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Nonlinear Neuromuscular Electrical Stimulation
Tracking Control of a Human Limb

Nitin Sharma, Keith Stegath, Chris M. Gregory, and Warren E. Dixon

Abstract—A high-level objective of neuromuscular electrical
stimulation (NMES) is to enable a person to achieve some func-
tional task. Towards this goal, the objective of the current effort
is to develop a NMES controller to produce a knee position tra-
jectory that will enable a human shank to track any continuous
desired trajectory (or constant setpoint). A nonlinear control
method is developed to control the human quadriceps femoris
muscle undergoing nonisometric contractions. The developed
controller does not require a muscle model and can be proven
to yield asymptotic stability for a nonlinear muscle model in the
presence of bounded nonlinear disturbances (e.g., spasticity, de-
lays, fatigue). The performance of the controller is demonstrated
through a series of closed-loop experiments on human subjects.
The experiments illustrate the ability of the controller to enable
the leg shank to track single and multiple period trajectories with
different periods and ranges of motion, and also track desired step
changes with changing loads.

Index Terms—Asymptotic stability, Lyapunov methods, neuro-
muscular electrical stimulation (NMES), nonlinear control, RISE
feedback.

I. INTRODUCTION

N EUROMUSCULAR electrical stimulation (NMES) is the
application of a potential field across a muscle via inter-

nally or externally placed electrodes in order to produce a de-
sired muscle contraction. NMES is a prescribed treatment for
a number of neurological dysfunctions. Because of the poten-
tial for improvements in daily activities by people with move-
ment disorders such as stroke and spinal cord injuries, the de-
velopment of NMES as a neuroprosthesis has grown rapidly
[1]. However, the application and growth of NMES technolo-
gies have been stymied by several technical challenges related
to the design of an automatic stimulation strategy. Specifically,
due to a variety of uncertainties in muscle physiology (e.g., tem-
perature, pH, and architecture), predicting the exact contraction
force exerted by the muscle is difficult. One cause of this diffi-
culty is that there is an unknown mapping between the generated

Manuscript received June 27, 2008; revised January 20, 2009; accepted
March 03, 2009. First published June 02, 2009; current version published De-
cember 16, 2009. This work was supported by the National Science Foundation
under CAREER Award CMS-0547448.

N. Sharma, K. Stegath, and W. E. Dixon are with the Department of Mechan-
ical and Aerospace Engineering, University of Florida, Gainesville, FL 32611
USA (e-mail: kstegath@ufl.edu; robero@ufl.edu; wdixon@ufl.edu).

C. M. Gregory is with the Brain Rehabilitation Research Center, North
Florida/South Georgia Veterans Health System Department of Physical
Therapy, University of Florida, Gainesville, FL 32611 USA (e-mail: cgre-
gory@phhp.ufl.edu).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TNSRE.2009.2023294

muscle force and stimulation parameters. There are additional
problems with delivering consistent stimulation energy to the
muscle due to a variety of factors including: electrode place-
ment, percentage of subcutaneous body fat, muscle fatigue, as
well as overall body hydration.

Given the uncertainties in the structure of the muscle model
and the parametric uncertainty for specific muscles, some inves-
tigators have explored various linear PID-based pure feedback
methods (cf. [2]–[5] and the references within). Typically, these
approaches have only been empirically investigated and no an-
alytical stability analysis has been developed that provides an
indication of the performance, robustness, or stability of these
control methods. Some recent studies (e.g., see [6]) also point
to evidence that suggests that linear control methods do not
yield acceptable performance in practice. The development of
a stability analysis for previous PID-based NMES controllers
has been evasive because of the fact that the governing equa-
tions for a muscle contraction/limb motion are nonlinear with
unstructured uncertainties. Some efforts have focused on ana-
lytical control development for linear controllers (e.g., [4], [7],
[8]); however, the governing equations are typically linearized
to accommodate a gain scheduling or linear optimal controller
approach.

Motivated by the lack of control development for PID-based
feedback methods, significant research efforts have focused
on the use of neural network-based controllers (cf. [9]–[13]
and the references within). Nonlinear neural network methods
provide a framework that allows the performance, robustness,
and stability of the developed NMES controllers to be inves-
tigated without linearization assumptions. However, all of the
previous neural network-based NMES controllers are limited to
a uniformly ultimately bounded result because of the inevitable
residual nonlinear function approximation error. Additionally,
neural networks may exhibit performance degradation during
the transient phase while the estimates update.

