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Abstract—This paper investigates transmission strategies in
a MIMO wiretap channel with a transmitter, receiver and
wiretapper, each equipped with multiple antennas. In a departure
from existing work, the wiretapper is able to act either as a
passive eavesdropper or as an active jammer per channel use,
under a half-duplex constraint. The transmitter therefore faces a
choice between dynamically allocating all of its power for data;
or broadcasting artificial noise along with the information signal
in order to selectively degrade the eavesdropper’s channel. We
model the network as a zero-sum game in strategic form with the
MIMO secrecy rate as the payoff function. We first carry out a
detailed analysis of the various rate outcomes that result from the
possible actions of the agents. We then discuss the conditions for
equilibrium outcomes in the strategic form of the game. Finally,
numerical simulations are presented to corroborate the analytical
results.

I. INTRODUCTION

The two fundamental characteristics of the wireless
medium, namely broadcast and superposition, present dif-
ferent challenges in ensuring secure communications in the
presence of adversaries. The broadcast nature of wireless
communications makes it difficult to shield transmitted signals
from unintended recipients, while superposition can lead to
the overlapping of multiple signals at the receiver. As a result,
adversarial users are commonly modeled either as (1) a passive
eavesdropper that tries to listen in on an ongoing transmission
without being detected, or (2) a malicious transmitter (jammer)
that tries to degrade the signal at the intended receiver. Two
distinct lines of research have developed to analyze networks
compromised by either type of adversary, as summarized
below.

A network consisting of a transmitter-receiver pair and a
passive eavesdropper is commonly referred to as the wiretap
channel. The information-theoretic aspects of this scenario
have been explored in some detail [1], [2]. In particular,
this work led to the development of the notion of secrecy
capacity, which quantifies the rate at which a transmitter
can reliably send a secret message to the receiver, without
the eavesdropper being able to decode it. Ultimately, it was
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shown that a non-zero secrecy capacity can only be obtained
if the eavesdropper’s channel is of lower quality than that
of the intended recipient. The work cited above assumes
single antenna nodes; secrecy capacity for the multiple-input
multiple-output (MIMO) wiretap channel, where all nodes may
possess multiple antennas, has been studied in [3]-[5], for
example.

The impact of malicious jammers on the quality of a
communication link is another problem of long-standing in-
terest, especially in mission-critical and military networks. A
common approach is to model the transmitter and the jammer
as players in a game-theoretic formulation with the mutual
information as the payoff function, and to identify the optimal
strategies for both parties [6], [7]. Recent work has extended
this technique to MIMO and relay channels with various levels
of channel state information (CSI) available to the transmitters
[8]-[12].

In this paper, we consider a MIMO communication link in
the presence of a more sophisticated adversary: a wiretapper
with the dual capability of either eavesdropping passively or
jamming any ongoing transmission, also referred to as an ac-
tive eavesdropper. A strategic game formulation of the system
where one of the nodes moves first is investigated. However,
in a departure from the previous work referenced above, the
game payoff function is now chosen to be the MIMO secrecy
rate between the legitimate transmitter-receiver pair. [13] in-
dependently considered the active eavesdropper scenario with
single-antenna nodes and proposed robust secrecy-preserving
encoding schemes.

The paper is organized as follows. In the next section, the
assumed mathematical and active eavesdropper model is pre-
sented. The secrecy rate outcomes are analyzed in Section III,
followed by a description of the strategic game framework in
Section IV. The resulting system performance is studied via
simulation in Section V, and we conclude in Section VI.

Notation: E{·} denotes expectation, (·)T the transpose, (·)H
the Hermitian transpose, (·)−1 the matrix inverse, Tr(·) is the
trace operator, [A]p,q denotes the (p, q) entry of matrix A,
|·| is the matrix determinant, and I is an identity matrix of
appropriate dimension.
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II. MATHEMATICAL MODEL

We study the MIMO wiretap problem in which three
multiple-antenna nodes are present: a transmitter (Alice), a
receiver (Bob), and a malicious user (Eve). Alice does not have
knowledge of the instantaneous CSI of the eavesdropper, but
she knows its distribution. Therefore, Alice has the option of
utilizing all her power for transmitting data to Bob, regardless
of channel conditions or potential eavesdroppers. Alternatively,
she can split her power and simultaneously transmit the infor-
mation vector and an ‘artificial interference’ signal that jams
any unintended receivers other than Bob. While suboptimal
in general, the artificial interference scheme does not require
knowledge of Eve’s instantaneous CSI and is therefore suitable
for deployment against passive eavesdroppers [5], [14]–[17].
Eve seeks to disrupt the information rate between Alice and
Bob by choosing to either eavesdrop or jam Bob in every
transmission interval.

