
Efficient Trace Signal Selection for Post Silicon Validation and Debug∗

Kanad Basu and Prabhat Mishra
Computer and Information Science and Engineering

University of Florida, Gainesville FL 32611-6120, USA
email: {kbasu, prabhat}@cise.ufl.edu.

Abstract
Post-silicon validation is an essential part of modern in-

tegrated circuit design to capture bugs and design errors
that escape pre-silicon validation phase. A major problem
governing post-silicon debug is the observability of internal
signals since the chip has already been manufactured. Storage
requirements limit the number of signals that can be traced;
therefore, a major challenge is how to reconstruct the majority
of the remaining signals based on traced values. Existing
approaches focus on selecting signals with an emphasis on
partial restorability, which does not guarantee a good signal
restoration. We propose an approach that efficiently selects a
set of signals based on total restorability criteria. Our experi-
mental results demonstrate that our signal selection algorithm
is both computationally more efficient and can restore up to
three times more signals compared to existing methods.

I. Introduction
Pre-silicon validation techniques are used by design engi-

neers to get rid of functional errors. This is done before the
actual manufacturing process and can be accomplished using
simulation or formal verification techniques. However, with the
increase in design complexity and decrease in time-to-market
window, many errors escape the pre-silicon validation phase
and manifest themselves during the actual operation. Manu-
facturing testing techniques are used to capture manufactural
defects ([7], [8]), but they are not designed to detect any of
the bugs escaping the pre-silicon phase. Post-silicon validation
techniques are used to capture these escaped bugs.

Post-silicon debug comprises of signal observation and
analysis. Since we have a completely fabricated silicon, it is
not possible to observe each and every internal signal. Only
a few selected signals can be observed. During post-silicon
validation, a set of input tests are used, and the values of the
selected signals are stored in a trace buffer. The data from
the trace buffer is used to restore the unobserved signal states
during debug. Different techniques of post-silicon validation
have been proposed over the years keeping this problem in
mind. Both Ko et al. [5] and Liu et al. [6] have proposed similar
approaches of signal selection based on partial restoration1.

∗This work was partially supported by NSF CAREER award 0746261.
1Partial Restorability of a signal refers to the probability that the signal

value can be reconstructed using known values of some other traced signals.

For each signal, the sum of the partial restorabilities of all the
signals in the circuit is computed. If the trace buffer width is
n, the n signals providing highest sum of partial restorabilities
are chosen for tracing.

Partial restoration probabilities (partial restorabilities, in
short), used in the approaches proposed by [5] and [6] are
not sufficient for signal reconstruction, as can be seen in
Section III. Also, the approaches in [5] and [6] suffer from
the fact that their restorability calculation is computationally
intensive, which increases the complexity of their algorithm.

We have proposed a method that addresses these challenges.
We have used total restorability2 calculations, which can
guarantee better restoration compared to partial restorability.
Our method is found to provide both higher signal restoration
ratio and significantly lower signal selection time than any of
the existing approaches using the ISCAS ’89 benchmarks as
demonstrated in Section V.

The rest of the paper is organized as follows. Section II
presents related works in signal selection. Section III describes
the signal selection problem using illustrative examples. Sec-
tion IV describes our signal selection technique. Section V
presents the experimental results. Finally, Section VI concludes
the paper.

II. Related Work
The primary problem concerning post-silicon debug is the

limited observability of the internal signals. Once the values of
signals are known, they can be analyzed using some algorithms
like failure propagation tracing [9] to identify the errors in the
circuit. Formal analysis for post silicon debug, proposed by De
Paula [4], is of limited use as it is not applicable to circuits
with a large number of gates. Physical probing techniques
were proposed by Nataraj et al. [1]. Decrease in feature size
and growing complexity of IC designs have rendered these
techniques difficult in practice. A method for verification of
memory subsystem in CMPs was proposed by DeOrio [10],
which only emphasizes on the memory subsystem and not the
entire circuitry of the chip. Scan based debugging techniques
such as [2] are not appropriate since they require to stop the
circuit functionality when the scan data is being written. This
is particularly not beneficial in cases where the functional

2Total Restorability of a group of signals refer to the fact that the signal
states can be completely restored, that is, it is a special case of partial
restorability with restorability value of 100%.

errors are drastically apart. Double buffering [12] of scan
elements helps to mitigate this problem, but with a large area
penalty. Design-for-Debug (DfD) techniques have been used
extensively to increase the observability of internal signals of
the silicon. Generally this is done by sampling the data which
is stored in on-chip trace buffers. Various DfD techniques like
embedded logic analyzer (ELA) [3], and shadow flip flops [12]
have been proposed over the years; however, none of them are
really effective.

