
“IJUC” — “IJUC_0078” — 2010/5/13 — 16:57 — page 301 — #1

Int. Journ. of Unconventional Computing, Vol. 6, pp. 301–326 ©2010 Old City Publishing, Inc.
Reprints available directly from the publisher Published by license under the OCP Science imprint,
Photocopying permitted by license only a member of the Old City Publishing Group

Detecting Anomalous Process Behaviour using
Second Generation Artificial Immune Systems

Jamie Twycross
1
, Uwe Aickelin

2
and Amanda Whitbrook

2

1ASAP Research Group, School of Computer Science, University of Nottingham, UK
2IMA Research Group, School of Computer Science, University of Nottingham, UK

E-mail: jpt@cs.nott.ac.uk; uxa@cs.nott.ac.uk; amw@cs.nott.ac.uk

Received: April 7, 2009. Accepted: February 10, 2010.

Artificial Immune Systems have been successfully applied to a number
of problem domains including fault tolerance and data mining, but have
been shown to scale poorly when applied to computer intrusion detec-
tion despite the fact that the biological immune system is a very effective
anomaly detector. This may be because AIS algorithms have previously
been based on the adaptive immune system and biologically-naive mod-
els. This paper focuses on describing and testing a more complex and
biologically-authentic AIS model, inspired by the interactions between the
innate and adaptive immune systems. Its performance on a realistic process
anomaly detection problem is shown to be better than standardAIS methods
(negative-selection), policy-based anomaly detection methods (systrace),
and an alternative innate AIS approach (the DCA). In addition, it is shown
that runtime information can be used in combination with system call
information to enhance detection capability.

Keywords: Second generationArtificial Immune Systems, innate immunity, process
anomaly detection, intrusion detection systems

1 INTRODUCTION

This paper is concerned with the classification performance of a novel Arti-
ficial Immune System (AIS) on a process anomaly detection problem. The
novel AIS (thetlr algorithm) incorporates mechanisms inspired by both the
innate and adaptive biological immune systems, and produces a very low
false positive rate when detecting attacks on an FTP server. As with many
other process anomaly detection systems, system call information is used as
one source of input data. However, another novel aspect of thetlr algorithm
is the use of runtime statistics (such as process memory and file usage) as

301

“IJUC” — “IJUC_0078” — 2010/5/13 — 16:57 — page 302 — #2

302 J. Twycross et al.

context signals that form additional sources of input data. This aspect builds
on the idea of gray-boxing, a term introduced several years ago [8] to denote
intrusion detection systems that use runtime information as well as system call
information.

The rest of the paper is structured as follows. Section 2 provides some
essential background information on intrusion and process anomaly detection,
reviewing and describing the various approaches. It also introduces some
fundamental AIS concepts including the notion of first and second generation
AIS algorithms. A detailed explanation of thetlr algorithm’s architecture
is given in Section 3, and Section 4 describes how a test dataset (wuftpd)
is created and how the normal and anomalous test data is constructed, i.e.,
how the input system calls and context signals used by thetlr algorithm are
gathered in practice. Section 5 reports on the experimental procedures adopted
and the results are presented and discussed in Section 6; in particular, thetlr

algorithm’s performance is compared with those of several other classifiers
and anomaly detection approaches. Section 7 concludes the paper.

2 BACKGROUND

2.1 Process Anomaly Detection
A process is a running instance of a program, and on modern multitasking
operating systems many processes are effectively running simultaneously. For
example, a server may be running a web server, email servers and a number
of other services. A single program executable, when run, may create several
child processes by forking or threading, and is then known as the parent
process of those child processes; web servers typically start child processes to
handle individual connections once they have been received. Child processes
themselves may create children, sometimes generating a complex process
tree derived from a single parent-process node, created when the executable
is first run. The operating system is responsible for managing the execution
of running processes, and associates a number with each one. This is called
the process identifier (PID), as it uniquely identifies each process. When a
process is started, the operating system associates other metadata with it too,
such as the user who started it, and the PID of the parent process that created it.
The operating system also allocates resources to running processes, including
memory (which stores the executable code and data) and file descriptors, which
identify files or network sockets that belong to the process.

Anumber of host-based Intrusion Detection Systems (IDSs) have been built
around monitoring running processes to detect intrusions. In general, these
IDSs collect information about a running process from a variety of sources,
including from log files created by the process, or from other information
gathered from the operating system. The general idea is that by observing
what the process is currently doing, for example by looking at its log files, it is

“IJUC” — “IJUC_0078” — 2010/5/13 — 16:57 — page 303 — #3

Detecting Anomalous Process Behaviour 303

possible to tell whether the process is behaving normally or has been subverted
by an attack. Whilst log files are an obvious starting point for such systems, and
are still an important component in a holistic security approach, it is fairly easy
to execute attacks which do not cause any logging to take place, and so evade
detection. Because of this, much research effort has been directed towards the
use of other data sources, usually collected by the operating system. Of these,
system calls (syscalls) have been the most favoured approach.

Asyscall is a low-level mechanism by which an application requests system
services such as peripheral I/O or memory allocation from an operating sys-
tem. As a process runs it cannot usually directly access memory or hardware
devices; instead, the operating system manages these resources and provides
a set of functions, called syscalls, which processes can call to access these
services. On modern Linux systems there are around 300 syscalls, accessed
via wrapper functions in the libc library.

2.2 Process Anomaly Detection Systems
Due to space constraints, this section focuses on syscall-based IDSs. The
systrace system of Provos [18] is a syscall-based confinement and IDS for
Linux, BSD and OSX systems. The IDS works by using a kernel patch that
inserts various hooks into the kernel to intercept syscalls from the monitored
process, and the user has to specify a syscall policy, i.e. a whitelist of permitted
syscalls and arguments. The system can be run either automatically to deny
and log all syscall attempts not permitted by the policy, or to prompt a user
to permit or deny the syscall graphically. The latter mode can also be used
to add syscalls to the policy, adjusting it before using it in automatic mode.
Initial policies for a process are obtained by using templates or by running
systrace in automatic policy-generation mode, where the monitored pro-
cess is run under normal usage conditions, and permit entries are created in
the policy file for all the syscalls made by the process. The policy specification
also allows some matching of syscall arguments as well as syscall numbers.
The system’s automatic policy-generation approach is used as a baseline com-
parison for thetlr algorithm presented in this paper, which can be seen as a
more sophisticated and dynamic alternative tosystrace.

In [8], Gao et al. introduce a new model of syscall behaviour called an exe-
cution graph. An execution graph is a model that accepts approximately the
same syscall sequences as a model built on a control flow graph. However, the
execution graph is constructed from syscalls gathered during normal execu-
tion, as opposed to a control flow graph, which is derived from static analysis.
In addition to system call number, stack return addresses are also gathered
and used in construction of the execution graph. The authors also introduce
a course-grain classification of syscall-based IDSs into white-box, black-box
and gray-box approaches. Black-box systems build their models from a sample
of normal execution using only system call number and argument information.
Gray-box approaches, as with black boxes, build their models from a sample of

“IJUC” — “IJUC_0078” — 2010/5/13 — 16:57 — page 304 — #4

304 J. Twycross et al.

normal execution but, as well as using syscall information, also use additional
runtime information. White-box approaches do not use samples of normal
execution, but instead use static analysis techniques to derive their models.
Thetlr algorithm, in Gao’s terms, is a gray-box approach, and is complemen-
tary to the specific gray-box approach described by Gao, exploring different
sources of runtime information other than stack return addresses. Specifically,
tlr uses the memory and file-usage levels of the executing application.

