
Managing Checkpointsfor Parallel ProgramsJim Pruyne and Miron LivnyDepartment of Computer SciencesUniversity of Wisconsin{Madisonfpruyne, mirong@cs.wisc.eduAbstractCheckpointing is a valuable tool for any scheduling sys-tem to have. With the ability to checkpoint, schedulersare not locked into a single allocation of resources tojobs, but instead can stop running jobs, and re-allocateresources with out sacri�cing any completed computa-tions. Checkpointing techniques are not new, but theyhave not been widely available on parallel platforms.We have implemented CoCheck, a system for check-pointing message passing parallel programs. Parallelprograms tend to be large in terms of their aggregatememory utilization, so the size of their checkpoint isalso large. Because of this, checkpoints must be han-dled carefully to avoid overloading the system whencheckpoints take place. Today's distributed �le systemsdo not handle this situation well. We therefore pro-pose the use of checkpoint servers which are speci�callydesigned to move checkpoints from the checkpointingprocess, across the interconnection network, and on tostable storage. A scheduling system can utilize numer-ous checkpoint servers in any con�guration in order toprovide good checkpointing performance.1 IntroductionThe ability to checkpoint a running program, whetherit be a sequential or parallel program, is a valuable toolfor a scheduling system. One common use for check-pointing is to provide fault tolerance. Checkpoint-ing also allows the scheduler to re-allocate resourcesamong both running and queued jobs without sacri�c-ing any computations already performed. For exam-ple, Condor's [1] ability to checkpoint sequential pro-grams has allowed it to e�ectively utilize the idle timeof privately owned workstations for long running jobs.By checkpointing a program when an owner reclaimsa machine, Condor is able to run programs which takemuch longer than any single idle interval at a worksta-

tion.Parallel scheduling systems may also bene�t fromthe ability to checkpoint programs in many ways. Forexample, most current parallel schedulers require theuser to specify how long a job will run, and the sched-uler simply kills jobs which do not complete in thespeci�ed time. By killing the job, the entire currentstate of the computation is lost, and therefore the re-source time allocated to the job has been wasted. Amore desirable approach would be to checkpoint theentire parallel application. The checkpointed programcould then be re-submitted to the system, and com-putation would continue from the point where the jobwas forced to vacate the machine. In this way, the timealready invested in the job will be preserved.Another use for checkpointing in a parallel sys-tem is to perform dynamic partitioning which has beenshown [2] to be more e�ective than static methodsof scheduling parallel programs. In a dynamic par-titioning scheme, the number of resources allocated toa job is changed while the job is running based onchanges in load on the overall system. Without theability to checkpoint and save the state of running pro-cesses, it would not be possible to move processes toperform a dynamic partitioning resource reallocation.The conditions under which dynamic partitioning isbene�cial depend greatly on the overhead involved indoing resource re-allocation. When this overhead be-comes high, the bene�ts of dynamic partitioning arelost. It is therefore important to perform checkpointand restart operations as quickly as possible.Techniques for checkpointing of parallel and dis-tributed programs have been understood for quitesome time. For example, Chandy and Lamport pro-posed a \distributed snapshot" protocol in 1985 [3].Thus far, however, implementations of these tech-niques for real parallel systems have been rare. Build-ing on the theory and the experience gained doingcheckpointing for single process jobs in Condor, wehave developed a system for checkpointing message1



