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Abstract

In this paper we proposed an iterative elimination algorithm for sparse principal component anal-
ysis. It recursively eliminates variables according to certain criterion that aims to minimize the
loss of explained variance, and reconsiders the sparse principal component analysis problem until
the desired sparsity is achieved. Two criteria, the approximated minimal variance loss (AMVL)
criterion and the minimal absolute value criterion, are proposed to select the variables eliminated in
each iteration. Deflation techniques are discussed for multiple principal components computation.
The effectiveness is illustrated by both simulations on synthetic data and applications on real data.
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1. Introduction

Principal component analysis (PCA) is a popular dimension reduction technique. It is widely used

for data compression, statistical modeling, and data visualization in sciences and engineering (Jol-

liffe, 2002). The task of PCA is to find principal components (PCs) which are the linear combi-

nations of the variables and explain maximum variance of the data. The main advantages of PCA

lie in the minimal loss of information, uncorrelated structures, and easy interpretability of linear

combinations.

A well known drawback of PCA is the lack of sparsity. Usually all loadings of the principal

components are nonzero. From data analysis perspective, sparsity is desirable for reduced com-

putational time and better generalization performance. From modeling perspective, although the

interpretability of linear combinations is usually easy for low dimensional data, it could become

much more difficult when the number of variables becomes huge, for example, in the gene expres-

sion data analysis. In order to overcome this difficulty and introduce sparsity, numerous methods

have been developed (Cadima and Jolliffe, 1995; Jolliffe et al., 2003; Zou et al., 2006; Moghad-

dam et al., 2006; Sriperumbudur et al., 2007; Zass and Shashua, 2007; d’Aspremont et al., 2008;

Shen and Huang, 2008; Journée et al., 2008). An ad hoc method that thresholds loadings with
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small absolute values to 0, termed as “simple thresholding”, is introduced in (Cadima and Jolliffe,

1995). Advanced methods include the SCoLTLASS (Jolliffe et al., 2003), lasso based sparse PCA

(SPCA, Zou et al. 2006), direct sparse PCA (DSPCA, d’Aspremont et al. 2007), Greedy sparse

PCA (GSPCA, Moghaddam et al. 2006), generalized power method (GPower, Journée et al. 2008),

sparse PCA by d.c. programming (DC-SPCA, Sriperumbudur et al. 2007, 2009), etc.

In this paper we introduce a new approach for sparse PCA which we call the Iterative Elimina-

tion (IE) algorithm. This approach is motivated by the well known Recursive Feature Elimination

(RFE) technique in learning theory and the the simple thresholding method. In the iterative elimina-

tion algorithm variables are recursively eliminated through a ranking criterion, which can be either

the minimal absolute value criterion or the more sophisticated approximated minimal variance loss

(AMVL) criterion that will be introduced later in the paper. A main criticism on simple thresholding

method has been that it can easily be misleading in many cases, where smaller loadings in the PCA

do not always mean less significance in explaining variance. Many examples have been used to

demonstrate such deficiency and the resulting sub-optimality of simple thresholding. However, it is

also true that in general the variable with the smallest loading has little possibility to be among the

variables that have the greatest influence. This motivates the idea to remove the variable with small-

est loading and reconsider the sparse PCA in the reduced space. Based on this heuristics the iterative

elimination algorithm for sparse PCA eliminates one or a small portion of the variables at one time

and repeats this procedure until the desired sparsity is achieved. We will demonstrate that this ap-

proach is simple and efficient, and yet it is powerful and compares well with other state-of-the-art

approaches.

2. Iterative elimination

In this section we introduce and discuss our iterative elimination approach in detail. We focus on

the computation of the first sparse PC since the latter ones can be obtained via deflation techniques.

Denote by Σ = (Σij) a p dimensional covariance matrix. It has to be symmetric and positive

definite. For a vector v = (v1, . . . , vp)> ∈ Rp, ‖v‖ is the Euclidian norm and ‖v‖0 denotes the

number of nonzero elements in v.