Forrest, Hofmeyr, Somayaji and other researchers at the University of New
Mexico have developed several immune-inspired learning-based approaches.
In [14], Forrest et al. evaluate a realtime system that detects anomalous pro-
cesses by analysing sequences of system calls. Syscalls generated by an
application are grouped together into sequences, in this case sequences of
six consecutive syscalls. A database of normal sequences is constructed and
stored as a tree during training. Sequences of syscalls are then compared
to this database using a Hamming distance metric, and a sufficient number
of mismatches generates an alert. Somayaji [21] uses a similar approach to
develop the immune-inspired pH intrusion prevention system, which detects
and actively responds to changes in program behaviour in realtime. If an
anomaly is detected, execution of the process that produced the syscalls is
delayed for a period of time. The work presented in this paper differs from
these approaches in that thetlr algorithm does not actively respond to misbe-
having processes as in [21], it only generates alerts. Also,tlr bases its alerts
on the simple syscall number combined with other runtime information (to
improve detection capability), as opposed to the more complex representations
of syscalls used by Forrest et al.

2.3 Artificial Immune Systems
The field of Artificial Immune Systems (AIS) began in the early 1990s with
a number of independent groups conducting research that used the biological
immune system as inspiration for solutions to problems in other domains. AISs
have been built for a wide range of applications including document classifi-
cation, fraud detection, and network- and host-based intrusion detection [6].
Specifically of relevance to the work here are AIS approaches to intrusion
detection, which are reviewed by Aickelin et al. [5]. For example, a negative
selectionAIS algorithm is used in the process anomaly detection systems built
by Forrest et al. [7]. AISs have met with some success and in some cases have
rivalled or bettered existing statistical and machine learning techniques [13].

Immunology textbooks generally characterise the innate and adaptive
immune systems as separate. The adaptive system is described as capable
of specific recognition and remembrance of antigen, while the innate system
is seen mainly as a first line of defence and rapid-response mechanism. Under-
standably perhaps, from this perspective, a computer scientist might view the
adaptive immune system as having more interesting properties such as learn-
ing and memory. However, this view of the immune system as two discrete

“IJUC” — “IJUC_0078” — 2010/5/13 — 16:57 — page 305 — #5

Detecting Anomalous Process Behaviour 305

systems does not reflect the intensive research and reassessment of the role of
the innate immune system conducted over the last decade, as evidenced by the
large number of papers published in immunology journals [9]. This research
has uncovered many mechanisms by which the innate immune system inter-
acts with the adaptive immune system, and has highlighted the role of the
innate immune system as controller of the adaptive system. In other words,
the protection afforded to the host by the immune systemas a whole arises
from mechanisms of the innateand adaptive immune systems, which form an
integrated system. This new understanding of the structure and control of the
immune system has led computer scientists to rethink the way in which they
design their AISs; i.e. the importance of the innate immune system in AISs
should mirror its worth in the biological organism.

One of the aims of this work is to show the value of considering the
biological immune system as composed of interacting innate and adaptive
subsystems when attempting to design a realistic and profitable AIS model.
Over the last few years a number of design principles have been developed
for constructing what are termed second generation AISs [25]. These employ
algorithms inspired by both the biological innate and adaptive immune sys-
tems, as opposed to first generation AISs, which employ algorithms inspired
only by the adaptive immune system. A software system calledlibtissue

has also been developed. This allows researchers to implement second gen-
eration AISs as multiagent systems and to analyse their behaviour when they
are applied to real-world problems [23, 26]. With the work here and other
work, the aim is to show how second generation AISs can overcome some of
the problems that have been attributed to first generation AISs, for example
accuracy and scalability [26].

3 THE tlrALGORITHM

The tlr algorithm is inspired by current immunological understanding of
the interactions between two classes of immune cell: dendritic cells (DCs)
and T cells (TCs). In particular,tlr uses a model of DC polarisation of
T helper cells, based on the work of Kapsenberg [16]. Section 3.1 describes
the biological theory that relates to these cells, their interactions and their
environments, and Section 3.2 shows how these ideas have been abstracted to
form thetlr algorithm - a working model of the innate and adaptive immune
subsystems. Section 3.3 explains how the model has been used to create a
host-based grey-box IDS.

3.1 The Underlying Biology
The adaptive immune system possesses two major types of lymphocytes that
detect and respond to antigens, B cells (BCs) and T cells (TCs). TCs, the
focus of this section, are responsible for the cell-mediated immune response

“IJUC” — “IJUC_0078” — 2010/5/13 — 16:57 — page 306 — #6

306 J. Twycross et al.

and possess receptors that can be thought of as complex sensors specific to
features of antigens. For adaptive immune cells these receptors are somati-
cally generated (created by a complex process of gene segment rearrangement
within the cell) and are termedvariable-region receptors, as each is specific for
a particular protein sequence. Variable-region receptors are selected for over
the lifetime of the organism by processes such as clonal expansion, deletion
or anergy and are underadaptive not evolutionary pressure. TCs recognise
a non-self target only after antigens have been processed and presented in
combination with a self receptor called a major histocompatibility complex
(MHC) molecule.

TCs begin life in a naive state, in the lymph node, and there are two major
subtypes; the killer TC and the helper TC. Killer TCs only recognize antigens
coupled to Class I MHC (MHCI) molecules and are specialized in attacking
cells of the body infected by viruses and sometimes by bacteria. They can also
attack cancer cells. In contrast, helper TCs only recognize antigens coupled
to Class II (MHC2) molecules and are responsible for regulation of both the
innate and adaptive immune responses. They help determine which type of
immune response the body will make to a particular antigen. Most antigens
are T-dependent, meaning that two signals are necessary before the cell is
attacked. The first signal comes from cross linking of the BC receptor and
antigen and the second signal comes from co-stimulation provided by the
helper TC. Co-stimualtion occurs when antigen presenting cells (APCs), for
example DCs, present antigen on their MHC2 molecules. When these are
recognized by helper TCs, the helper TC is activated and releases cytokines
and other stimulatory signals that cause the activity of macrophages, killer
TCs and BCs.

In contrast to the adaptive case, the receptors of innate system cells
are entirelygermline-encoded, in other words their structure is determined
by the genome of the cell and has a fixed, genetically-determined speci-
ficity. Unlike adaptive system cells, they recognise a set of ligands under
evolutionary pressure. One key group of innate receptors is thepattern recog-
nition receptor (PRR) superfamily which recognises evolutionary-conserved
pathogen-associated molecular patterns (PAMPs). PRRs do not recognise
a specific feature of a specific pathogen as variable-region receptors do, but
instead recognise common features or products of an entire class of pathogens.
Thus, innate immune system receptors are termednon-specific, while adap-
tive immune system receptors are termedspecific. The toll-like receptor (TLR)
family of PRRs is the best characterised.

Recently a lot of research effort has been directed towards understanding
how the innate immune system mediates the quality of an adaptive immune
system response [9, 15]. Simplistically, this is concerned with understanding
how the DCs interact with the TCs to prevent them from becoming active in
the presence of self-antigen. DCs are generated in the bone marrow and ini-
tially reside as immature cells in the epithelia of the skin and mucosal tissue.

“IJUC” — “IJUC_0078” — 2010/5/13 — 16:57 — page 307 — #7

Detecting Anomalous Process Behaviour 307

Their main functions are phagocytosis (the capture of complex molecules
and entire cells from their surrounding environment) and antigen presenta-
tion. They collect the antigen through antigen receptors (AgRs) and express a
special set of TLRs, which respond to PAMPs and are also activated by host-
derived endogenous molecules (danger signals) that are produced when tissue
is damaged. Periodically, DCs migrate to the draining lymphoid tissues where
they halt phagocytosis, display the peptides they have collected, and interact
with naive TCs. When their TLRs have become activated and antigen have
been detected they differentiate into mature DCs and immediately migrate.
They also migrate when they have reached their maximum lifespan and have
detected antigen, in which case they differentiate into semimature DCs. Both
semimature and mature DCs express antigen producers (AgPs), which give
other cells access to the antigen they have collected. Mature DCs alone produce
IL-12, which is used by naive TCs to differentiate between mature and semi-
mature DCs. Essentially, the presence of biological danger signals causes a DC
to present its antigen in a mature, immunogenic context, causing TC activa-
tion, whereas their absence causes the antigen to be presented in a semimature,
tolerogenic context, and the TC is deleted.