A. MIMO Wiretap Channel

Assuming Eve jams Bob, the signals received by Bob and
Eve can be represented as follows:

yb = Hbaxa +Hbexe + nb (1)
ye = Heaxa + ne, (2)

where xa is the signal vector transmitted by Alice, xe

is the Gaussian, spatially white jamming signal from Eve,
nb,ne are the naturally occurring additive noise at Bob and
Eve, respectively, and Hba,Hbe,Hea are the corresponding
Nb×Na, Nb×Ne, Ne×Na complex Gaussian channel matrices
with standard normal elements. Alice is assumed to have
perfect knowledge of the realization of Hba and the statistics
of Hbe,Hea. On the other hand, Eve knows the instantaneous
value of Hea and the statistics of Hbe,Hba. An operational
coding scheme for Alice is to employ Gaussian signaling with
appropriate spatial power allocation over her transmit antennas
[5].

The background noise at all receivers is assumed to be
spatially white and zero-mean complex Gaussian:

E{nkn
H
k } = σ2

kI; k = b, e.

Alice’s transmit power is assumed to be bounded,

E{xax
H
a } = Qa Tr(Qa) ≤ Pa.

Similarly, Eve has a power constraint of Pe when in jamming
mode.

In the most general scenario where Alice jams Eve, we have

xa = Tz+Tz′, (3)

where T,T′ are the Na × d, Na × (Na − d) beamforming
matrices for the d × 1 information vector z and uncorrelated
(Na − d) × 1 jamming signal z′, respectively. To ensure the
orthogonality of the information and artificial noise signals
when received by Bob, T and T′ can be formed from the

columns of the right singular vectors of Hba, for example.
Thus, Qa may be expressed as

Qa = TQzT
H +T′Q′

zT
′H , (4)

where Qz,Q
′
z are covariance matrices associated with z and

z′, respectively, Tr(TQzT
H) ≤ ρPa, and Tr(T′Q′

zT
′H) ≤

(1− ρ)Pa.
Define H , {Hba,Hbe,Hea} for brevity.The resultant

performance metric adopted in this work is the MIMO secrecy
rate achieved by Gaussian signaling and uniform spatial power
allocation by Alice and Eve:

Rs = EH
{
log2

∣∣σ2
b I+HbaTQzT

HHH
baQ

−1
b

∣∣
− log2

∣∣σ2
eI+HeaTQzT

HHH
eaQ

−1
e

∣∣} ; (5)

where Qb,Qe are the received interference-plus-noise covari-
ance matrices at Bob and Eve. Note that Alice must decide
how many spatial dimensions are to be used for artificial
noise, and what is the optimal fraction ρPa of transmit power
distributed over them. An exhaustive search for the above was
used in [14], while the authors proposed a low-complexity
suboptimal approach in [16]. For the MISO wiretap channel,
it was shown in [17] that an equal power allocation (ρ = 0.5)
is close to optimal. The game-theoretic results obtained in this
paper hold for either an optimal or a pre-determined power and
data stream allocation.

III. RATE THRESHOLDS

It is vital to compare the various rate outcomes resulting
from Alice and Eve’s actions as a precursor to the game-
theoretic development of Section IV. To accomplish this, we
first review some general results from random matrix theory
that assist our analysis of the MIMO rate outcomes.