Recall in the ordinary PCA, the first PC is the unit vector along which maximum variance is

explained:

v1 = arg max
‖v‖=1

v>Σv. (1)

It turns out v1 is the eigenvector associated with the largest eigenvalue λ1(Σ) of Σ. All the loadings

v1,i, i = 1, . . . , p, of v1 are usually nonzero. The sparse PCA seeks the ‘pseudo eigenvector’ with

desired sparsity:

u1 = arg max
‖u‖=1

u>Σu subject to ‖u‖0 ≤ k (2)
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where k < p is a positive integer. This is an NP hard problem. Most of state-of-the-art sparse PCA

methods in the literature try to relax the sparsity constraint and solve approximated optimization

problems.

Our iterative elimination approach follows from a different spirit. It relies on an elimination

criterion and adopt a recursive variable elimination procedure.

In the subsequent sections of this paper, we will use the following notations: for a symmetric

matrix A, v`(A) and λ`(A) represent the `-th largest eigenvectors and eigenvalues; u`(A) and σ`(A)

represent the sparse pseudo eigenvectors and the corresponding explained variances, respectively.

When A = Σ is the covariance matrix under consideration and whenever there is no confusion we

use the notations v`, λ`, u`, and σ` for simplicity.

2.1 Thresholding criteria

In simple thresholding, u1 is obtained directly from v1 by thresholding the loadings with small-

est absolute values to zero and normalization. The underlying premise of this method is that the

variables with smaller loadings contribute less to the variance explained by v1. However, many

examples have demonstrated that this is not often false, but is highly unreliable as a technique for

sparse PCA.

Strictly speaking, there is no exact monotone relation between the contribution of the variables

and the corresponding absolute values of loadings. But they are indeed closely related. Denote

by Σ\i the p − 1 dimensional matrix given by Σ with the i-th row and column deleted. Then the

following conclusion is true.

Proposition 1 For all i = 1, . . . , p,

λ1(Σ)− λ1(Σ\i) ≤
v2
1,i(λ1(Σ)− Σii)

1− v2
1,i

.

This proposition provides an upper bound for the variance loss if a variable is removed. The bound

depends not only on the loading v1,i but also the difference λ1 − Σii. Therefore, only if λ1 À Σii

for all i, the absolute values of loadings might be good measures for the importance of the variables.

Otherwise, it may be misleading.

Proposition 1 leads to a new elimination criterion. Variables can be ranked according to the

bounds on variance loss. We refer it to the approximated minimal variance loss (AMVL) criterion.

Note this criterion is not exact either. However, we will show in Section 3 that it usually yields

better results than the conventional thresholding which will be termed as minimal absolute value

(MAV) criterion.
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2.2 Iterative elimination algorithm

The idea of iterative elimination is motivated by the recursive feature elimination (RFE) technique.

RFE is a backward feature selection method and has been introduced to the support vector machines

in Guyon et al. (2002). The basic idea of this technique is as follows: The direct variable ranking

(according to some estimated criterion) may be rough. But the variable ranked as least important is

seldom among the top important ones. So we can remove it first and re-rank the remaining variables.

Due to the reduction of the dimension, the ranking may improve.

In sparse PCA, it is time consuming to compute the exact variance loss for all variables. We have

to adopt the estimated quantities as the ranking criterion, either the absolute values of loadings or

the upper bounds of variance losses. Under these criteria, if a variable ranked as the least important

one, it does not necessarily contribute the least variance. But we do know that its contribution is

relatively small and removing it will not result in large variance loss. So it is probably not among

the desired top k important variables. This is the setting where RFE can works well.

Next we describe our iterative elimination algorithm for sparse PCA as follows:

1. Initialize Σ(t) = Σ, St = {1, . . . , p}, Rt = ∅.

2. In step t,

• compute the largest eigenvalue λ
(t)
1 and corresponding eigenvector v(t)

1 ;

• find the least important variable it: if MAV criterion is used,

it = arg min
i∈St

|v(t)
1,i |

or, if AMVL criterion is used

it = arg min
i∈St

(v(t)
1,i)

2
(
λ

(t)
1 − Σ(t)

ii

)

1− (v(t)
1,i)2

;

• update St+1 = St\it, Rt+1 = Rt
⋃{it}, and Σ(t+1) = Σ(St+1, St+1);