In this way, DCs match the quality of the adaptive immune effector response
to the nature of the antigen. They are therefore vital in the control of the adap-
tive immune system and the generation of tolerance to antigen in peripheral
tissue. Through the production of a range of cytokines, DCs control the acti-
vation and proliferation of TCs and BCs, and determine the qualitative and
quantitative nature of the adaptive immune response.

3.2 The tlr Model
As in Kapsenberg’s model [16], DCs can either be immature, semimature or
mature, and TCs either naive or activated. Furthermore, in thetlr model,
cells exist within either the extralymphoid tissue compartment or lymph node
compartment, and cell types are restricted to particular compartments. This is
shown schematically in Figure 1. Immature DCs and activated TCs are only
found in the extralymphoid compartment, and semimature DCs, mature DCs
and naive TCs in the lymph node compartment.

Just as in the biological system, the model cells are not immortal but live for
a certain period of time, which leads to a fluctuation in population levels for
certain cell types. The number of immature DCs and naive TCs are purpose-
fully maintained at constant levels, i.e. whenever an immature DC matures, it
is immediately replaced by another immature DC, and whenever a naive TC
dies it is immediately replaced by another naive TC. However, the population
levels of semimature DCs, mature DCs and activated TCs are not fixed and are
homeostatically determined by the cells oftlr itself and their environment.
In order to detect anomalies the level of activated TCs is monitored, and if
any activated TCs are produced an alert is generated. Homeostatic determi-
nation of cell numbers is found to be particularly useful since, during periods

“IJUC” — “IJUC_0078” — 2010/5/13 — 16:57 — page 308 — #8

308 J. Twycross et al.

nTC

IL12R

TCR

nTC

IL12R

TCR

iDC

aTC

mDC

smDC

AgP

apoptosis

TCR activated
node

lymphextralymphoid
tissue

antigen

AgR

AgP

IL12R unactivated

TCR activated
IL12R activated

TLRs unactivated
antigen collected

TLRs activated
antigen collected

IL12

TLRs

signals

FIGURE 1
A schematic representation of thetlr algorithm. For DCs i= immature, sm= semimature and
m = mature. For TCs a= activated, n= naive.

of normal usage, cell numbers are generally kept at low levels, which reduces
the computational cost of the algorithm.

DCs begin life in the extralymphoid compartment, in an immature state,
where they collect antigen (syscalls) through theirAgRs and observe the levels
of context signals (other system information) through their TLRs. If their
TLRs become activated by an appropriate context signal and at least one
antigen has been collected, immature DCs differentiate into mature DCs and
traffic to the lymph node compartment. However, if an immature DC reaches
its maximum lifespan without its TLRs being activated but has collected at
least one antigen, it differentiates into a semimature DC and traffics to the
lymph node compartment. Immature DCs which reach the end of their lifespan
without collecting antigen remain in the extralymphoid tissue. Here, activating
levels of context signals are analagous to biological danger signals, which
cause a DC to present its antigen in the mature, immunogenic context.

TCs begin life as naive TCs in the lymph node compartment and bind with
a number of semimature or mature DCs per cycle, provided there is at least one
semimature or mature DC in this compartment. The DC is chosen randomly
and uniformly from the complete population of semimature and mature DCs,
so if the number of mature DCs is greater than the number of semimature DCs,
a naive TC will have a greater probability of binding with a mature DC than
a semimature DC and vice versa. If a naive TC successfully binds with a DC
then it will examine the antigen the DC has collected as an immature DC in the
extralymphoid compartment (and is displaying on its AgPs). If a match occurs
and the bound DC is a semimature DC then the naive TC will be deleted and the
semimature DC will receive a stay-alive signal. This stay-alive signal resets
the number of iterations the semimature DC has existed for to zero. If a match

“IJUC” — “IJUC_0078” — 2010/5/13 — 16:57 — page 309 — #9

Detecting Anomalous Process Behaviour 309

occurs and the bound DC is a mature DC then the naive TC will be activated
and will clone a single activated TC. The activated TC will then traffic back
to the extralymphoid compartment and the naive TC will remain in the lymph
node compartment. In this case, both the naive TC and mature DC receive
stay-alive signals, resetting the number of iterations these cells have existed
for to zero, based on biological mechanisms of reverse signalling. Detailed
pseudocode for thetlr algorithm is provided in Section 3.4.

3.3 The Use of tlr as an IDS
The TLRs on DCs are activated by certain context signal values analagous
to biological danger signals. Here, system information (other than syscall
number) is used, (discussed shortly in Section 4). In contrast, AgRs on naive
TCs are activated by certain antigen values, which are the syscall numbers.
In order to determine which signal and antigen values activate these receptors
tlr needs to be provided with a set of training data consisting of a sample
of normal instances only. Once this is provided, all of the normal antigen and
danger signal values are extracted and stored, and then a new set of permissible
AgR values is created by removing all the antigen observed in the training set
from the set of all possible antigen values (around 350 in the case of syscall
numbers). In a similar way, TLRs are only activated by signal levels not seen
in the training set. However, since context signals are represented as real
numbers, the set of all possible values for a particular context signal need not
be finite. Additionally, TLRs, unlike AgRs, are not specific for one particular
value, but rather any value not seen in the training set. The signals used here
(see Section 4) are all integers from finite sets, so this scheme works well.
However, the levels of other real-valued signals would need to be discretised
for this scheme to work effectively with them.

After training has taken place and the algorithm is tested, AgRs are gener-
ated by choosing a value at random from the permissible set of antigen, and
assigning it as the receptor’s lock. Exact matching is used, so that the AgR is
only activated if its lock matches that of an antigen presented on an AgP of
a DC. This is equivalent to the naive TC undergoing negative selection on the
antigen in the training set, and produces naive TCs with AgRs that will never
match an antigen seen in the training set.

Syscalls are collected and grouped temporally, i.e. those which occur
around the same time period are collected and stored, and the external signals
sensed by immature DCs also group the syscalls contextually; semimature
DCs associate a normal context to the syscalls they have collected, while
mature DCs associate an attack context with these syscalls. The addition
of contextual grouping as well as temporal grouping has two effects on the
repertoire of AgRs. First, non-deterministic interactions between semima-
ture DCs and naive TCs allowstlr to continue to censor its AgR repertoire
after the training phase, i.e. AgRs that are specific for syscalls produced dur-
ing normal sessions (but not present during training) are quickly removed.

“IJUC” — “IJUC_0078” — 2010/5/13 — 16:57 — page 310 — #10

310 J. Twycross et al.

This peripheral tolerance mechanism helps reduce the number of false posi-
tives. Second, non-deterministic interactions between mature DCs and naive
TCs promote the survival of naive TCs that successfully match antigen pre-
sented by mature DCs. These naive TCs are given a stay-alive signal by the
mature DCs and remain within the population of naive TCs for longer. Since
the population size of naive TCs is constant, the rate of entry of new naive
TCs into the current naive TC population is reduced. Therefore, the contextual
information provided by mature DCs serves to help maintain a population of
successful naive TCs, and reduce the number of incoming naive TCs. Thetlr

algorithm is formalized in the pseudocode given below, and thelibtissue

parameters used are given in Table 4 in Appendix A. A full justification of the
selection of parameters is provided in [24], Chapter 8.

