
A multi-scale approach to decompose a digital curve
into meaningful parts ∗

Thanh Phuong NGUYEN and Isabelle DEBLED-RENNESSON
LORIA Nancy, Campus Scientifique - BP 239 54506 Vandœuvre-lès-Nancy Cedex, France

{nguyentp,debled}@loria.fr

Abstract

A multi-scale approach is proposed for polygonal repre-
sentation of a digital curve by using the notion of blurred seg-
ment and a split-and-merge strategy. Its main idea is to de-
compose the curve into meaningful parts that are represented
by detected dominant points at the appropriate scale. The
method uses no threshold and can automatically decompose
the curve into meaningful parts.

1 Introduction

Shape representation is an important step for many appli-
cations in computer vision such as machine recognition, shape
matching. Straight lines, arcs, dominant points,. . . are often
used to construct a good descriptor of a curve.

There are two principal objectives that are in conflict. The
first is a simplification of the representation of overall shape,
the second is a high precision detection of some main charac-
teristics that may be straight line segments, corner points, ...
One approach in literature for this problem is the multi-scale
approach that investigate the shape representation through dif-
ferent unknown scales to determine a good description of the
shape. Starting from Witkin’s work [16], Mokhtarian [8] used
curvature scale space for shape representation through multi-
scale. Latecki [6] used discrete curve evolution by removing
vertex with minimal relevance. Kolesnikov [5] proposed an
optimal split method for multi-resolution polygonal approx-
imation of digital curves. Another approach for multi-order
polygonal approximation was presented in [3]. Nguyen et al.
proposed a parameter-free method [11] for polygonal repre-
sentation based on dominant point detection by considering
a multi-width framework to determine the most appropriate
parameter.

In this paper, we present a novel approach for multi-order
polygonal approximation. By applying the dominant point de-
tector [10], a split-and-merge strategy will be used to partition
a possibly noisy curve into a set of meaningful parts in which
each part is represented at the appropriate scale. The rest of
this paper is organized as follows. The next section recalls
our previous method. Section 3 proposes a novel method for
multi-resolution polygonal approximation. Sections 4 and 5
introduce some experimental results and conclusions.

∗This work is supported by the ANR in the framework of the
GEODIB project, BLAN06-2 134999.

2 Dominant point detector with a fixed
parameter

In this section, we recall a method for dominant point de-
tection that was proposed by Nguyen et Debled [10]. It uses
width of blurred segments as input parameter.

2.1 Blurred segment

y

x

(a) A blurred
segment

(b) A maximal blurred segment of
width 1 (in dark gray points).

Figure 1. Blurred segments of width ν.

The notion of blurred segment [2] is introduced from the
notion of discrete line. A Discrete Line with main vector
(b, a), lower bound µ and thickness ω, noted D(a, b, µ, ω), is
a set of points (x, y) ∈ Z2 that verifies: µ ≤ ax−by < µ+ω.
A Blurred Segment [2] is a set of integer points (x, y) that is
optimally bounded (see [2] for more detail) by the discrete line
D(a, b, µ, ω). The value ν = ω−1

max(|a|,|b|) is called the width
of this blurred segment. Figure 1.a shows a blurred segment
(the sequence of gray points) of which the optimal bounding
line is D(5, 8,−8, 11), the vertical distance is 1.25. Nguyen
et al. proposed in [9] the notion of maximal blurred segment.
A Maximal Blurred Segment of width ν (MBS) (see Fig. 1.b)
is a blurred segment of width ν that cannot be extended nei-
ther at the right side nor at the left side.

2.2 Dominant point detection

Some criteria were proposed in [10] to locate and eliminate
weak candidates of Dominant Point (DP). Let us assume a
given width ν, we have:

Proposition 1 A DP must be in a common zone of successive
Maximal Blurred Segments (see Fig. 2.a).
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(a) Gray zone isn’t a
common zone

(b) Common
zone in black
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(c) a MBS contain at
most 2 candidate of DPs

Figure 2. MBS and dominant point.

Proposition 2 The smallest common zone of successive Max-
imal Blurred Segments whose slopes are monotone contains a
candidate of DP (see Fig. 2.b).

Proposition 3 A Maximal Blurred Segment contains a maxi-
mum of 2 DP candidates (see Fig. 2.c).

Heuristic strategy: In each smallest zone of successive
Maximal Blurred Segments whose slopes are increasing or
decreasing, the candidate as dominant point is detected as the
middle point of this zone.

Based on the above study, Nguyen et al. proposed a
method for the dominant point detection (see algo. 1 of [10]).