3. Stop until |St| = k and output u1 with u1(St) = v(t)
1 and u1(Rt) = 0.

In practice, to speed up the computations, one can eliminate more variables in one step. The

number of eliminated variables can be set according to a number of criteria. For example it can

be a fixed number or a fixed percentage of the remaining variables, or it can be set dynamically

by variance loss. In a problem with very large dimension, such as gene expression data where p is

thousands or tens of thousands, the latter method is suggested because elimination of hundreds of

variables in one step usually results in little variance loss. When the dimension becomes smaller,

the step size should also be small to avoid false selection of variables.
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Iterative elimination is viable for problems involving very large dimensions. A “large p, small

n” problem refers to a problem with very high dimensional data but limited observations. This set-

ting constantly appears in gene expression data analysis and images processing. For such problems

we do not need to compute the covariance matrix. Instead we work on the centered data matrix

X̄ and in each iteration we only need to compute its largest singular value and the corresponding

singular vectors.

2.3 An alternative problem

We argue that the problem (2) finding sparse principal components with given sparsity is not the

most useful setting in practice, although it is the mostly studied setting for the sparse PCA research

in the literature. Recall in data analysis by PCA, one expects to explain as much variance as possible.

Sparse PCA should guarantee enough variability in the data is kept for explanation purposes as it

tries to reduce the number of explanatory variables. Obviously a pre-specified sparsity level is not

good for this purpose unless it can be easily determined.

We propose an alternative sparse PCA setting. It finds the sparsest principal components with

enough variance explained:

u1 = arg min
‖u‖=1

‖u‖0 subject to u>Σu ≥ ρλ1 (3)

where 0 < ρ < 1 controls the variance explained.

A major advantage the iterative elimination algorithm has over several of the other algorithms is

that it can be adapted for this alternative problem. All we need to do is to check the variance in each

step and stop before the variance drops below the required level. In an extremely large dimensional

problem where many variables will need to be removed in one step, we can use the AMVL criterion

to guarantee that we do not over eliminate variables.

2.4 Computational considerations

The computational complexity for computing the largest eigenvalues and the corresponding eigen-

vectors required O(p3) for a p dimensional matrix. This seems to result in computational complexity

O(p4) to obtain the whole path of sparse eigenvectors, i.e., the eigenvectors with all possible spar-

sity k = 1, . . . , p. However, notice that in each iteration, the new matrix is obtained by delete one

row and one column. The difference is relatively small, especially when the dimension is very large.

A fast update is possible by eigen-decomposition algorithms such as power method or Raleigh quo-

tient method (Golub and Loan, 1983). We illustrate this by considering the power method.

Power method is an algorithm to compute the largest eigenvalue and the corresponding eigen-

vector. Recall that, given a positive semi-definite matrix A and an initial vector q0, the power method
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iteratively computes

q`+1 = Aq`/‖Aq`‖.
If q0 is not deficient (i.e. q0 is not orthogonal to v1(A)) , then q` converges to an eigenvector asso-

ciated to the largest eigenvalue v1(A). The convergence depends on how close q0 is to v1(A) and

how small is the ratio λ2(A)
λ1(A) (Golub and Loan, 1983). In general the power method is not necessarily

very efficient, especially for large matrices. But when q0 is close to v1(A) the convergence is usu-

ally fast. As a result, the power method can be very efficient in our setting due to the availability of

a very good initial vector. To see this, consider the matrices Σ(t) and Σ(t+1). Denote the dimension

of Σ(t) as pt and, without loss of generality, assume it = pt. This means Σ(t+1) is obtained by

deleting the last row and column of Σ(t):

Σ(t) =

(
Σ(t+1) ∗
∗ Σ(t)

pt,pt

)
.

Now consider Σ̃(t+1) defined by

Σ̃(t+1) =

(
Σ(t+1) 0

0 Σ(t)
pt,pt

)
.

