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Abstract— Determining the minimum distance between
convex objects is a problem that has been solved using many
different approaches. On the other hand, computing the
minimum distance between combinations of convex and con-
cave objects is known to be a more complicated problem.
Most methods propose to partition the concave object into
convex sub-objects and then solve the convex problem be-
tween all possible sub-object combinations. This can add a
large computational expense to the solution of the minimum
distance problem.

In this paper an optimization-based approach is used to
solve the concave problem without the need for partitioning
the concave object into convex sub-objects. Since the opti-
mization problem is no longer unimodal (i.e., has more than
one local minimum point), global optimization techniques
are used.

Simulated Annealing and Genetic Algorithms are used to
solve the concave minimum distance problem. In order to
reduce the computational expense, it is proposed to replace
the objects’ geometry by a set of points on the surface of
each body. This reduces the problem to an unconstrained
combinatorial optimization problem where the combination
of points (one on the surface of each body) that minimizes
the distance will be the solution. Additionally, if the surface
points are set as the nodes of a surface mesh, it is possi-
ble to accelerate the convergence of the global optimization
algorithm by using a gradient-based local optimization al-
gorithm. Some examples using these novel approaches are
presented.

Keywords— Distance determination, path planning, Ge-
netic Algorithms applications, Simulated Annealing appli-
cations, Combinatorial optimization.

I. Introduction

Probably the most popular use of the distance deter-
mination algorithms is in robot path planning [Liu and
Mayne, 1990] where the trajectory of a robot through a
workspace with objects is planned in order to have a col-
lision free trajectory. Simulation of physical systems and
virtual experimentation are other applications for the min-
imum distance problem. In many cases the simulation of
physical systems requires the use of some form of contact
dynamics model where the separation or interference dis-
tance between the objects is required [Nahon et al., 1998]
(see Figure 1). Similarly, CAD / CAM applications, such
as mechanical assembly, tool path planning, virtual reality
and virtual prototyping require the use of distance determi-
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Fig. 1. Examples of the minimum separation distance between con-
vex and concave objects.

nation algorithms or interference identification in order to
make the task possible or the virtual models more realistic.

Some of the above applications require the minimum dis-
tance problem to be solved at many instants as the scenario
changes in time, e.g., a robot moving a payload amongst
objects. In other applications, only the fact that the ob-
jects are interfering or not is of interest, i.e., no detailed in-
formation is needed about separation or interference (e.g.,
mechanical assembly). On the other hand, in contact dy-
namics, a detailed knowledge of the interference geometry
(interference distance and volume, etc.) is desirable.

A. Minimum distance for convex objects

Interference detection algorithms, where two objects are
checked for interference, such as the one described by
Maruyama [Maruyama, 1972], are the predecessors of some
of the distance determination algorithms used nowadays.
Maruyama’s interference method exhaustively checks the
boundaries of every pair of faces for interference. If any
two faces interfere, then the objects are said to interfere.

Some analytical methods, e.g., [Boyse, 1979], exhaus-
tively compute the distance between edges and vertices of
one object and those on the other object. The minimum
distance is then determined by comparing all the obtained
distances.

Other methods, such as the one described in [Meyer,
1986], compute the separation distance between bounding
boxes. This method leads to an approximation but has the
asset of being very fast.

Computational geometry theory has been applied to de-
velop methods to solve the distance determination problem.
These methods, also relying on an exhaustive feature to fea-
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ture search, include ones using Voronoi regions [Lin and
Canny, 1991] and the very popular GJK method relying
on the Minkowski subtraction [Gilbert et al., 1988]. These
methods have shown fast results especially when com-
bined with effective pruning strategies [Gottschalk et al.,
1996]. On the other hand, the benefit of pruning strate-
gies decreases significantly in densely packed environments
[Gilbert et al., 1988] such as the ones sometimes found in
contact dynamics applications.

Finally, other methods rely on the use of numerical op-
timization techniques to find the solution [Bobrow, 1989].
In this case, a single point is located inside each object
described by a set of inequality constraints. Then, the
optimization proceeds where the objective is to find the
set of coordinated of the pair of points that minimizes the
distance between the points while satisfying all the con-
straints. Note that a point that satisfies all the constraints
that define the geometry of the object is considered to be
a point inside or on the object’s surface. This method can
also be applied to quadratically constrained objects [Ma
and Nahon, 1992].

Recently, a method based on local descent and geometric
projections was proposed in [Llanas et al., 2003] for dis-
joint convex polyhedra. The algorithm starts from a point
on the surface of one of the two objects and projects it
onto the second object. Once the projected point is found,
the process is repeated by projecting it back onto the first
object. In [Llanas et al., 2003], the authors claim that in
most cases the algorithm converges within a couple of itera-
tions. This is with the exception of cases when two faces are
parallel or quasi-parallel. To overcome such problem, the
authors have added some extra features to their algorithm
and report some promising result for highly complicated
environments with a combined total number of vertices of
up 24, 000.

In brief, some fast algorithms sacrifice precision for speed
while most are limited in the types of objects that can be
handled (e.g. linearly bound objects, quadratically bound
objects).

B. Minimum distance for concave objects

B.1 Partitioning methods

Most works have reported the use of convex partition-
ing of concave bodies (see Figure 2) to solve the distance
determination problem between concave bodies. In this
scenario, any concave object is partitioned into convex sub-
objects, usually off-line. The distance problem is solved for
every sub-object pair and the minimum of all the distances
obtained is used as the solution of the concave problem [Ma
and Nahon, 1992] [Nahon et al., 1998] [Gilbert et al., 1988]
[Ponamgi et al., 1997].