3 Evaluation criteria

There’re 2 criteria [14, 15] that’re used popularly for dom-
inant point detection and polygonal approximation. Sarkar’s
criterion is proposed based on the error approximation and
compression ratio. The error approximation may be the in-
tegral square error (ISE) that measures the quadratic error or
L∞ that measures maximal distance between the points of in-
put curves and the approximating polygon. The compression
ratio measures the capacity of data reduction between input
curve and approximating polygon. CR = N

NDP
. A high

compression ratio leads to a high approximation error, and
maintains a low approximation causes a low compression ra-
tio. So, Sarkar [15] introduced the criterion FOM (Figure Of
Merit) as ratio between compression ratio and error approx-
imation: FOM = CR

ISE
. This measure aims at balancing

a high compression ratio and a low approximation error that
were obtained with the dominant point detector algorithm.

Rosin [14] split the assessment into 2 components: effi-
ciency and fidelity. The principle idea is to compare the sub-
optimal polygon that corresponds to dominant point detector
with corresponding optimal polygon in the same conditions.
The efficiency measures compression capacity of the sub-
optimal polygon in the same error approximation (ISE) and
the fidelity measures error of the suboptimal polygon in the
same number of detected dominant points: Efficiency =

Nopt

Napprox
, Fidelity =

Eopt

Eapprox
, where Nopt and Napprox are

numbers of detected dominant points by using optimal and
suboptimal polygon algorithm with the same error approxi-
mation; Eopt and Eapprox are integral square errors (ISE) of
error approximation by using optimal and suboptimal polygon
algorithm with the same number of detected dominant point
points. A combined measure is defined as geometric mean of
2 measures: Merit =

√
Fidelity × Efficiency

Concerning the evaluation criteria, the merit measure al-
lows to compare among results obtained by dominant point
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Figure 3. Multi-scale approach based on a
split-and-merge strategy.

detectors in which the number of dominant point are differ-
ent. However, since the complexity of a optimal algorithm is
slow (see [12] for min-ε problem, [13] for min-# problem),
the using of Rosin’s criterion leads to an inefficient method
that works in the multi-scale context. So, we propose to use
an approach based on Sarkar’s criterion.

Some authors [1, 7] argued that FOM criterion isn’t suffi-
cient for balancing the trade-off between the integral square
error and the compression ration. The reason is the ISE
changes rapidly than the CR for almost test shapes. Marji et al.
[7] proposed a modified version of Sarkar: FOMn = CRn

ISE
.

In practice, they used n=2. In [11], Nguyen and Debled-
Rennesson has proposed a new evaluation criterion to adapt
to noisy curve: ND′sFOM = CR3

ISE∗L∞
. This criterion is

introduced by the observation that the decision of human ob-
server as corner depends also to local approximation. Other
hand, the ISE that defines error approximation at global view,
L∞ measure error approximation at local level. Moreover,
because of the addition property of ISE, in many cases, the
number of human observed corners and L∞ don’t change but
ISE increases considerably. Therefore they proposed L∞ as a
component in the evaluation criterion.

4 A multi-scale approach based on a split-
and-merge strategy

Proposed method

We solve here the following problem: for an input curve, can
we decompose this curve into some meaningful parts repre-
sented by detected dominant points in which each part corre-
sponds to its appropriate scale?

The principal idea is to partition a possibly noisy curve
into meaningful parts in which each part corresponds to the
most appropriate scale. An initial set of dominant points is
constructed from the set of dominant points at width 1. We
apply a split procedure by using an evaluation criterion as a
condition to determine the appropriate width for each part of
the curve. The width is increased until the scale where the
evaluation criterion reaches to a peak. The evaluation criterion
can be Marji’s FOM or ND’s FOM. By merging the adjacent
parts that have a same scale, the curve is decomposed into
meaningful parts in which the dominant points are detected at
the scale corresponding to this meaningful parts.

We present in algorithm 1 a procedure to split a partial
curve if the evaluation criterion on the dominant point detec-
tion is better at the next width parameter in comparison with
the current width value. Figure 3 illustrates how to split a
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Q
P

Dk[lk(j)]

Dk[rk(i)]

Ci

Cj

Figure 4. EVk(P,Q, i, j)

curve into meaningful part by using this procedure. Its princi-
pal idea is to compare the evaluation criterion on the detected
dominant points at the current width and the next width. If
the result is higher at the next width, this partial curve will be
splitted into 2 half parts to consider at higher width by apply-
ing recursively this procedure. Otherwise, this partial curve is
considered as the best representation at the current width, and
this procedure stops at this scale.

We use the notation Dk (resp. D) to indicate the set of
extracted dominant points at the with k (resp. through multi-
scale approach); Dk[m] (resp. D[m]) corresponds to the mth

point in the corresponding set. The notations lk(i) and rk(i)
(resp. l(i) and r(i)) are used to indicate the nearest index in
the set of extracted dominant points at with k (resp. through
multi-scale approach) at the left and right sides of the ith point
of the input curve. In addition, the notation EVk(P,Q, i, j)
(see also figure 4) is used to indicate the evaluation criterion
that is determined between the part of curve from P to Q and
the polygon constructed from 2 points P , Q and the set of
extracted dominant point at width k between Ci and Cj (i
and j are 2 indexes in the curve between P and Q).