Note that Σ̃(t+1) is positive semi-definite and its difference from Σ(t) is comparatively small, par-

ticularly when pt is large. Thus it is expected that v(t)
1 = v1(Σ(t)) is a good initial guess for

computing the eigenvector of Σ̃(t+1) and λ1(Σ(t)) is close to λ1(Σ̃(t+1)). Also, v
(t)
1,pt

has the small-

est absolute values usually means Σ(t)
pt,pt ¿ λ1(Σ(t)). In this case Σ(t)

pt,pt ¿ λ1(Σ̃(t+1)), which

implies λ1(Σ(t+1)) = λ1(Σ̃(t+1)) and

(v(t+1)
1 , 0) = v1(Σ̃(t+1)). (4)

This equality tells us that the last element of v1(Σ̃(t+1)) must be zero. Therefore, we expect the the

vector 1

1−(v
(t)
1,pt

)2
(v(t)

1,1, . . . , v
(t)
1,pt−1

, 0) is also a good initial guess for v1(Σ̃(t+1)). By (4) again,

q
(t+1)
0 =

1

1− (v(t)
1,pt

)2
(v(t)

1,1, . . . , v
(t)
1,pt−1

)

serves as a good initial vector for the computation of the first eigenvector of Σ(t+1) via the power

method.

Various simulations show that just a few iterations typically achieve very high accuracy. Sup-

pose that it takes `(t+1) iterations to compute v(t+1)
1 from q

(t+1)
0 using the power method, the com-

putational complexity is then O(`(t+1)(pt−1)2) to obtain v(t+1)
1 . Let `∗ denote the maximum of all

`(t). Then the total computational complexity to obtain the whole path of the first sparse principal

component will be O(`∗p3).
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Iterative elimination is viable for a “large p, small n” problem. In each step we can use the

power method to find the leading singular vector with a computational complexity O(`(t)ptn) for

data matrix of dimension pt. This will result in total complexity of O(`∗p2n) for computing the

sparse principal component.

2.5 Deflation: a theoretical study

A matrix deflation modifies a matrix to eliminate the influence of a given eigenvector, typically by

setting the associated eigenvalue to zero. It is a well known technique in linear algebra to find the

remaining eigenvalues and eigenvectors. In Mackey (2009) several deflation methods are discussed.

All these methods are exact for the eigen-decomposition computation. But when they are used for

sparse PCA, due to the fact that typically we do not have true eigenvectors, their performance can

be quite different; see Mackey (2009) for an rigorous empirical study. In this section we consider

three different deflation methods: Hotelling’s deflation, projection deflation, and Schur complement

deflation. We will compare them from a theoretical perspective.

Given Σ1 = Σ and the pseudo-eigenvector u1 that is obtained from a sparse PCA algorithm,

the deflation technique allows us to find the next sparse pseudo-eigenvector u2 as the sparse prin-

cipal component of some matrix Σ2, and so on. A simple and popular technique is the Hotelling’s

deflation:

ΣH
t+1 = Σt − σtutu>t ,

where σt = u>t Σtut. Since ut is not a true eigenvector, ΣH
t is not necessarily positive semi-definite;

see Mackey (2009) for an example. Empirical study shows that its performance is almost uniformly

worse than the other two methods.

The project deflation is motivated as follows: assume Σt is the covariance matrix of the random

variable Y . Given the sparse principal component ut , consider the covariance matrix of the random

variable (I − utu>t )Y , the projection of Y onto the orthocomplement of the subspace spanned by

ut. This results in the matrix

ΣP
t+1 = (I − utu>t )Σt(I − utu>t ).

The Schur complement deflation is

ΣS
t+1 = Σt − Σtutu>t Σt/σt,

which is motivated by considering the conditional covariance var(Y |u>t Y ). Both ΣP
t and ΣS

t are

guaranteed to be positive semi-definite.

For these three deflation matrices, we have the following conclusion:
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Proposition 2 Given any vector ut we have

λ1(ΣS
t+1) ≤ λ1(ΣP

t+1) ≤ λ1(ΣH
t+1).

However, this result does not mean that the Hotelling’s deflation is the best. Instead, empirical

study shows it is the worst. We will show that it overestimates the additional variance explained

when used for sparse PCA.

Note that one should be careful when dealing with the cumulative variance of multiple sparse

PCs. It refers to the variance captured by the subspace spanned by these pseudo-eigenvectors and

can be calculated as follows: Denote by Pi the projection onto the subspace spanned by uj , j < i.