A logic implication based trace signal selection method was
proposed by Prabhakar et al. [11]. They used the primary
inputs, in addition to the traced signals for restoration purposes.
Recently, Ko et al. [5] and Liu et al. [6] have proposed
a generic trace signal selection algorithm in which a few
important signals can be traced and others can be reconstructed
from them. Our technique is closest to their approach and
hence, throughout this paper, and specially in Section V,
we have compared our proposed technique with them. Our
proposed technique is found to overcome the drawbacks of
[5] and [6].

III. Background and Motivation
A. Signal Reconstruction

In Post-silicon debug, unknown signal states can be re-
constructed from the traced states in 2 ways - forward
and backward restoration. Forward restoration deals with the
restoration of signals from input to output, that is, knowledge
of input values can provide the output. Backward restoration,
on the other hand, deals with reconstructing the input from
the output. Details on forward and backward restoration have
been explained in [5]. It is sometimes easier to restore signals
using forward rather than backward restoration. If all but the
unknown signal values are known, forward restoration can
definitely determine the unknown, while backward might fail
to do so. This information will be used later in Section IV-E.

Clk

Clk

Clk

Clk

Clk

Clk

Clk

Clk

B

C

D

E

F

H

A
G

Fig. 1. Example Circuit

We now show by using a simple circuit how reconstruction
is performed in [5] and [6]. An example circuit is shown in
Figure 1 having 8 flip-flops. Let us assume that the trace buffer
width is 2, that is, value of two signals can be recorded. We try
to restore the other signal states by application of the methods
presented in [5] and [6]. The results are shown in Table I.
The ‘X’s represent those states which cannot be determined.
The selected signals are shown in shades. Partial restorability
calculations for both [5] and [6] are such that the signals

selected are C and F , in that order. Restoration ratio, which is a
popular metric for calculation of signal restorability is defined
as: Restoration Ratio = (number of states restored + number
of states traced)/(number of states traced). It can be seen that
the restoration ratio using the methods of [5] and [6] is 2.6 for
this example.

TABLE I. Restored signals using [5] and [6]
Signal Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5

A X 0 X 0 X
B X 0 X 0 X
C 1 1 0 1 0
D X X 0 0 0
E X X 0 0 0
F 0 1 1 0 0
G X 0 0 X 0
H X 0 0 X 0

B. Motivational Example
We now employ our method for selecting signals in the

circuit in Figure 1. The first signal that we trace is C. Note that
this was the same signal that was chosen by [5] and [6]. The
second signal that we choose is A3, based on total restorability
computations. The results are shown in Table II. It can be seen
that our method provides a restorability ratio of 3.2, which is
better than the one provided by [5] and [6].

TABLE II. Restored signals using our method
Signal Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5

A 0 0 0 0 1
B 1 0 1 0 X
C 1 1 0 1 0
D X 0 0 0 0
E X 1 0 0 0
F X X 1 0 0
G X 0 0 0 0
H X X 0 0 0

IV. Signal Selection for Post-Silicon Debug
Algorithm 1 shows our signal selection procedure that has

five important steps. The remainder of this section describes
each of the steps in detail4.

Algorithm 1: Signal Selection Algorithm
Input: Circuit, Trace Buffer
Output: List of selected signals S (Initially Empty)
1: Compute the values of all edges and all flip-flops.
2: Find the flip-flop with the highest value and add to S.
3: Create Initial Region.
while trace buffer is not full do

4: Recompute the values of flip-flops.
5: Compute Region growth by finding the flip-flop in
the region with highest value not in S and add to S.

end
return S

A. Computation of Edge Values
An edge between two flip-flops is the path taken to reach

a flip-flop from another, while passing through a number of
combinational gates between them, that is, there cannot be any

3Tracing A along with C gives a guarantee for restoring D, while F does
not provide any such guarantees

4Steps 4 and 5 correspond to computations for total restorability

flip-flops in between them. The edge may be in the forward or
backward direction. In Figure 1, an edge between the two flip-
flops A and C passes through an OR gate. In a general case,
there can be any number and type of combinational gates in
an edge. To find the probability that C is influenced by the
value at A (which is the value of the edge AC), there can be
two cases (independent and dependent) as discussed below:5

1) Independent Signals: Consider two edges AC and BC
in Figure 1. Here, the two input signals of the OR gate in
front of flip-flop C are driven by flip-flops A and B, which are
independent. Hence, the edges AC and BC are independent.