A. Asymptotic MIMO Rates

Let X represent the MIMO channel from a desired source
with signal-to-noise ratio (SNR) α, and Y the channel from an
interferer with interference-to-noise ratio (INR) η. Assuming
uniform power allocation at both transmitters, the ergodic
MIMO information rate with interference and Gaussian back-
ground noise is given by

RI = EX,Y

{
log

∣∣∣∣I+ αXXH
(
I+ ηYYH

)−1
∣∣∣∣} . (6)

When interference is absent and thermal noise is the only
impairment at the receiver, the MIMO information rate in
(6) reduces to R = E

{
log

∣∣∣I+ αXXH
∣∣∣}. Let λ represent

an arbitrary eigenvalue of the Wishart matrix XXH . Then,
since the determinant function is equal to the product of the
eigenvalues of the argument, we can write

R = min(Na, Nb)Eλ {log (1 + αλ)} . (7)

The closed-form expression for this expectation in terms
of generalized Laguerre polynomials is well known in the
literature [18].
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However, a more tractable expression for the ergodic MIMO
capacity is available based on asymptotic results in the limit
of a large number of antennas, as described next. Define β ,
Nb

Na
as the ratio of transmit to receive antennas. For Wishart

matrices, the asymptotic marginal probability density function
of an arbitrary (unordered) eigenvalue is known to be [18]

p (λ) =

 1
π

√
β
λ − 1

4

(
1 + β−1

λ

)2

,

0,

(√
β − 1

)2 6 λ 6
(√

β + 1
)2

otherwise.

(8)
Based on (8), a closed-form expression can be found for

the asymptotic ergodic MIMO capacity with uniform power
allocation as [21]

NaEλ {log (1 + αλ)} = Na · F (β, α) , (9)

where

F (β, α) = log

(
1 + α

(√
β + 1

)2
)

+
(√

β + 1
)
log

(
1 +

√
1− a

2

)
− log (e)

√
β
1−

√
1− a

1 +
√
1− a

+ (β − 1) log

(
1 + γ

γ +
√
1− a

)
(10)

and

a =
4α

√
β

1 + α
(√

β + 1
)2 ; γ =

√
β − 1√
β + 1

. (11)

Though originally derived under an asymptotic assumption,
(9) has been shown to be very accurate even for small and
medium-sized antenna array dimensions.

Next, we revisit the general MIMO information rate with
interference in (6). Under an interference-limited assumption,

RI ≈ EX,Y

{
log

∣∣∣∣I+ αXXH
(
ηYYH

)−1
∣∣∣∣}. Subsequently,

we can reformulate the expectation in terms of the eigenvalues

of the F -distributed random matrix XXH
(
YYH

)−1

, and
for which a cumbersome closed-form expression is computed
in terms of the Gaussian hypergeometric function in [eq.
(23)][20].

The asymptotic random matrix analysis technique has been
extended to the MIMO capacity with interference in [22],
[23], for example. In [22], a set of four simple closed-form
expressions for the MIMO rate in the high-SNR regime is
derived for different ratios of Na/Nb (transmitter to receiver
antennas), under the assumption Na = Ne. In [23], the replica
approach is used to obtain a more involved expression for
the first-order approximation of the mean value of the MIMO
mutual information at any SNR. However, we propose to
extend the result of (9) in a straightforward manner to obtain
a unified and more usable expression for the ergodic MIMO
rate under interference.

Lemma 1: In a MIMO channel where the legitimate trans-
mitter, receiver, and interferer have Na, Nb, Ne antennas re-
spectively, the asymptotic MIMO information rate with receive
SNR α and INR η can be bounded as

RI 6 (Na +Ne)F

(
Nb

Na +Ne
, (α+ η)

)
−NeF

(
Nb

Ne
, η

)
,

(12)
where F (β, α) is defined in (10).

Proof : Rewrite (6) as

RI = EX,Y

{
log

∣∣∣I+ αXXH + ηYYH
∣∣∣}

− EY

{
log

∣∣∣I+ ηYYH
∣∣∣} . (13)

The first term is equivalent to the sum rate of a two-user
MIMO multiple access channel (MIMO MAC) with uniform
power allocation at each transmitter. The second term repre-
sents the MIMO rate between the interferer and the destination
when treating the jamming signal as information. Since the
transmitters cannot cooperate in the MIMO MAC, the sum
rate of the MIMO MAC is upper-bounded by the rate of
the equivalent point-to-point MIMO channel with composite
channel H =

[
X Y

]
, (Na +Ne) transmit antennas, and

effective SNR (α+ η). This leads to an upper bound on the
MIMO interference rate as

RI 6 EH

{
log

∣∣∣I+ (α+ η)HHH
∣∣∣}−EY

{
log

∣∣∣I+ ηYYH
∣∣∣} .