While these methods work and rely on very fast and ro-
bust convex methods, the computational expense becomes
a problem when dealing with complicated concave objects.
Let us consider the following example: if the minimum dis-
tance between two concave objects, each of which is par-
titioned into ten convex sub-objects, is to be solved, then,
a total of one hundred convex minimum distance problems

a) b) c)

Fig. 2. Convex partitioning of a concave body, a) shows the original
object, b) and c) show two different convex partitions of the same
object.

would need to be solved. The number of convex sub-objects
can be very large, particularly for higher order objects that
need to linearized before they are partitioned into convex
pieces.

Recently, face decomposition, as opposed to 3D solid de-
composition as described earlier, has also been used for
complicated concave polyhedral geometries. This, together
with efficient pruning algorithms based on hierarchical rep-
resentation of objects, have been used to solve the separa-
tion distance problem amongst complicated concave poly-
hedral geometries [Ehmann and Lin, 2001].

B.2 Non-partitioning methods

An interference detection scheme based on Boyse’s
scheme [Boyse, 1979] for convex polyhedra was extended to
non-convex polyhedra in [Abdel-Malek and Burton, 1994],
where every pair of surfaces is checked for interference. The
line of intersection between pairs of planes (containing each
of the faces in question) is first obtained. The line is divided
in small segments that reach the faces’ limits. If any seg-
ment is fully contained within the boundaries of both faces
then the two faces are said to interfere except when one of
the surfaces is a hole. If the face has a hole (a concavity)
it is modeled as a negative entity, thus if a line segment is
contained within the boundary of that face there is no in-
terference. This method only returns a boolean result, i.e.,
whether or not there is interference, but does not quantify
the minimum distance.

The advantages of decomposition-free approaches in-
clude i) the minimization of the number of object pairs
to be tested since the addition of extra features (surfaces,
edges, vertices, etc.) is avoided and ii) the solution of the
problem in a single run rather than solving the distance
problem amongst all pairs of sub-objects. Both advantages
can potentially reduce the number of computations needed
to solve the concave problem.

In this paper, a novel optimization-based method for
solving the minimum distance between any combination of
objects is introduced. The proposed method makes use of
combinatorial global optimization techniques such as Ge-
netic Algorithms (GA) and Simulated Annealing (SA). Ad-
ditionally, some specifics of the implementation of the pro-
posed methods are presented paying particular attention
to the genetic operators used in the GA implementation as
well as the operators used in the Simulated Annealing pro-
cess. Moreover, a local hill-climbing optimization technique
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used to improve the convergence speed of the global opti-
mization algorithms is also described. Finally, the novel
algorithms are used to solve the minimum distance prob-
lem in a few numerical examples where the capabilities of
the method are illustrated.

II. Solving the distance problem

As discussed earlier, one of the methods used to solve the
minimum distance problem between convex objects is for-
mulated as a constrained optimization problem [Bobrow,
1989]. The method locates one point inside or on the sur-
face of each body. Then, using the Cartesian positions of
each of these two points as search variables, the Euclidean
distance between the two points is minimized subject to a
set of inequality constraints (defining the geometry of each
body). This problem can be expressed as follows [Ma and
Nahon, 1992]:

minimize :
√

(p1 − p2)T (p1 − p2) (1a)

subject to : gj(p1) ≤ 0 for j = 1, . . . , k (1b)
: gj(p2) ≤ 0 for j = k + 1, . . . , nconstr

where pi = [ xi yi zi ]T corresponds to the Cartesian
coordinates of the point on the i-th body, gj(pi) ≤ 0 are
the low level geometry primitives defining the geometry of
both bodies. nconstr is the total number of constraints,
that is, k constraints to describe object 1 and nconstr − k
to describe object 2. Each constraint represents a single
linear or higher order surface of the object. Note that pi

and gj must be expressed in the same coordinate frame.
In the convex case, the previous problem has a unique

solution (i.e., the objective function is unimodal) and can
be solved using quadratic programming techniques when
the constraints are linear [Ma and Nahon, 1992]. On the
other hand, when at least one of the objects is concave
1, the objective function may no longer be unimodal, i.e.,
more than one local minimum solution may exist.

It is important to notice that each time a point is gen-
erated it has to be checked for feasibility, i.e., to ensure
the point is inside or on the surface of a body. This en-
tails evaluating all the constraints in equation (1b) at that
particular trial point. For example, if one had two simple
objects defined by 20 constraints each, the number of mul-
tiplications and additions (i.e., flops) to verify feasibility
would be 240, whereas only 11 flops are needed to evaluate
the objective function. Thus, in this example, the number
of flops required to evaluate the objective function in this
simple example is about 22 times smaller than the number
required to check the point’s feasibility.

A. Combinatorial optimization approach

To avoid having to calculate the constraints at every iter-
ation, it is proposed to replace the geometry of the objects

1Special care must be taken when representing the geometry of
a concave object since the simple union of inequality constraints
method described in equation (1b) can only describe convex objects
[Carretero and Nahon, 2001].

by a finite number of points on the surface of the convex or
concave object. Thus, if a fixed number of points is given,
the minimum distance problem is reduced to a combinato-
rial optimization problem. That is: which is the best com-
bination of two points (one on each body) which yields the
minimum distance between them. Since the points on the
surfaces of each body can be generated off-line, the number
of algebraic calculations per iteration will be substantially
reduced.

Although this method eliminates the computational ex-
pense involved in checking the feasibility of any point, it
poses some accuracy problems. That is, the solution ob-
tained will be an approximation to the real solution which
will be governed by the number of points on the surface
of each object and the distribution of these points. This
method also poses implementation challenges such as the
creation evenly-distributed points on the entire surface of
both bodies. This issue can be addressed by using meshes
to represent the surface of each body which can be obtained
with several free or commercial software packages (see for
instance [Joe, 1986] or [CIMNE, 2003]).