To calculate the edge values for an independent scenario,
we use a generic example in Figure 2. Later, we will show
how the calculation works for the specific case in Figure 1.

m inputs

K

Gn
L

G2G1 Q

Q’

QD

Q’

D

Fig. 2. Example circuit with n gates
Figure 2 has two flip-flops K and L. We want to find how

the input of L is sensitized by the output of K. The input of
L corresponds to the output of the gate Gn. The path from
K to L is independent of any other path through which the
output of K propagates. Let’s consider the gate G1. We define
four probabilities: PI

0,N , PI
1,N , PO

0,N and PO
1,N . Here, PI

0,N
indicates the probability that a node N (gate or flip-flop) has
an input value of ‘0’ when another node is controlling it.
Similarly, PI

1,N , PO
0,N and PO

1,N indicate the cases for input
value of ‘1’, output value of ‘0’ and ‘1’, respectively. The
output of flip-flop K can influence the output of G1 in two
cases: i) output of K is a controlling value, ii) all the inputs to
G1 are complement of the controlling value. Let us consider
G1 to be a 2-input AND gate6. We define PG1 as the overall
probability of K controlling G1. According to [13],

PG1 = PO
1,G1 +PO

0,G1 (1)

Now, let’s define PO
0,G1 and PO

1,G1 . Let Pcond0,G1 and
Pcond1,G1 be the probability that the output of G1 follows the
output of K, i.e., the output of G1 is 0(1), when the output of
K is 0(1). For simplicity of calculation, in this example, we
have assumed PI

0,G1 = PI
1,G1= 0.57.

PO
0/1,G1 = Pcond0/1,G1 ×PI

0/1,G1 (2)

Now, for a 2-input AND gate, Pcond0,G1 is 1, since 0 is the
controlling input. Therefore, we obtain PO

0,G1 = 0.5. Similarly,
since 1 is the non-controlling input, Pcond1,G1 is 0.5, which
gives PO

1,G1 = 0.25. From Equation (1), it can be seen that
PG1 = 0.75. Now, we return to our main goal, that is, to
determine how K controls L. We first find the effect of the
output from K as it propagates to the next gate G2 and then

5We are showing calculations for forward restorabilities; however, those for
backward restorabilities can be derived in similar lines.

6The same method can be extrapolated for gates with higher number of
fan-ins and different types like OR, NAND, etc.

7That is, occurance of 0 or 1 follows equal probability at the input.

can extrapolate along the entire path to L. We use the same set
of equations (1) and (2) again, except that the input is G1 here
and the output is G2. Obviously, the values of PI

0,G2 and PI
1,G2

would be PO
0,G1 and PO

1,G1 obtained from equation (2). For
example if G2 is also a 2-input AND gate, applying equation
(2), we obtain, PO

0,G2 = 0.5, and PO
1,G2 = 0.125. Therefore,

we get PG2 = 0.625, where PG2 is the probability for the gate
G2 defined in Equation (1).

In this way, the calculation continues until we reach L,
to obtain the value of the edge KL. If when there are n
combinational gates between K and L, we get

PO
0/1,Gn = ∏

1≤i≤n
(cond0/1,Gi)×PI

0/1,G1 (3)

Finally, Equation (1) is used to compute the probability PGn ,
which corresponds to value of the edge KL.

We can use these computations to show how an edge value
is computed in case of the circuit in Figure 1. Let’s compute
the value of edge AC. We name the OR gate in between the
two as gate G and we assume that PI

0,G = PI
1,G = 0.5. Since

it is an OR gate, Pcond0,G = 0.5 and Pcond1,G = 1. Therefore,
equation (2) can be used to obtain PO

0,G = 0.25 and PO
1,G =

0.5. Equation (1) can now be used to obtain PG = 0.75, which
represents the value of the edge AC.

2) Dependent Signals: In case of dependent signals, we
need to know the probability of a flip-flop output influencing
a m-input gate, when the output of the flip-flop affects l inputs
(l ≥ 2) of the gate.