(14)
Applying the expression for the asymptotic MIMO rate

without interference in (9) to each of the two terms on the
right hand side of (14) leads to (12).

B. MIMO Secrecy Rate Analysis

We now return our attention to the rate outcomes of the
MIMO wiretap game. We focus on the achievable MIMO
secrecy rate instead of maximizing the mutual information
to compute the secrecy capacity. The lack of instantaneous
knowledge of Hbe and the half-duplex constraint prevents
Eve from detecting the transmitted signal z and then applying
correlated jamming [8]. Therefore, Eve is assumed to employ
a Gaussian jamming signal with uniform per-antenna power
allocation.

Define the effective channels conveying information z from
Alice to Bob and Eve as H̃ba , HbaT and H̃ea , HeaT,
respectively. Since T is a submatrix of an isotropically-
random unitary matrix, H̃ba and H̃ea are also zero-mean
complex Gaussian matrices with i.i.d elements. Furthermore,
E
{
(HeaT

′)
H
HeaT

}
= 0 due to the orthonormality of

T,T′. However, the elements of H̃ba have a variance greater
than unity due to the truncation of (Na − d) eigenvalues. In
order to apply the random matrix results stated thus far, it is
necessary to normalize the effective channel H̃ba to obtain
unit variance elements. The exact normalization constant is
difficult to obtain analytically, therefore we scale H̃ba by an
approximate factor

√
d/Na [14]. In the sequel, this normal-

ization factor is absorbed into the transmit power constraint.
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From the general expression in (5), the secrecy rate between
Alice and Bob when Eve is in eavesdropping mode is

Ri,E = EH{log
∣∣I+HbaTQzT

HHH
ba/σ

2
b

∣∣
− log

∣∣I+ g1HeaTQzT
HHH

eaQ
−1
e /σ2

e

∣∣};(15)

whereas the transmission rate of the main channel while being
jammed by Eve is

Ri,J = EH
{
log

∣∣I+HbaTQzT
HHH

baQ
−1
b /σ2

b

∣∣} , (16)

where i = F,A denotes the transmission strategies available
to Alice, and the interference-plus-noise covariance matrices
for Bob and Eve are

Qb = g2
Pe

Ne
HbeH

H
be + σ2

b I (17)

Qe = g1HeaT
′Q′

zT
′HHH

ea + σ2
eI. (18)

In view of (9) and (12), the asymptotic rate outcomes are

RA,E ≈ d · F
(
Nb

d
, ρPa

Na

d

)
− [NaF

(
Ne

Na
, g1Pa

)
− (Na − d)F

(
Ne

Na − d
, g1 (1− ρ)Pa

)
] (19)

RA,J ≈ (Ne + d)F

(
Nb

Ne + d
, ρPa

Na

d
+ g2Pe

)
−NeF

(
Nb

Ne
, g2Pe

)
(20)

RF,E ≈ NaF

(
Nb

Na
, Pa

)
−NaF

(
Ne

Na
, g1Pa

)
(21)

RF,J ≈ (Ne +Na)F

(
Nb

Na +Ne
, Pa + g2Pe

)
−NeF

(
Nb

Ne
, g2Pe

)
. (22)

The asymptotic rates are compared with the exact rate expres-
sions obtained through Monte Carlo trials in Fig. 1, which
demonstrates reasonable accuracy at low to intermediate SNRs
even for small antenna arrays.

In [5], the instantaneous MIMO secrecy rate with artificial
interference at high SNR is characterized in terms of the
generalized singular values of (Hba,Hea). A closed-form
lower bound for the ergodic MISO (Nb = 1) secrecy rate
with artificial interference is derived using the Gauss hyperge-
ometric function in [17]. In contrast, the expressions derived
in (19)-(22) explicitly display the various system parameters,
and are also amenable to analysis.

