇒ good estimation of the original pixel series from the suspected stego one.
- Let the approximation of the original pixel series be a polynomial spline which can be constructed from a weighted sum of shifted B-splines.
- The polynomial spline establishes a sort of compromise between approximation and smoothness, which is controlled by an intuitive parameter *S* and can be calibrated depending on the variance of stegonoise σ^2 .
- Unfortunately, the theoretical calibration formula is infeasible in practice. But we put forward a computable approximation.

10/20

IWDW 2011

• • • • • • • • • • •

Steganalytic Feature

- The power of the noise introduced during the image capture and post-processing procedure is usually distributed evenly over the spatial domain. Cover image: *IF*₁ ≈ *IF*₂.
- Stego image generated by LSBMRCP: $\mathcal{IF}_1 > \mathcal{IF}_2$.

Shunquan Tan (Shenzhen University)

Steganalysis of LSBMRCP

IWDW 2011 11 / 20

Steganalytic Feature

- The power of the noise introduced during the image capture and post-processing procedure is usually distributed evenly over the spatial domain. Cover image: *IF*₁ ≈ *IF*₂.
- Stego image generated by LSBMRCP: $\mathcal{IF}_1 > \mathcal{IF}_2$.

Shunquan Tan (Shenzhen University)

Steganalysis of LSBMRCP

IWDW 2011 11 / 20

Steganalytic Feature

- The power of the noise introduced during the image capture and post-processing procedure is usually distributed evenly over the spatial domain. Cover image: *IF*₁ ≈ *IF*₂.
- Stego image generated by LSBMRCP: $\mathcal{IF}_1 > \mathcal{IF}_2$.

Discriminator for the presence of LSBMRCP steganography

$$\begin{split} \mathcal{IF}_1/\mathcal{IF}_2 &\approx 1 & \text{for a cover image,} \\ \mathcal{IF}_1/\mathcal{IF}_2 &> 1 & \text{for a LSBMRCP stego image.} \end{split}$$

Shunquan Tan (Shenzhen University)

IWDW 2011 11 / 20

- When calculating \mathcal{IF}_1 and \mathcal{IF}_2 , embedding rate $\mathcal{I} \Rightarrow \sigma^2 \mathcal{I} \Rightarrow S \mathcal{I}$.
- Suppose the result smoothing B-spline based on S_c represents the original cover image.
- Given a LSBMR stego image, calculate $\mathcal{IF}_1/\mathcal{IF}_2$ using a progressively increasing S which starts from 0.
 - $S < S_c$, the result spline still contains stegonoise, $\mathcal{IF}_1 > \mathcal{IF}_2$.
 - $S > S_c$, $\mathcal{IF}_1 \approx \mathcal{IF}_2$.
- The critical point S_c lies in the interval in which the value of $\mathcal{IF}_1/\mathcal{IF}_2$ falls from larger than 1 to approximately equal to 1.
- $S_c \Rightarrow \sigma^2 \Rightarrow$ the estimation of embedding rate.

(a)

IWDW 2011 12 / 20

- When calculating \mathcal{IF}_1 and \mathcal{IF}_2 , embedding rate $\mathcal{I} \Rightarrow \sigma^2 \mathcal{I} \Rightarrow S \mathcal{I}$.
- Suppose the result smoothing B-spline based on S_c represents the original cover image.
- Given a LSBMR stego image, calculate $\mathcal{IF}_1/\mathcal{IF}_2$ using a progressively increasing *S* which starts from 0.
 - $S < S_c$, the result spline still contains stegonoise, $\mathcal{IF}_1 > \mathcal{IF}_2$.

• $S > S_c$, $\mathcal{IF}_1 \approx \mathcal{IF}_2$.

- The critical point S_c lies in the interval in which the value of $\mathcal{IF}_1/\mathcal{IF}_2$ falls from larger than 1 to approximately equal to 1.
- $S_c \Rightarrow \sigma^2 \Rightarrow$ the estimation of embedding rate.

(a)

- When calculating \mathcal{IF}_1 and \mathcal{IF}_2 , embedding rate $\mathcal{I} \Rightarrow \sigma^2 \mathcal{I} \Rightarrow S \mathcal{I}$.
- Suppose the result smoothing B-spline based on S_c represents the original cover image.
- Given a LSBMR stego image, calculate *IF*₁/*IF*₂ using a progressively increasing S which starts from 0.
 - $S < S_c$, the result spline still contains stegonoise, $\mathcal{IF}_1 > \mathcal{IF}_2$.
 - $S > S_c, \mathcal{IF}_1 \approx \mathcal{IF}_2.$
- The critical point S_c lies in the interval in which the value of $\mathcal{IF}_1/\mathcal{IF}_2$ falls from larger than 1 to approximately equal to 1.
- $S_c \Rightarrow \sigma^2 \Rightarrow$ the estimation of embedding rate.

(a)

IWDW 2011 12 / 20

- When calculating \mathcal{IF}_1 and \mathcal{IF}_2 , embedding rate $\mathcal{I} \Rightarrow \sigma^2 \mathcal{I} \Rightarrow S \mathcal{I}$.
- Suppose the result smoothing B-spline based on S_c represents the original cover image.
- Given a LSBMR stego image, calculate *IF*₁/*IF*₂ using a progressively increasing S which starts from 0.
 - $S < S_c$, the result spline still contains stegonoise, $\mathcal{IF}_1 > \mathcal{IF}_2$.
 - $S > S_c$, $\mathcal{IF}_1 \approx \mathcal{IF}_2$.
- The critical point S_c lies in the interval in which the value of $\mathcal{IF}_1/\mathcal{IF}_2$ falls from larger than 1 to approximately equal to 1.
- $S_c \Rightarrow \sigma^2 \Rightarrow$ the estimation of embedding rate.