We have used a generic example in Figure 3 to calculate the
edge value in case of dependent signals. It should be noted that
these calculations on dependent signals have not been done by
[5] or [6].

G1

Gp

Gn

L
K

G2

x
m inputs

y
Q’

QD

Q’

QD

Fig. 3. Example circuit

Let’s consider Figure 3. It can be seen that two inputs (x,y)
of the m input gate Gn are affected by flip-flop K. For this, our
goal would be to combine the dependent edges so that the edge
will have independent signals. We can then easily utilize the
formula used in Section IV-A.1 to compute the edge value. We
desire to find PO

1,Gn and PO
0,Gn , in lines with the parameter

PI/O
0/1,N defined in Section IV-A.1. Let us assume that Gn

is an AND gate. For an AND gate, since 0 is the controlling
value, having either of the inputs as 0 will ensure a 0 being
propagated into the gate Gn. Therefore

PI
0,Gn = PO

0,x +PO
0,y−PO

0,x&&0,y (4)

The last term subtracts the probability when both are 0, since
it is being computed twice. Similarly, since 1 is the non-
controlling input, we get

PI
1,Gn = PO

1,x&&1,y (5)

where PO
1,x&&1,y is the probability when both x and y are

‘1’. Let’s evaluate the terms PO
0,x&&0,y and PO

1,x&&1,y. Let
Pcond0/1,x be the probabilities that x is 0(1) when the output
of K is 0(1). Similarly we can define Pcond0/1,y. PO

0/1,x&&0/1,y
can be defined as

PO
0/1,x&&0/1,y = (Pcond0/1,x×Pcond0/1,y)×PO

0/1,K

With the help of Equation (2), this can be reduced to

PO
0/1,x&&0/1,y =

PO
0/1,x×PO

0/1,y

PO
0/1,K

(6)

Since the paths from K to x and from K to y are assumed to
be an independent one, Equation (3) can be used to obtain the
values PO

0/1,x/y. Application of Equations (4) and (5) provide
the values of PI

0/1,Gn . The final PGn can be obtained using
Equations (1) and(2), and the information on the number of
inputs to the gate Gn. This corresponds to the value of the
edge KL.

3) Example: We now proceed to show how the calculations
described in Section IV-A.1 and Section IV-A.2 can be used
to determine the edge values for the circuit in Figure 1. A
graphical representation of the circuit is shown in Figure 4.

C

D

E

B

F

H

A
3/4

3/4

3/4
3/4

3/4

3/4

3/4

3/4

3/4

3/4

3/4

G

3/4

Fig. 4. Graphical representation of example circuit
The flip-flops are represented by nodes and an edge between

two flip-flops by a straight line. In Figure 4, we have shown
edge values on the top of each edge. It should be noted that
there are no dependent edges in this example. All the edges
have one two-input gate in between them, As a result, all the
edge values are 3

4 .
B. Initial Value Computation for Flip-Flops

We define the value of a flip-flop is the sum of all the edges
attached with it, in both forward and backward direction. For
example, in Figure 4, the value of flip-flop C is the sum of the
weights of all edges connected with it, that is, CA, CB, CD and
CE. It is important to note that we have used a “threshold” in
order to prevent combinational loops inside the circuit during
edge value computation. This parameter was used by [5] as
well. The change in restoration ratio with a variation of this
parameter is explained in Section V.

It is to be noted that our computation of the flip-flop values
are independent of the sequential loops in the circuit. In a
sequential loop, the output of a flip-flop depends on another
in both forward and backward cycles. However, both cannot
be true at the same clock cycle; that is, the same flip-flop can
not determine the output of another in the same cycle by both
forward and backward restoration. While forward restoration
can determine the value in at least the next cycle, backward
can determine it at most the previous cycle.

C. Initial Region Creation
A region is a collection of flip-flops attached together. It is

not necessary that all the flip-flops have an edge with each
other in the region. However, each flip-flop in the region must
have at least one edge with another flip-flop in the region.
In Figure 4, the flip-flops A, B, C, D and E form a region.
The first flip-flop to be chosen is the flip-flop with the highest
value, based on the calculations on Section IV-B. It is added to
a list called “known”. Now, all flip-flops which have an edge
with the recently selected flip-flop are added to the region.

