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Abstract

Deformation of theworkpiece may cause dimensional problems in machining. Supports and locators are used in order to reduce the error caused

by elastic deformation of the workpiece. The optimization of support, locator and clamp locations is a critical problem to minimize the geometric

error in workpiece machining. In this paper, the application of genetic algorithms (GAs) to the fixture layout optimization is presented to handle

fixture layout optimization problem. A genetic algorithm based approach is developed to optimise fixture layout through integrating a finite

element code running in batch mode to compute the objective function values for each generation. Case studies are given to illustrate the

application of proposed approach. Chromosome library approach is used to decrease the total solution time. Developed GA keeps track of previosly

analyzed designs, therefore the number of function evaulations are decreased about 93%. The results of this approach show that the fixture layout

optimization problems are multi-modal problems. Optimized designs do not have any apparent similarities although they provide very similar

performances.
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1. Introduction

Fixtures are used to locate and constrain a workpiece during

a machining operation, minimizing workpiece and fixture

tooling deflections due to clamping and cutting forces are

critical to ensuring accuracy of the machining operation.

Traditionally, machining fixtures are designed and manufac-

tured through trial-and-error, which prove to be both expensive

and time-consuming to the manufacturing process. To ensure a

workpiece is manufactured according to specified dimensions

and tolerances, it must be appropriately located and clamped,

making it imperative to develop tools that will eliminate costly

and time-consuming trial-and-error designs. Proper workpiece

location and fixture design are crucial to product quality in

terms of precision, accuracy and finish of the machined part.

Theoretically, the 3-2-1 locating principle can satisfactorily

locate all prismatic shaped workpieces. This method provides

the maximum rigidity with the minimum number of fixture

elements. To position a part from a kinematic point of view
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means constraining the six degrees of freedom of a free moving

body (three translations and three rotations). Three supports are

positioned below the part to establish the location of the

workpiece on its vertical axis. Locators are placed on two

peripheral edges and intended to establish the location of the

workpiece on the x and y horizontal axes. Properly locating the

workpiece in the fixture is vital to the overall accuracy and

repeatability of the manufacturing process. Locators should be

positioned as far apart as possible and should be placed on

machined surfaces wherever possible. Supports are usually

placed to encompass the center of gravity of a workpiece and

positioned as far apart as possible to maintain its stability. The

primary responsibility of a clamp in fixture is to secure the part

against the locators and supports. Clamps should not be expected

to resist the cutting forces generated in the machining operation.

For a given number of fixture elements, the machining

fixture synthesis problem is the finding optimal layout or

positions of the fixture elements around the workpiece. In this

paper, a method for fixture layout optimization using genetic

algorithms is presented. The optimization objective is to search

for a 2D fixture layout that minimizes the maximum elastic

deformation at different locations of the workpiece. ANSYS

program has been used for calculating the deflection of the part
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under clamping and cutting forces. Two case studies are given

to illustrate the proposed approach.

2. Review of related works

Fixture design has received considerable attention in recent

years. However, little attention has been focused on the

optimum fixture layout design. Menassa and DeVries [1] used

FEA for calculating deflections using the minimization of the

workpiece deflection at selected points as the design criterion.

The design problem was to determine the position of supports.

Meyer and Liou [2] presented an approach that uses linear

programming technique to synthesize fixtures for dynamic

machining conditions. Solution for the minimum clamping

forces and locator forces is given. Li and Melkote [3] used a

nonlinear programming method to solve the layout optimiza-

tion problem. The method minimizes workpiece location errors

due to localized elastic deformation of the workpiece. Roy and

Liao [4] developed a heuristic method to plan for the best

supporting and clamping positions. Tao et al. [5] presented a

geometrical reasoning methodology for determining the

optimal clamping points and clamping sequence for arbitrarily

shaped workpieces. Liao and Hu [6] presented a system for

fixture configuration analysis based on a dynamic model which

analyses the fixture–workpiece system subject to time-varying

machining loads. The influence of clamping placement is also

investigated. Li and Melkote [7] presented a fixture layout and

clamping force optimal synthesis approach that accounts for

workpiece dynamics during machining. A combined fixture

layout and clamping force optimization procedure presented.