3.4 tlr Pseudocode
Pseudocode for thetlr algorithm, see Table 4 in Appendix A for parameter
values.

SUBROUTINE immature dc c e l l c y c l e c a l lb a c k
IF c e l l i t e r a t i o n s >= c e l l _ l i f e s p a n _ 1 THEN

IF c e l l has c ol l e c t e d any a n t i g e nTHEN
SET c e l l t ype t o semimature dc
SET c e l l c y c l e t o semimature dc c e l l c y c l e
SET c e l l i t e r a t i o n s t o 0
SET number o f a n t i g e n p r o d u c e r s t onum_an t igen_producers_1
SET number o f a n t i g e n r e c e p t o r s t o 0
SET number o f c y t o k i n e r e c e p t o r s t o 0
add a new immature dc t ot i s s u e compartment
RETURN

ELSE
r e p l a c e c e l l w i th a new immature dc
RETURN

ENDIF
ENDIF
FOR a l l c y t o k i n e r e c e p t o r s DO # n u m _ c y t o k i n e _ r e c e p t o r s _ 1

IF c y t o k i n e r e c e p t o r a c t i v a t e d THEN
IF c e l l has c ol l e c t e d any a n t i g e nTHEN

SET c e l l t ype t o mature dc
SET c e l l c y c l e t o mature dc c e l l c y c l e
SET c e l l i t e r a t i o n s t o 0
SET number o f a n t i g e n p ro d u c e r s t o num_an t igen_producers_1
SET number o f a n t i g e n r e c e p t o r s t o 0
SET number o f c y t o k i n e r e c e p t o r s t o 0
add a new immature dc t ot i s s u e compartment
RETURN

ENDIF
ENDIF

ENDFOR
ENDSUBROUTINE

SUBROUTINE n a i v e t c c e l l c y c l e c a l lb a c k
IF c e l l i t e r a t i o n s >= c e l l _ l i f e s p a n _ 2 THEN

r e p l a c e c e l l w i th a new n a i v e t c
RETURN

“IJUC” — “IJUC_0078” — 2010/5/13 — 16:57 — page 311 — #11

Detecting Anomalous Process Behaviour 311

ENDIF
FOR a l l v r r e c e p t o r s DO # n u m _ v r _ r e c e p t o r s _ 2

IF vr r e c e p t o r a c t i v a t e d THEN
IF vr r e c e p t o r a c t i v a t e d by a n t i g e n onsemimature dcTHEN

SET semimature dc i t e r a t i o n s t o 1
r e p l a c e c e l l w i th a new n a i v e t c
RETURN

ENDIF
IF vr r e c e p t o r a c t i v a t e d by a n t i g e n onmature dc THEN

SET mature dc i t e r a t i o n s t o 1
SET c e l l t ype t o a c t i v a t e d t c
SET c e l l c y c l e t o a c t i v a t e d t c c e l l c y c l e
SET c e l l i t e r a t i o n s t o 0
SET number o f c e l l r e c e p t o r s t o 0
SET number o f v r r e c e p t o r s t o 0
add a new n a i v e t c t ot i s s u e compartment
WRITE matched a n t i g e n t o logf i l e
RETURN

ENDIF
ENDIF

ENDFOR
ENDSUBROUTINE

SUBROUTINE semimature dc c e l l c y c l e c a l lb a c k
IF c e l l i t e r a t i o n s >= c e l l _ l i f e s p a n _ 3 THEN

remove semimature dc from t i s s u e compartment
ENDIF

ENDSUBROUTINE

SUBROUTINE mature dc c e l l c y c l e c a l lb a c k
IF c e l l i t e r a t i o n s >= c e l l _ l i f e s p a n _ 4 THEN

remove mature dc from t i s s u e compartment
ENDIF

ENDSUBROUTINE

SUBROUTINE a c t i v a t e d t c c e l l c y c l e c a l lb a c k
IF c e l l i t e r a t i o n s >= c e l l _ l i f e s p a n _ 5 THEN

remove a c t i v a t e d t c from t i s s u e compartment
ENDIF
FOR each a n t i g e n i n t i s s u e compartmentDO

IF vr r e c e p t o r matches a n t i g e nTHEN
SET c e l l i t e r a t i o n s t o 0
BREAKFOR

ENDIF
ENDFOR

ENDSUBROUTINE

Greensmith [10–12] has also usedlibtissue to implement an immune-
inspired process anomaly detection system. This algorithm, called the DCA,
is inspired by biological DCs and is similar to thetlr algorithm in its use of
libtissueand models of biological DC activation and maturation. However,
there are several important differences betweentlr and the DCA. Although
both systems incorporate the use of signals to govern DC behaviour, they do
so in different ways. For example, the DCA might identify CPU usage as
belonging to the class of safe signals and memory usage to the class of danger

“IJUC” — “IJUC_0078” — 2010/5/13 — 16:57 — page 312 — #12

312 J. Twycross et al.

signals. Due to the way DCs integrate and process input signals, the class an
input signal belongs to has a differential effect on DC maturation. If the classes
of CPU and memory usage signals are interchanged, the algorithm behaves
differently. In contrast, thetlr algorithm does not differentiate between dif-
ferent classes; all input signals have the same effect on DC maturation, i.e.
they cause immature DCs to become mature DCs if the signal level is not
observed during training. In this sense, the DCA uses a finer-grain model of
input signals thantlr.

Another important difference relates to the way in which anomalies are
detected by the two systems. The DCA observes DCs to determine if a process
is behaving anomalously, whereastlr uses DCs to control TCs and observes
TCs to determine anomalous process behaviour. While the DCA concentrates
on developing a system based entirely on DCs,tlr focuses on combining
a DC-based algorithm with current adaptive AIS algorithms. This is a result
of different motivations for developing the DCA and thetlr algorithm. The
DCA was developed to explore better methods of modelling DCs in AISs,
whereastlr was developed to explore the construction of second generation
AISs that incorporate both innate and adaptive immune system mechanisms.
Lastly, an essential part oftlr is the training phase in which normal usage is
used to establish activating levels of external signals, as well as permissible
values for AgRs. The DCA does not use a training phase, but instead uses
heuristics derived from observations of the biological immune system and the
computer system being protected to determine activating levels of signals. The
DCA has been tested on the same dataset used here and its results [10] are
presented for comparison with thetlr algorithm in Section 6.

4 DATASETS

4.1 Network Architecture
In order to derive a suitable test dataset, a small experimental network with
two hosts is set up. One host, the target, runs software, in this case a Redhat 6.2
server with a number of vulnerabilities, andwuftpd is started at boot time.
The other host acts as a client which interacts with the target machine, either
attempting to exploit its vulnerabilities or simulating normal usage. In order
to gather the actual data, i.e. process syscall information and context signals,
the target system is instrumented: the FTP server executable is wrapped with
strace [18], which logs all the syscalls made bywuftpd and its children.
At the same time, aprocess_monitor is started, which monitors a process
and all of its child processes at regular intervals. In order to see a useful
resolution in the signals, a monitoring interval of one tenth of a second is
used. This method is found to be the most portable and still quite efficient,
only using around 1–2% of the system CPU resources on average, which is
considered reasonable. The range of context signals which are thought to be

“IJUC” — “IJUC_0078” — 2010/5/13 — 16:57 — page 313 — #13

Detecting Anomalous Process Behaviour 313

Statistic Summary

processes number of monitored process including children.
cpu (%) cpu utilisation of the process. The CPU time divided by

the time the process has been running (cputime/realtime
ratio).

mem (%) ratio of the processes’ resident set size to the physical
memory on the machine.

rss (kB) resident set size, the non-swapped physical memory that a
task has used.

size (kB) approximate quantity of swap space that would be required
if the process were to dirty all writeable pages and then
be swapped out.

sz size in physical pages of the core image of the process. This
includes text, data, and stack space.

vsz (KB) virtual memory size of the process.
num_files total number of files reported by lsof.
num_reg number of regular files.
num_dir number of directories.
num_chr number of character devices.
num_ipv4 number of IPv4 sockets.
num_sock number of sockets of unknown domain.
num_unix number of unix domain sockets.
num_unknown number of unclassified sockets (not reg, dir,. . .)

