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Abstract. A methodology for imposing approximate plane strain conditions in magnetic
resonance elastography through physical constraint is described. Under plane strain conditions,
data acquisition and analysis may be conducted in two dimensions, which reduces imaging and
reconstruction time significantly compared with three-dimensional analysis. Simulations and
experiments are performed to illustrate the constraint concept. A signal/noise analysis of a two-
dimensional linear inversion technique for relative elastic modulus is undertaken, and modifications
to the numerical method are described which can reduce the SNR requirements by a factor of two to
four. Experimentally measured data are reconstructed to illustrate the performance of the method.

1. Introduction

Contrast based on tissue elastic properties has significant potential for imaging breast cancer
and other disease (Sarvazyan et al 1994). Since MR imaging is not directly sensitive to
elastic modulus, such properties must be calculated from measurements of displacement.
Displacement within an object is generated by either quasistatic or oscillatory stresses applied
mechanically at the object surface, or remotely by other means such as ultrasound (Andreev
et al 1997). In MRI, displacement is reliably measured with phase contrast methods (Pelc
et al 1991). Thus the procedure of MR elastography (MRE) is composed of two distinct
phases: acquisition of the displacement vector field through combined MRI and applied stress,
followed by a data processing stage in which elastic modulus values and other variables may
be calculated from raw displacement data (Ophir et al 1997).

Strain images represent a good method of displaying the results of MR elastography.
They require only moderate SNR and can be computed promptly. For simple geometries such
as focal masses, strain is related linearly to elastic modulus (Plewes et al 2000), and may
suffice as a reconstruction method. In situations where more accurate modulus depiction is
required, a calculation of the modulus based on governing partial differential equations and
known boundary conditions may be performed. This calculation is ill-conditioned, and thus
SNR requirements are high and the computation time is significant. Nevertheless, a number of
investigators have pursued this approach with their displacement data (Skovoroda et al 1995,
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Chenevert et al 1998, Kallel and Bertrand 1996, Manduca et al 1996, Dutt et al 1997, Sinkus
et al 1999, Weaver et al 1999).

In this paper, we review previous inverse methods employed in MRE, and then focus
on the linear inversion approach with a signal/noise analysis, and modifications for improved
noise performance. We also describe a strategy for MR elastography that applies physical
constraints to create an approximate state of plane strain in the object. Under plane strain, it
is possible to perform accurate modulus reconstruction on two-dimensional strain data; this
represents large potential savings in data acquisition and reconstruction time compared with
the alternative of making three-dimensional strain measurements.

1.1. Inverse methods for elastography

The Navier vector equation is derived from Hooke’s law, Newton’s law and the continuum
hypothesis (Chandrasekharaiah and Debnath 1994). In the following simplified form, it
governs deformations in linear, isotropic elastic materials:

∇(λ∇ · u) + µ(∇2u + ∇∇ · u) + (∇µ)(∇u + ∇uT ) = γ
∂u

∂t
+ ρ

∂u

∂t2
(1)

where λ is a Lamé constant, µ the shear modulus and u is the displacement vector field.
On the right-hand side, γ and ρ are the material parameters of viscous damping and density
respectively. Depending on whether or not the data are acquired under dynamic loading
conditions, the right-hand side may be omitted. In MRE, the shear modulus µ is the primary
unknown of interest. Although the Lamé constant λ is also unknown, it can be eliminated by
several means as described below.

There are two basic approaches to solving (1) numerically for modulus µ. If the equation
is discretized directly with modulus as the unknown, it may be solved with standard linear
algorithms (Hansen et al 1998). This requires boundary conditions in terms of the unknown
elastic modulus, although it may be sufficient to assume a constant boundary modulus to achieve
a relative modulus reconstruction. Alternatively, (1) may be solved in the usual forward sense
with displacement as the unknown, based on a current estimate of modulus. The modulus
estimate is updated through some nonlinear algorithm and the process repeated iteratively
until the calculated displacement converges to experimentally measured displacement (Kallel
and Bertrand 1996, Bishop and Plewes 1998). In this approach, exact displacement boundary
conditions are available from the experimental data. In either case, most inversion methods
published to date (Skovoroda et al 1995, Chenevert et al 1998, Kallel and Bertrand 1996,
Manduca et al 1996, Dutt et al 1997, Weaver et al 1999) have assumed linear elasticity, small-
strain deformation and two-dimensional plane strain conditions. These assumptions limit the
number of unknown variables and spatial locations such that the resulting matrix equation may
be solved with a desktop workstation in a reasonable amount of time.