They used the contact elasticity modeling method that accounts

for the influence of workpiece rigid body dynamics during

machining. Amaral et al. [8] used ANSYS to verify fixture

design integrity. They employed 3-2-1 method. The optimiza-

tion analysis is performed in ANSYS. Tan et al. [9] described

the modeling, analysis and verification of optimal fixturing

configurations by the methods of force closure, optimization

and finite element modeling.

Most of the above studies use linear or nonlinear

programming methods which often do not give global optimum

solution. All of the fixture layout optimization procedures start

with an initial feasible layout. Solutions from these methods are

depend on the initial fixture layout. They do not consider the

fixture layout optimization on overall workpiece deformation.

The GAs have been proven to be useful technique in solving

optimization problems in engineering [10–12]. Fixture design

has a large solution space and requires a search tool to find the

best design. Few researchers have used the GAs for fixture

design and fixture layout problems. Kumar et al. [13] have

applied both GAs and neural networks for designing a fixture.

Marcelin [14] has used GAs to the optimization of support

positions. Vallapuzha et al. [15] presented GA based

optimization method that uses spatial coordinates to represent

the locations of fixture elements. Fixture layout optimization

procedure was implemented using MATLAB and the genetic

algorithm toolbox. HYPERMESH and MSC/NASTRAN were

used for FEmodel. Vallapuzha et al. [16] presented results of an
extensive investigation into the relative effectiveness of various

optimization methods. They showed that continuous GA

yielded the best quality solutions. Li and Shiu [17] determined

the optimal fixture configuration design for sheet metal

assembly using GA. MSC/NASTRAN has been used for

fitness evaulation. Liao [18] presented a method to auto-

matically select the optimal numbers of locators and clamps as

well as their optimal positions in sheet metal assembly fixtures.

Krishnakumar and Melkote [19] developed a fixture layout

optimization technique that uses the GA to find the fixture

layout that minimizes the deformation of the machined surface

due to clamping and machining forces over the entire tool path.

Locator and clamp positions specified by node numbers. A

built-in finite element solver was developed.

Some of the studies do not consider the optimization of the

layout for entire tool path and chip removal is not taken into

account. Some of the studies used node numbers as design

parameters.

In this study, a GA tool has been developed to find the

optimal locator and clamp positions in 2D workpiece.

Distances from the reference edges as design parameters are

used rather than FEA node numbers. Fitness values of real

encoded GA chromosomes are obtained from the results of

FEA. ANSYS has been used for FEA calculations. A

chromosome library approach is used in order to decrease

the solution time. Developed GA tool is tested on two test

problems. Two case studies are given to illustrate the developed

approach. Main contributions of this paper can be summarized

as follows:
(1) d
eveloped a GA code integrated with a commercial finite

element solver;
(2) G
A uses chromosome library in order to decrease the

computation time;
(3) r
eal design parameters are used rather than FEA node

numbers;
(4) c
hip removal is taken into account while tool forces moving

on the workpiece.
3. Genetic algorithm concepts

Genetic algorithms were first developed by John Holland.

Goldberg [10] published a book explaining the theory and

application examples of genetic algorithm in details. A genetic

algorithm is a random search technique that mimics some

mechanisms of natural evolution. The algorithm works on a

population of designs. The population evolves from generation

to generation, gradually improving its adaptation to the

environment through natural selection, fitter individuals have

better chances of transmitting their characteristics to later

generations.

In the algorithm, the selection of the natural environment is

replaced by artificial selection based on a computed fitness for

each design. The term fitness is used to designate the

chromosome’s chances of survival and it is essentially the

objective function of the optimization problem. The chromo-

somes that define characteristics of biological beings are
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replaced by strings of numerical values representing the design

variables.

GA is recognized to be different than traditional gradient-

based optimization techniques in the following four major ways

[10]:
1. G
As work with a coding of the design variables and

parameters in the problem, rather than with the actual

parameters themselves.
2. G
As make use of population-type search. Many different

design points are evaluated during each iteration instead of

sequentially moving from one point to the next.
3. G
As need only a fitness or objective function value. No

derivatives or gradients are necessary.
4. G
As use probabilistic transition rules to find new design

points for exploration rather than using deterministic rules

based on gradient information to find these new points.

Algorithm of the basic GA is given as follows:
1. I
nitial population: Generate random population of chromo-

somes.
2. F
itness: Evaluate the fitness of each chromosome in the

population.
3. T
est: If the end condition is satisfied, stop, and return the best

solution in current population.
4. N
ew population: Create a new population by repeating

following steps until the new population is complete.