It is apparent that any comparison of the relative magnitudes
of a pair of rates taken from those defined in (15)-(16) would
involve a large number of parameters. It is therefore convenient
to vary a subset of the parameters while holding the others
constant when comparing the different rate outcomes as:

1) The relative transmit power budgets Pa and Pe.
2) The relative antenna array dimensions Na and Ne.
3) The relative channel qualities

√
g1 and

√
g2.
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Fig. 1. Comparison of exact and asymptotic MIMO rate outcomes, Na =
7, Nb = Ne = 5 and g1 = 0.8, g2 = 1.2.

This exercise is demonstrated for several cases in the numer-
ical results in Sec. V.

It is instructive to examine the behavior of the rate out-
comes for several limiting cases. As an example, consider the
scenario where Nb and Ne both grow asymptotically large
with respect to Na, i.e., Nb

Na
→ ∞, Ne

Na
→ ∞, and Nb

Ne
→ 1,

while transmit powers and channel gains remain finite. It
can be shown that F (β, α) ≈ log (β) as β → ∞, whereas
F (1, α) ≈ log (1 + 4α)−2− log (e) if β → 1. Consequently,
for the large-antenna regime we obtain

RA,E ≈ d log

(
Nb

d

)
−Na log

(
Ne

Na

)
+ (Na − d) log

(
Ne

Na − d

)
(23)

RA,J ≈ (Ne + d) log

(
1 + 4

(
ρPa

Na

d
+ g2Pe

))
−Ne log (1 + 4g2Pe) (24)

RF,E ≈ Na log

(
Nb

Na

)
−Na log

(
Ne

Na

)
(25)

RF,J ≈ Ne log (1 + 4 (Pa + g2Pe))

−Ne log (1 + 4g2Pe) . (26)

The above expressions reinforce the belief that RF,E ≤ RA,E ,
and RA,J ≤ RF,J which is always true for any antenna and
power regime.

IV. STRATEGIC GAME

In this section we construct the zero-sum game model of the
wiretap game by building upon the rate results derived in the
previous section. Define the payoff to Alice as the achievable
MIMO secrecy rate between her and Bob as defined in (5).
Modeling the strategic interactions between Alice and Eve as a
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strictly competitive simultaneous-move game leads to a zero-
sum formulation, where Alice tries to maximize her payoff
and Eve attempts to minimize it. We can define the following
strategy sets X,Y for the players: Alice chooses between
transmitting with full power for data (F) or devoting some
power to jam Eve (A), described as X = {F,A}. On the other
hand, Eve must decide between eavesdropping (E) or jamming
Bob (J) at every channel use, represented by Y = {E, J}.

Alice

Eve
Eavesdrop (E) Jam Bob (J)

Full Power (F) RF,E RF,J

Artificial Noise (A) RA,E RA,J

Fig. 2. Strategic form payoff matrix of the MIMO wiretap game.

A. Pure-strategy Equilibria
If we assume that both Alice and Eve move simultaneously

without knowledge of the action taken by the other, the
strategic form of the game can be represented by the 2 × 2
payoff matrix R in Fig. 2. In the sequel, for ease of exposition
we assume RF,E ≤ RF,J holds even in the finite antenna
regime, which is seen to be true for the specific examples
simulated in Section V. The sequential or dynamic version of
this game was considered by the authors in [26], and led to
a different set of solution concepts, namely subgame-perfect
and sequential equilibria.

Proposition 1: A single pure-strategy saddle-point or Nash
Equilibrium (NE) with the outcome either as RA,E or RF,J

exists in the proposed MIMO wiretap game, if and only if
RA,E ≤ RA,J .

Proof : Consider the game where Alice plays A and Eve
plays J . From (16) it is trivial to see that Alice can unilaterally
increase her payoff by devoting all her power to transmitting
information, i.e., Alice has an incentive to switch to (F, J)
since RF,J weakly dominates RA,J . Subsequently, Eve has
an incentive to switch from (F, J) to (F,E) if RF,E < RF,J ,
otherwise RF,J is the NE. However, if Eve switches from
(F, J) to (F,E), Alice will prefer to switch to (A,E), since by
definition RA,E ≥ RF,E . Therefore the existence of a saddle-
point in the pure strategy RA,E or RF,J , depends on either
RA,E ≤ RA,J or RF,J ≤ RF,E being true.