Skovoroda et al (1995) were the first to describe inverse calculations of elastography
data, using a direct linear inversion of (1). Assuming tissue incompressibility, λ∇ · u is
indeterminate and was therefore eliminated analytically by taking another partial derivative.
In two dimensions, equation (1) thus reduces to a scalar equation involving a single (unknown)
modulus quantity (µ) and two (known) displacement components (u1, u2). Phantom results
were shown for a 20 × 20 (4 mm2 pixel) grid, 5 mm deformation and low-contrast modulus
ratio <2. Chenevert et al have applied the Skovoroda method to static MR displacement data
(Chenevert et al 1998). Results were shown in phantoms and ex vivo kidney encased in gel
for a 128 × 128 grid and 1.5 mm compression. More recently, the method was extended to
account for nonlinear effects, and an integral formalism introduced for improved performance
with noisy data (Skovoroda et al 1999).
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Kallel has presented a nonlinear iterative solution for static ultrasound data (Kallel and
Bertrand 1996). In that approach, (1) is expressed using Poisson’s ratio in place of Lamé
constant λ:

λ = 2µν

1 − 2ν
(2)

and a near-incompressible value of ν = 0.495 is assigned for all tissues, leaving only modulus
µ as a single unknown. A Gauss–Newton algorithm was used to solve the least-squared error
minimization problem

min ||u(µ) − um||2 (3)

in an iterative fashion. Here, um represents the experimentally measured displacement data,
and u(µ) represents the calculated displacement from the current estimate of modulus. Results
were shown in simulated data with and without noise for a 25 × 25 grid, 0.5 mm compression,
and low-contrast modulus ratio of 3.

Ehman et al have presented two inversion methods to analyse dynamic shear wave MR
data. Initially, modulus is inferred through estimation of local wavelength (Manduca et al
1996). The resolution of this method is related to the shear wavelength, but it is straightforward
to implement. As an extension of this method, equation (1) was expressed as an inverse
scattering problem and solved iteratively (Dutt et al 1997). Results were presented for noise-
free simulated data on a 128 × 128 grid (1 mm2), and low modulus contrast <3.

Recently, Sinkus et al (1999) and Weaver et al (1999) analysed MR elastography data
with a steady-state harmonic model where the displacement u = Ueiωt :

∇(λ∇ · U) + µ(∇2U + ∇∇ · U) + ∇µ(∇U + ∇UT ) = −ωγU + ω2ρU . (4)

Weaver solved this equation with the Poisson’s ratio approximation (equation (2), ν = 0.49)
and an iterated Gauss–Newton method. As a further refinement to break down the
computational load, the reconstruction field of view was subdivided into smaller regions
of interest, solved in parallel, and reassembled. Sinkus et al were the first to produce
a three-dimensional reconstruction from 3D displacement data. Using the Poisson’s ratio
approximation and assuming that modulus is locally constant (∇µ = 0):

E

2(1 + ν)
∇2U +

E

2(1 + ν)(1 − 2ν)
∇∇U = −ωγU + ω2ρU (5)

thereby converting the boundary value problem to a pixel-by-pixel calculation.
Finally, Plewes et al (2000) have described an iterative approach that is highly constrained

through use of a priori knowledge of the lesion geometry. This method is ideal for assessing
focal masses where the inclusion can be segmented from normal tissue along a discrete
boundary. It is computationally efficient in that the modulus update calculation is performed
on a pixel-by-pixel basis as in Sinkus et al (1999), rather than solving a system of simultaneous
equations as in Kallel and Bertrand (1996) or Weaver et al (1999).

