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Abstract. Active contour or snake has emerged as an indispensable5

interactive image segmentation tool in various applications. However,6

snake fails to serve many significant image segmentation applications7

that require complete automation. Here, we present a novel technique to8

automate snake/active contour for multiple objects detection. We first9

apply a probabilistic quad tree based approximate segmentation tech-10

nique to find the regions of interest (ROI) in an image, evolve modifed11

GVF snakes within ROIs and finally classify the snakes into object and12

non-object classes using boosting. We propose a novel loss function for13

boosting that is more robust to outliers concerning snake classification14

and we derive a modified Adaboost algorithm by minimizing the pro-15

posed loss function to achieve better classification results. Extensive ex-16

periments have been carried out on two datasets: one has importance in17

oil sand mining industry and the other one is significant in bio-medical18

engineering. Performances of proposed snake validation have been com-19

pared with competitive methods. Results show that proposed algorithm20

is computationally less expensive and can delineate objects up to 30%21

more accurately as well as precisely.22

1 Introduction23

Snake/active contour [2] has made its recognition as an interactive image seg-24

mentation tool for the last two decades. However, it is yet to be seen as a25

completely automated segmentation tool. Snake algorithms consist of three se-26

quential steps: snake initialization, snake evolution and snake validation [3]. For27

multiple objects detection, seeds are chosen inside the objects at the initializa-28

tion step, then snakes are evolved from those seed points and finally the evolved29

snakes are passed through a validation procedure to examine whether the snakes30

delineate the desired objects [3]. Substantial endeavors have taken place on the31

initialization and evolution steps towards snake automation. Most of the existing32

initialization algorithms [4] exploit the local maxima or other characteristics of33

the external energy that help to generate seed points within the objects. How-34

ever, clutters in the noisy and poorly illuminated images generate considerable35

amount of seed points and snakes evolved from those seeds do not converge to36

the object boundaries. This necessitates a good validation scheme after snake37

evolution. Unfortunately, the validation step has not received much attention till38

date.39
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Saha et al. [3] proposed a snake validation scheme using principal compo-40

nent analysis (PCA). Their method places seeds blindly on the entire image41

and evolve one snake from each seed. When all snakes converge, a pattern im-42

age (an annular band) is formed across each snake contour. Each pattern image43

is then projected into an already trained PC (principal component) space and44

PCA reconstruction error is computed. The snakes associated with lower recon-45

struction errors than a threshold are considered as objects. Pattern images bear46

information regarding bright-to-dark (or vice-versa) transition across the object47

contours and show good discrimination capability between object and non-object48

classes. This validation technique is effective when the gradient strength of ob-49

ject boundaries is considerably high. Besides, throwing a large number of seeds50

blindly over an entire image might not be feasible for some applications, since51

the snake evolution can be computationally expensive. Thus, a handful of crucial52

seed points are always helpful.53

In this paper, we propose a probabilistic quad tree (QT) based snake initial-54

ization scheme which is computationally inexpensive. QT automatically seeks55

ROIs from an image where the probabilities of locating objects are very high.56

We throw seeds only within ROIs and evolve one modified Gradient Vector Flow57

(GVF) snake [5] from each seed. Then we validate each evolved snake to verify58

whether they belong to object or non-object class. During validation, each snake59

is passed through a strong classifier formed by Adaboost [6]. We classify snake60

contours into objects and non-objects based on a set of features and we apply61

Adaboost for selecting important features. The parameters of the adaboost algo-62

rithm are estimated by minimizing an exponential loss function. Here, it is noted63

that one shortcoming of the exponential loss function associated with Adaboost64

algorithm is that the penalty increases exponentially negative margins which65

incurs high misclassification error rates due to outliers [6]. We propose a novel66

loss function that incurs smaller penalties in the negative margin, and thus make67

Adaboost more robust to outliers. Also, we can choose the amount of penalty ju-68

diciously from the training set using cross validation. We exploit the advantages69

of multiple features including region, edge and shape over PCA-based intensity70

feature proposed earlier [3]. Note that our proposed initialization and validation71

algorithm could be successfully used as plugins with any existing snake evolution72

techniques. We have carried out experiments on two real datasets: (a) oil sand73

mining images [5]: analyzing these images help to improve the performance of74

oil sand extraction process and (b) leukocyte images [7]: processing these images75

help in the study of inflammation as well as in the design of anti/pro inflamma-76

tory drugs. Results illustrate that our proposed algorithm is faster, more reliable77

and robust than competitive methods.78

The organization of this paper is as follows. Section 2 discusses proposed quad79

tree based snake initialization technique. Section 3 elaborates snake validation80

using boosting and illustrates proposed regularization into boosting framework.81