C

D

E

B

F

H

A
3/4

3/4

3/4
3/4

3/4

3/4

3/4

3/4

3/4

3/4

3/4

3/49/4

9/4

9/4

9/4

3

G

3/2

3/2

3

(a) Initial region creation

C

D

E
B

F

G

H

A

(b) Region Growth

Fig. 5. Region creation and growth
We show by an example in Figure 5(a) how this portion of our
algorithm is used to perform the selection of the best signals.
The values of the flip-flops (addition of all it’s edge values)
are shown in bold alongside each flip-flop. For example, A has
3 edges AC, AD and AG, each having a value 3

4 . Therefore,
the value for A is 3

4 + 3
4 + 3

4 = 9
4 . The flip flop with the highest

value in Figure 5(a) is C. All the nodes which have an edge
from C are included in the region. The region is represented
by the spline in Figure 5(a).

D. Recomputation of Flip-Flop Values

The first flip flop to be traced is already known (C in the
previous example). However, there are other flip-flops that
need to be traced as well. To select the subsequent flip-flops,
the values of flip-flops inside the region are recomputed. The
flip-flop whose value is being computed may have an edge to
a flip-flop inside the region as well as one outside the region.
Edges to flip-flops inside the region are given higher weight8.
As seen in Section III, many restorability computations require
knowledge of more than one signal of the input/output9.
Therefore, it is better to gain more knowledge of the signals
already in the region, thus increasing their restorability values
and therefore, aiming for total restorability of those signals.
Existing approaches [5] and [6] recompute the restorability
values after each iteration, which when translated to the graph
in Figure 4, would correspond to edge value recomputation,
which is more computationally intensive.

E. Region Growth

The flip-flop in the region with the highest restorability and
not in the list “known” is determined. If two flip-flops have
the same value, the one with the higher forward restoration
is traced. This is because, backward restoration fails in some

8Variation of restoration ratio with weight is discussed in Section V.
9For example, when all the inputs to a gate are complement of the

controlling value.

cases whereas forward does not when all the inputs are known.
For the example in Figure 5(a), the next flip-flop to be traced
is A. It is included in the list “known”. If the trace buffer
is already full, calculations will stop, otherwise the region is
continued to grow. All flip flops having an edge to the recently
selected node are added in the region. As shown in Figure 5(b),
in this case G is added since G is the only node connected to
A and not in the region. The dotted line indicates the original
region. Next, Section IV-D is reconsidered and this process is
iterated until the trace buffer is full.

With each call of the “Region Growth” procedure, the set
of signals candidate increases, thus enlarging the area over
which the potential signals can be selected. One may think
that “Region Growth” clusters nodes in the circuit and only
selects signals in a specific area. This is not true as the region
growth is found to cover different parts, spanning across the
entire circuit, with an increase in region size for each iteration.

V. Experimental Results
We applied our approach on the ISCAS’89 benchmarks used

by [5] and [6] to compare with their methods and hence show
the effectiveness of our algorithm. The trace buffers used are
same as that of [5], that is, 8× 4k, 16× 4k and 32× 4k. We
have designed an event driven simulator in the lines of the one
described by [6] for our purpose, which conducts simulation in
both forward and backward direction. We have implemented
the simulator as an iterative process which terminates when
it is not possible to restore any more states. We have fed the
simulator with 10 sets of random values and noted the average
restoration ratio.

0

5

10

15

20

25

30

35

40

1 1.5 2 2.5 3 3.5 4 4.5 5

R
e

st
o

ra
ti

o
n

 R
a

ti
o

Weight

s38584

s38417

s15850

s9234

s35932

Fig. 6. Variation of Restoration Ratio with weight

Before we start comparing our approach with other relevant
works, we intend to fix the two parameter values that we have
used in our algorithm, namely weight and threshold. weight is
used to ensure total restorability, while threshold keeps a check
on gate count and prohibits loops in the circuit during compu-
tation. Figure 6 and Figure 7 show the variation of restoration
ratio with weight and threshold respectively for the five largest
ISCAS ’89 benchmark circuits when the trace buffer width is
32 and the circuit is driven using deterministic inputs. It can be
seen from Figure 6 that although the restoration ratio increases
in the early stages, after reaching a weight value of 2, it remains
constant with further increase in weight. This is because with
a weight value of 2, enough weight is given to the flip-flops

inside the region and hence, any increase in weight will only
lead to the selection of the same flip-flops, resulting in the
same restoration ratio. Thus, a weight value of 2 is used for
the experiments in the remainder of this section.