In the following section, we describe modifications to the linear inversion technique of
Skovoroda et al (1995) in the handling of the Lamé constant λ, and in the use of regularization.
These modifications are then shown to reduce the SNR requirements in the displacement data.

2. Theory

Plane strain conditions are often used to describe a cross-sectional state of stress in an object
which is very long. It is assumed that motion in the long dimension is negligible compared with
motion in the cross-sectional dimensions. Thus, a state of symmetry can be employed to make
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approximate solutions in two dimensions. Most previous discussions of inverse problems in
MR elastography assume plane strain conditions, but it is noted that such approximations are
not very accurate for spherical inclusions (Bilgen and Insana 1998). However, an approximate
state of plane strain can be achieved by simply constraining the material in one dimension, as
shown below. The rest of this section assumes two-dimensional plane strain.

In incompressible materials such as soft tissue, the term λ∇ · u in (1) is indeterminate. It
can be replaced by a variable p which is interpreted as the average pressure-stress. The vector
equation describing static equilibrium in a linearly elastic material is thus:

∇p + µ(∇2u + ∇∇ · u) + (∇µ)(∇u + ∇uT ) = 0. (6)

Using finite difference discretization of (6), a matrix equation can be assembled:

Kx = b, x = {µ1, µ2, . . . µn, p1, p2, . . . , pn}T (7)

where x is the solution vector, K is a 2n × 2n matrix of displacement derivatives (stiffness
matrix) and b is the right-hand side vector containing boundary condition information.
Alternatively, pressure may be eliminated from (6) analytically, with the use of a third
differential operation, as shown by Chenevert et al (1998). However, we retain p as an
unknown, such that derivatives of the displacement vector field are limited to second order;
this improves the conditioning of the stiffness matrix K . Furthermore, K has a 2 × 2 block
structure of n × n submatrices Kij :

K =
(

K11 K12

K21 K22

)
(8)

which can be utilized to optionally rewrite (7) as an n × n matrix equation K ′x = b′ with:

K ′ = K11 − K12 · K−1
22 · K21, b′ = b1 − K12 · K−1

22 · b2 (9)

whereby solution x is now an n × 1 vector containing only the modulus variables µi . The
elimination of pressure has been achieved through matrix partitioning rather than partial
differentiation. The matrix partitioning operation is reliable because there are no displacement
terms in the coefficient of the ∇p term. Therefore, K22 is a noise-free orthogonal matrix and
the inverse is trivial to compute.

Tikhonov regularization (Hansen et al 1998) is formulated by the problem:

min{||Kx − b||2 + η2||L(x − x0)||2} (10)

where η is the regularization parameter, L is a Laplacian smoothing operator and x0 is an initial
solution guess. Depending on the value of η, the solution is biased towards greater smoothness
and away from the actual data in matrix K . The solution is:

xL,η = (KT K + η2LT L)−1(KT b + η2LT x0) (11)

and can be expressed in terms of the generalized singular value decomposition (GSVD) of the
matrices K, L in such a way that solutions for multiple values of η are efficiently computed
with matrix multiplication operations (Golub and van Loan 1996).

In the following sections, three variants of the stiffness matrix K are analysed, and will
be denoted as follows. K2 refers to the stiffness matrix of equation (7) with two solution
variables and size 2n× 2n. K2′ refers to the stiffness matrix of equation (9) with one solution
variable and size n × n. Finally, K1 refers to the stiffness matrix of Chenevert et al (1998)
where pressure has been eliminated analytically, with one solution variable and size n × n.
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Figure 1. The model object used in three-dimensional simulations was a cube (thin solid lines)
with a spherical inclusion (shaded). The object was discretized on a 48 × 48 × 48 grid, and
compression was simulated with a constraint (arrows) in the x3 direction. The model object used in
two-dimensional linear inversion calculations corresponds to the central x1, x2 plane of the three-
dimensional object, as outlined in the thick solid lines. The 2D object was discretized on a 32 × 32
grid.