Section 4 demonstrates the performances of proposed techniques and displays82

comparative analysis of proposed techiques with competitive methods. Section 583
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concludes our proposed work. Appendix includes derivation of proposed discrete84

Adaboost algorithm.85

2 Quad tree based snake initialization86

Quad tree [8] based segmentation algorithm receives an image as an input, and87

then divides it into four adjacent, non-overlapping quadrants if it meets pre-88

specified criteria, subsequently each quadrant is divided similarly and the pro-89

cess proceeds iteratively until it fails the pre-defined criteria. Consequently, the90

algorithm locates objects by smaller rectangular boxes. In our application here,91

the QT algorithm computes a posterior probability and splits the current region92

into four quadrants if the value of the posterior probability is between two pre-93

determined thresholds. If the value of the posterior probability is greater than94

the upper threshold then the region is likely to contain objects ; if it is less than95

the lower threshold then it is likely to contain background. We locate objects96

by finding homogeneous regions based on local brightness and texture proper-97

ties. We compute the posterior probability of a region (O) being object/non-98

object: P (O/T,B) ∝ P (T/O)P (B/O)P (O), where P (O) is the prior probabil-99

ity. P (T/O) and P (B/O) are the likelihood of the region regarding texture and100

brightness respectively. Proposed probabilistic QT algorithm converges faster101

and delineates objects more accurately than deterministic quad tree algorithm if102

a suitable, application specific prior can be chosen. We compute texture energy103

(T) by the response of Gabor filters [8] and brightness (B) by the maximum104

singular value decomposition (SVD) [9] of the region. Maximum SVD encodes105

average brightness and Gabor filter response represents discriminative texture106

information for the objects. The details of computing posterior probability and107

two thresholds are mentioned in section 4.108

3 Snake validation using boosting109

We compute different features for each converged snake contour, such as, con-110

tour shape features (form factor, convexity, extent, modification ratio [10] etc.),111

regional features (intra and inter class variance, entropy etc.), and edge based112

features (GICOV [7], gradient strength etc.) for snake validation. We use Ad-113

aboost (variant of boosting) for selecting important features. At the training114

phase, boosting picks only important features for snake validation from a set115

of features computed on training snake contours and finds the weights associ-116

ated with those features. We place seeds blindly over the training images and117

evolve one snake from each seed and classify the snakes as objects manually that118

converge at object contours found on the ground truth made by the experts; oth-119

erwise consider the snakes as non-objects and thus form a training set consisting120

of both positive (object) and negative (background) samples. The Adaboost al-121

gorithm forms a strong classifier by combining a set of weak learners linearly in122

an iterative manner [6]. We use decision stump (threshold) [6] as weak classifier.123

Decision stump is a single level decision tree. Decision stump, Gj(x) for feature124
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fj is defined as, Gj(x) = 1 if xj > θj , otherwise, Gj(x) = 0, where θj is some fea-125

ture value of xj chosen as threshold and x = [x1, x2, x3, ...., xj , ...xn] is the feature126

set. Finding the best decision stump at each stage is similar to learning a node in127

a decision tree. We search over all possible features x = [x1, x2, x3, ......., xn] and128

for each feature, we search over all possible thresholds θ induced by sorting the129

observed values of x and pick xk with θk that gives lowest misclassification error130

among all given features during training. At test phase, proposed QT algorithm131

discussed in section 2 locates ROIs (rectangular regions/patches) over the test132

images where the probability of localizing objects is greater than a predeter-133

mined upper threshold. We place seeds only within ROIs and grow one snake134

from each seed. When all snakes are fully converged, we compute the values135

of the important features for each snake and multiply them with the weights136

associated with the features chosen by boosting during training phase and sub-137

sequently add them to form a strong classifier, G(x) = sign(
∑M
m=1 αmGm(x)),138

where, αm is the weight associated with weak classifier Gm(x). If the sign of the139

response of the strong classifier for a snake contour is positive then it is classified140

into object class, otherwise it is classified into non-object class. For classification,141