Let w1 = u1 and sequentially compute

wi+1 =
ui+1 − Piui+1

‖ui+1 − Piui+1‖ .

Then {wj : j ≤ i} form an orthonormal basis of subspace spanned by {uj : j ≤ i}. The cumulative

variance explained by u1, . . . ,ut is then

CV (u1, . . . ,ut) =
t∑

j=1

w>
j Σwj .

The additional variance explained by ut+1 is then

∆t+1 = CV (u1, . . . ,ut,ut+1)− CV (u1, . . . ,ut) = w>
t+1Σwt+1.

When the three different deflation are used, we have the following comparison between the addi-

tional variance explained.

Proposition 3 Given unit vectors ui, i ≤ t, assume that uH
t+1, uP

t+1 and uS
t+1 are the leading

eigenvectors of the three deflated matrices respectively. Then we have

∆P
t+1 ≥ ∆H

t+1 and ∆P
t+1 ≥ ∆S

t+1.

Although this result is only for the true leading eigenvector, not the sparse pseudo-eigenvector we

are looking for, it nevertheless intuitively explains the superiority of the projection deflation method

in capturing additional variance, an observation that has been made consistently in practice.

While in practical applications the projection deflation method on average outperforms the other

methods, exceptions do occur on rare occasions. We suspect that there are two possible explana-

tions: (1) We do not know whether the superiority of the projection deflation method is still true

for sparse PCs. Furthermore, all existing sparse PCA methods solve relaxed problems. The sparse

eigenvector is not exact. (2) In Proposition 3 the conclusion is true only when the first t spare eigen-

vectors are the same. When different deflations are used, only the first pseudo-eigenvector u1 is
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the guaranteed to be the same, and it does not guarantee the projection deflation will continue to be

better thereafter. The empirical study in Mackey (2009) shows that both the projection deflation and

Schur complement deflation outperform the Hotelling’s deflation consistently, and the projection

deflation is better than or at least comparable with Schur complement deflation in general, espe-

cially for the first two or three sparse PCs. This coincides with our theoretical analysis. Therefore,

in this study we shall use the projection deflation as the benchmark in our simulations.

3. Simulations

In this section we illustrate the effectiveness of the iterative elimination algorithm on several syn-

thetic and real data sets. We will compare our method with various state-of-the-art methods for

sparse PCA.

3.1 Comparison of the criteria

We first compare the AMVL and MAV criteria in the iterative elimination algorithm. We generate

a random matrix M ∈ R10×20 with each entry independently drawn from univariate normal distri-

bution with variance 1. The covariance matrix of dimension 10 is then obtained as Σ = MM>. We

compare the results for the computation of the first sparse PC.

We first compare the performance on one variable deletion, that is, we consider the sparse PC

with sparsity k = 9. We repeat the experiments 10000 times. In Figure 1 (a) we plot the differences

between variances explained by the first sparse PCs obtained from AMVL criterion and the MAV

criterion. It shows that in most repeats (94.5%) two criteria yield identical results. In about 500 runs

(5%) AMVL criterion outperforms MAV while in about 50 runs (0.5%) MAV outperforms AMVL.

Moreover, in the cases that favor AMVL the differences in explained variance can be substantial

while in the cases that favor MAV the differences tend to be very small.

Next we compare the performance on sparser PCs. Under the same setting as above we consider

the sparse PC with sparsity k = 5 instead. Again we run the experiment 10000 times and plot the

differences of the variances captured in Figure 1 (b). In about 82% of all repeats the results are the

same. This percentage is much lower than in previous setting of k = 9. In about 15% of the repeats

AMVL has outperformed MAV while in only about 3% of the repeats MAV has performed better.

This shows the effect of the elimination criteria cumulates after many iterations.

The above comparisons suggest that on average the iterative elimination algorithm performs

better with the AMVL criterion than with the MAV criterion. Because exceptions do occur, in

practice a greedy search is suggested in case that two criteria select different variables to eliminate.