Reproduction: Select two parent chromosomes from the

population according to their fitness.

Crossover: With a crossover probability, crossover the

parents to form a new offspring (children). If no crossover

was performed, offspring is an exact copy of parents.

Mutation: With a mutation probability, mutate new offspring

at each locus (position in chromosome).
5. R
eplace: Use new generated population for a further run of

algorithm.
6. L
oop: Go to step 2.

3.1. Individual representation

The first and most important step in preparing an

optimization problem for a GA solution is that of defining a

particular coding of the design variables and their arrangement

into a string of numerical values to be used as the chromosome

by the GA.

In most GAs, finite length binary coded strings of ones and

zeros are used to describe the parameters for each solution. In a

multiparameter optimization problem, individual parameter

coding are usually concatenated into a complete string which is

shown in Fig. 1.
Fig. 1. Binary representation in GA.
In this paper, real representation of binary string is used. The

length of the string depends on the required precision. The

mapping from a binary string to a real number is completed in

two steps:

Step 1: Find code length for xi (i = 1, . . ., n):

c ¼ ðxmax
i � xmin

i Þ � r

where r is the required precision (101, 102, 103, . . .).
Code length for xi is as follows:

lxi ¼ nþ 1

where,

2n < c< 2nþ1

Total string length is given by:

l ¼
Xn

i¼1
lxi

Step 2: Mapping from a binary string to a real number:

xi ¼ xmin
i þ xmax

i � xmin
i

2n � 1

Xn

j¼1
qi j2

j�1

where qij 2 [0, 1].

In order to generate the chromosomes, the length of the

chromosome is calculated first. Then random numbers in the

range of {0, 1} are generated to form the chromosome. Random

function is used in Delphi programming language as a random

number generator.

3.2. Genetic operators

Establishing the GA parameters is very crucial in an

optimization problem because there are no guidelines [20]. The

genetic algorithms contains several operators, e.g. reproduc-

tion, crossover, mutation, etc.

3.2.1. Reproduction

The reproduction operator allows individual strings to be

copied for possible inclusion in the next generation. After

assesing the fitness value for each string in the initial population,

only a few strings with high fitness value are considered in the

reproduction. There are many different types of reproduction

operatorswhich are proportional selection, tournament selection,

ranking selection, etc. In this study, tournament selection is

selected, since it has better convergence and computational time

compared to any other reproduction operator [11]. In tournament

selection, two individuals are choosen from the population at

random. Then the string which has best fitness value is selected.

This procedure is continued until the size of the reproduction

population is equal to the size of the population.

3.2.2. Crossover

Crossover is the next operation in the genetic algorithm. This

operation partially exchanges information between any two
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Fig. 2. Illustration of crossover operator.
selected individuals. Crossover selects genes from parent

chromosomes and creates new offsprings. Like reproduction

operator, there exist a number of crossover operators in GA. In a

single-point crossover operator which is used in this paper, both

strings are cut at an arbitrary place and the right-side portion of

both strings are swapped among themselves to create two new

strings, as illustrated in Fig. 2.

In order to carry out the crossover operation, two individuals

are selected from the population at random. Then a random

number in the range of {0, 1} is generated. If this random

number is less than the probability of crossover then these

individuals are subjected to crossover, otherwise they are

copied to new population as they are. Also the crossover point is

selected at random. Probability of crossover (Pc) is selected

generally between 0.6 and 0.9.

3.2.3. Mutation

This is the process of randomly modifying the string with

small probability. Mutation operator changes 1–0 and vice

versa with a small probability of mutation (Pm). The need for

mutation is to keep diversity in the population [11]. This is to

prevent falling all solutions in population into a local optimum

of solved problem. Fig. 3 illustrates the mutation operation at

seventh bit position.

In order to determine whether a chromoseme is to be

subjected to mutation, a random number in the range of {0, 1} is

generated. If this random number is less than the probability of

mutation, selected chromosome will be mutated. Probability of

mutation should be selected very low as a high mutation will

destroy fit chromosomes and degenerate the GA into a random

walk. Pm should be selected between 0.02 and 0.06 [21].