The use of meshes also allows the possibility of using
a local minimum search. That is, at each iteration, any
combination of points obtained at random, could be lo-
cally optimized by moving the points along the edges of
the mesh using a hill-climbing based search. This is possi-
ble since any point on the mesh is ‘aware’ of its neighbours.
An unstructured mesh allows motions of a single step at a
time, i.e., the rate of change can be calculated at every
point in the direction of all its neighbours and the rate
with the largest change in the negative direction is used as
the direction where the point moves next.

A.1 Mesh storage

Typically, meshes are stored in matrices. The first of
these matrices is the node matrix N that contains the
Cartesian coordinates of all v mesh points (a.k.a. nodes)
with respect to a body fixed frame. That is, each row of
N corresponds to one point and the columns contain the
x, y and z coordinates of that point. The second matrix is
called the element or facet matrix F and gives a list of all
the facets of the mesh. Thus, the matrix F has as many
rows as the number of facets on the mesh. Each row on
the matrix F contains m integer elements that correspond
to the m vertices of the polygonal facet. Thus, a surface
mesh with triangular facets would have an element matrix
F with three columns. Note that the value of each entry in
the facet matrix F corresponds to a particular point (i.e.,
row) in the node matrix N. That is, if the 10th row of F
is [ 8 5 18 ], it means the tenth facet of the mesh has
nodes 8, 5 and 18 as its vertices which coordinates are in
rows 8, 5 and 18 of matrix N.

In the present work, a third matrix, a connectivity ma-
trix Π, is also stored with each mesh. The matrix Π is
a square matrix with as many rows and columns as node
points on the mesh, i.e., v. The connectivity matrix Π only
contains binary elements which correspond to the particu-
lar elements of the mesh that are connected to each other.
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That is, if element Π[i,j] = 1 means that nodes ni and nj

are connected to each other. Since Π is a sparse matrix,
it can be stored more compactly using a cell array with v
rows. Each row only contains the integer numbers corre-
sponding to the adjacent nodes. That is, to see what all
the connecting points to node ni are, one has to look at
row i of Π.

A.2 Mesh distances (distance and predecessor matrices)

Several methods for obtaining distance in meshes/networks
are known, see for instance [Tanenbaum, 1996]. In the
present work, Dijkstra’s algorithm [Dijkstra, 1959] to ob-
tain the distance and predecessor matrices for the meshes
is used. These two matrices will allow to obtain detailed
information about the mesh required by the optimiza-
tion algorithms. These two matrices determine the short-
est distance and path between two elements of the same
mesh. This process is computationally expensive but, in
the framework of the work proposed here, this is not crucial
since it is performed off-line. That is, these two matrices
would only need to be obtained once for each object and
the results stored for later use in the minimum distance
algorithms.

Following is a brief description of the distance and prede-
cessor matrices. For a mesh with v nodes, the distance and
predecessor matrices (D and P, respectively) will both be
of size v × v. For D and P, the row indices correspond to
source points and the columns indices to destination points.
Thus, the distance δ between nodes ns and nt (i.e., δs→t)
is stored in D[s,t], i.e., δs→t = D[s,t]. Thus, the symmetric
distance matrix D contains the shortest distance between
every possible pair of points on the mesh.

On the other hand, in order to obtain the shortest path
between two nodes on the mesh, namely ns and nt, el-
ement [s, t] of matrix P contains the last element to be
reached in the path from point ns to point nt, namely
nk. That is, in order to reach the destination point nt

from the source point ns, it is necessary to first reach
node nk (see Figure 3). Then, to get the element in
the path before nk that need to be reached, it is nec-
essary to look at P[s,k] which contains another element
nk−1. The process would be repeated until the node ns

is found as the entry P[s,k−j+1]. Thus, the path p to go
from ns to nt is pns→nt = [ns, nk−j+1, . . . , nk−1, nk, nt].
It follows that the distance δs→t is equal to the addition
of the distance between the intermediate nodes, that is,
δs→t = δs→k−j+1 + . . . δk−1→k + δk→t.

A.3 Objective function

Since the constraints have been eliminated by the use of
meshes, we are now left with an unconstrained optimization
problem which is formulated as

min : d2 = (p1 − p2)T (p1 − p2) (2)

Notice that, in equation (2), it is the square of the dis-
tance that is minimized and not the distance d itself. This
is done to avoid the computational expense of calculating

?r

?|
?&

?&-;

?&-�+;

Fig. 3. Minimum distance path to reach destination node nt from
source node ns.

the square root in equation (1a) which can be done since
minimizing a is equivalent to minimizing

√
a if a is a posi-

tive number.
As in [Carretero and Nahon, 2001] and [Carretero et al.,

2001], the formulation proposed here uses Genetic Algo-
rithms and Simulated Annealing to solve the minimum dis-
tance problem. As will be seen in further sections, these
methods were selected over other global optimization meth-
ods due to their proven capabilities in multimodal function
optimization (e.g. [Goldberg, 1989] and [Aarts and Korst,
1989]).

Note that the method proposed here, as opposed to the
other optimization based approaches presented in [Bobrow,
1989] and [Ma and Nahon, 1992], can handle minimum
distance problems with concave objects without the need
of partitioning the concave objects into convex sub-pieces.
As mentioned earlier, this can have the advantage of not
having to introduce unnecessary fictitious surfaces. Ad-
ditionally, the proposed method solves an unconstrained
optimization problem whereas in [Bobrow, 1989] and [Ma
and Nahon, 1992] the minimum distance problem is formu-
lated as a constrained optimization problem thus having to
evaluate the constraints at run time. As a result, these two
advantages would certainly prove powerful particularly in
complex scenarios as complicated concave objects would
not need to be partitioned into large number of pieces.