Figure 2. Experimental apparatus used to apply quasistatic deformation to test objects in the bore
of the magnet. The sinusoidal motion of the compressor is achieved through a camshaft driven
by a rotary ultrasonic motor at 1–2 Hz. Two vertical plates are shown constraining the sample
from displacing in the horizontal direction, while the sample is free to deform in the direction
perpendicular to the page.

3. Methods

Simulations and experiments were initially conducted to demonstrate that plane-strain
conditions can be achieved in a three-dimensional object through use of physical constraints.
A three-dimensional inclusion object was simulated with a 48 × 48 × 48 mesh (figure 1).
A compression of 5% was simulated with zero-displacement constraints applied at the x3

direction boundaries. The experimental three-dimensional inclusion phantom was constructed
from plastisol PVC (M-F Manufacturing Company, Fort Worth, TX), having an inclusion
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Figure 3. Simulated and experimental strains in a three-dimensional inclusion object. (a) Simulated
results are shown for strain components e11, e22, and e33. The strain in the restricted direction (e33)
is near zero. The bottom graph shows horizontal (x1) profile plots of e11 (——), e22 (——) and
e33 (– – –). (b) Experimental results for strain components e11, e22 and e11 + e22. The bottom
graph shows horizontal (x1) profile plots of e11 (——), e22 (——), and e11 + e22 (– – –) which are
qualitatively very similar to simulation. The aspect ratio is slightly different because the phantom
was rectangular while the simulation was square.

modulus of 25.7 kPa and an exterior modulus of 11.9 kPa, as measured independently with
benchtop apparatus. The phantom was placed in an MR-compatible compressor device driven
by ultrasonic motor (USR60-N4, Shinsei Corp., Tokyo Japan) as illustrated in figure 2. Side
panels were positioned to constrain this object in the x3 direction (i.e. left/right in figure 2), and
the motion measured in orthogonal directions with a stimulated-echo phase contrast method
(Chenevert et al 1998). Imaging parameters used were Tmix = 100 ms, TE = 12.4 ms, two
signal acquisitions, 64 × 64 matrix in a 9 cm field of view, and 4 mm slice thickness. The
imaging sequence was prospectively gated to the sinusoidal motion signal, which had a period
of 660 ms and an amplitude of 4 mm.

The linear inversion was evaluated with simulated data in two-dimensional plane strain to
compare the three different discretization methods (K1, K2, K2′). The model geometry had
a circular inclusion within a square field of view, denoted by heavy lines in figure 1. The sharp
transition in modulus distribution was smoothed slightly with a 5 × 5 Gaussian convolution
filter having a full-width half-maximum of 2.2 pixels. This smoothing is required because
the finite difference approximations which are made in assembling equation (7) are first-order
central differences, meaning that sharp discontinuities cannot be properly reconstructed. A
finite element numerical method (Abaqus v5.8.1, HKS Inc.) was used to generate displacement
data from this geometry corresponding to a strain of 5%. Normally distributed noise was added
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Figure 4. The stiffness matrix condition number for each of the discretization methods
(K1, K2, K2′) is plotted as a function of grid size. The grid size is the number of discrete nodes
per spatial dimension. All subsequent inversions used a grid size of 32 × 32.

to the displacement vector to establish a signal/noise ratio in the displacement data that would
correspond to experimentally measured data. Since displacement varies throughout the field
of view in quasistatic elastography, the displacement SNR is quoted as the ratio of maximum
displacement at the object surface to standard deviation of the noise. These noisy displacement
data then became the input to the inverse calculation. The computing time for the GSVD of
the matrices K, L is proportional to n3, and took about 90 min on a Sun Ultra 10 workstation
for the K2 matrix on a 32 × 32 grid.