Adaboost minimizes an exponential loss function: where y is the response and f142

is the prediction. The drawback of this exponential loss function is that it incurs143

substantial misclassification error rate as the penalty increases exponentially for144

large increasing negative margin due to outliers [6]. To address this problem, we145

propose a novel loss function: L(y, f(x)) = exp(−yf(x) + λ|y − G(x)|), where146

λ < 0 and G(x) is the prediction of the weak classifier chosen at the current147

stage. We have mainly incorporated one extra term in the existing exponential148

loss function that acts as a regularizer. At any boosting iteration, the proposed149

loss function is the same as the existing loss function if the misclassification er-150

ror rate at current stage is zero (proposed term vanishes when λ = 0). The only151

difference between the proposed and the exponential loss function is that the152

penalty associated with the proposed loss function is less than that of the expo-153

nential one, if the misclassification error rate at current stage is not equal to zero154

(shown in Fig.1(a) where loss is plotted against a function of the classification155

margin y.f). This modification leads to a low misclassification error rate and it156

becomes more robust to outliers. One additional advantage of this proposed loss157

function is that the user can adjust the amount of penalty for negative margins158

after observing the classifier performance over a training data set. Accordingly,159

we determine the value of λ through cross validation (λ is a function of k shown160

in the appendix and the value of k is determined experimentally). We derive161

a modified Adaboost algorithm by minimizing the proposed loss function (The162

derivation is shown in Appendix).163

Our modified Adaboost finds the feature weight, αm = log(k(1−errm)/errm),164

k ≥ 1, where, for the existing Adaboost algorithm the value of k is always 1. This165

leads to the weights associated with misclassified observations at any stage is k166

times as much as the existing Adaboost (derivation is shown in the Appendix).167

The value of k for our modified Adaboost is determined by cross-validation and168

is discussed in the next section.169
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Our proposed term in the existing loss function acts as a regularizer in the170

boosting framework. There are two well known regularized boosting algorithms,171

ε-boosting [6] and l1- regularized boosting [11] available in the literature. Unlike172

other two methods, our method can adaptively adjust the effects of regularization173

in the boosting framework by selecting the propoer value of k from the training174

data set. The regularization strategy in ε - boosting is imposed through shrinking175

the contribution of each feature (feature weight).In l1- regularized boosting, the176

exponential loss function is minimized with l1- regularization. This provides177

sparse solution and acts as a regularizer.178

Fig. 1. (a) Loss functions for two class classification. (b) Accuracy and (c) F-measure
for three different snake initialization methods.

4 Results and Discussions179

We have carried out experiments on two real data sets: oil sand images and180

leukocyte microscopy images.181

4.1 Oil Sand Images182

In the oil sand extraction process, oil sand ore is crushed, broken into smaller183

particles through crusher and then passed through screens to reject oversize184

ores and the undersize ores are transported to hydrotransport plant for fur-185

ther processing. Here, ore size is an important measure to estimate crusher as186

well as screen efficiency. Towards achieving this goal, oil sand images are cap-187

tured through camera mounted over conveyor belt before and after the crusher188

as well as screen. Oil sand particles are detected in the images using the pro-189

posed method and then the particle size distribution (PSD) is computed. PSD190

is a histogram showing frequency of the particles over their sizes. In this pa-191

per, we have concentrated on the automatic detection of the oil sand parti-192

cles. We construct a training set using 20 images and test set using 100 im-193

ages sampled randomly from an online video of oil sand particles over con-194

veyor belt. For QT based snake initialization, we find the distribution for prior195
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and likelihood as well as the two threshold values ((Pth1) and (Pth2)) of the196

posterior probability (P (O/T,B)) experimentally from the training set. We197

have P (O/T,B) ∝ P (T/O)P (B/O)P (O), where T and B represent texture198

and brightness respectively. Maximum Singular Value Decomposition (SVD) en-199

codes average brightness of a region where average of the response of the ga-200

bor filter on a region encodes texture of the region. Experimentally it is found201

that maximum SVD of the oil sand patch follows doubly truncated exponential202

(DTE) distribution. Probability density function (pdf) of DTE [12] is given by,203

P (B) = exp(−(B−µ)/σ)
σ[1−exp(−(x0−µ)/σ)]I[µ,x0](B), µ ≤ B ≤ x0. On the otherhand, the re-204

sponse of the gabor filter follows doubly truncated normal distribution (DTN);205

pdf of DTN is given by, P (T ) =
1

σ
√

2π
exp(−(T−µ)2/2σ2)

Φ( b−µσ )−Φ( a−µσ )
I[a,b](T ), a ≤ T ≤ b, where206

Φ is the standard normal cumulative density function(cdf) [12]. The value of in-207

dicator function, I[a,b] = 1 if a ≤ T ≤ b, and is 0 otherwise. I[µ,x0](B) is defined208

similarly. A region will have high oil sand particles density if P (O/T,B) ≥ Pth2.209

The two threshold values of the posterior probability (Pth1 andPth2) are deter-210

mined experimentally from the training set. The parameters of the above dis-211

tributions are estimated using maximum likelihood estimation (MLE). Fig. 2(a)212

and fig. 2(b) shows the distribution of the brightness and texture of the oil sand213

particles respectively.214

Fig. 2. Histogram of brightness and texture of oil sand particles.