passing parallel programs called CoCheck (for Consis-tent Checkpointing). CoCheck implements a networkconsistency protocol much like Chandy and Lamport'sdistributed snapshot protocol, and utilizes the singleprocess checkpoint ability of Condor to save the stateof each process in a parallel application.In practice, checkpointing a parallel program tendsto be a time consuming operation. The exact attributewhich makes parallel programs desirable, their abilityto perform computations which are extremely large inboth computation and memory requirements, makesthem di�cult to checkpoint. In particular, a check-point must by de�nition include the entire state of therunning program. A parallel program's state consistsof the state of the interconnection network as well asthe address space of each process. The combined mem-ory of all of the processes often amounts to a hugeoverall state which must some how be moved into sec-ondary storage. There are two potential bottlenecksin saving this data: the interconnection network overwhich the data must travel, and the secondary storagedevices on which the data will be stored. Because thescheduling system makes decisions related to check-pointing, it must determine how and where the check-points will be stored. To give the scheduler exibil-ity in making these decisions, we have implemented acheckpoint server which performs checkpoint �le storeand retrieve operations at the request of the sched-uler. Using checkpoint servers, the scheduler is ableto precisely direct the movement of checkpoints, andis not at the mercy of an external mechanism, suchas a distributed �le system, in which it cannot imposepolicy.The rest of this paper is organized as follows. Thenext section describes the design of CoCheck. Sec-tion 3 provides discussion of alternatives which led tothe development of the checkpoint server, and how itmay be used by a scheduler. This is followed by somepractical experience with the overall system and someconclusions and thoughts on future work.2 CoCheckCoCheck [4] is a freely available system for creatingcheckpoints of parallel programs which communicatevia a Message Passing Environment (MPE). It hasbeen developed via a collaboration between researchersat the Technical University of Munich and ourselves.The implementation available today works with PVM[5] on workstation clusters. Work is ongoing in Munichto extend CoCheck to support MPI [6].We started with a number of important designgoals when developing CoCheck. The �rst goal of

Operating System

CoCheck Overlay Library

MPE Library

Application

OS Library

Checkpointing Library

Figure 1: Layering of the CoCheck componentsCoCheck was to remain portable. That is, althoughthe �rst implementation was done on top of PVM, theconcepts used in CoCheck should be applicable to anyMPE. Another important aspect of CoCheck is thatit does not require modi�cations to the MPE imple-mentation. This helps with portability both acrossdi�erent message passing systems, and for maintainingcompatibility with updated releases of a single system.It also permits us to implement CoCheck on systemsfor which source code is not available. Additionally,we required exibility in the degree of checkpointingto be performed. For example, it may be desirable tocreate a global checkpoint all processes in a parallelapplication, or it may only be necessary to checkpointa little as one process to perform a migration. Thedegree of checkpointing to be performed is put underthe control of the application or the scheduling system.Finally, CoCheck must have no residual dependencieson resources after a checkpoint is complete. This is tosay that it is unacceptable to require continued partic-ipation in the life of a parallel program by a resourceon which all processes have been checkpointed.2.1 CoCheck ComponentsThe state of a message passing parallel program atany given time consists of the state of each processin the application as well as the state of the commu-nication network which may be carrying or bu�eringmessages in transit. To capture this state, and to meetour design goals, CoCheck has been designed in threecomponents: an overlay library for the message pass-ing API, a single process checkpointing library, anda resource management (RM) process which coordi-nates the checkpointing protocol. The two librariesare linked into every application process generating aservice layering as shown in �gure 1. External to theapplication is a RM process which runs as part of the2



scheduling system. By using these three components,we have been able to meet our design goals, and at thesame time leverage much pre-existing technology.The overlay library is the key to doing checkpoint-ing without modi�cation to the underlying MPE. Thislibrary provides a stub for every function de�ned bythe MPE. These stubs trap all application calls to theMPE, and perform communication identi�er or othertranslations which must be made as a result of previouscheckpoints and restarts. In most cases, the stub willin turn call the original MPE function to get the ac-tual service performed. The overlay library also imple-ments the protocol to capture the network state whichis described below.Single process checkpointing libraries have existedfor quite some time. CoCheck utilizes the checkpoint-ing library which was developed as part of Condor[7, 8] which, among others, provides this functional-ity without any modi�cations to the operating systemon which it runs. The technique used for performingsingle process checkpointing is similar to the messagepassing overlay library described above (indeed, thetechniques used in single process checkpointers were aninspiration for CoCheck's overlay approach). The stateof a single process includes its memory (the bounds ofits address space), the state of the processor registers,and any state within the operating system kernel suchas the set of open �les and their current seek posi-tion. Determining the bounds of the address spaceand saving the registers of a process are typically easyto perform. However, the increasing use of techniquessuch as dynamically loaded libraries have made ad-dress space lay-outs more complex making this a moredi�cult task. The overlay functions in a checkpointinglibrary catch calls to the kernel which modify the ker-nel state of a process (for example, opening a �le), andrecord this information so that it can be saved in thecheckpoint and restored upon restart. Not all state of aprocess can be saved. For example, the parent-child re-lationship of processes following a fork() system call,or inter-process communication outside the scope ofthe MPE (e.g. pipes or sockets) cannot be retained.The Condor checkpointing library therefore disallowsthese system calls by trapping them and returning anerror.The �nal component of CoCheck, the resourcemanager process is the coordinator for the entire sys-tem. The RM process provided with CoCheck is anextension to the external RM process �rst designed foruse with PVM [9]. This process receives requests forcheckpointing services, and initiates the CoCheck pro-tocol between itself and the overlay library of each theapplication processes to perform these services. Thestandard RM also writes a meta-checkpoint �le which