In Figure 7, the restoration ratio is seen to remain constant
after attaining a threshold value of 20. We choose a threshold
value of 20 as a safe measure. It can be noted that an increase
in threshold value leads to higher signal selection time. This
is quite obvious since more time will be spent on the loops
inside the circuit. Once the two parameters are set, we are

0

5

10

15

20

25

30

35

40

5 10 15 20 25 30 35 40 45 50

R
e

s
t
o

r
a

t
io

n
 R

a
t
io

Threshold

s35932

s38584

s38417

s15850

s9234

Fig. 7. Variation of Restoration Ratio with threshold

now ready to compare our signal selection approach with the
other relevant methods. Table III compares the performance

TABLE III. Comparison with [5]
Restoration Ratio Restoration Ratio

with random inputs with deterministic inputs
Circuit Width [5] Our Impro- [5] Our Impro-

approach vement approach vement
8 135 155 1.1 19 78 4.1

s38584 16 70 82 1.2 11 40 3.64
32 38 42 1.1 6 20 3.33
8 19 55 2.9 19 55 2.9

s38417 16 18 29 1.6 18 29 1.6
32 9 16 1.8 9 16 1.8
8 180 188 1.05 42 95 2.3

s35932 16 93 96 1.03 40 60 1.5
32 48 50 1.04 25 35 1.4

of our approach with the one proposed by Ko et al. [5] using
the three largest ISCAS ’89 benchmark circuits. Table III is
divided into three distinct parts. The first two columns indicate
the experimental setup, that is, circuit name and width of the
trace buffer. The next three columns compare the performance
when random sets of inputs are used to drive the circuits. It is
to be noted that in this case, even the control signals are driven
using random inputs. As a result, the circuit might fall into one
of the reset states. The improvement can be defined as the ratio
between the restoration ratio using our approach and that of
[5]. The third part of Table III compares our approach with
[5] when the gates of the circuit are driven deterministically.
This means that the control signals are driven using values
that prevent it from going to a reset state, while the other
signals are driven with random inputs. From Table III, it can
be seen that the improvement obtained using random inputs is
moderate (41% on average). On the other hand, considerable
gain (151% on average) is obtained when we use our algorithm
for deterministic inputs. As discussed earlier, random inputs
might lead to reset states, which are responsible for high

restoration. Therefore, improvement obtained is less in this
case. It should be noted, as stated in [6], that deterministic
inputs are actually used in circuits during real-life applications.
Hence, gain obtained with them are more significant.

Table IV compares the restoration ratio of our proposed
approach with the one proposed by Liu et al. [6] for the
three largest ISCAS’89 benchmarks. In this case, the inputs
are deterministic in nature. It is to be noted that the values
mentioned in [6] are slightly different from the values men-
tioned in Table IV. The reason is that the data inputs have been
fed with random values, which differ from system to system.
An average improvement of 113% is observed. It can be seen
that the improvement here is less than the one obtained in
Table III. This can be attributed to the fact that the algorithm
proposed by [6] is a betterment over that proposed by [5].

TABLE IV. Comparison with [6] with deterministic inputs
Restoration Ratio

Circuit FFs Width [6] Our approach Improvement
8 20 78 3.9

s38584 1426 16 14 40 2.86
32 9 20 2.22
8 19 55 2.9

s38417 1636 16 18 29 1.61
32 14 16 1.14
8 64 95 1.48

s35932 1728 16 40 60 1.5
32 22 35 1.6

We now compare our approach with the one proposed by
[11]. It is to be noted that [11] have used the primary inputs
along with the traced signals for signal restoration. Till now, we
only used the trace signals to restore the rest of the signals on
the chip. However, to enable fair comparison, we have included
the primary inputs for signal restoration. The results are shown
in Table V. It should be noted that the improvements are
moderate (on an average 11%) in this case. When we use the
primary inputs for restoration, most of the states at later clock
cycles can be recovered. On the other hand, the states where
the input test vectors can not reach due to sequential depth in
early cycles can be restored using the traced data. As reported
in [11], about 90-95% of the states were restored using their
method. Hence, the scope for improvement is limited.