B. Global optimization

If a function having more than one local minimum (a.k.a.
multimodal function) is to be optimized using a gradient-
based search algorithm, the solution obtained may or may
not be the global minimum. When the start point for a
gradient based method is close to a local minimum, the
algorithm will quickly move toward it and eventually con-
verge there, i.e. the algorithm is trapped in the local min-
imum. This means that if a different start point is used,
a different solution may be found. Figure 4 illustrates this
with a single variable function. Often, a multi start search
is used to bolster the confidence in the minimum value ob-
tained using gradient-based approaches (see for instance
[Carretero et al., 2000]).

As an alternative to gradient-based approaches, a va-
riety of different global optimization methods have been
proposed in the literature. Amongst the most popular
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Fig. 4. Local versus global optimum.

techniques, one can find the Genetic Algorithms (GA) and
Simulated Annealing (SA) [Davis and Steenstrup, 1987].
These two methods are briefly described here as they were
both used to solve the minimum distance problem. Later,
in Section IV, result obtained from both algorithms are
compared.

B.1 Simulated annealing

Simulated Annealing (SA) is a global optimization
method which is based on the analogy of the cooling pro-
cess of molten metals [Kirkpatrick et al., 1983]. Briefly,
this method works on the principle of randomly generating
new points that are accepted if the objective function is
improved. On the other hand, if the objective function is
not improved the new point is rejected unless a randomly
generated number is inferior to a probability inversely pro-
portional to the iteration number of getting accepted. This
randomness is included to allow the search to escape from
local minima [Rutenbar, 1989]. This method has proven to
be powerful in several applications, see for instance [Buchal
et al., 1989] [Martinez-Alfaro et al., 1998].

The basic algorithm is described in point form as follows
[Kirkpatrick et al., 1983]:
1. Randomly create an initial guess and evaluate the ob-
jective function.
2. Randomly generate a new guess and evaluate the objec-
tive function.
3. If the objective function at the new guess is improved,
increase the iteration number (in SA parlance: decrease
the temperature) and go to step 2 unless the algorithm has
converged or the maximum iteration number is exceeded.
If the objective function at the new point is worse, continue
to step 4.
4. Generate a normally distributed random number (0 6
ρ 6 1) and compare it to a Boltzmann probability function.
If the random number is smaller than the probability factor
(i.e., ρ < pb) accept the new point and return to step 2,
otherwise return to step 2. This acceptance criterion is
referred to as the Metropolis criterion.

The most important aspect of the SA process is the cool-
ing schedule: i.e. the expression defining the Boltzmann
probability function (step number 4 described above). A
Boltzmann probability function is one that decreases as the
iteration number increases such as

pb = e
f(xi−1)−f(xi)

kBt (3)

where f(xi) is the objective function evaluated at trial
point xi, kB is Boltzmann constant and t refers to the

temperature which decreases as the iteration number in-
creases.

A highly exploratory algorithm has a very slow cooling
schedule accepting points with poor objective function even
after many iterations have passed. Once enough iterations
have passed, only a few moves that worsen the objective
function are accepted. By the end of the SA process, only
moves that improve the objective function are accepted.

B.2 Genetic algorithms

Another popular global optimization technique is Ge-
netic Algorithms (GAs). These algorithms mimic the nat-
ural evolution processes by natural selection and ‘survival
of the fittest’ methods outlined by Charles Darwin in the
19th century. The first complete work published stating
the basic principles of Genetic Algorithms was presented
by Holland in 1975 [Holland, 1975]. Although little theory
has been developed in the area of why GAs work so well
in many problems, their use in different areas is growing
quickly. As described in [Goldberg, 1989], the most com-
mon application of GAs is in the areas of function optimiza-
tion, machine learning, robot path planning and artificial
intelligence [Grefenstette, 1987]. A good introduction to
GAs is given in [Beasley et al., 1993a].

The main steps in the original GA described by Holland
(often referred to as the canonical genetic algorithm) are
described as follows:
1. Initialization: Randomly create an initial population of
size Npop

2. Evaluation: Compute the fitness of all individuals in the
population
3. Selection: Based on their fitness, select individuals that
will be used for mating
4. Mating (crossover): Recombine population to produce
Npop offspring
5. Mutation: Randomly mutate the population
6. Repeat steps 2 through 6 until a maximum number of
generations (Ngen) is reached or convergence is detected.

A good part of the research on this area involves the
development of new and more efficient mating, mutation
and selection methods for particular applications (see for
instance [Davis and Steenstrup, 1987] and [Beasley et al.,
1993b]).

III. Implementation

Although many examples of SA and GAs can be found
in literature, these stochastic methods have to be tailored
to the particular problem in order to solve it more effi-
ciently than with a generic implementation [Beasley et al.,
1993b]. This section describes the most relevant aspects of
the implemented algorithms.

A. Encoding

One of the most important aspects of the implementation
of any SA or GA optimization is the encoding of the trial
points, i.e. the search variables. In the present problem,
the encoding was done by having only a set of two indices
each referring to a particular point on the surface of each
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body. That is, trial point i is expressed as xi = [ ni
1 ni

2 ]
where ni

j contains the row number of the node matrix Nj

of body j where the coordinates of point ni
j are stored.