can later be re-read by a new instance of the RM toprovide the information needed to restart the entirecomputation. Because PVM allows new resource man-ager processes to be de�ned, CoCheck can be used withany RM process which implements its protocols.2.2 CoCheck ProtocolThe CoCheck protocol (shown in �gure 2) is re-sponsible for ensuring that the entire state of the net-work is saved during a checkpoint, and to insure thatcommunication can be resumed following a checkpoint.The CoCheck protocol begins when the RM deter-mines that a checkpoint is required. This may be dueto an application request, or because of a change inthe state of a resource or due to a scheduling decision(such as the end of the time quanta allocated to a job).The RM begins by sending a signal and a message toeach of the application processes. The combination ofsignal and message is required because each processmay be either computing or communicating. The sig-nal will interrupt a process which is computing causingit to enter the CoCheck library to participate in thecheckpoint protocol. The overlay library of a processwhich is communicating will simply see the checkpointrequest message, and interpret it as a request to begincheckpointing.The checkpoint request message sent from the RMto each process contains two pieces of information. The�rst is how this process should participate in the check-point. The most common alternative is for the processto checkpoint itself. In this case, the message containsa World Wide Web style Universal Resource Locator(URL) which speci�es where the checkpoint is to bewritten. This may be simply a �le, an ftp site, or itmay specify a checkpoint server which will be describedlater. When the URL does not specify a local �le, thecheckpoint is written directly to the network, and isnever stored on the local disk. Avoiding the local diskoperation allows checkpoints to occur at the maximumspeed the network protocols permit. Instead of specify-ing a checkpoint destination, the message may tell theprocess not to checkpoint at all, or it may request thatthe process generate a new, CoCheck speci�c, URLfrom which another process may read its checkpoint.This last alternative provides a means of performing adirect process migration without the need to create anintermediate checkpoint �le.The checkpoint request message sent by the RMalso includes a list of communication identi�ers of pro-cesses which are also checkpointing. The checkpoint-ing processes sends a ready message to each of theseprocesses, and then waits for ready messages from allthe other processes. Any other messages which are3



Checkpoint phaseInterrupt phase Synchronisation phase

P2

P1

P3

RM

Signal

messages

Signal

Signal

Send ready

messages

Send ready

Send ready

Broadcast
task list

messagesFigure 2: CoCheck's network cleaning protocolreceived while waiting for readys are assumed to bepart of the application's communication, and will bebu�ered in the process' address space so they becomepart of the process' checkpoint. With the provisionthat messages are delivered in order between any twoprocesses, it can be assumed that the network has beendrained when all of the ready messages are received.At this point, it is safe for each process to disconnectfrom the MPE (if the MPE requires it), and to invokethe Condor checkpointing library to save its state.To restart from a CoCheck checkpoint each pro-cess is provided with a URL from which to read itsindividual checkpoint by the RM. Prior to performinga restart operation, the process connects itself with theMPE to establish a new communication identi�er. Itnext performs a single process restart operation whilepreserving its new communication id. Following therestart, each process sends its new communication idto the RM process. The RM collects all of these idsfrom the restarting processes, and sends a mapping ofold ids to new ids to each process. When this is re-ceived, it is installed in the CoCheck library, and allfuture communications will go through this mappingbefore passing into and out of the MPE implementa-tion. In this way, processes are able to continue touse the original communication ids which were in useprior to the checkpoint. After the new mapping isinstalled, the application processes resume from thepoint at which the initial checkpoint noti�cation wasreceived.2.3 CoCheck APICoCheck was designed to be exible in the number ofprocesses to be checkpointed and in where the check-point is to be written. To leverage this exibility, the