3.2.4. Constraint handling

In most application of GAs to constrained optimization

problems, the penalty function method has been used. In this

study a method proposed by Deb [12] is used. Although a

penalty term is added to the objective function, this method

differs from conventional GA implementations. The method

proposes to use a tournament selection operator, where two

solutions are compared at a time and the following criteria are

always enforced:
- A
ny feasible solution is preferred to any infeasible solution.
- A
mong two feasible solutions, the one having better fitness

value is preferred.
Fig. 3. Illustration of mutation operator.
- A
mong two infeasible solutions, the one having smaller

constraint violation is preferred.
3.2.5. Elitist strategy

In this strategy, some of the best individuals are copied into

the next generation without applying any genetic operators.

Elitist strategy always clones the best individuals of the current

generation into the next generation. This guarantees that the

best found design is never lost in future generations.

4. Approach

4.1. Fixture positioning principles

In machining process, fixtures are used to keep workpieces

in a desirable position for operations. The most important

criteria for fixturing are workpiece position accuracy and

workpiece deformation. A good fixture design minimizes

workpiece geometric and machining accuracy errors. Another

fixturing requirement is that the fixture must limit deformation

of theworkpiece. It is important to consider the cutting forces as

well as the clamping forces. Without adequate fixture support,

machining operations do not conform to designed tolerances.

Finite element analysis is a powerful tool in the resolution of

some of these problems [22].

Common locating method for prismatic parts is 3-2-1

method. This method provides the maximum rigidity with the

minimum number of fixture elements. Aworkpiece in 3D may

be positively located by means of six points positioned so that

they restrict nine degrees of freedom of the workpiece. The

other three degrees of freedom are removed by clamp elements.

An example layout for 2D workpiece based 3-2-1 locating

principle is shown in Fig. 4.

The number of locating faces must not exceed two so as to

avoid a redundant location. Based on the 3-2-1 fixturing

principle there are two locating planes for accurate location

containing two and one locators. Therefore, there are maximum

of two side clampings against each locating plane. Clamping

forces are always directed towards the locators in order to force

the workpiece to contact all locators. The clamping point
Fig. 4. 3-2-1 locating layout for 2D prismatic workpiece.
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Fig. 5. The flowchart of the proposed methodology and ANSYS interface.
should be positioned opposite the positioning points to prevent

the workpiece from being distorted by the clamping force.

Since the machining forces travel along the machining area,

it is necessary to ensure that the reaction forces at locators are

positive for all the time. Any negative reaction force indicates

that the workpiece is free from fixture elements. In other words,

loss of contact or the separation between the workpiece and

fixture element might happen when the reaction force is

negative. Positive reaction forces at the locators ensure that the

workpiece maintains contact with all the locators from the

beginning of the cut to the end. The clamping forces should be

just sufficient to constrain and locate the workpiece without

causing distortion or damage to the workpiece. Clamping force

optimization is not considered in this paper.

4.2. Genetic algorithm based fixture layout optimization

approach

In real design problems, the number of design parameters

can be very large and their influence on the objective function

can be very complicated. The objective function must be

smooth and a procedure is needed to compute gradients.

Genetic algorithms strongly differ in conception from other

search methods, including traditional optimization methods

and other stochastic methods [23]. By applying GAs to fixture

layout optimization, an optimal or group of sub-optimal

solutions can be obtained.

In this study, optimum locator and clamp positions are

determined using genetic algorithms. They are ideally suited

for the fixture layout optimization problem since no direct

analytical relationship exist between the machining error and

the fixture layout. Since the GA deals with only the design

variables and objective function value for a particular fixture

layout, no gradient or auxiliary information is needed [19].

The flowchart of the proposed approach is given in Fig. 5.

Fixture layout optimization is implemented using developed

software written in Delphi language named GenFix. Displace-

ment values are calculated in ANSYS software [24]. The

execution of ANSYS in GenFix is simply done by WinExec

function in Delphi. The interaction between GenFix and

ANSYS is implemented in four steps:
(1) L
ocator and clamp positions are extracted from binary

string as real parameters.
(2) T
hese parameters and ANSYS input batch file (modeling,

solution and postprocessing commands) are sent to ANSYS

using WinExec function.
(3) D
isplacement values are written to a text file after solution.
(4) G
enFix reads this file and computes fitness value for current

locator and clamp positions.
In order to reduce the computation time, chromosomes and

fitness values are stored in a library for further evaluation.