It should be noted that to calculate d2 (equation (2)),
both points must be expressed with respect to a common
frame. In order to reduce the computational expense of ex-
pressing both points with respect to the inertial frame, it
is possible to express both points with respect to the same
body fixed frame, namely frame Σ1 attached to body 1.
This transformation is possible without affecting the dis-
tance calculation since the Euclidean distance is frame in-
variant. Thus, only the points extracted from the database
of body 2 have to be multiplied by the homogeneous trans-
form describing body 2 with respect to body 1 as follows

T1
2

[ (
N2j

)T

1

]
= T1

0T
0
2

[ (
N2j

)T

1

]
(4)

where Ta
b corresponds to the homogeneous transform that

describes frame b with respect to frame a and N2j
cor-

responds to the point p2 stored in the node matrix N2,
i.e., row j of matrix N2. The extra row containing 1 used
to express N2j

is required in order to keep the dimensions
consistent. The use of this method was found to reduce the
overall computational expense between 30 to 50% resulting
in a total of 26 flops per d2 evaluation.

B. Genetic operations

B.1 Selection

The selection process in a GA is essential in order to ex-
ploit promising regions of the space. At the same time, by
randomly selecting some poor individuals to proceed to the
next generation, it creates the population diversity needed
for the exploration of the entire search space. For this
combinatorial approach, it is proposed to use Stochastic
Universal Sampling [Baker, 1987] (a.k.a. modified roulette
wheel selection) which is a simple selection method that has
shown good results in many applications such as function
optimization.

B.2 Mesh mating

The mating process of a GA is the mechanism that allows
it to pass to the next generations the traits of the selected
individuals.

In the present work, mesh mating is used, which involves
manipulation of the distance and predecessor matrices.
Once two individuals x1 = [ n1

1 n1
2 ] and x2 = [ n2

1 n2
2 ]

have been picked for mating, their nodes are mated pair
wise2. That is, the first node of x1 is paired with the first
node of x2 and similarly for the second node of each parent.
Thus, the rest of this analysis only considers the first gene
(node) of each solution point to describe the mesh mating
method.

The path between the selected nodes n1
1 and n2

1 (pn1
1→n2

1
)

is obtained using the method described in Section II-A.2
2Note that the superscript in ni

j denotes the trial point xi to which

nj belongs to. That is, nj
i is the n-th node in the object’s j mesh

which belongs to trial point xi.
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Fig. 5. Mesh mating example for a simple mesh.

and all nodes within the path are considered to be eligible
as offspring. To select the offspring, a particular radius
from one of the parents is used to determine the maxi-
mum mesh distance between that parent and the offspring.
This radius is centered around the parent with best fitness,
namely x1, and its size r is weighted to give preference to
the parent with better fitness as follows:

r = δ1→2
d2
1

d2
1 + d2

2

(5)

where δ1→2 is the mesh distance from node n1
1 to node n2

1

and d2
i is the square of the distance associated with indi-

vidual xi. Figure 5 shows an example where two parents
(nodes 1 and 8) are mated to produce an offspring (node
9).

B.3 Mutation

The mutation of trial point x is little more than a random
displacement of the trial point x. For this purpose, the use
of the random move is proposed here.

The method uses mesh information such as the distance
and predecessor matrices described in previous sections.
First, if a point ni on mesh i is to be modified, a new ran-
dom point (nirand) is generated. Next, the path between
ni and nirand is determined using the predecessor matrix
P, that is pni→nirand

is obtained. Finally, one of the points
along the path pni→nirand

within a user defined radius rmax

from ni is selected as the trial point ninew . The radius rmax

is set as a function of the maximum mesh distance in the
entire mesh which itself is a function of the object’s size.
Note that the present method uses the mesh distance δ be-
tween ni and ninew (i.e., δni−→ninew

) and not the Cartesian
distance since it is the mesh distance that is stored in the
distance matrix D. In order to allow points in early gen-
erations to explore new regions of the solution space, the
maximum move radius rmax could be set relatively large.
Then, as the generation number increases, rmax could be
reduced using a linear function or a Boltzmann probability
factor. In the present case rmax was fixed to max(D)/2.
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C. Simulated annealing operations

C.1 Cooling schedule

A Boltzmann probability function expressed as in equa-
tion (3) was used. The Boltzmann constant is usually found
by experimentation, i.e. by allowing the SA process run a
few times and making sure there is no premature or ex-
cessively slow convergence [Kirkpatrick et al., 1983]. Ad-
ditionally, the choice of the initial temperature tini deter-
mines for how long the algorithms is allowed to explore
new regions rather than concentrating on improving the
local solution.

C.2 Generation of new points

The exploration and exploitation in the SA algorithm is
achieved by generating new points in the solution space.
Thus, the development of mechanisms to generate new
points is of vital importance to the SA algorithm.

In the present work, the mutation method presented ear-
lier is used to generate new points during the SA process.
As for the mutation operation, the maximum radius which
the points are allowed to be displaced is scaled down as
the iteration number increases (i.e., the temperature de-
creases) using a Boltzmann type variation.

D. Initial guess

Numerical optimization algorithms require an initial
guess or start point for the optimization routine to start
the search. In most cases a good initial guess accelerates
the convergence of the optimization routine. If the distance
determination problem is solved repeatedly over time, as is
common in dynamics simulation, it is possible to use the
solution of the previous time step as the initial guess for
the new time step [Ma and Nahon, 1992]. It is also possi-
ble to include velocity information to further improve the
initial guess [Nahon, 1993].

On the other hand, during the first run of the minimum
distance algorithm, i.e., at the start of a simulation, the
initial guess is not known. In this work, it is assumed that
there is no previous knowledge of the solution and so, the
initial guess has to be generated by the algorithm.

For the GA and SA implementations, one method to
generate the initial trial points is at random where all node
points are possible candidates and the pairs are selected
at random. Due to the nature of the minimum distance
problem, the salient points of the objects are potentially
good candidates as initial guess points. That is, a better
initial guess could be made by picking pairs of points that
include points on vertices, edges and centroid of the faces
of the objects.

In the present case, in order to evaluate the worst case
scenario, the initial trial points are generated at random at
every single run.