TABLE 1
Statistics collected byprocess_monitor. Fourteen context signals are collected
in total

potentially interesting are logged for later analysis and are summarised in
Table 1. As well as being feasible to gather, these context signals all relate to
a process’s interaction with the operating system, and other local or remote
processes. Further technical details about the platform set-up are provided in
Appendix B.

4.2 Normal Usage
The levels of the collected signals need to be examined over a range of different
server activities in order to establish which ones are useful for detecting process
anomalies. Data is therefore collected over several normal usage scenarios,
with the aim of getting the testbed FTPserver to behave as if a real FTPserver is
running on a production network. Ideally, ifstrace andprocess_monitor
were installed on a production FTP server then the logs collected by them
would be identical to those collected on the testbed FTP server. Realistically,
there is a trade-off between the fidelity of the testbed logs and time spent in
building and operating the testbed. The methodology employed here allows

“IJUC” — “IJUC_0078” — 2010/5/13 — 16:57 — page 314 — #14

314 J. Twycross et al.

for largely automated reproduction of normal usage from previously gath-
ered logs of real FTP servers, i.e. public-domain datasets of FTP client-server
interactions are used to provide samples of normal usage. The dataset used
is a subset of LBNL-FTP-PKT [3], which contains all incoming anonymous
FTP connections to public FTP servers at the Lawrence Berkeley National
Laboratory over a ten-day period. The dataset is available from the Internet
Traffic Archive [3], and its traces, which provide a rich source of normal
usage sessions, contain connections between 320 distinct FTP servers and
5832 distinct clients. The traces for one FTP server (IP 131.243.2.12) on the
10/01/03 and 11/01/03 are used in the experiments presented here, provid-
ing a total of 340 traces for 76 distinct clients. This particular FTP server is
selected as it was runningwuftpd 2.6.2-1, a similar version to the testbed
server used here, and also because it has the second highest number of
connections.

In all cases, FTPserver activity is produced by the interaction of FTPclients,
i.e. an FTP client connects to a server and initiates an FTP session in which it
issues FTP requests according to the FTP protocol (defined in RFC959) before
disconnecting from the server. Out of the 340 traces used, eight are empty,
containing no FTP requests, and many of the other 332 are characterised by
USER and PASS commands, followed by an optional STAT, then a series of
PORT commands, often lasting tens of minutes, finishing with an optional
QUIT. One session of each of these is included in the normal usage dataset
and the others (278) are discarded so as not to bias the data.

For the testing of process anomaly detection systems, which is concerned
primarily with the type of behaviour and not its frequency, only one example of
a typical normal session is necessary. Duplicate sessions are therefore removed
from the data, i.e. the original FTPsessions are examined, largely by hand, and
sessions which contain the same commands with very similar relative timings
(no more than around a second) are removed. These sessions are usually seen
coming from the same hosts and appear to be generated by an automated FTP
client repeating the same sessions. Indeed, analysis of the two days’ worth of
traces shows that many sessions are frequently repeated. Discarding duplicates
over the two days leaves 55 different normal usage sessions. Although some
information in the traces has been anonymised using Bro [17] to remove
private information, it is still possible to reproduce realistic normal usage.

4.3 Attack Traces
The publically availableautowux exploit [2] is used to attackwuftpd. This
exploit levers a format string vulnerability, in this case related to the SITE
EXEC FTP command, in order to obtain a remote root shell on the server
by default. It has been seen in the wild in manual attacks and automated
attacks such as the Ramen worm [19]. An FTP bounce scan attack [1] is also
performed; here, an attacker uses an FTP server as an intermediary to perform
a network scan and hide the IP address of their machine.

“IJUC” — “IJUC_0078” — 2010/5/13 — 16:57 — page 315 — #15

Detecting Anomalous Process Behaviour 315

Session Name Nature of Attack

success01 autowux attack
./autowux -t target -v 2

success02 autowux attack
./autowux -t target -v 2

uname -a

whoami

ls

exit

success03 autowux attack
./autowux -t target -v 2

cd /

mkdir .boot

cd .boot

ftp host1

anonymous

(no password)

get autowux.tar.gz

quit

tar -xzvf autowux.tar.gz

exit

success04 nmap bounce scan
nmap -v -P0 -b target host

failure01 autowux attack
./autowux -t target -v 2 -s 1

TABLE 2
The five attack sessions collected forwuftpd running on an instrumented Redhat 6.2
server. The first three attacks are variations on the autowux attack. The fourth attack
is an FTP bounce scan and the final attack is a failed autowux attack

The syscalls and signal levels for several differentautowux attacks and one
nmap FTPbounce attack are recorded. In each case, the commands given on the
attacking client machine are summarised in Table 2. The DNS hostname of the
FTP server is “target” and “host” denotes the attacking machine. Commands
following the firstautowux command are those given in the remote shell once
it has been opened several minutes after the launch of the attack. The session
success01 consists of theautowux attack without any commands executed
in the remote shell, mainly for comparison with the other attacks (although
this is fairly unrealistic). Sessionsuccess02 and sessionsuccess03 simulate
potential actions an attacker might perform in the shell once it has been opened
and are of more interest. Sessionsuccess02 represents a minimal information
gathering excerise, while in sessionsuccess03 the attacker connects back to
the attacking machine via FTP and downloads and untars a file, in this case

“IJUC” — “IJUC_0078” — 2010/5/13 — 16:57 — page 316 — #16

316 J. Twycross et al.

theautowux attack itself. Sessionsuccess04 is an nmap FTP bounce attack
that was successful for unprivileged ports. An unsuccessfulautowux attack
session,failure01, is also performed by specifying the insertion of OpenBSD
shellcode on theautowux command line. This is seen as important since
process anomaly detection systems should not alert against failed attacks oth-
erwise they become vulnerable to diversionary noise attacks such as snot [20],
which can be used to hide successful attacks. In total these attacks generated
around 40,000 syscalls, and 10,000 readings for each signal.

The combined normal and attack traces form a single dataset (called
the wuftpd dataset) that can be used to evaluate the classification perfor-
mance of the anomaly detection systems described here. In order to facilitate
comparisons with other systems it is publically available [4].

4.4 Signal Analysis
The strategy adopted during signal collection as described above is to collect,
from the authors’ experience, what might be interesting signals. For the pur-
poses of the research presented here interesting signals are those that vary in a
complex way across normal usage and attack sessions. Clearly, if a particular
signal always has certain values for attack sessions and different values for
normal sessions, then it would make sense to use this signal as an indicator of
misuse and dispense with anomaly detection algorithms. However, no such
signals are expected nor have been found. In order to determine which of the
collected signals are potentially interesting an analysis of the gathered data is
performed.

When examining the signal levels for all 55 normal usage sessions more
closely it becomes clear that the memory related signals are closely correlated,
as are a number of the file signals. Closer examination of these two groups
leads to the elimination of several of the correlated signals. For example,
the size and sz signals always report the same values. Also, several of
the signals have the same small number of levels in general regardless of
whether the session is an attack or normal usage, and so these signals are
also eliminated. The range of values a signal takes over all the normal and
attack sessions can be seen from the scatter plots shown in Figure 2. The upper
graph shows the observed signal levels for the number of process children,
which is considered uninteresting due to its lack of variation over normal
and attack sessions. The lower graph in Figure 2 shows the observed levels
for the rss memory signal, which is considered interesting since there is
considerable variation in signal levels between normal and attack sessions,
although there is no clear division of levels and crossover exists between
signal levels. A similar plot for all the remaining signals shows that there is
also considerable variation in thenum_files andnum_reg signals. These
two signals together withrss are used as the context (danger) signals in the
experiments that follow.