Regions of Interest (ROI) generated by QT and seeds generated by Center215

of Divergence (CoD) [4] method are shown in Fig. 4. Table 1 illustrates the216

number of seeds generated by the proposed QT, CoD and blind initialization217

(BI) [3]. CoD refers to the local maxima of the external Gradient Vector Flow218

(GVF) field. The point from which the GVF vectors to all of its neighboring219

pixels radiate is considered as CoD. CoD is supposed to be located within the220

object and the snake evolved from CoD converges to the actual boundary of the221
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Table 1. Comparison among three snake initialization techniques.

Datasets # of objects
# of seeds generated by
CoD BI QT

Oil Sand 349 3786 3000 686

Leukocyte 193 2402 4375 799

object in noise-free settings. Fig. 1(b) and 1(c) show accuracy and F-measure for222

CoD, BI and QT techniques with proposed modified Adaboost based validation223

technique respectively. F-measure combines both recall and precision into a single224

entity [13]. Results show that though all techniques possess the same accuracy,225

both BI and QT achieve 30% more F-measure value than that of CoD but QT226

generates significantly fewer seeds (Table 1) than other competitve methods.227

Fig. 3. (a) fivefold cross validation curve with standard error bars; the curve has min-
ima at k = 8. (b) Misclassification error rate over the number of iterations for oil sand
images.

Next, we determine the value of k (discussed regarding feature weight in228

section 3) using five-fold cross validation [6] technique. We compute misclassifi-229

cation errors for different values of k and is shown in Fig. 3(a). Standard error230

bars indicate the standard errors of the individual misclassification error rates231

for each of the five parts. It is observed that both the average misclassification232

error rate and standard error is minimum for k = 8 for oil sand images. For233

existing Adaboost algorithm, the value of k is always 1. Modified Adaboost al-234

ways outperforms the existing Adaboost algorithm because the modified one can235

select the best value of k for which the misclassification error is minimum. The236

misclassification error rate for boosting with decision stumps [6], as a function237

of the number of iterations for k = 8 is shown in Fig. 3(b).238
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Fig. 4. Results of different methods on oil sand images.
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Fig. 5. Segmentation scores: (a) Jaccard Score and (b) Pratt’s Figure of Merit of
different methods on oil sand images.

Fig. 4 shows the results of proposed Adaboost, ε-boosting [6], l1 regularized239

boosting [11] and PCA [3] on oil sand images and their comparisons are shown in240

Fig. 5 and Fig. 8(a). Fig. 5(a) shows the average Jaccard Score [1] and Fig. 5(b)241

shows the average Pratts figure of merit (PFOM) [14] for these methods. Jaccard242

Score measures the fraction of overlap area among detected and true objects.243

Pratt’s figure of merit determines the closeness among detected and actual edge244

pixels. Domain expert visually determines actual edge pixels and true object area245

from an image. Both Jaccard Score and Pratt’s figure of merit are important to246

judge the segmentation quality of an algorithm and both are bounded by 0 and 1.247

Superior performance of a segmentation algorithm is indicated by higher PFOM248

as well as Jaccard Score values.249

4.2 Leukocyte Images250

Leukocyte plays an important role in the study of inflammation. Inflammation251

is a natural defense mechanism initiated by tissue damage. During inflamma-252

tory responses, endothelium cell is activated, then leukocyte starts deviating253

from mainstream blood flow and contact the activated endothelium cell. This254

slowdown movement of leukocyte in contact with endothelium cell is known as255

rolling. Finally, from the rolling stage, leukocyte diffuses through the vascular256

wall, reach the injured tissues, and encounter the germs. Although inflammation257

is a normal defense mechanism, it sometimes becomes dangerous in the context258

of various inflammatory diseases. To combat such diseases, anti-inflammatory259

drugs are developed by blocking or controlling any of the necessary processes of260

inflammatory response. Here, the rolling velocity of leukocyte is an important261

factor in the study of inflammation. To measure and analyze the rolling velocity262

of leukocyte from the in vivo experiments, video recordings of the postcapilary263

vennule of a cremaster muscle are made through a CCD camera coupled with the264

intravital microscope. Then leukocyte cells are detected from the video frames265

using the proposed method and a correspondence analysis is carried out be-266
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tween consecutive images and finally cell motility is measured [7]. In this paper,267

we have concentrated only leukocyte detection. We have carried out experiment268

on a training set of 5 and a test set of 25 leukocyte images. Detections obtained269

by proposed Adaboost, ε-boosting [6], l1 regularized boosting [11] and PCA [3]270

techniques are shown in Fig. 6 and their comparisons are shown in Fig. 7 and271

Fig. 8(b).272

4.3 Interpretation of Results273

One can interpret that proposed adaboost based validation is better than ε-274

boosting [6], l1 regularized boosting [11] and PCA [3] based technique since275

it can detect more oil sand particles and leukocytes accurately and precisely.276