interface to CoCheck must also be exible. The basicinterface to CoCheck is with the GeneralCkpt() func-tion. GeneralCkpt() takes arguments for specifyingthree groups of processes: those that should be check-pointed, those that should block while the processesremain checkpointed in order to maintain a consistentcommunication identi�er space, and those processeswhich should neither checkpoint nor block. This lastgroup simply insures that the network is clear betweenitself and the checkpointing processes before continu-ing. The complement to the GeneralCkpt() functionis GeneralRestart() which requires only specifyingthe �rst two groups of processes in order to get thecheckpointed ones restarted, and to get the blockingones new communication identi�er mappings.The checkpoint and restart functions are asyn-chronous remote procedure calls against the resourcemanager process. As with CARMI [10], they immedi-ately return an integer request identi�er. In this way,a process requesting a checkpoint need not block whilethe CoCheck protocol is running, and while the indi-vidual checkpoints are being stored. Processes may,though, include themselves in any of the set of pro-cesses de�ned by GeneralCkpt(). When a request iscomplete, the RM sends a completion noti�cation mes-sage to the requesting processes.Using these two functions as a basis, a variety ofmore special case checkpointing functions can be de-veloped. For example, it is easy to design calls whichcheckpoint an entire parallel application or a singleprocess. With only slight extensions, it has been pos-sible to provide requests for migrating a single process,requesting a checkpoint to take place when anotherevent occurs (such as a privately owned workstationbeing revoked), or allowing the user to specify where4



checkpoints should be written.3 Methods of storing Check-point FilesWhen a scheduler makes a decision that an applicationmust be checkpointed, it must also determine how thatcheckpoint will be stored. Checkpointing a parallel ap-plication creates a very large burst of data which mustbe stored reliably and as quickly as possible. Thisbursty pattern is exactly the set of circumstances un-der which most communication and storage systemsperform poorly.The tolerance to latency in performing a check-point will depend on the environment in which theparallel application is running. In a situation in whichuse of a resource may be revoked (such as for privatelyowned workstations), there is a degree of real-time con-straint in saving the data. Condor, for example has auser con�gurable upper bound on the time allowed fora checkpoint when a workstation is reclaimed. If thecheckpoint is not complete within this interval, Con-dor kills the job rather than waiting for the checkpointto complete. In an environment where resources arecompletely under the control of the scheduling systemthere may be no hard constraint, but it is still very im-portant to complete the checkpoint as quickly as pos-sible in order to free the resources for other jobs. Timespent checkpointing is time when useful computationis not taking place.The simplest, and perhaps most desirable methodof storing a checkpoint of a parallel program is to sim-ply use an existing distributed �le system. Examples ofthese include the Network File System (NFS) [11] andthe Andrew File System (AFS) [12]. Using these sys-tems for storing checkpoints is quite attractive becauseit allows them to be stored in the same way as other�les. The problem of where and how data is stored ishandled by the �le system. Unfortunately, these sys-tems were not designed to perform well on operationswhich involve one time transfers of large �les such ascheckpoints.NFS has stateless servers which handle �le re-quests a single page at a time. This leads to poorperformance because the �le must be moved across thenetwork via a series of page size requests to the server.AFS uses a more complex, full �le caching scheme inwhich all �les accessed are moved in their entirety be-tween the server and client disks. Practice has shownthat AFS is not adequate for parallel systems. Forexample, the Cornell Theory Center recommends thatAFS not be used when data transfers become large[13]. The caching scheme used by AFS is particularly