“IJUC” — “IJUC_0078” — 2010/5/13 — 16:57 — page 317 — #17

Detecting Anomalous Process Behaviour 317

num_chld signal levels

seconds
0 50 100 150 200 250

le
ve

l

1

2

3

success.001

success.002

success.003

success.004

failure.001

benign

rss signal levels

seconds
0 50 100 150 200 250

le
ve

l

500

1000

1500

2000

2500

3000
success.001

success.002

success.003

success.004

failure.001

benign

FIGURE 2
Scatter plots of signal levels for all sessions. The top graph shows the levels observed for the
number of process children signal. Generally, attack and normal (benign) sessions share similar
values for this signal, so it is discarded as uninteresting. The bottom graph shows the levels for
the rss memory signal. There is much more variation in this case, with different signal levels
being observed for attack and normal sessions, although some values are shared by both classes
of session. This signal is considered more useful.

“IJUC” — “IJUC_0078” — 2010/5/13 — 16:57 — page 318 — #18

318 J. Twycross et al.

5 EXPERIMENTAL PROCEDURES

An important aspect of second generation AISs is their use of multiple sources
of input data. This idea has also been advocated by Gao et al. [8] through the
notion of gray-boxing. In order to explore these ideas further, three different
versions of thetlralgorithm are evaluated, namedtlr1, tlr2andtlr3. For
all three of these algorithms, the syscall number alone is used as antigen. For
tlr1, therss context signal is used as the danger signal, and immature DCs
have a TLR that monitors this signal and is activated by values not seen during
training. Fortlr2, immature DCs have two TLRs, one that responds to the
rss context signal, and another that is activated by values of thenum_files

context signal not seen during training. If either of these receptors is activated,
then the immature DC will develop into a mature DC. Fortlr3, immature
DCs have three TLRs, one for therss context signal, one for thenum_files
context signal, and one for thenum_reg context signal. In this case, if any of
these receptors is activated, the immature DC will change into a mature DC.
Hence, the effects of the addition of input data sources can be assessed by
comparing the performances oftlr1, tlr2 andtlr3.

The use ofprocess_monitor andstrace imposes minimal CPU and
memory overheads on the system when gathering data. Timings of syscalls
during a single session are preserved and readings of resource usage statistics
are taken at regular intervals. One limitation of the dataset is that, when stored
astcreplay log files, the overall timings of these sessions relative to each
other are not stored. Consequently, when testing AISs with this dataset, an
assumption has to be made concerning the relative timings of each session. In
the experiments that follow, sessions are assumed to occur sequentially, with
a short, uniformly-distributed period of no activity between sessions.

The dynamics of thetlr algorithm for a particular FTP session are in
part determined by previous FTP sessions. For example, syscalls which are
not available during training but which are presented in a normal context
during operation, as discussed above, lead to a reduction in the number of TCs
specific for such syscalls through peripheral tolerance. Hence, usingtlr to
classify FTP sessions in isolation could produce unrealistic results. A number
of scenarios are therefore created, consisting of a number of FTP sessions
occurring sequentially with a random pause of 1 to 10 seconds between them.
This is a simplification of the session timings observed for the actual FTP
sessions in the LBNL-FTP-PKT traces, but is necessary in order to reduce the
durations of the experiments. (In the LBNL-FTP-PKT traces there are often
several minutes between one session and the next, and at other times two
sessions overlap.) Here, each scenario takes approximately 50 minutes to run.

Forty scenarios are generated in total, with 20 containing only normal FTP
sessions and the remaining 20 containing normal and attack FTP sessions.
The latter group should hence be classified as attack sessions. In order to
create a scenario the 55 normal sessions are partitoned into two sets of 27 and

“IJUC” — “IJUC_0078” — 2010/5/13 — 16:57 — page 319 — #19

Detecting Anomalous Process Behaviour 319

28 sessions. One set is used to traintlr, and the other set is used to create the
scenario on whichtlr is tested. The two sets are then swapped around, so that
the sessions in the testing scenario are used to traintlr, and vice versa for the
training sessions. In other words, two-fold crossvalidation is performed. The
sets are randomly partitioned in this way eight times so that sixteen normal
scenarios are generated. The attack sessions are produced in exactly the same
way except that an attack session is inserted at a random point in the sequence
of normal sessions. Thesuccess.001 andsuccess.002 sessions are used six
times each, and thesuccess.003 andsuccess.004 session four times each,
making a total of 20 attack scenarios. Four additional normal scenarios are
also created as just described by inserting the failed attack session at a random
point in a sequence of normal sessions. Together with the 16 normal scenarios
already generated, this makes a total of 20 normal scenarios.

In order to provide a comparison with the results for thetlr algorithm,
several other classifiers are also tested with each of the 40 scenarios. First, as
a baseline comparison, a classifier that uses a whitelist of acceptable syscalls
is used. A syscall policy is generated for a process by recording the syscalls
it makes under normal usage, with a permit policy statement entered for all
these syscalls. During testing, syscalls are compared to this whitelist and
any process that generates unlisted syscalls is classified as under attack. The
method is quite realistic considering how current systems such assystrace

automatically generate a policy.
The whitelist approach is also taken using the signal valuesrss,

num_files andnum_reg instead of the syscalls. This generates three simple
classifiers, calledsig1, sig2 andsig3, which extract all the signal levels
seen during training. These systems classify a scenario as an attack if any
signal levels absent from the whitelist are seen during testing. Systemsig1

classifies a scenario as an attack based only on therss signal, systemsig2
uses this and thenum_files signal, and systemsig3 uses all three signals.

Thetlr algorithm is also compared to a standard negative selection AIS
approach, since for a finite set, asystrace whitelist approach and nega-
tive selection blacklist approach are logically equivalent and are therefore
expected to perform similarly. In order to implement a negative selection algo-
rithm, a slightly altered version oftlr (calledtlr-negsel) is created with
the TLRs on immature DCs disabled. Intlr-negsel immature DCs are no
longer able to respond to signals and hence always differentiate into semima-
ture DCs and never become mature DCs. Consequently, naive TCs are never
activated and no alerts are ever produced, since these are generated whenever
activated TCs are observed. Therefore, intlr-negsel semimature DCs are
forced to express IL-12, effectively turning them into mature DCs, which per-
mits their activation. The absence of semimature DCs intlr-negsel means
that no peripheral tolerance of naive TCs by semimature DCs occurs. The only
criteria for activation of native TCs is a match between their AgRs and the
syscalls being presented by DCs. By disabling peripheral tolerance, negative

“IJUC” — “IJUC_0078” — 2010/5/13 — 16:57 — page 320 — #20

320 J. Twycross et al.

selection alone (which is used to generate theAgRs) controls the classification
performance oftlr-negsel.

Finally, the performance of the DCA with thewuftpd dataset has also
been published in [10], and the results obtained are used here as an additional
comparison to thetlr algorithm. This is both fair and convenient since both
the DCA and thetlr algorithm use thelibtissue framework and make
use of the same information in order to process the data. As with thetlr

algorithm, the DCA uses system call ID numbers to represent antigen and
the context signalsrss, num_files andnum_reg to represent the danger
signals.