TABLE V. Comparison with [11]
Restoration Ratio

Circuit FFs Width [11] Our approach Improvement
8 19.3 19 0.99

s5378 179 16 9.7 9.9 1.02
32 4.84 5.0 1.03
8 20.3 23.3 1.14

s9234 211 16 10.3 11.8 1.14
32 5.2 6.0 1.15
8 55.6 55.1 0.99

s15850 534 16 27.8 29.8 1.07
32 13.9 15.8 1.14
8 130.1 151.2 1.61

s38584 1426 16 66.02 78.4 1.19
32 34.8 40.5 1.16
8 209.6 209.4 0.99

s35932 1728 16 104.8 105.8 1.01
32 52.4 53.3 1.02

Figure 8 compares our signal selection time against the
times taken by [5] and [6] for the three largest ISCAS’89

benchmark circuits. It can be seen that our approach takes
significantly less time (up to 90%) compared to them. This
is primarily due to the fact that [5] and [6] recomputes edge
values in every iteration whereas we only compute them once.
In summary, our technique shows considerable improvement
in signal restoration as well as significant reduction in signal
selection time compared to the existing approaches.

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

8 16 32 8 16 32 8 16 32

S
e

le
c
t
io

n
 T

im
e

 i
n

 s
e

c
o

n
d

s

Our approach [6] [5]

s38584 s38417 s35932

Fig. 8. Comparison of Signal Selection Time

VI. Conclusions
Post-silicon validation is extremely complex and time con-

suming in overall design methodology. Signal selection is
an important aspect of post-silicon debug. We developed
techniques to employ total restorability for selecting the most
profitable signals that are guaranteed to generate better restora-
tion compared to when signals are selected using partial
restorability equations. We applied our algorithm on the largest
ISCAS’89 benchmarks. Our experimental results demonstrated
two major advantages - our approach can provide faster (up
to 90%) signal selection as well as significantly better (up to
3 times) restoration ratio compared to existing approaches.

References
[1] N. Nataraj, T. Lundquist, K. Shah, “Fault localization using time resolved

photon emission and stil waveforms,” in ITC 2003, pp. 254–263.
[2] G. J. Van Rootselaar and B. Vermeulen, “Silicon debug: scan chains

alone are not enough,” in ITC 1999, pp. 892–902.
[3] M. Abramovici et al., “A reconfigurable design-for-debug infrastructure

for socs,” in DAC, 2006, pp. 7–12.
[4] F. M. De Paula, M. Gort, A. J. Hu, S. Wilton, and J. Yang, “Backspace:

Formal analysis for post-silicon debug,” in FMCAD ’08., pp. 1–10.
[5] H. F. Ko and N. Nicolici, “Algorithms for state restoration and trace-

signal selection for data acquisition in silicon debug,” IEEE TCAD,
vol. 28, no. 2, pp. 285–297, Feb. 2009.

[6] X. Liu and Q. Xu, “Trace signal selection for visibility enhancement in
post-silicon validation,” in DATE, 2009, pp. 1338–1343.

[7] K. Basu and P. Mishra, “Test Data Compression Using Efficient Bitmask
and Dictionary Selection Methods,” in IEEE Transactions on VLSI,
vol. 18, no. 9, pp. 1277–1286, 2010.

[8] K. Basu and P. Mishra, “A novel test-data compression technique using
application-aware bitmask and dictionary selection methods,” in ACM
Great Lakes Symposium on VLSI 2008, pp.83–88.

[9] O. Caty, P. Dahlgren, and I. Bayraktaroglu, “Microprocessor silicon
debug based on failure propagation tracing,” in ITC 2005, pp.10pp–293.

[10] A. DeOrio et al., “Dacota: Post-silicon validation of the memory
subsystem in multi-core designs,” in HPCA 2009, pp. 405–416.

[11] S. Prabhakar and M. Hsiao, “Using Non-Trivial Logic Implications for
Trace Buffer-based Silicon Debug,” in ATS 2009, pp. 131–136.

[12] D. Josephson and B. Gottlieb, “The crazy mixed up world of silicon
debug [ic validation],” in CICC 2004, pp. 665–670.

[13] E. Taylor et al., “Towards Accurate and Efficient Reliability Modeling
of Nanoelectronic Circuits ,” Proc. IEEE-NANO,2006, pp. 395–398.