poor at writing results such as checkpoint �les. Theseresults generally will not be re-used on the node wherethey are generated, so caching them locally providesno future bene�t, and in fact may cause other, usefuldata to be ushed from the cache. The AFS schemealso ends up causing two disk writes (one locally andone on the server) for the entire �le. With fast in-terconnection networks, the latency of disk accessesbecomes a bottleneck. A �nal di�culty with AFS isthe inexibility in placing �le servers. AFS servers areconsidered insecure unless placed in a \locked room"to which users do not have access. This limits the abil-ity to place AFS servers such that they will be closeto the processes generating checkpoints.3.1 Checkpoint ServersDue of the perceived shortcomings of the existing so-lutions, we have developed a Checkpoint Server specif-ically suited for the problem of storing and retriev-ing checkpoints. The goal of the checkpoint server issimply to move data between the network and the lo-cal disk as quickly as possible. It is the scheduler'sjob to determine when a checkpoint should take place,and what checkpoint server should be used for storingwhich checkpoint �les. When a checkpoint or restartis to be performed, the RM process, as the schedulersrepresentative in the CoCheck protocol, starts by con-tacting the required servers to request a store or re-trieve operation. The server responds by generating aURL on which it will transfer the checkpoint, and forksa child process to perform the transfer. The URL ser-vice pre�x (e.g. \http:" or \ftp:") is unique to ourcheckpoint server, and is understood by the Condorcheckpointing library (as described previously). ThisURL contains an Internet Protocol (IP) address andport number pair to perform a TCP transfer of thecheckpoint. TCP is used because it is the fastest reli-able protocol available in our network of workstationsenvironment. In other environments, other transportprotocols could be used by generating URL's with dif-ferent service pre�xes, and implementing them in theURL component of the Condor library. The checkpointserver uses a child process to perform the transfer toinsure that it will be ready to receive the next servicerequest.Like other simple components, checkpoint serverscan be combined to form more complex structures. Ascheduling system can use multiple checkpoint serversas building blocks to provide good checkpointing per-formance. In putting the blocks together, one mustconsider a number of factors. Perhaps most importantis the topology and characteristics of the underlyingcommunication network. In a large, fragmented net-5



work with high latencies and low bandwidth, check-point servers should be scattered about to insure thatany checkpointing process has as fast a link as pos-sible to some checkpoint server. In a smaller, moretightly connected network, it may not be necessaryto have many checkpoint servers since every potentialcheckpointing process will always have a fast path toa server.One must also consider the characteristics of thecheckpoint servers themselves. Particularly when at-tempting to reduce the total number of checkpointservers, it is important to look at issues such as thebandwidth of the disk. When a fast network deliversmany checkpoints to the same server, the disk will be-come the bottleneck. Also, the capacity of the disk isimportant. A server with a small disk should not beplaced in a location where it will be expected to storemany checkpoints. A scheduling system must under-stand these sorts of characteristics of its checkpointservers, and schedule the checkpoint servers much likeit would schedule compute or other resources.A �nal consideration when deciding how to usecheckpoint servers is how frequently checkpoint oper-ations take place. In an opportunistic system suchas Condor, the return of a single user may cause amulti-node parallel application to checkpoint. For thisenvironment, it is worthwhile to allocate signi�cant re-sources to checkpointing because they will be neededfrequently. In all environments the frequency of check-point operations is going to be determined by the wayin which the scheduler utilizes checkpointing.A scheduler may trigger checkpoints periodicallyto provide fault tolerance. The degree of checkpoint-ing in this case is going to depend on the scheduler'slevel of trust for its resources. When resources are re-liable, the interval between checkpoints may be large,and there will be little load placed on the checkpointservers. When the resources are less reliable, check-points may be taken more often in order to reducethe amount of computation lost due to a failure. Acheckpoint may also be invoked based on the prior-ity of jobs in a queue. There may be a preemptionpolicy that running jobs will be checkpointed and re-placed by newly submitted jobs with higher priority.Checkpoints may also be used to perform re-allocationof resources among running jobs to implement a dy-namic partitioning strategy or, for example, to moveprocesses which communicate frequently close to oneanother. In all of these cases, the variety of jobs is go-ing to inuence the frequency of checkpoints and there-fore the level of checkpoint servicing required. It istherefore extremely important that the scheduler haveexibility in the number and placement of checkpointservers.