An open-loop error system for a general uncertain nonlinear
muscle model is developed in this paper (and in the preliminary
results in [14]) by grouping terms in a manner that facilitates
the development of a new continuous feedback method (coined
RISE for robust integral of the sign of the error in [15], [16]).
Through this error-system development, the continuous RISE
controller is proven (through a Lyapunov-based stability anal-
ysis) to yield an asymptotic stability result despite the uncertain
nonlinear muscle model and the presence of additive bounded
disturbances (e.g., muscle spasticity, fatigue, changing loads in
functional tasks, and delays). The performance of the nonlinear
controller is experimentally verified for tracking of a human
leg shank by applying the controller as a voltage potential
across external electrodes attached to the distal–medial and
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Fig. 1. In left image the subject’s left leg is in relaxed state. The right image
shows the left leg during stimulation. The angle q(t) is measured with respect to
the vertical line as shown.

proximal–lateral portion of the quadriceps femoris muscle
group. The RISE controller is implemented by a voltage mod-
ulation scheme with a fixed frequency and a fixed pulse width.
Other modulation strategies (e.g., frequency or pulse-width
modulation) could have also been implemented (and applied to
other skeletal muscle groups) without loss of generality. The
experiments illustrate the ability of the controller to enable the
leg shank to track single and multiple period trajectories with
different periods and ranges of motion, and also track desired
step changes with changing loads. Future research will focus
on including physiological muscle dynamics in the control
structure through adaptive feedforward terms.

II. MUSCLE ACTIVATION AND LIMB MODEL

The total muscle knee joint model can be categorized into
body segmental dynamics and muscle activation and contrac-
tion dynamics. The muscle activation and contraction dynamics
explains the force generation in the muscle while the body seg-
mental dynamics considers the active moment and passive joint
moments.

The total knee-joint dynamics can be modeled as [4]

(1)

In (1), denotes the inertial effects of the shank-foot
complex about the knee-joint, denotes the elastic
effects due to joint stiffness, denotes the gravita-
tional component, denotes the viscous effects due
to damping in the musculotendon complex [17], is
considered as an unknown bounded disturbance which repre-
sents an unmodeled reflex activation of the muscle (e.g., muscle
spasticity) and other unknown unmodelled phenomena (e.g., dy-
namic fatigue, electromechanical delays), and denotes
the torque produced at the knee joint. In the subsequent develop-
ment, the unknown disturbance is assumed to be bounded
and its first and second time derivatives are assumed to exist and
be bounded. These are reasonable assumptions for typical dis-
turbances such as muscle spasticity, fatigue, and load changes
during functional tasks. For simplicity, the passive damping and
elastic force of muscle and joints are considered together.

The inertial and gravitational effects in (1) can be modelled
as

where , , denote the angular position, velocity,
and acceleration of the lower shank about the knee-joint, respec-
tively (see Fig. 1), denotes the unknown inertia of the
combined shank and foot, denotes the unknown com-
bined mass of the shank and foot, is the unknown dis-
tance between the knee-joint and the lumped center of mass of
the shank and foot, and denotes the gravitational acceler-
ation. The elastic effects are modelled on the empirical findings
by Ferrarin and Pedotti in [17] as

(2)

where , , are unknown positive coefficients. As
shown in [4], the viscous moment can be modelled as

(3)

where , , and are unknown positive constants.
The torque produced about the knee is controlled through

muscle forces that are elicited by NMES. For simplicity (and
without loss of generality), the development in this paper fo-
cuses on producing knee torque through muscle tendon forces,
denoted by , generated by electrical stimulation of the
quadriceps (i.e., we do not consider antagonistic muscle forces).
The knee torque is related to the muscle tendon force as

(4)

where denotes a positive moment arm that changes
with the extension and flexion of the leg as shown in [18] and
[19]. As indicated in [18] and [20] the moment arm has unique
values for a given range of motion, while in [19], the moment
arm’s unique values are obtained for the entire range of motion
and can be considered as a continuously differentiable, posi-
tive, monotonic, and bounded function with a bounded first time
derivative. The tendon force in (4) is defined as

(5)

where is defined as the pennation angle between the
tendon and the muscle. The pennation angle of human quadri-
ceps muscle changes monotonically during quadriceps contrac-
tion and is a continuously differentiable, positive, monotonic,
and bounded function with a bounded first time derivative [21].
The relationship between muscle force and applied voltage is
denoted by the unknown function as

(6)

where is the voltage applied to the quadriceps muscle
by electrical stimulation. While exact force versus voltage
models are debatable and contain parametric uncertainty, the
generally accepted empirical relationship between the applied
voltage (or similarly, current, frequency [22], [23], or pulse
width) is well established. The empirical data in [22] and [23]
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indicates the function is a continuously differentiable,
nonzero, positive, monotonic, and bounded function, and its
first time derivative is bounded.