IWDW 2011 12 / 20

(a)

- When calculating \mathcal{IF}_1 and \mathcal{IF}_2 , embedding rate $\mathcal{I} \Rightarrow \sigma^2 \mathcal{I} \Rightarrow S \mathcal{I}$.
- Suppose the result smoothing B-spline based on S_c represents the original cover image.
- Given a LSBMR stego image, calculate *IF*₁/*IF*₂ using a progressively increasing S which starts from 0.
 - $S < S_c$, the result spline still contains stegonoise, $\mathcal{IF}_1 > \mathcal{IF}_2$.
 - $S > S_c, \mathcal{IF}_1 \approx \mathcal{IF}_2.$
- The critical point S_c lies in the interval in which the value of $\mathcal{IF}_1/\mathcal{IF}_2$ falls from larger than 1 to approximately equal to 1.
- $S_c \Rightarrow \sigma^2 \Rightarrow$ the estimation of embedding rate.

(a)

IWDW 2011 12 / 20

Plot of Steganalytic features

Steganalytic features of 200 cover images and the corresponding LSBMRCP stego images (Left half, with 50% embedding rate), and EALSBMR stego images (Right half, with 50% embedding rate, Bz=1).

Comparisons of ROC curves

The different curves stand for: our proposed method against LSBMRCP (solid), and EALSBMR (Bz = 1) (dashed); Li-1D against LSBMRCP (dotted), and EALSBMR (Bz = 1) (dash-dot). (a) 50% embedding rate. (b) 25% embedding rate.

IWDW 2011 14 / 20

Estimated value of the embedding rate for LSBMRCP stego images with embedding rate of 10%, 25%, 50%, 75% and 100%.

Limitation of our proposed method

• the reliability of the proposed method depends on the correct partition of embedding units with two consecutive pixels.

Shunquan Tan (Shenzhen University)

Steganalysis of LSBMRCP

IWDW 2011 16 / 20

Limitation of our proposed method

- the reliability of the proposed method depends on the correct partition of embedding units with two consecutive pixels.
- Our method CAN NOT attack LSBMR with random pixel pair selection scheme.

Shunquan Tan (Shenzhen University)

Steganalysis of LSBMRCP

IWDW 2011 16 / 20

• • • • • • • • • •

Limitation of our proposed method

- the reliability of the proposed method depends on the correct partition of embedding units with two consecutive pixels.
- Our method CAN NOT attack LSBMR with random pixel pair selection scheme.
- Our method CAN NOT attack EALSBMR with Bz > 1.

4 A N 4 E

Concluding Remarks

Steganalysis of EALSBMR using B-spline fitting

Shunquan Tan (Shenzhen University)

IWDW 2011 17 / 20

Concluding Remarks

Steganalysis of EALSBMR using B-spline fitting

* Has been submitted to IEEE Signal Processing Letters. *

The contour graph of the number

Shunquan Tan (Shenzhen University)

Comparison of ROC curves:

Steganalysis of LSBMRCP

IWDW 2011 18 / 20

- "The embedding units located at the sharper regions have better hiding characteristics than those at the smoother/flat regions." ⇒ "make full use of the sharper edges in a cover image as far as possible".
- Is it a good steganographic scheme? ⇒ target steganalysis of existing edge adaptive steganographic methods.
- Most steganographic/steganalytic algorithms are derived within a purely discrete framework. Can we do some research in this field based on a real-valued picture function defined over the real plane R²?

- "The embedding units located at the sharper regions have better hiding characteristics than those at the smoother/flat regions." ⇒ "make full use of the sharper edges in a cover image as far as possible".
- Is it a good steganographic scheme? ⇒ target steganalysis of existing edge adaptive steganographic methods.
- Most steganographic/steganalytic algorithms are derived within a purely discrete framework. Can we do some research in this field based on a real-valued picture function defined over the real plane R²?

- "The embedding units located at the sharper regions have better hiding characteristics than those at the smoother/flat regions." ⇒ "make full use of the sharper edges in a cover image as far as possible".
- Is it a good steganographic scheme? ⇒ target steganalysis of existing edge adaptive steganographic methods.
- Most steganographic/steganalytic algorithms are derived within a purely discrete framework. Can we do some research in this field based on a real-valued picture function defined over the real plane R²?

- "The embedding units located at the sharper regions have better hiding characteristics than those at the smoother/flat regions." ⇒ "make full use of the sharper edges in a cover image as far as possible".
- Is it a good steganographic scheme? ⇒ target steganalysis of existing edge adaptive steganographic methods.
- Most steganographic/steganalytic algorithms are derived within a purely discrete framework. Can we do some research in this field based on a real-valued picture function defined over the real plane R²?
 - Application of B-spline technology in steganalysis.
 - Steganalytic algorithm derived directly from a real-valued picture function.

19/20

IWDW 2011

A B > A B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A

Concluding Remarks

The End

Q & A

Shunquan Tan (Shenzhen University)

Steganalysis of LSBMRCP