Parallel schedulers also need to take the place-ment of checkpoint servers into consideration whenthey are allocating processes to compute nodes. Pro-cesses should be spread around the resources such thatno single checkpoint server will be overloaded in casethere is a need to checkpoint. Knowledge of the char-acteristics of the checkpointing infrastructure shouldbe used. The scheduler must balance its desire to dis-tribute checkpoints evenly with the application's needfor high bandwidth and low latency communicationwhich generally are achieved by clustering the appli-cation processes. Applications which do not do inten-sive communication may be scheduled based on theexpected checkpointing requirements, while communi-cation intensive applications may be scheduled to re-duce application communication time at the cost ofhigher checkpoint times.4 Experience with the deploy-ment of checkpoint serversAs described in the previous section, before deploy-ing checkpoint servers in our department, we had tounderstand the need for checkpointing services as wellas the characteristics of our communication infrastruc-ture. The Computer Sciences department at the Uni-versity of Wisconsin has around 200 desktop worksta-tions most of which are available to the Condor re-source management system for executing long runningsequential applications. Each of these workstations isalso available to users via CARMI [10] the resourcemanagement and parallel programming interface toCondor. Condor has always supported checkpointingof sequential applications, and CoCheck has recentlybeen integrated with CARMI to provide checkpointingservices to parallel applications. Because checkpointsin this environment are triggered by owners returningto their workstations, they occur relatively frequently.We therefore require a checkpoint server architecturewhich can service numerous checkpoints.The principle limitation in our environment, asin many other environments, is the available networkbandwidth. Each of our workstations lies on an Eth-ernet class sub-net. Each Ethernet is connected to oneor two routers which in turn directly connect each sub-net to three to �ve other sub-nets as well as an FDDIbackbone. The path between any two workstations,therefore, is at best at the Ethernet rate of 10 Mbitsec ,and may require crossing one or two routers. The de-partment also has AFS available to all of the work-stations, and the AFS servers are connected directlyto the FDDI ring. We therefore wish to explore thealternatives in placing checkpoint servers on sub-nets6



Checkpoint Route Time to CheckpointCheckpointer and server on same sub-net 46Checkpointer and server on separate sub-nets connected to the same router 64Checkpointer and server on separate sub-nets with FDDI in between 79Checkpointer on Ethernet, server directly connected to FDDI 49Table 1: Times, in seconds, to write a 32Mb checkpoint �leas well as sharing the AFS servers which are directlyon the FDDI ring.Table 1 summarizes the results of experiments todetermine how the network topology a�ects the timeto write a checkpoint. In each of these experiments,a 32Mb checkpoint �le was generated on a SPARCworkstation running SunOS 4.1.3. The checkpoint �leswere received at checkpoint servers running on DecAlpha workstations running OSF/1 V2.1. The resultsreported are the average of a number of checkpointoperations. In all cases, the variance in the time tocheckpoint was low. As would be expected, placingthe checkpoint server and checkpointing process on thesame sub-net produced the best results. Placing thecheckpoint server on FDDI performed nearly as well.In the tests where the checkpoint had to move o� of onesub-net and onto another, the time increased markedly.From these results, it seems that the most desir-able method of placing checkpoint servers would beone per sub-net. In this way, every workstation willhave the fastest available path to a server. There aretwo disadvantages to this. First, the number of sub-nets is large (approximately a dozen containing user'sworkstations), so many resources would have to be es-tablished as checkpoint servers. Also, although placinga checkpoint server on each sub-net will improve check-point times, to gain the same advantage at restart timewould require re-scheduling a job on the same sub-net as when it last checkpointed. This severely limitsthe number of resources available for a restarting job.We wish to investigate ways to circumvent this prob-lem by building hierarchies of checkpoint servers. Asmall checkpoint server could be placed near to theresource on which the checkpoint is taking place, butafter the checkpoint is complete, it could be moved tosome larger higher level server from which the restartwill occur. This movement to the higher level servercould take place o�-line, when there is no immediateneed for the checkpoint at any particular site.Placing checkpoint servers directly on the FDDIring appears to be nearly as desirable as having acheckpoint server per sub-net. In our environment,there are administrative barriers to this, but it appearsthat, in general, it would be wise to dedicate some re-sources on the highest bandwidth portion of a network

0 10 20 30

Size of Checkpoint files (Mbytes)

0

50

100

150

T
im

e 
to

 C
he

ck
po

in
t 

(S
ec

s.
)

AFS
1 Ckpt. Server on Ethernet
2 Ckpt. Servers on Ethernet
1 Ckpt. Server on FDDI
2 Ckpt. Servers on FDDI