Two theoretical methods of selecting η were initially studied. The discrepancy principle
(Morozov 1984), which balances the residual norm (‖ Kx − b ‖2) against the noise in b,
tended to oversmooth the result in the simulations. Furthermore, the noise in b may not be
precisely known in experimental data, so this method was discarded. L-curve analysis (Hansen
et al 1998), which balances the residual norm against the smoothing norm (‖ Lx ‖2) yielded
good results for very high SNR. With the lower SNR values selected in this study, the L-
curve approach was also unsuccessful. Consequently, the ‘best’ value of η was difficult to
define in a numerical fashion. Instead, 14 trial solutions were generated with η values ranging
over two orders of magnitude. The value of η was determined empirically from that solution
which presented a reasonable balance between numerical artefact and over-smoothing of the
inclusion. The trial solutions required only a few minutes to generate once the GSVD of the
matrices K, L was available. Typical values of η ranged between 0.05 and 0.1 for the various
simulations in this study. In addition, the experimentally measured displacement data were
processed with the K2 discretization.

4. Results

Figure 3 presents simulated and experimental results for compression of a three-dimensional
object under lateral constraint. In the simulation (figure 3(a)), the strain component
corresponding to the constrained direction (e33) shows that a good state of plane strain
is achieved. The experimental results (figure 3(b)) show the strain components measured
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Figure 5. Linear inversion reconstruction results are shown for various SNR levels in the simulated
displacement data. All images are displayed with the same colourmap. (a) The left column
of images shows the modulus reconstruction by LU decomposition (unregularized) from the K2
discretization. As the SNR level decreases below 1000, the solution rapidly diverges. (b) The right
column shows the regularized modulus reconstruction for each discretization and SNR = 1000, as
well as the K2 pressure reconstruction. The regularization parameters were 0.05, 0.1 and 0.06 for
K1, K2′, K2 respectively.

in the two unconstrained dimensions e11 and e22. The component e33 was not measured
experimentally so the sum e11 + e22 is shown in comparison with the component e33 of the
simulation. A horizontal profile of e11 +e22 demonstrates that e11 � −e22. Since the Poisson’s
ratio of plastisol is >0.499 (Erkamp et al 1998), the trace of the strain tensor should be zero,
and thus it is concluded that there is virtually no strain in the x3 direction.

The stiffness matrix K can be characterized by the condition number, which is a measure
of the sensitivity to perturbations in the displacement data such as noise or discretization errors
(Golub and van Loan 1996). In figure 4, the matrix condition is plotted for each discretization
method: combined pressure/modulus (K2), modulus only by matrix partitioning (K2′) and
modulus only by partial differentiation (K1). The grid size is the number of discrete nodes
per spatial dimension. As the relative degree of perturbation approaches the reciprocal of
the condition number, the LU decomposition solution to equation (7) will typically begin to
diverge. The graph in figure 4 shows the relative advantage in matrix conditioning in K2 and
K2′ where calculation of the third spatial derivative of displacement has been avoided.

Figure 5 shows results for the linear inversions on simulated two-dimensional data. In
the left column (figure 5(a)), the LU decomposition (unregularized) modulus reconstruction
of the K2 stiffness matrix is shown for various displacement SNR between 500 and 5000.
The solution diverges for SNR below 1000. In the right column (figure 5(b)), the regularized
solution for each of the three discretizations (K1, K2, K2′) is presented for SNR = 1000.
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Figure 6. RMS error for the regularized modulus reconstruction by each discretization method
(K1, K2, K2′) is plotted as a function of the displacement SNR. Data points (circles) are connected
by straight lines for qualitative comparison.

The effect of regularization may be directly compared on the third row of the figure, where
the K2 modulus reconstruction is presented with and without regularization. Although much
artefact is removed by the regularization, there is clearly some attenuation of the modulus as
well, so SNR = 1000 can be interpreted as a bare minimum requirement. The regularized
modulus reconstruction for K2′ is somewhat worse than for K2, and the inclusion can just be
detected in the K1 reconstruction. The pressure reconstruction from the K2 matrix is noisy
and of less intrinsic interest, except as a means of obtaining a better modulus reconstruction.