E. Local optimization

Based on the information that can be extracted from the
unstructured mesh, a local optimization procedure was im-
plemented. As mentioned in Section II-A.1, a connectivity

matrix Π is obtained when the mesh is created that pro-
vides the point index of all the neighbouring points to a
particular node.

Using the connectivity matrix this method tried to re-
duce the distance between the two selected mesh nodes by
moving them along the edges of the mesh, i.e. to a neigh-
bouring node. First the selected node on object one (ni)
is moved successively to each of its neighbours while the
node on object two (nj) is fixed. The neighbour of ni that
minimizes the distance between ni and nj is accepted as
the new point ni and the search for a closer neighbouring
point starts again. Once the best ni is found, the process
is repeated by fixing ni and moving nj . This procedure is
repeated, alternating the moving and the fixed node until
the distance between the nodes is minimized, i.e., until no
neighbouring nodes can be found that reduce the distance
between ni and nj .

Since this is a hill-climbing based method, it is clear that,
on the local scale, the solution will greatly depend on the
start point. However, in the larger scale, the SA and GA
algorithms are expected to introduce the necessary ability
to jump out of local minima ‘traps’.

Note that, if the objects in question are convex, the lo-
cal optimization algorithm suffices to obtain the global so-
lution since for convex problems there is a unique local
solution that is also the global solution.

Also note that, Genetic Algorithms that make use of
local optimization techniques at every iteration are referred
to as Memetic Algorithms which evolve using what in GA
parlance is referred to as Lamarckian evolution (see for
instance [Whitley et al., 1994]).

IV. Examples

This section presents three numerical examples where
the distance determination algorithms described in this pa-
per are applied to solve the minimum distance problem
between a pair of objects. Each example uses a different
set of objects. The first two examples were chosen since
they demonstrate the algorithms’ basic capabilities. On
the other hand, the third example offers a more challeng-
ing problem as it has a much larger number of minima.
Other examples can bee seen in [Carretero, 2002].

To evaluate the capabilities of the proposed algorithms
under normal conditions, the following examples solve
the minimum distance problem using randomly generated
starting points. This allows us to evaluate, in terms of
computational efficiency, the worst case scenario since no
prior knowledge of the location of the minimum solution is
assumed. Additionally, for every example presented here,
the random number generator was reset before each set of
tests.

Note that, in order to evaluate and compare the algo-
rithms’ performance, the number of flops required for each
test are presented with each set of results. The number of
computations was estimated using special built-in functions
and commands within the interpreter for the programming
language that was used in the numerical implementation.

In order to classify the algorithms evaluated here, the fol-
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Parameter Symbol Value
population size Npop 50
probability of mutation pm 0.02
probability of crossover px 0.6
max. number of generations Gmax 50
Boltzmann constant kB 0.0001
Initial temperature tini 2500

TABLE I

Parameters for all comb-SA and comb-GA runs.

Object name Battery Fixture
overall dimensions (cm) 92× 74× 31 62× 86× 99

grid size (cm) 0.05 0.05
number of nodes 1241 1842
number of facets 2478 3680
convex sub-pieces 14 9

TABLE II

Battery and fixture geometry details.

lowing naming technique was adopted. First, the first three
letters of the approach name are used (i.e., ‘comb’ for com-
binatorial), second the optimization algorithm acronym is
used (i.e., GA or SA) and finally two letters identifying
if local optimization is used or not are added (i.e., ‘wl’
for with local optimization and ‘nl’ for no local optimiza-
tion). This results in algorithm names such as: comb-GA-
wl, which states that a genetic algorithm without local op-
timization using the combinatorial approach is used.

In the following examples four algorithms are tested,
these are the GA and SA implementations of the proposed
minimum distance algorithm each with two variants de-
pending on the use of local optimization or not. The SA
and GA parameters used in the examples are listed in Ta-
ble I. Although during the course of the project many
different sets of parameters were tested [Carretero, 2002],
only the ones listed in Table I are presented here since
they were found to be a good balance between exploration
and exploitation. Note that, in order to allow a compar-
ison between the results of the SA and GA algorithms,
the initial temperature (tini) for the SA examples was set
equal to the total number of trials the GA performs, i.e.,
tini = Gmax ×Npop where Gmax is the maximum number
of generations and Npop is the population size.

A. Battery and fixture

In this first example, relatively simple geometries are
used. The objects shown in Figure 6 illustrate a simplified
version of the Orbital Replacement Unit (ORU) battery
and its fixture of the International Space Station [Nahon
et al., 1998]. Several relative positions of the objects were
tried of which only the results from two are presented here.
In both poses analysed here, the battery is close to the
fixture and both objects are near to an insertion position.

Surface meshes were created on the two objects and their

Algorithm Position 1 Global kflops Position 2 Global kflops
minimum region minimum region

comb-GA-wl 0.0757 X 1 852 0.0997 X 1 905
comb-GA-nl 0.2345 × 147 0.244 × 150
comb-SA-wl 0.0757 X 8 209 0.0997 X 5 849
comb-SA-nl 0.1138 X 113 0.1746 × 118
enumeration 0.0757 0.0997

exact (±0.00005) 0.0747 0.0987

TABLE III

Results for the battery and fixture example.

dimensions are listed in Table II. A visual inspection of
this test scenario revealed approximately 9 local minima
from which a single one is the global minimum. Note that,
as stated in Table II, if the battery and fixture were to
be partitioned into convex sub-pieces they will result in
approximately 14 and 9 convex pieces, respectively3. This,
in a more conventional minimum distance algorithms as
the one described in [Ma and Nahon, 1992], would result
in a total number of sub-object pairs equal to 126.