Segmentation score (Jaccard Score and Pratt’s Figure of Merit) as well as area277

under ROC curve of proposed adaboost is greater than that of other methods.278

5 Conclusion and Fututre works279

Towards complete automation of snake algorithm, we have proposed an initializa-280

tion as well as validation algorithm that could be utilized as a successful plug-in281

for existing snake/active contour tools. Existing research mainly focuses on the282

snake initialization and evolution steps and ignores the validation step. Here, we283

emphasize that we cannot omit the validation step in spite of applying the smart284

initialization technique of snake algorithm used for multiple objects detection.285

We have proposed probabilistic quad tree based approximate segmentation for286

snake initialization. We show that our proposed initialization outperforms ex-287

isting initialization methods. We have successfully incorporated regularization288

into boosting framework and we demonstrate that our intended loss function is289

more robust to outliers concerning snake classification into object and non-object290

classes. We also show that proposed boosting based snanke validation technique291

outperforms existing PCA based validation method. Results of extensive exper-292

iments illustrate that proposed method is fast, reliable and more accurate than293

existing methods.294

We would like to incorporate our initialization and validation methods with295

other well known snake evolution methods. Also we will further explore the296

characteristics of proposed regularization into boosting frameworks extensively297

by conducting experiments with available benchmark datasets.298

6 Appendix299

Derivation of Proposed Discrete Adaboost Algorithm300

301

Proposed loss function is: L(y, f(x)) = exp(−yf(x) +λ|y−G(x)|), where λ < 0.302

Let fm(x) = fm−1(x) + βmGm(x) be the strong classifier composed of first m303

classifiers. We can pose m-th iteration of adaboost as the following optimiza-304

tion, (βm, Gm) = argmin
β,G

∑N
i=1 exp[−yi(fm−1(xi) + βG(xi)) + λ|yi − G(xi)|]305
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Fig. 6. Results of different techniques on on leukocyte images.
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Fig. 7. Segmentation scores: (a) Jaccard Score and (b) Pratt’s Figure of Merit of
different methods on leukocyte images.

Fig. 8. Receiver Operating Characteristic (ROC) curves.
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⇒ (βm, Gm) = argmin
β,G

∑N
i=1 w

m
i exp[−yiβG(xi)) + λ|yi − G(xi)|] where, wmi =306

exp(−yifm−1(xi)) is free of both β and G(x).307

⇒ (βm, Gm) = argmin
β,G

[exp(−β)
∑
i:yi=G(xi)

wmi + exp(β + 2λ)
∑
i:yi 6=G(xi)

wmi ].308

= argmin
β,G

[exp(β+2λ)−exp(−β))
∑
i:yi 6=G(xi)

wmi +exp(−β)
∑N
i=1 w

m
i ]. The so-309

lution forβm and Gm can be obtained in two steps. First, for any value of β > 0,310

the solution for Gm is: Gm = argmin
G

∑N
i=1 w

m
i I(yi 6= G(xi)). Let errm =311

argmin
G

∑N
i=1 w

m
i I(yi 6= G(xi))/

∑N
i=1 w

m
i , then βm = ∂

∂β (
∑N
i=1 w

m
i ((exp(β +312

2λ)−exp(−β))errm+exp(−β))) = 0⇒ βm = 1
2 (log 1−errm

errm
)−λ = 1

2 (logk 1−errm
errm

),313

where, λ = − 1
2 log(k), k > 0. Now, wm+1

i = wmi exp(−βmyiGm(xi)). Using the314

fact that −yiGm(xi) = 2I(yi 6= G(xi)) − 1, we get, wm+1
i = wmi exp(αmI(yi 6=315

G(xi)))exp(−βm) where, αm = 2βm = log(k((1 − errm)/errm)). So, wm+1
i =316

wmi exp(αmI(yi 6= G(xi))). The factor exp(−βm) multiplies all weights by the317

same value, so it has no effect.318
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