GenFix first checks if current chromosome’s fitness value has

been calculated before. If not, locator positions are sent to

ANSYS, otherwise fitness values are taken from the library.

During generating of the initial population, every chromosome
is checked whether it is feasible or not. If the constraint is

violated, it is eliminated and new chromosome is created. This

process creates entirely feasible initial population. This ensures

that workpiece is stable under the action of clamping and

cutting forces for every chromosomes in the initial population.

The written GA program was validated using two test cases.

The first test case uses Himmelblau function [21]. In the second

test case, the GA program was used to optimise the support

positions of a beam under uniform loading.

4.3. Test case 1: Himmelblau function

The Himmelblau function has several local minimum points

and only one global minimum point. The function is:

y ¼ ðx21 þ x2 � 11Þ2 þ ðx1 þ x22 � 7Þ2

þ 0:1½ðx1 � 3Þ2 þ ðx2 � 2Þ2�

where �6 � x1 � 6 and �6 � x2 � 6.

The function has four minima within the boundary. Only one

of them is the global minimum which occurs at (3, 2) with a

function value of zero. Other minima occur at (�2.805, 3.131),
(�3.779, �3.283) and (�3.584, �1.848) with values of 3.498,

7.386 and 1.515, respectively.

Using a population size of 100, maximum iteration number

of 200 and the crossover and mutation probability of 0.85 and

0.02, respectively, results of 10 runs are given in Table 1.

It can be seen that the GA successfully converges to the

global minimum.
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Table 1

Results of solving the Himmelblau function

Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Run 8 Run 9 Run 10

x1 2.9957 3.0117 2.9829 2.9823 2.9989 3.0088 3.0000 3.0005 3.0084 2.9971

x2 2.0156 1.9687 2.0625 2.0625 2.0039 1.9687 2.0625 1.9980 1.9687 2.0156

Fitness 0.0035 0.0143 0.0581 0.0582 0.0002 0.0138 0.0689 0.00005 0.0138 0.0036

Fig. 6. A continuous beam subjected to a uniform loading.

Table 4

Results of five runs for beam

Run 1 Run 2 Run 3 Run 4 Run 5

L1 (mm) 39.67 41.49 39.49 40.72 41.18

L2 (mm) 40.53 38.12 40.52 39.32 38.62

Fitness (mm) 0.2878 0.3129 0.2914 0.2901 0.3035
4.4. Test case 2: Beam

A beam is subjected to a uniform distributed load of intensity

q is shown in Fig. 6 and its properties are given in Table 2. The

goal is to find the optimum L1 and L2 that minimizes the

maximum deflection of the beam under a uniform load. Hence,

L1 and L2 are selected as design variables. The results obtained

in this test case have been compared to the analytical solution.

The optimization problem can be stated as follows:

find L1 and L2;
whichminimize themaximumdeflection of the beam;
subject to 0< L1 < 89

91< L2 < 180

Analytical solution for this problem is:

L1 ¼ 40:1668; L2 ¼ 40:1668:

Maximum deflection is found as 0.2748 mm at points A, D

and middle of the beam. GA parameters for this test case are

given in Table 3.
Table 2

Beam properties

Total length (mm) 180

q (N/mm) 100

E (N/mm2) 210000

Section area (mm2) 78.5

I (mm4) 490.625

Table 3

GA input parameters for test case

Number of iteration 100

Population size 40

Crossover probability 0.85

Mutation probability 0.02

Total string length 28
Results from five runs of the GA tool are given in Table 4.

It can be seen from the Table 4 that, best fitness value is

found to be 0.2878 and best design variables are L1 = 39.67 and

L2 = 40.53 which are very close to the analytical solution.

These results showed that GA converged near the optimal

solution with a fitness value equal to 0.2878.

5. Fixture layout optimization case studies

The fixture layout optimization problem is defined as:

finding the positions of the locators and clamps, so that

workpiece deformation at specific region is minimized. Note

that number of locators and clamps are not design parameter,

since they are known and fixed for the 3-2-1 locating scheme.

Hence, the design parameters are selected as locator and clamp

positions. Friction is not considered in this paper. Two case

studies are given to illustrate the proposed approach.

5.1. Case study 1

A 2D case study part and optimum values are taken from

Krishnakumar and Melkote [19]. 2D fixture layout parameters

and tool path are shown in Fig. 7. Cutting forces are applied

sequentially to each machining surface node and the maximum

deformation for each load application is computed. The

maximum deformation for the entire process is then determined
Fig. 7. 2D fixture layout parameters and tool path directions.