Figures 7 and 8 show the time history of the solution
for the GA and SA algorithms, respectively, for the first
position. Note that in both figures, the objective function
decreases monotonically. This is due to the fact that at
all times the algorithm keeps track of the best set of points
obtained throughout the optimization run to make sure the
best set is never lost.

Table III lists the final results for the battery and fixture
example using comb-GA and comb-SA. Additionally, in or-
der to verify the results from the optimization algorithms,
Table III lists the global minimum obtained by enumer-
ation and the exact solution obtained semi-analytically4.
Note that the column labelled as ‘Global region’ denotes
whether the region where the global minimum is identified
was located by the algorithm or not. In both positions, the
comb-GA-wl and comb-SA-wl algorithms were capable of
obtaining the global minimum. By contrast, the algorithms
not using the local optimization had troubles locating the
global solution.

It is important to notice that, although in the present
example the algorithm comb-GA-wl was capable of finding
the global solution in the first iteration, this may not be
the case in more complicated scenarios. Thus the use of
GAs, rather than multi point local search, will bolster the
confidence in finding the global solution. This is illustrated
in the following examples.

B. Hand and bowl

The objects shown in Figure 9 illustrate a simplified ver-
sion of hand which is about to touch a bowl. The mesh

3The round alignment pegs (fixture) and holes (battery) where lin-
earized using only 6 surfaces.

4The closest regions are identified using the enumeration method.
Then, CAD regular drawing tools are used to approximate the short-
est line intersecting the two objects. The length of such line is then
measured and reported as the ‘exact’ minimum distance.



9

Fig. 6. Mesh representation of the battery (1241 nodes) and fixture
(1842 nodes).
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Fig. 7. Time history of the best individual in the population for
comb-GA-wl and comb-GA-nl (ORU battery and fixture example).

for the hand was created with a variable size as more pre-
cise distance calculations where desired near the fingertips
whereas the mesh on the back of the hand was less dense.
Conversely, the bowl’s mesh was created using an evenly
distributed grid size. More details about the test geome-
tries are listed on Table IV. It is expected that in the cur-
rent problem, as many as seven local minima would occur
from which a single one is the global.

Note that, according to the data listed on Table IV, the
current models of the hand and bowl would be partitioned
into approximately 196 and 73 convex pieces, respectively5.
This, in more conventional minimum distance algorithms
would result on a total number of sub-object pairs to be
checked exceeding 14 thousand.

A few relative positions of the objects were analysed with
satisfactory results and only one of them is presented here
(the one pictured in Figure 9). In such pose, the global

5The bowl was linearized using 36 radial segments.

0 500 1000 1500 2000 2500
0

0.1

0.2

0.3

0.4

0.5

0.6

t
ini

 − t

m
in

im
um

 d
is

ta
nc

e

d
min

 = 0.1138d
min

 = 0.0757

comb−SA−wl
comb−SA−nl

Fig. 8. Time history of the minimum distance of the trial point for
comb-SA-wl and comb-SA-nl (ORU battery and fixture example).

Object name Hand Bowl
overall dimensions (mm) 130× 185× 90 ∅300× 60

grid size (mm) [3− 30] 10
number of nodes 2236 3855
number of facets 4362 7706
convex sub-pieces 196 73

TABLE IV

Hand and bowl geometry details.

Algorithm Position 1 Global kflops
minimum region

comb-GA-wl 4.8295 X 2 430
comb-GA-nl 12.433 × 155
comb-SA-wl 4.8295 X 11 228
comb-SA-nl 16.221 × 115
enumeration 4.8295

exact (±0.00005) 4.7527

TABLE V

Results for the hand and bowl example.

minimum region is located where the tip of the middle fin-
ger is the closest to the upper section of the bowl’s rim.

Figures 10 and 11 show the time history of the solution
for the GA and SA algorithms, respectively. Additionally,
Table V lists the final results for the hand and bowl exam-
ple using comb-GA and comb-SA. In this case, the comb-
GA-wl and comb-SA-wl algorithms were both capable of
obtaining the global minimum. By contrast, as demon-
strated also in the earlier example, the algorithms not us-
ing the local optimization had troubles locating the region
where global solution is located.

Fig. 9. Mesh representation of the hand (2236 nodes) and bowl (3855
nodes).
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Fig. 10. Time history of the best individual in the population for
comb-GA-wl and comb-GA-nl (hand and bowl example).



10

0 500 1000 1500 2000 2500
0

10

20

30

40

m
in

im
um

 d
is

ta
nc

e

t
ini

 − t

comb−SA−wl
comb−SA−nl

d
min

 = 16.221d
min

 = 4.8295 

Fig. 11. Time history of the minimum distance of the trial point for
comb-SA-wl and comb-SA-nl (hand and bowl example).

Algorithm Position 1 Global kflops
minimum region

comb-GA-wl 19.3163 X 2 140
comb-GA-nl 28.8090 × 152
comb-SA-wl 19.3163 X 9 716
comb-SA-nl 24.9761 × 112
enumeration 19.3163

exact ˜18.95

TABLE VI

Results for the handshake example.

C. Handshake

As seen in Figure 12, this last example uses two hands
about to do a handshake. The mesh for both hands was
used identical to the hand used in the previous example
which details are listed in Table IV. Additionally, all op-
timization parameters were kept identical to the ones used
in previous examples (see Table I). In the present case, a
visual inspection of the problem revealed as many as 50
local minimum from which only one is the global (the com-
bination of the tip of the upper hand’s thumb with the
tip of the lower hand’s index finger). As for the previous
example, each hand would be partitioned into around 196
convex sub-objects resulting in a total number of convex
sub-object pairs of slightly under 40 thousand.

Figures 13 and 14 show the time history of the solu-
tion for the GA and SA algorithms, respectively, whereas
Table VI6 lists the final results. As seen for previous exam-
ples, the algorithms not using the local optimization had
troubles locating the global minimum region whereas the
algorithms making use of the local optimization algorithms
where much more successful.