Notice that this happens with only a very small probability. The additional computation time will

not be too much.
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Figure 1: Differences of variances captured by sparse PCs obtained via the AMVL criterion and the

simple thresholding MAV criterion. On the left the sparsity is set at k = 9. On the right

the sparsity is set at k = 5.

3.2 A simulated example

The following simulated example was introduced in Zou et al. (2006) and has been used to test the

correctness of sparse PCA methods. Three hidden vectors are given as

V1 ∼ N(0, 290), V2 ∼ N(0, 300), V3 = −0.3V1 + 0.925V2 + ε

where V1, V2 and ε are independent and ε ∼ N(0, 1). Then 10 observable variables are generated:

Xi = V1 + εi, for i = 1, 2, 3, 4

Xi = V2 + εi, for i = 5, 6, 7, 8

Xi = V3 + εi for i = 9, 10

where εi ∼ N(0, 1) for all i and are independent. The top two sparse PCs with sparsity k = 4 are

u1 = (0, 0, 0, 0, 0.5, 0.5, 0.5, 0.5, 0, 0)>,

u2 = (0.5, 0.5, 0.5, 0.5, 0, 0, 0, 0, 0, 0)>.

Simple thresholding method cannot select the correct variables for the first sparse PC while all

the other state-of-the-art methods can (d’Aspremont et al., 2007). With the iterative elimination

algorithm, correct result can be attained under both the AMVL and the MAV criteria.

3.3 Pit Props data

The Pit Props data (Jeffers, 1967) has become a benchmark data set for testing the performance

of sparse PCA methods. It has 180 observations and 13 variables. The first 6 PCs explain 87%
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Figure 2: Pit props: (a) cumulative variance and (b) cumulative nonzero loadings of the first 6

sparse principal components. SPCA-IE* is the result for iterative elimination with spar-

sity (7, 4, 4, 1, 1, 1).

of the total variance. So in the literature the effectiveness of the sparse PCA methods are usually

compared using the explanatory power of 6 PCs. SPCA explains 75.8% of the total variance using

6 PCs with sparsity (7, 4, 4, 1, 1, 1) respectively. DSPCA explains 75.5% of the total variance with

sparsity pattern (6, 2, 3, 1, 1, 1). GPower explains 76.6% of the total variance with sparsity pattern

(6, 2, 2, 1, 1, 1) if `1 penalty is used and explains 77.2% of the total variance with sparsity pattern

(6, 3, 2, 1, 1, 1) if `0 penalty is used. DC-PCA explains 77.1% of the total variance with sparse

pattern (6, 2, 2, 1, 1, 1). We apply our iterative elimination algorithm with sparsity (6, 2, 2, 1, 1, 1),

the sparsest setting among the above ones. The 6 sparse PCs explains 77.1% of the total variance,

the same as DC-PCA and better than SPCA, DSPCA and GPower with `1 penalty. It is slightly

worse than GPower with `0 penalty but the latter requires one more nonzero loading. If we apply

the sparsity (7, 4, 4, 1, 1, 1) the percentage of the explained variance can be as high as 80.7%. The

comparison of the cumulative variance and number of sparse loadings are summarized in Figure 2.

Although DC-PCA and iterative elimination show the same performance, it is interesting to note

that they yield different sparse eigenvectors; see Table 1 below.

method PC x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13

SPCA-IE
1 0.444 0.453 0 0 0 0 0.378 0.342 0.403 0.418 0 0 0
2 0 0 0.707 0.707 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0.707 0.707 0 0 0 0 0 0 0

DC-PCA
1 0.449 0.459 0 0 0 0 0.374 0.332 0.403 0.419 0 0 0
2 0 0 0.707 0.707 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0.816 0.578 0 0 0 0 0 0

Table 1: Pit Props: Loadings for the first three sparse PCs.
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Figure 3: Ramaswamy data: (a) Variances explained by the first Sparse PC. (b) The difference of

variances explained by the the first sparse PC obtained using iterative elimination and

simple thresholding. (b) The difference of variances explained by the the first sparse PC

obtained using iterative elimination and GPower. Here GPower refers to GPower with `0

penalty.

3.4 Gene expression data

The iterative elimination algorithm is viable for “large p small n problem”, which is typical for gene

expression data. Here we test it on the Ramaswamy data.