N. Kaya / Computers in Industry 57 (2006) 112–120118

Table 5

GA input parameters for case study 1

Number of iteration 150

Population size 40

Crossover probability 0.85

Mutation probability 0.02

Total string length 73

Fig. 8. The convergence of GA for case study 1.
from the maximums for each load application. The GA is used

to minimize the maximum deformation for the generation by

varying the positions of the locators and clamps. Krishnakumar

and Melkote [19] used workpiece node numbers as the locator

and clamp positions and a finite element solver was developed

and embedded in the GA. Machining force of 889.6 N is

assumed for both Fx ( ) and Fy (#).Their work has three

drawbacks: (1) they used nodal points as design parameters, so

that optimum values can be found only on these nodes; (2)

number of generation of GA is very low; (3) machining forces

are applied through a line rather than an area.

The optimum layout parameters found by Krishnakumar and

Melkote [19] are: L1 = 50.4, L2 = 101.6, L3 = 101.6, L4 = 50.8,

L5 = 152.4.

In this paper, same workpiece and fixture layout method (3-

2-1) and a new finite element model are used to find the optimal

locator and clamp positions. Main differences are the string

representation and the finite element solver. Real representation

and ANSYS finite element solver are used. Real representation

of strings allow more search space to possible solutions. The

objective function is defined as the maximum nodal displace-

ment on the part surface being machined.

The GA optimization problem can be stated as follows:

find L1; L2;L3; L4; L5;

whichminimize themaximumnodal

displacement on the part surface beingmachined;

subject to 5< L1 < 148

5< L2 < 148

5< L3 < 249

5< L4 < 249

5< L5 < 300:

GA input parameters used in this study are given in Table 5.
During generating of the initial population, the feasibility is

checked for every chromosome. For given chromosome, if the

reaction forces at locators are all positive during machining, it
Table 6

The results of ten runs for case study 1

Krishnakumar

and Melkote [19]

Run 1 Run 2 Run 3 Run 4

L1 (mm) 50.4 95.2 124.8 126.7 110.0

L2 (mm) 101.6 71.1 40.3 74.3 86.8

L3 (mm) 101.6 58.6 58.3 97.5 72.4

L4 (mm) 50.8 23.9 6.9 69.8 58.9

L5 (mm) 152.4 291.3 294.1 235.2 242.3

Fitness (mm) 0.0393 0.0298 0.0272 0.0333 0.03
means that locators and workpiece remain in contact. If not, this

means that constraint is violated. Then this chromosome is

eliminated and new chromosome is created. This process

creates entirely feasible initial population.

In this study, the value of fitness is costly to compute, because

the 40 � 150 = 6000 analysis have to be done. The need for

speeding up the computation for GAs is obvious. As the

generation goes by, chromosomes in the population are getting

similar. Calculated fitness values are stored in a chromosome

library, thus, recalculation of fitness values for the same

chromosomes is prevented. In this case study, population size

is selected as 40 and GA optimization tool runs for 150

generations.This correspondswith6000ANSYSFEevaluations.

Since the ANSYS has computed only new chromosome values,

only 415newfitness valueshave been calculated inANSYS.This

results in a tremendous gain in computational efficiency.

Several runs have been performed but only the results of 10

runs are given in Table 6. The first column of the Table 6 shows

the optimum layout obtained by Krishnakumar and Melkote

[19].

It is seen from the Table 6 that the fitness values are better

than the work done by Krishnakumar and Melkote [19].

Although the other fitness values are close to each other, locator

and clamp positions are all different. It is observed that this

fixturing problem is multi-modal in nature. As the name

suggest, multi-modal problems have multiple optimum solu-

tions. The objective in a multi-modal optimization problem is to

find multiple optimal solutions having either equal or near

equal objective function values. The knowledge of multiple

global optimum solutions in the search space is particularly

useful in obtaining an insight into the function landscape. In our

problem, this will help the designer to have alternative layouts
Run 5 Run 6 Run 7 Run 8 Run 9 Run 10

111.9 70.8 107.2 129.2 138.9 131.4

13.8 66.6 77.8 72.2 56.3 56.4

78.4 60.4 82.2 104.1 98.7 75.4

12.7 8.5 66.3 5.8 6.4 16.7

299.7 272.2 253.7 162.6 220.1 249.2

32 0.0321 0.0338 0.0339 0.0332 0.0293 0.0287
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Fig. 9. The end milling process simulated for case study 2.