Algorithm 1: Procedure SPLIT .
Data: C discrete curve of n points, D input set of dominant

points, b (resp. e) starting (resp. end) index, k width of
blurred segments

Result: D - Extracted dominant points through multi-scale
begin

m = b b+e
2
c;

if EVk(D[l(b)], D[r(m)], b,m) >
EVk+1(D[l(b)], D[r(m)], b,m) then

Replace D[r(b)], . . . , D[l(m)] by
Dk[rk(b)], . . . , Dk[lk(m)];

else
if rk(b) ≤ lk(m) then SPLIT (C, b,m, k + 1);

if EVk(D[l(m)], D[r(e)],m, e) >
EVk+1(D[l(m)], D[r(e)],m, e) then

Replace D[r(m)], . . . , D[l(e)] by
Dk[rk(m)], . . . , Dk[lk(e)];

else
if rk(m) ≤ lk(e) then SPLIT (C,m, e, k + 1);

end

Thanks to algorithm 1, we propose in algorithm 2 a method
to decompose a curve into meaningful parts with their ex-
tracted dominant points. Firstly, a sequence of dominant point
sets is detected at each width from 1 to maxWidth by using
algorithm 1 of [10]. The set of dominant points at width 1 is
considered as initial dominant point set. Then we apply re-
cursively the procedure presented in algorithm 1 to determine
the decomposition of curve into meaningful parts with their
corresponding scale. Finally, by merging the adjacent parts
that stop at a same width, we obtain the decomposition of the
curve.

Algorithm 2: Multi-scale approach to decompose a digital
curve into meaningful parts.

Data: C discrete curve of n points, maxWidth maximal
working width

Result: D set of extracted dominant points
begin

for i=1 to maxWidth do
Use algo. 1 of [10] to determine Dk - set of extracted
dominant points at width k ;

D = D1; D = SPLIT (C, D, 0, n-1, 1)1;
Merge the adjacent parts at a same width;

end

Complexity
For each part of the curve, we can use the same arguments as
in [11] to conclude that the corresponding width can be seen
as constant in relation with the number of points of this part.
So, the maximal width can be seen also as constant in com-
parison with number of points of the curve. Thanks to recent
result [4], the decomposition of a curve into maximal blurred
segments can be done in O(n logn), the algorithm 1 of [10]
can be done in O(n logn). The procedure SPLIT wastes
O(n) time at each scale. So, the complexity of algorithm 2 is
also O(n logn).

5 Experimentation and comparison with
other free-parameter methods

Experimentation: Figure 5 shows several obtained results
in which each meaningful part is represented by each color.

(a) (b) (c)

Figure 5. Results that were obtained with
the proposed method.

Comparison: We present in figures 6, 7 and table 1
the comparisons between this proposed method and free-
parameter method [11] and multi-order method [3]. These re-
sults are considered by using two evaluation criteria: Marji’s
criterion and Nguyen-Debled’s criterion. Table 1 shows that
this proposed method gives better results than those of the
free-parameter method and the multi-order one.

6 Conclusion

We have presented a solution for decomposition of a curve
into meaningful parts with detected dominant points. Each

1D contains dominant points with position and scale informations.
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Curve Figures n Method nDP ISE L∞
2 CR Marji’s FOM ND’s FOM Width

Leaf 6.a, 6.b 370
Proposed 19 595.544 3.48 19.474 0.637 3.563

Free-parameter [11] 22 509.619 3.394 16.818 0.555 2.750 3

Plane 6.c, 6.d 523
Proposed 49 241.5 1.45 10.6735 0.4717 3.472

Free-parameter [11] 40 374.382 3.5938 13.075 0.45566 1.657 2

Rabbit 7.a, 7.b 821
Proposed 10 911.54 4.743 28.1 0.866 5.132

Multi-order [3] 11 1663.82 5.514 25.545 0.3922 1.817

Table 1. Comparisons on the curves in figures 6, 7 with [11] and [3].

meaningful part corresponds to its natural scale. Therefore,
the object boundary can be represented better with detected
dominants points through this multi-scale framework. The
proposed method can work with possibly disconnected noisy
curves thanks to the notion of blurred segment. The benefit of
this method is clearly its adaptability to the noise level present
in the curves if it is irregularly distributed.

(a) Multi-scale (b) Free-parameter

(c) Multi-scale (d) Free-parameter

Figure 6. Comparison with [11].

(a) Multi-scale (b) Debled et al. [3]

Figure 7. Comparison with [3].
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