Ramaswamy data (Ramaswamy et al., 2001) has 16063 genes and 144 samples. The first prin-

cipal component captures 45.9% of the total variance. We apply the iterative elimination algorithm

and compute the first sparse principal component for different sparsity. The results are compared

with simple thresholding method and GPower with `0 penalty. From Figure 3 (a) we see that three

methods perform quite similarly. The differences between the variances explained are less than

0.01% of the total variance. For more careful comparison, we investigate the small differences. In

Figure 3 (2) we plot the differences between the variances explained by iterative elimination and

simple thresholding when the cardinality of the sparse PC is less than 1000. It shows the iterative

elimination is almost consistently better. In Figure 3 (c) we plot the the difference between the

variances explained by iterative thresholding and GPower. We see that in most time two methods

are the same while in other cases no one can consistently win.

Recall that SPCA performs even worse than simple thresholding (Zou et al., 2006). It requires

2.5% of genes to capture similar variance (40% of the total) as the first true PC. By iterative elimi-

nation, we only need about 1.8% of genes to capture 40% of total variance.

4. Conclusions and discussions

In this paper we introduced an iterative elimination method for sparse PCA. It recursively eliminate

variables based on certain criterion, which can be either MAV criterion or AMVL criterion, and

12
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recalculate the PC on the reduced space. We demonstrate that the new AMVL criterion for the

elimination process is in general superior to the MAV criterion, especially when the variance of the

first PC is less dominant. Simulations illustrate its effectiveness in both obtaining sparse loadings

and explaining variances.

Unlike other state-of-the-art methods, the iterative elimination algorithm does not require ad-

vanced optimization processes while achieving comparable performance. We believe it deserves

attention due to its simplicity, effectiveness, and viability for very large dimensional data.

Appendix: Proof of propositions

Proof of Proposition 1. Denote by a ∈ Rp the vector with the i-th component ai = v1,i and all the

other components zero. Let b = v1 − a. Then ‖b‖ = 1 − v2
1,i. Since the i-th component of b is

zero, we have

b>Σb ≤ λ1(Σ\i)‖b‖ = (1− v2
1,i)λ1(Σ\i).

Using the facts v1 = a + b and Σv1 = λ1(Σ)v1, simple computation gives

λ1(Σ) = v>1 Σv1 = a>Σa + 2a>Σb + b>Σb

= a>Σa + 2a>Σ(v1 − a) + b>Σb

= 2λ1(Σ)a>v1 − a>Σa + b>Σb

≤ 2λ1v
2
1,i − Σiiv

2
1,i + λ1(Σ\i)(1− v2

1,i).

Our conclusion follows by the rearrangement of terms in the above inequality.

Proof of Proposition 2 Without loss of generality we only prove for t = 1. The proof for t > 1

follows the same idea.

For any unit vector v, it can be written as v = αu1 + βw for some unit vector w that is

orthogonal to u1 and α2 + β2 = 1. Direct computation gives

v>ΣH
2 v = β2w>Σ1w + 2αβu>1 Σ1w (5)

v>ΣP
2 v = β2w>Σ1w (6)

v>ΣS
2 v = β2w>Σ1w + β2(u>1 Σ1w)2/σ1 (7)

The conclusion is an easy consequence of the following obvious inequality:

v>ΣS
2 v ≤ v>ΣP

2 ≤ max(vv>ΣH
2 v, ṽ>ΣH

2 ṽ)

where ṽ = αu1 − βw is also a unit vector.

13
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Proof of Proposition 3 Again we only consider t = 1. Write u∗2 = α∗u1 +β∗w∗ where ∗ represent

H, P or S for three different deflations. Then it is easy to check that ∆∗
2 = w>∗ Σw∗. By (6), in

order for uP
2 to be the leading eigenvector of ΣP

2 we should have βH = 1. So we must have

∆H
2 = w>

HΣwH = w>
HΣP

2 wH ≤ (uP
2 )>ΣP

2 uP
2 = w>

P ΣwP = ∆P
2 .

Similarly we can prove ∆S
2 ≤ ∆P

2 .
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