B. Mixed-strategy Equilibria
Proposition 1 establishes that there is no single strategy

choice that is always optimal for either player depending upon
the comparison between RA,E , RA,J and RF,J , RF,E . There-
fore, since the minimax theorem guarantees that any finite
zero-sum game has a saddle-point in randomized strategies
[?], in such a scenario Alice and Eve must randomize over
X × Y , i.e., adopt mixed strategies.

Let p = (p, 1 − p) and q = (q, 1 − q) represent the
probabilities with which Alice and Eve randomize over their
strategy sets X = {F,A} and Y = {E, J}, respectively. Alice
obtains her optimal strategy by solving

max
p

min
q

pTRq, (27)

while Eve optimizes the corresponding minimax problem. For
the payoff matrix R in Fig. 2, the optimal mixed strategies
and expected value of the game can be easily derived as

(p∗, 1− p∗) = (RA,J −RA,E , RF,E −RF,J )/D

(q∗, 1− q∗) = (RA,J −RF,J , RF,E −RA,E)/D

v(p∗, q∗) = (RF,ERA,J −RF,JRA,E)/D,

(28)

where D = RF,E +RA,J −RF,J −RA,E .

V. SIMULATION RESULTS
We present some examples that show the achieved secrecy

rates for various array sizes and target performance levels.
All displayed results are calculated based on an average of
3000 independent trials. For simplicity, the power allocated
for artificial interference and the number of data streams is
set to some pre-determined value in all scenarios tested. The
background noise power was assumed to be the same for
both Bob and Eve: σ2

b = σ2
e = 1. Eve’s channel gains are

set to
√
g1 = 0.5,

√
g2 = 1.2 to model the situation where

the adversary is closer to Bob than to Alice. Since RA,J

and RF,J approach zero as Eve’s jamming power increases
asymptotically, we constrain the ratio of the transmit powers as
0 < Pe/Pa 6 10 to avoid the trivial solution of Eve choosing
to jam all the time.
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Fig. 3. Na = Ne = 4, Nb = 3, d = 2.

For the strategic game where Eve is provided with a fixed
proportion of Alice’s transmit power Pe = 0.25Pa, and
Na = Ne = 4, Nb = 3, d = 2, the resultant pure-strategy
saddle-point was observed to be RA,E as Pa varies. Since
Eve’s jamming power is less than or comparable to Pa in this
case, the best she can do is to always eavesdrop, with Alice’s
optimal strategy being to always transmit artificial noise.

Next, we test the scenario where Na = Ne = 8, Nb =
6, d = 4. If Eve’s jamming power is increased relative to Pa,
for e.g. if Pe = 4Pa, then a saddle-point in mixed strategies
results in the strategic game as shown in Fig. 4. Randomizing
over her strategies clearly leads to a larger payoff for Alice as
Eve’s jamming power increases.
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Fig. 5. Payoff versus antenna ratio Ne/Na for fixed transmit powers Pa =
100, Pe = 75, and Na = 6, Nb = 3, d = 2.

For the case of equal transmit powers Pe = Pa = 100, the
outcomes of the strategic game as the ratio of eavesdropper
to transmitter antennas varies is shown in Fig. 5. We observe
that a similar threshold in terms of Ne/Na exists (roughly
at Ne/Na ≈ 0.9) to distinguish between a pure-strategy
saddle-point and a mixed-strategy equilibrium. The theoretical
crossover point of Ne ≈ 5 for rates RA,E and RA,J is obtained
by numerically evaluating the expressions in (12).

VI. CONCLUSION

This paper formulated the interactions between a transmitter
and a dual-threat adversary capable of either eavesdropping or
jamming as a zero-sum game with the MIMO secrecy rate as
the payoff. We investigated the conditions for the existence of
both pure and mixed-strategy Nash equilibria. It was shown
that the jamming power or number of antennas available to the
eavesdropper relative to the legitimate transmitter determines
the eventual equilibrium outcome of the game.
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