6 RESULTS

The true and false positive rates for each of the classifiers are given in Table 3
below. The true positive rateTPR is calculated from:

TPR = TP

TP + FN
, (1)

where TP is the number of true positives andFN is the number of false
negatives. Likewise, the false positive rateFPR is calculated from:

FPR = FP

FP + TN
, (2)

where FP is the number of false positives andTN is the number of true
negatives. The table also shows theg-meanG given by:

G = √
TPR(1 − FPR), (3)

System TPR FPR G

systrace 0.90 0.60 0.60
tlr-negsel 0.90 0.60 0.60
sig1 1.00 1.00 0.00
sig2 1.00 1.00 0.00
sig3 1.00 1.00 0.00
tlr1 0.70 0.20 0.75
tlr2 0.60 0.20 0.69
tlr3 0.75 0.15 0.80
DCA 1.00 0.83 0.41

TABLE 3
Classification performance results for the systems implemented. For equal true and
false positive costs,tlr3 is the best performing classifier

“IJUC” — “IJUC_0078” — 2010/5/13 — 16:57 — page 321 — #21

Detecting Anomalous Process Behaviour 321

which provides an overall evaluation of theTPR andFPR, producing a high
value for better classifiers. Note that an equal cost for true and false positives
is assumed here. However, in situations where one of these costs is more
important than the other, further analysis would be necessary to characterise
the relative performance of the classifiers.

Table 3 shows that thesig1, sig2 andsig3 classifiers perform badly,
classifying every scenario as an attack. Consequently, the systems are of no
use and this is reflected in theg-mean value of 0.00. Thesystrace and
negative selection classifiers perform equally, with a highTPR of 0.90, but
also a highFPR of 0.60, meaning that while these classifiers identify 90%
of attack scenarios correctly, they also identify 60% of normal scenarios as
attacks. Theg-mean for both of these systems is 0.60. In general, thetlr

classifiers reduce theFPR with an accompanying small reduction in theTPR.
Compared with thesystrace and negative selection classifiers, thetlr1
classifier reduces theFPR by 40% to 0.20 with a 20% decrease in theTPR
to 0.70. The resultingg-mean value is 0.75. Thetlr2 classifier has a slightly
larger reduction in theTPR (30%) to 0.6 but has the sameFPR astlr1, which
gives ag-mean value of 0.69. Thetlr3 classifier performs best reducing the
FPR by 45% to 0.15, while only reducingTPR by 15% to 0.75. Its resulting
g-mean value is 0.80, the highest of all the systems tested. The DCA has
a perfectTPR of 1.00 i.e. all attack scenarios are correctly classified, but
the FPR is unacceptably high (0.83), which produces a lowg-mean value
of 0.41.

The tlr algorithm, which is unoptimised, uses around 10% of the
CPU resources and never more than 8% of the memory resources on the
test machine. Generally, CPU usage is only a few percent as cell levels
are maintained at a low level during normal usage.

6.1 Discussion
The results have provided evidence that the additional context signalsrss,
num_files andnum_reg have the capacity to reduce the false positive rate
when used as danger signals in the immune-inspiredtlr algorithm. In addi-
tion, the system performs best when all three of these signals are used in
conjunction with the syscall information. However, when the the syscall infor-
mation is removed (in the case ofsig1, sig2, andsig3) and the system is run
as a white-list classifier, the IDS is unable to function. This strongly suggests
that both types of information source have an important role to play in process
anomaly detection.

The results using the negative selection version of thetlr algorithm are
also poor with regard to the false positve rate. Indeed, Stibor [22] shows
that certain matching approaches such as Hamming distance work poorly
with negative approaches, introducing an infeasible amount of complexity.
Reduction of this complexity by generalisation of the matching criteria results
in a significant decrease in the classification performance. Based on these

“IJUC” — “IJUC_0078” — 2010/5/13 — 16:57 — page 322 — #22

322 J. Twycross et al.

observations, Stibor concludes that negative approaches such as immune-
inspired negative selection are unsuitable for real-world anomaly detection
problems. Perhaps it would be more correct to say that detection systems
based only on negative selection are unsuitable in this context. Used in com-
bination with innate-inspired mechanisms results could be much improved, as
demonstrated here.

Thesystrace and negative selection basedtlr-negsel classifiers give
the same classification results in terms of true and false positives. Examination
of the results for each scenario shows that both systems also classify exactly
the same scenarios as normal and anomalous. This is expected and is a good
test for determining the completeness of coverage for the negative selection
algorithm. As mentioned previously, thesystrace whitelist approach and
negative selection blacklist approach are in principle equivalent for a finite set
of antigen. This is because a blacklist is the complement set of a whitelist, so
determining whether an antigen is on the whitelist or not on the blacklist are
the same. However, the way negative selection algorithms usually generate a
blacklist is stochastic as a dynamically changing set of cells is used. Further-
more, antigen are matched to the blacklist by random encounters between TCs
and antigen, so there may be some errors. When implementing the negative
selection classifier here, the aim is to reduce these errors as much as possible,
otherwise they might influence true and false positive rates. The parameters
are hence selected to create a high turnover of naive TCs, which allows them
to inspect many semimature and mature DCs and the antigen they present.

Thetlr algorithm also performs much better than the DCA with regard to
the false positive rate. In [10] the chief limitation of the DCAwith thewuftpd

dataset is cited as a requirement for much larger volumes of antigen data,
which is connected with the stochastic nature of the DCA’s antigen sampling
process. Also, the DCA is a much finer-grained system, classifying data on a
per process basis. This means that, theoretically, the process responsible for
the anomalous behaviour can be determined. However, thewuftpd dataset
does not provide the names of the processes so there is no way in which this
information can be utilized to the DCA’s advantage.

7 CONCLUSIONS

A novel host-based IDS (thetlr algorithm) has been presented in this paper.
The architecture incorporates mechanisms inspired by both the innate and
adaptive biological immune systems, in particular the interactions between
two classes of immune cell, DCs and TCs. The performance of the system has
been evaluated on a realistic process anomaly detection problem and compared
to those of several other classifiers. It was found that the use of the innate
immune system mechanisms employed intlr contributed to a decrease in

“IJUC” — “IJUC_0078” — 2010/5/13 — 16:57 — page 323 — #23

Detecting Anomalous Process Behaviour 323

the false positive rate and produced a better overall performance compared
to policy-based methods, negative selection approaches, and an alternative
DC-based AIS system (the DCA). The paper has also shown how runtime
information such as memory and file usage levels can be used in combination
with system call information to enhance detection capability. This suggests that
such context signals might prove useful in improving the detection capabilities
of other IDSs. Indeed, this work has employed novel context signals with a
novel algorithm, so it could be the case that more well-established algorithms
might perform as well as or better thantlrusing these context signals. Further
research is needed to implement and test such algorithms, although it is unclear
how traditional approaches would combine the multiple data sources which
is one of the hallmarks of this work. More sophisticated algorithms such as
support vector machines or techniques from multisensor data fusion would
seem more applicable in this sense.

The generation of thewuftpd dataset showed that the collection and usage
of runtime statistics as sources of external signals for second generation AISs
is possible. Additionally, the use of publically-available datasets to generate
thewuftpd dataset proved to be an effective methodology. Using part of the
LBNL-FTP-PKT data, as well as data from other repositories, this technique
could be employed to create a larger database of context signals, which would
aid research into the use of these signals as input data for IDSs.

In this work, failed attack sessions are classed as normal, but it may be
argued that it is useful and necessary for failed attacks to be registered in order
to alert an administrator of suspicious activity. Future work could therefore
extend the IDS described here to include a third failed attack class rather than
just the normal or abnormal data categories.

Finally, the implementation of thetlrand the other second generationAISs
more generally showed the feasibility of usinglibtissue to implementAISs
as multiagent systems, and of applying them to real-world problems.

ACKNOWLEDGMENTS

This research is supported by the EPSRC (GR/S47809/01) and HP Labs.

REFERENCES

[1] (1995). The FTP Bounce Attack. Bugtraq: http://seclists.org/bugtraq/1995/Jul/0046.html.