The total force generated at the tendon could be considered
as the sum of forces generated by an active element (often de-
noted by ), the tension generated by a passive elastic ele-
ment (often denoted by ), and forces generated by viscous
fluids (often denoted by ). These forces have dynamic char-
acteristics. For example, the passive element increases with in-
creasing muscle length, and the muscle stiffness has been re-
ported to change by greater than two orders of magnitude [24]
under dynamic contractions. The muscle model in the paper
considers the total muscle force composed of the sum of these
elements as the function of an unknown nonlinear function
and an applied voltage . The introduction of the unknown
nonlinear function enables the muscle contraction to be
considered under general dynamic conditions in the subsequent
control development. Expressing the muscle contraction forces
in this manner enables the development of a control method that
is robust to changes in the forces, because these effects are in-
cluded in the uncertain nonlinear muscle model that is incorpo-
rated in the stability analysis.

III. CONTROL DEVELOPMENT

A high-level objective of NMES is to enable a person to
achieve some functional task [i.e., functional electrical stimu-
lation (FES)]. Towards this goal, the objective of the current
effort is to develop a NMES controller to produce a knee po-
sition trajectory that will enable a human shank to track a de-
sired trajectory, denoted by . The desired trajectory
can be any continuous signal (or a simple constant setpoint).
In the subsequent experimental results, the desired trajectories
were selected as periodic signals (for simplicity and without loss
of generality) of different frequencies and step functions with
changes in the dynamic load. Although such trajectories may not
be truly functional, trajectory-based movements are necessary
for the performance of many FES augmented tasks (e.g., repet-
itive stepping during walking). Whether the desired trajectories
are based on limb position, as in the current result, or other in-
formation (e.g., desired joint kinetics or kinematics), the ability
to precisely track a desired pattern is fundamental to eliciting
reproducible movement patterns during functional tasks.

To quantify the objective, a position tracking error, denoted
by , is defined as

(7)

where is an a priori trajectory which is designed such
that , , where denotes the th derivative
for . To facilitate the subsequent analysis, filtered
tracking errors, denoted by and , are defined as

(8)

(9)

where , denote positive constants. The filtered
tracking error is introduced to facilitate the closed-loop
error system development and stability analysis but is not

used in the controller because of a dependence on acceleration
measurements.

After multiplying (9) by and utilizing the expressions in (1)
and (4)–(8), the following expression can be obtained:

(10)

where is an auxiliary signal defined as

(11)

and the continuous, positive, monotonic, and bounded auxiliary
function is defined as

(12)

After multiplying (10) by , the following expres-
sion is obtained:

(13)

where , , and are
defined as

To facilitate the subsequent stability analysis, the open-loop
error system for (13) can be determined as

(14)

where denotes the unmeasurable auxiliary
term

(15)

To further facilitate the analysis, another unmeasurable auxil-
iary term, , is defined as

(16)

After adding and subtracting (16) to (14), the open-loop error
system can be expressed as

(17)

where the unmeasurable auxiliary term is
defined as

(18)

Motivation for expressing the open-loop error system as in
(17) is given by the desire to segregate the uncertain nonlineari-
ties and disturbances from the model into terms that are bounded
by state-dependent bounds and terms that are upper bounded by
constants. Specifically, the mean value theorem can be applied
to upper bound by state-dependent terms as

(19)
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where is defined as

(20)

and the bounding function is a positive, globally
invertible, nondecreasing function. The fact that ,

can be used to upper bound
as

(21)

where and are known positive constants.
Based on the dynamics given in (1)–(6), the RISE-based

voltage control input is designed as

(22)

where , denote positive constant adjustable control
gains, and denotes the signum function. Although the
control input is present in the open-loop error system in (10), an
extra derivative is used to develop the open-loop error system in
(17) to facilitate the design of the RISE-based controller. Specif-
ically, the time-derivative of the RISE input in (22) looks like a
discontinuous sliding mode controller. Sliding mode control is
desirable because it is a method that can be used to reject the
additive bounded disturbances present in the muscle dynamics
(e.g., muscle spasticity, load changes, electromechanical delays)
while still obtaining an asymptotic stability result. The disad-
vantage of a sliding mode controller is that it is discontinuous.
By structuring the open-loop error system as in (17), the RISE
controller in (22) can be implemented as a continuous controller
(i.e., the unique integral of the sign of the error) and still yield
an asymptotic stability result (see Theorem 1 and the stability
proof in the Appendix). Without loss of generality, the devel-
oped voltage control input can be implemented through various
modulation methods (i.e., voltage, frequency, or pulse width
modulation).