Figure 3: Time to checkpoint 2 processes of varioussizesto provide good checkpoint performance.Our second set of tests was intended to determineif checkpointing performance scales as the number ofcheckpointing processes, servers and size of individualcheckpoints is increased. We also wanted to see ex-actly how well an existing �le system, AFS, performson these operations. Once again, our tests were limitedby the bandwidth on our network. It is clear that nosingle checkpoint can occur faster than the bandwidthof a single sub-net, so we did not want any two check-pointing processes to lie on the same sub-net. Thisconstraint limited us to checkpointing no more thantwo processes simultaneously. Figure 3 shows the re-sults of di�erent checkpoint server con�gurations andcheckpoint sizes.In all cases, the time to checkpoint scaled nearlylinearly with the size of the checkpoint �les. The moststriking result is how poorly AFS performs for check-point operations. As mentioned previously, this is dueto the method in which AFS caches �les. As a check-point is being written, it is stored entirely on the localdisk. When the �le is closed, it is read o� of the disk,and transfered across the network to the �le serverwhere it is written to the server's disk. This requiresthree disk I/O's as opposed to one for the checkpointserver. Nonetheless, it is surprising that AFS required7



0 10 20 30

Size of Checkpoint files (Mbytes)

0

50

100

150

T
im

e 
to

 R
es

ta
rt

 (
Se

cs
.)

AFS
1 Ckpt. Server on Ethernet
2 Ckpt. Servers on Ethernet
1 Ckpt. Server on FDDI
2 Ckpt. Servers on FDDI

Figure 4: Time to restart 2 processes of various sizesapproximately an order of magnitude more time toproduce a checkpoint.In the checkpoint server cases, the results are whatone might expect by extrapolating from the singlecheckpoint tests. Sending two 32Mb checkpoints tothe same checkpoint server, takes almost exactly twiceas long (90 seconds) as sending one checkpoint to oneserver. When sending to two checkpoint servers onseparate sub-nets, we were constrained by our envi-ronment to go across the FDDI ring. The last oftwo checkpoints completed in virtually the same timeas one checkpoint taking a route across FDDI. Send-ing two checkpoints to one server on FDDI took onlyslightly longer (58 seconds) than sending one check-point onto FDDI (49 seconds). This implies that thenetwork is still the bottleneck in this operation, andthat the processor and disk are still able to keep up. Asmore sub-nets feed the same FDDI connected check-point server, we would expect the disk to become thebottleneck. The fact that an additional server on theFDDI ring does not improve checkpoint performancefurther shows that the single server is not yet a bot-tleneck.Figure 4 shows results of similar experiments forrestarts. The same con�gurations of checkpoint serversand checkpoint sizes were used for the restart tests asfor the checkpoint tests. The results for restarts aresimilar to those for checkpoints. Once again, AFS per-forms poorly, though restarts are signi�cantly betterthan checkpoints. Typically, restart times are slightlyhigher than checkpoint times. This is due to the factthat in order to perform a restart, the executable �lefor the restarting process must �rst be moved to theexecuting machine. Executables are moved from thecheckpoint server to the local disk of the executing ma-chine using the same mechanism as checkpoint �les.

5 Conclusions and future workParallel job schedulers are faced with an increasinglydi�cult task because the type of jobs and the typesof resources are becoming more and more diverse.By providing schedulers with new techniques, such ascheckpointing, we make it possible for more e�cientschedules to be created. With each new technique,however, comes additional complexity of determiningwhen and how to use it. For checkpointing, the prob-lem is determining both when to checkpoint and howto most e�ciently move large checkpoint images.Today's methods of storing �les on parallel sys-tems, namely distributed �le systems, do not provideadequate performance for storing checkpoints. These�le systems are also implemented completely outside ofthe scheduling system, so the scheduler has very littlemeans of controlling how they move data. By imple-menting checkpoint servers, we have given the schedul-ing system control over where and when data will betransferred. The scheduler can then treat the check-point servers like other resources which must be sched-uled. Checkpoint servers provide the scheduler a greatdeal of exibility in how checkpoints are stored. Tech-niques such as hierarchical checkpoint servers or strip-ing a single checkpoint across multiple servers have notyet been investigated, but may provide higher levels ofperformance.Initial experience with CoCheck has been verygood, and the current work to support MPI withCoCheck is a good sign of its portability. Further ex-perience with the checkpoint servers, and how best toutilize them is needed. Our existing testing environ-ment is severely limited by the bandwidth of our net-work. We hope to gain further experience with thecheckpoint servers on hardware which is dedicated toparallel processing and which contains a faster inter-connect. Our department's Cluster Of Workstations(COW) which consists of forty dual processor SPARCworkstations connected by a Myrinet is a likely tar-get. The current obstacle to this is porting the Condorcheckpointing library to the Solaris operating systemwhich runs on these nodes. The simplicity of the check-point server should allow us to easily tailor it to usethe best available communication protocol as we moveto new hardware.In addition to checkpoints, users' data sets mustbe distributed among the nodes of a parallel system.Integrating the distribution of this data into a schedul-ing system may allow faster start up of jobs. Insteadof jobs waiting for the nodes to be loaded after be-ing scheduled, the scheduler could load the data us-ing techniques similar to the checkpoint server. Thiswould require additional submit time information from8