[2] (2000). CERT Advisory CA-2000-13 Two Input Validation Problems In FTPD.
http://www.cert.org/advisories/CA-2000-13.html.

[3] (2003). LBNL-FTP-PKT dataset. http://www-nrg.ee.lbl.gov/LBNL-FTP-PKT.html.

[4] (2007). libtissue sourcecode and datasets. http://cs.nott.ac.uk/∼jpt.

“IJUC” — “IJUC_0078” — 2010/5/13 — 16:57 — page 324 — #24

324 J. Twycross et al.

[5] Uwe Aickelin, Julie Greensmith, and Jamie Twycross. (2004). Immune System Approaches
to Intrusion Detection - A Review. InProc. of the 3rd International Conference on Artificial
Immune Systems, pages 316–329, Catania, Italy. LNCS 3239.

[6] L. N. de Castro and J. Timmis. (2002).Artificial Immune Systems: A New Computational
Intelligence Approach. Springer.

[7] Stephanie Forrest, Steven Hofmeyr, and Anil Somayaji. (1997). Computer immunology.
Communications of the ACM, 40(10): 88–96.

[8] Debin Gao, Michael K. Reiter, and Dawn Song. (August 2004). On Gray-Box Program
Tracking for Anomaly Detection. InProc. of the 13th USENIX Security Symposium,
pages 103–118, San Diego, CA.

[9] R. N. Germain. (2004). An innately interesting decade of research in immunology.Nature
Medicine, 10(12): 1307–1320.

[10] Julie Greensmith. (2007).The Dendritic Cell Algorithm. PhD thesis, School of Computer
Science, University of Nottingham.

[11] Julie Greensmith, UweAickelin, and Jamie Twycross. (2006). Articulation and Clarification
of the Dendritic Cell Algorithm. InProc. of the 5th International Conference on Artificial
Immune Systems, pages 404–417, Oeiras, Portugal. LNCS 4163.

[12] Julie Greensmith, Jamie Twycross, and Uwe Aickelin. (2006). Dendritic Cells for Anomaly
Detection. InProc. of the IEEE World Congress on Computational Intelligence, pages 664–
671, Vancouver, Canada.

[13] Emma Hart and Jonathan Timmis. (2005). Application Areas of AIS: The Past, The Present
and The Future. InProc. of the 4th International Conference on Artificial Immune Systems,
pages 483–497, Banff, Canada. LNCS 3627.

[14] Steven Hofmeyr and Stephanie Forrest. (1998). Intrusion Detection using Sequences of
System Calls.Journal of Computer Security, 6(3): 151–180.

[15] A. Iwasaki and R. Medzhitov. (2004). Toll-like receptor control of the adaptive immune
response.Nature Immunology, 5(10): 987–995.

[16] M. L. Kapsenberg. (2003). Dendritic-cell control of pathogen-driven T-cell polarization.
Nature Reviews in Immunology, 3: 984–993.

[17] Ruoming Pang and Vern Paxson. (2003). A High-level Programming Environment for
Packet Trace Anonymization and Transformation. InProc. of ACM SIGCOMM.

[18] N. Provos. (August 2003). Improving Host Security with System Call Policies. InProc. of
the 12th USENIX Security Symposium, pages 257–272, Washington, D.C.

[19] SANS Global Incident Analysis Center, (2001). Ramen Worm. http://www.sans.org/y2k/
ramen.htm.

[20] Sniph, (2007). snot. http://www.securityfocus.com/tools/1983.

[21] Anil Somayaji. (2002).Operating System Stability and Security Through Process Home-
ostasis. PhD thesis, University Of New Mexico.

[22] Thomas Stibor. (2006).On the Appropriateness of Negative Selection for Anomaly Detection
and Network Intrusion Detection. PhD thesis, Darmstadt University of Technology.

[23] Jamie Twycross. (2007).Integrated Innate and Adaptive Artificial Immune Systems Applied
to Process Anomaly Detection. PhD thesis, School of Computer Science, University of
Nottingham, U.K.

[24] Jamie Twycross. (2007).Integrated Innate and Adaptive Artificial Immune Systems Applied
to Process Anomaly Detection. PhD thesis, School of Computer Science, University of
Nottingham.

[25] Jamie Twycross and Uwe Aickelin. (2005). Towards a Conceptual Framework for Innate
Immunity. In Proc. of the 4th International Conference on Artificial Immune Systems,
pages 112–125, Banff, Canada. LNCS 3627.

[26] Jamie Twycross and Uwe Aickelin. (2006). libtissue - Implementing Innate Immunity.
In Proc. of the IEEE World Congress on Computational Intelligence, pages 499–506,
Vancouver, Canada.

“IJUC” — “IJUC_0078” — 2010/5/13 — 16:57 — page 325 — #25

Detecting Anomalous Process Behaviour 325

Parameter Name Value Description

max_antigen 1000 maximum number of stored antigen
max_cytokines 3 maximum number of stored signals
max_cells 10000 maximum number of cells
cell_update_rate (µsecs) 100000 rate at which cells are updated
antigen_multiplier 10 number of copies of each antigen stored
num_cells 1 100 number of immature DCs
cell_lifespan 1 100 number of iterations an immature DC

lives for
num_antigen 1 100 maximum number of antigen stored by

an immature DC
num_antigen_receptors 1 10 number of antigen an immature DC can

store
num_antigen_producers 1 100 number of antigen an immature DC can

produce
num_cytokine_receptors 1 3 number of signals an immature DC can

respond to
antigen_producer_action_time 10 number of iterations an immature DC

presents antigen for
num_cells 2 100 number of naive TCs
cell_lifespan 2 10 number of iterations a naive TC lives for
num_cell_receptors 2 1000 number of DCs a TC can bind with per

iteration
num_vr_receptors 2 100 number of antigen a TC can match per

iteration
cell_lifespan 3 100 number of iterations a semimature DC

lives for
cell_lifespan 4 100 number of iterations a mature DC lives

for
cell_lifespan 5 100 number of iterations an activated TC

lives for
probe_rate (µsecs) 1000000 rate at which cell population levels are

sampled

TABLE 4
The libtissue parameter settings used fortlr. For tlr1 and tlr2 the
max_cytokines and num_cytokine_receptors_1 parameters are set to 1 and 2
respectively

A LIBTISSUE PARAMETER SETTINGS

Thelibtissue parameter values used fortlr are shown in Table 4.

B PLATFORM TECHNICAL DETAILS

A Redhat 6.2 ISO image is downloaded from an official Redhat mirror and
used to install a vanilla server as a VMware guest on the testbed. The
defaultwuftpd FTP server package (2.6.0-3) is replaced with a separately
downloadedwuftpd 2.6.0-1 RPM. This is necessary as although thewuftpd

“IJUC” — “IJUC_0078” — 2010/5/13 — 16:57 — page 326 — #26

326 J. Twycross et al.

package in the original Redhat 6.2 distribution has the SITE EXEC vul-
nerability, Redhat replaced this distribution with a “respin” (read “second
edition”) which contains a patchedwuftpd 2.6.0-3. Once installed, the default
configuration ofwuftpd is slightly modified to make it vulnerable.

In the default installation,wuftpd is started at boot time wrapped by the
inetd super-server. This makes monitoring more complex as in this configu-
ration the FTP server is only started once a connection has been established
through inetd. However, monitoring is technically easier when a process is
running continuously. Therefore, the FTP server is disabled in inetd by com-
menting out the appropriate FTP service entries in /etc/inetd.conf. An init
script is written to start the FTP server as a standalone server, running con-
tinuously, at boot time. In order to gather the actual data, i.e. process syscall
information and context signals, the target system is instrumented: the FTP
server executable is wrapped withstrace [18], which logs all the syscalls
made bywuftpd and its children.