Figure 6 plots the rms error in the modulus reconstruction returned by the three methods
of discretization. Depending on the tolerance on this reconstruction error, the K2 and K2′

discretization methods offer from two to four times reduction in required SNR for an equivalent
level of reconstruction error. Figure 7 illustrates the K2 modulus reconstruction of the
experimental data in figure 3. The magnitude image (figure 7(a)) shows a relatively good
SNR of about 60. There are approximately two cycles of phase wrap in the data, so the
corresponding displacement SNR is roughly 2×2π×60 = 750. The noise was further reduced
by 50% using a 9 × 9 Gaussian convolution filter of full-width half-maximum 1.5 pixels prior
to reconstruction. In addition to reducing noise, this filter also smooths the discontinuity in the
displacement data due to the sharp boundary of the inclusion, as required for central difference
approximation of differentiation. The regularized modulus reconstruction is shown as a value
relative to 1 in the background region of the phantom (figure 7(b)). Figure 7(c) shows a line
profile of the reconstructed modulus, and a simulated profile corresponding to the benchtop
measurements of elastic modulus in the separate material components of the phantom.

5. Conclusions

In direct linear inversion of MR elastography data, SNR requirements are fairly high due to
the ill-conditioning of the inversion equations. We have described the benefits of solving
for pressure simultaneously with elastic modulus in a linear inversion procedure. Retaining
pressure as an unknown has the advantage of improving the conditioning of the numerical
problem, but it carries an additional computational expense of roughly a factor of eight.
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Figure 7. (a) A 32 × 32 region of interest in the magnitude image of the three-dimensional
inclusion phantom shows relatively high SNR of 60. The inclusion appears dark, due to a shorter T2
relaxation time. The dark area at bottom right is an air bubble. (b) Relative modulus reconstruction
of experimental data from K2 discretization on a 32 × 32 grid. (c) Line profile of reconstructed
modulus (solid line) compared with the true modulus of the phantom as measured separately on
benchtop apparatus (dashed line).

If matrix partitioning (rather than partial differentiation) is used to eliminate the pressure
term, a good compromise is obtained whereby computation time is not affected, but some
noise tolerance is gained. The decrease in SNR that can be tolerated by using the K2 or K2′

discretizations ranges from two to four. The recent integral formulation of the K1 discretization
(Skovoroda et al 1999) is also designed to address this noise sensitivity.

Many investigators have identified the goal of solving a three-dimensional modulus dis-
tribution with accompanying 3D displacement data set. However, even a low-resolution 3D
reconstruction is a challenging numerical problem and data acquisition requirements are sub-
stantial (Chenevert et al 1999). As an alternative, we have demonstrated with phantoms made of
incompressible materials that confinement techniques may be used to effectively produce plane-
strain conditions, such that measurement and analysis can be conducted in two dimensions.

The sensitivity to perturbation in the inversion equations means that filtering must be
considered for two purposes. If the displacement SNR is low, then the noise must be reduced
to obtain SNR > 1000. If the SNR is high, some filtering must still be applied to eliminate
discontinuities which cannot be reconstructed by low-order finite difference approximations. It
is possible to use finite difference approximations corresponding to higher-order interpolating
polynomials, but if it is known in advance that some low-pass filtering will be required to deal
with noise in the data, then first-order approximations are sufficient. While the requirement
of SNR > 1000 is high, we have recently demonstrated in vivo displacement SNR of 300 in
parenchymal tissue (Plewes et al 2000). In that procedure, two components of displacement
were obtained in one slice location during four minutes of scan time. Improvements to our
phased array detector, combined with the option of increasing the relatively brief scan time,
should be sufficient to obtain a displacement SNR of 1000 in vivo. Nevertheless, the linear
inversion is a demanding problem and may ultimately be inappropriate for use in vivo; Plewes
et al (2000) also contains a discussion of a more robust reconstruction methodology.
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In the context of breast MRI, it can be assumed that lesion detection is accomplished
with Gd-DTPA enhanced 3D MRI. Elastography must only help classify a particular lesion as
benign or malignant. Thus, reconstruction is only required on a localized ROI surrounding a
specific lesion of interest, which greatly simplifies the numerical complexity of the problem, as
originally noted in Skovoroda et al (1994). The 32 × 32 grid described above is representative
of the size required for a localized reconstruction.
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