Fig. 10. Finite element models and cutting forces at different load steps. (a)

Cutting forces at load step 1; (b) cutting forces at load step 5; (c) cutting forces

at load step 11.
if needed. This property is not available when using traditional

optimization such as linear programming. Adding constraints

to the problem may make some optimum solutions infeasible.

In this case study, the global fitness value is found to be

0.0272 refers to Run 2 in Table 6. Variation of fitness value with

number of generation is given in Fig. 8. It can be seen that

considerable improvement in the objective function is obtained.

5.2. Case study 2

This case study considers a step milling operation on a 2D

workpiece. The cutting forces for the milling process were

calculated as 100 N ( ) and 286 N (#). Clamping forces are

assumed as Fc1 = 350 N and Fc2 = 200 N, which are shown in

Fig. 9.

The entire tool path is discretized into 13 load steps (see

Fig. 10). The model is analysed with respect to tool movement

and chip removal using the element death technique [22,24,25].

In order to calculate the fitness value for given chromosome,

displacements are stored for each load step. Then maximum

displacement is selected as fitness value for this chromosome.

The objective function for this problem is defined as the

maximum nodal displacement on the part surface being

machined.TheGAoptimizationproblemcanbestatedas follows:

find L1; L2; L3; L4; L5;

whichminimize themaximumnodal displacement

on thewhole surface;

subject to 5< L1 < 148

5< L2 < 148

5< L3 < 85

5< L4 < 65

5< L5 < 125:
Table 7

The results of 10 runs for case study 2

Run 1 Run 2 Run 3 Run 4 Run 5

L1 (mm) 98.8 86.7 101.9 103.7 113.9

L2 (mm) 32.7 31.8 22.6 36.3 24.8

L3 (mm) 55.6 56.7 28.1 40.1 57.3

L4 (mm) 34.4 29.3 5.18 50.9 5.8

L5 (mm) 51.0 27.2 96.23 80.0 84.2

Fitness (mm) 0.01816 0.01851 0.01855 0.01831 0.0
Fixture layout optimization approach and input parameters

for GA are the same used in case study 1 (see Table 5). Results

of 10 runs are given in Table 7.

It can be seen from the Table 7 that the global fitness value is

found to be 0.01661 refers to Run 9 in Table 7. Variation of

maximum displacement with number of generations is given in

Fig. 11.

In this case study, chip removal from the tool path is taken

into account. The removal of the material during machining

alters the geometry, thus the structural stiffness of the

workpiece, which in turn leads to higher deformation. Thus,

there is a need to consider chip removal effects for achieving the

required machining accuracy.
Run 6 Run 7 Run 8 Run 9 Run 10

59.8 110.8 125.3 62.1 81.9

54.7 29.4 29.5 9.11 29.3

8.57 51.5 72.5 21.3 38.1

7 29.1 18.2 20.0 8.7 8.9

49.1 84.6 95.0 62.2 44.6

1777 0.01770 0.01757 0.01831 0.01661 0.01846
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Fig. 11. The convergence of GA for case study 2.
6. Conclusion

In this paper, an evolutionaryoptimization techniqueoffixture

layout optimization is presented. ANSYS has been used for FE

calculation of fitness values. It is seen that the combined genetic

algorithm and FE method approach seems to be a powerful

approach for present type problems. GA approach is particularly

suited for problems where there does not exist a well-defined

mathematical relationship between the objective function and

the design variables. The results prove the success of the app-

lication of GAs for the fixture layout optimization problems.

In this study, the major obstacle for GA application in fixture

layout optimization is the high computation cost. Re-meshing

of the workpiece is required for every chromosome in the

population. But, usages of chromosome library, the number of

FE evaluations are decreased from 6000 to 415. This results in a

tremendous gain in computational efficiency. The other way to

decrease the solution time is to use distributed computation in a

local area network.

The results of this approach show that the fixture layout

optimization problems are multi-modal problems. Optimized

designs do not have any apparent similarities although they

provide very similar performances. It is shown that fixture layout

problems are multi-modal therefore heuristic rules for fixture

design should be used in GA to select best design among others.
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