D. Summary of results

In 100 independent runs, it was noticed that the comb-
GA-wl was always successful at finding the global solution
for all three examples. Additionally the comb-GA-wl was
seen to converge in as many as 40 generations where the
mean was around 2 generations for the first example, 4 gen-
erations for the second example and around 8 generations
for the third example. On the other hand, The comb-SA-wl
algorithm was seen to have a fair success rate but did not

6Due to the complexity of the geometries in this example, the min-
imum distance was only approximated. The reported distance is be-
lieved to be accurate within ±0.05 units.

Fig. 12. Mesh representation of the handshake example (2236 nodes
on each hand).
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Fig. 13. Time history of the best individual in the population for
comb-GA-wl and comb-GA-nl (handshake example).

have the robustness of the comb-GA-wl algorithm, particu-
larly for more complicated geometries as the ones presented
in the third example (failed on 12 out of 100 runs). In most
cases comb-SA-wl converged within the first 100 iterations.
Conversely, the comb-GA-nl and comb-SA-nl algorithms
improved the solution up until the last few iterations but
did not have enough time to reach the global solution (in
many cases not even the region where the global solution
is located).

It is interesting to notice that, due to the stochastic na-
ture of the optimization methods (namely GA and SA),
the algorithms presented here do not guarantee to always
converge to the true closest point, particularly when no lo-
cal optimization is used. However, for the geometries in the
previous examples and the ones tested in [Carretero, 2002],
the global minimum point was found in the vast majority of
the tests where the local optimization was used regardless
of the optimization method (i.e., GA or SA). Moreover,
when the local optimization is combined with the GA, the
solution returned by comb-GA-wl for the examples consid-
ered here and in [Carretero, 2002] was always the global
minimum, regardless of the initial point used in the simu-
lation. Further robustness tests can be found in [Carretero,
2002] where most tests were performed up to 2000 times
per pose and per geometry.
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Fig. 14. Time history of the minimum distance of the trial point for
comb-SA-wl and comb-SA-nl (handshake example).
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According to the data given in Tables III, V and VI for
the algorithms using local optimization and assuming the
computations were performed at a rate of 1414 Mflops/s
(PC at 3.06 GHz [Dongarra, 2003]), the minimum distance
calculation would take under 1.5 ms for comb-GA-wl on
the complicated scenario whereas comb-SA-wl would take
up to 4.5 to 5 times more for the same test case. The
main reason for this large difference in computational ex-
pense between the GA and SA implementation is due to
the fact that all trial points in the SA are generated semi-
randomly thus the local optimization algorithm needs to
take many more steps to locally optimize each trial point.
The GA implementation, on the other hand, will generate
most trial points by using the mating process which will
tend to produce offspring in potentially good regions of
the search space allowing the local optimization algorithm
to converge in a few steps.

Also worthwhile of noting is that a careful analysis of
the computational expense taken by each of part of the
minimum distance algorithm revealed that for the GA im-
plementation around 80% of the computations were due to
the local optimization algorithm. On the other hand, for
the SA implementation the percentage was substantially
higher reaching in many instances close to 98% (more de-
tails available in [Carretero, 2002]).

The results given in Tables III, V and VI are fairly sim-
ilar in terms of the number of flops required to execute
the program. This is mainly due to the fact that all SA
and GA parameters were kept identical between the three
examples. That is, the main factor that changes in the
problem is the total number of nodes which varies between
3 083 and 6 091. As a matter of fact, it is the total num-
ber of nodes on the surface meshes the main factor that
determines the amount of computations for the algorithm
to converge. This, of course, does not come as a surprise
as the current problem is a combinatorial one

V. Conclusions

A new method to solve the minimum distance problem
between concave objects was presented. The method in-
volves the use of global optimization techniques such as
Genetic Algorithms and Simulated Annealing and does not
require the concave objects to be partitioned into convex
sub-pieces. I addition of not having to introduce unnec-
essary fictitious surfaces resulting from the partition, the
new method has the advantage of being able to solve the
minimum distance problem in a single run.

It was shown that the computational efficiency of this
method is greatly improved by substituting the continuous
geometry by a number of points on the surface of the body.
As a result, the optimization process is converted to a com-
binatorial process where the objective is to find the pair of
points, one on the surface of each body, that minimizes the
Euclidean distance between them.

Furthermore, if the points are distributed on a mesh,
the convergence process is greatly improved by using a lo-
cal optimization (based on a hill-climbing strategy) inside
the global optimization method. Such method uses the dis-

tance and predecessor matrices obtained off-line only once
or every object.

Through a series of numerical tests, some of them re-
ported in this paper, it was demonstrated that the GA
implementation of the minimum distance algorithm out-
performs, in terms of computational efficiency and robust-
ness, the SA implementation. Additionally, the possibil-
ity of parallelizing the code makes the GA implementation
more attractive for a real time application.

Currently, the authors are working on improving the ac-
curacy of the results which is now a function of the mesh
size and the distribution of its nodes. One of the pro-
posed solutions is to use the global optimization method
presented in this paper as a pre-processing algorithm at
each iteration. The solution point of the global search,
which locates the region where the exact minimum occurs,
would then be passed to a local minimum distance method
which will find the exact solution, within machine preci-
sion, of the minimum distance problem.

Nonetheless, the proposed algorithm could be used, as
is, in most path planning and virtual reality applications
where only an approximate solution of the minimum dis-
tance problem is required. Note that, although the pro-
posed method would give an approximation, its solution
would still be much more precise that a bounding box ap-
proach unless a very coarse mesh is generated on the surface
of the objects.
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