the user specifying what data is needed on which node.Further integration with parallel I/O systems wouldalso be desirable.AcknowledgementsWe wish to thank Georg Stellner of the Technical Uni-versity of Munich for his initial design and collabora-tion during the development of CoCheck. The prin-ciple work on the implementation of the CheckpointServer was done by Hsu-lin Tsao as part of a classproject for Prof. Marvin Solomon.References[1] M. J. Litzkow, M. Livny, and M.W. Mutka, \Con-dor: A hunter of idle workstations," in Proceed-ings of the 8th International Conference on Dis-tributed Computing Systems, pp. 104{111, June1988.[2] M. Squillante, \On the bene�ts and limitationsof dynamic partitioning in parallel computer sys-tems," in Job Scheduling Strategies for ParallelProcessing (D. G. Feitelson and L. Rudolph, eds.),vol. 949 of Lecture notes in Compter Science,Springer-Verlag, 1995.[3] K. M. Chandy and L. Lamport, \Distributedsnapshots: Determining global states of dis-tributed systems," ACM Transactions on Com-puter Systems, vol. 3, pp. 63{75, Feb. 1985.[4] G. Stellner and J. Pruyne, \Resource manage-ment and checkpointing for PVM," in Proceed-ings of the 2nd European Users' Group Meeting,pp. 131{136, Sept. 1995.[5] A. Geist, A. Beguelin, J. Dongarra, W. Jiang,R. Manchek, and V. Sunderam, PVM: ParallelVirtual Machine { A Users' Guid and Tutorialfor Networked Parallel Computing. Cambridge,MA.: The MIT Press, 1994.[6] G. Stellner, \CoCheck: Checkpointing and pro-cess migration for MPI," in Proceedings ofthe International Parallel Processing Symposium,IEEE, April 1996.[7] M. J. Litzkow and M. Solomon, \Supportingcheckpointing and process migration outside theUnix kernel," in Proceedings of the Winter UsenixConference, (San Francisco, CA), 1992.

[8] T. Tannenbaum and M. Litzkow, \The Condordistributed processing system," Dr. Dobb's Jour-nal, pp. 40{48, February 1995.[9] J. Pruyne and M. Livny, \Providing resourcemanagement services to parallel applications," inProceedings of the Second Workshop on Envi-ronments and Tools for Parallel Scienti�c Com-puting (J. Dongarra and B. Tourancheau, eds.),SIAM Proceedings Series, pp. 152{161, SIAM,May 1994.[10] J. Pruyne and M. Livny, \Parallel processing ondynamic resources with CARMI," in Job Schedul-ing Strategies for Parallel Processing (D. G. Fei-telson and L. Rudolph, eds.), vol. 949 of Lecturenotes in Compter Science, Springer-Verlag, 1995.[11] R. Sandberg, D. Goldberg, S. Kleiman, D. Walsh,and B. Lyon, \Design and implementation of theSun network �le system," in Proceedings of theSummer Usenix Conference, pp. 119{130, 1985.[12] J. H. Howard, M. L. Kazar, S. G. Menees, D. A.Nichols, M. Satyanarayanan, R. N. Sidebotham,and M. J. West, \Scale and performance in a dis-tributed �le system," ACM Transactions on Com-puter Systems, vol. 6, pp. 51{81, February 1988.[13] J. Gerner, \Input/output on the IBM SP2{anoverview." http://www.tc.cornell.edu/SmartNodes/Newsletters/IO.series/intro.html.

9