IV. STABILITY ANALYSIS

Theorem 1: The controller given in (22) ensures that all
system signals are bounded under closed-loop operation. The
position tracking error is regulated in the sense that

(23)

and the controller yields semi-global asymptotic tracking pro-
vided the control gain , introduced in (22) is selected suffi-
ciently large, and is selected according to the following suffi-
cient condition:

(24)

where and are introduced in (21).

Proof: See the Appendix.

V. EXPERIMENTAL RESULTS

Experiments were performed using the RISE controller given
in (22). The voltage controller was implemented through an
amplitude modulation scheme composed of a variable ampli-
tude positive square wave with a fixed pulse width of 100
and fixed frequency of 30 Hz. The 100 pulse width and the
30 Hz stimulation frequency were chosen a priori and repre-
sent parametric settings that are within the ranges typically re-
ported during NMES studies. During stimulation at 100 pulse
widths, human skeletal muscle response to changes in stimu-
lation amplitude (force-amplitude relationship) and frequency
(force-frequency relationship) are highly predictable and thus
deemed appropriate for use in the present study. The 30 Hz
stimulation was selected based on force-frequency curves [25]
which show that as stimulation frequency is increased muscle
force increases to a saturation limit. Higher frequencies can be
chosen to generate more force up to a saturation limit, but mus-
cles tend to fatigue faster at higher frequencies. The 30 Hz pulse
wave yields reduced fatigue in comparison to higher frequencies
but lower frequencies tend to produce rippled knee motion [25],
[26]. Therefore stimulation frequencies in the range of 30–40 Hz
is an optimal choice for conducting external electrical stimu-
lation. The following results indicate that the RISE algorithm
was able to minimize the knee angle error while dynamically
tracking a desired trajectory.

A. Testbed and Protocol

The testbed consists of a custom computer controlled stimu-
lation circuit and a modified leg extension machine (LEM). The
LEM was modified to include optical encoders. The LEM al-
lows seating adjustments to ensure the rotation of the knee is
about the encoder axis. A 4.5 kg (10 lb) load was attached to
the weight bar of the LEM, and a mechanical stop was used to
prevent hyperextension.

In the experiment, bipolar self-adhesive neuromuscular stim-
ulation electrodes were placed over the distal–medial and prox-
imal–lateral portion of the quadriceps femoris muscle group and
connected to the custom stimulation circuitry. Prior to partici-
pating in the study, written informed consent was obtained from
all the subjects, as approved by the Institutional Review Board
at the University of Florida. Tracking experiments for a two
period desired trajectory were conducted on both legs of five
subjects. The subjects included two healthy females and three
healthy males in the age group of 22–26 years. The electrical
stimulation responses of healthy subjects have been reported as
similar to paraplegic subjects’ responses [27]–[30]. Therefore,
healthy subjects were used in NMES experiments as substitute
for paraplegic patients which were not available. As described
in Section V-B, the results were approximately equal across the
subjects (i.e., a standard deviation of 0.53 of root mean squared
(rms) tracking error). Therefore, additional experiments were
conducted on a single subject’s leg to illustrate the applicability
of the controller for different conditions.
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TABLE I
TABULATED RESULTS INDICATE THAT THE TEST SUBJECT WAS NOT

LEARNING THE DESIRED TRAJECTORY SINCE THE RMS ERRORS

ARE RELATIVELY EQUAL FOR EACH TRIAL

During the experiments each subject was instructed to relax
and to allow the stimulation to control the limb motion (i.e., the
subjects were not supposed to influence the leg motion volun-
tarily and were not allowed to observe the desired trajectory).
Varying the time period and range of motion may also help
to reduce any possible trajectory learning and anticipation by
a healthy subject. To experimentally examine if any trajectory
learning occurred, four successive tests were conducted on a
healthy subject with a two minute interval between trials. The
experiments were conducted for 15 s on a dual period trajectory
of 4 and 6 s. The resulting rms errors are given in Table I. The
results in Table I illustrate that trajectory learning by the subject
is not apparent since the standard deviation between the succes-
sive trials is 0.039 .

B. Results and Discussion

The experimental results of five subjects tested for the two
period desired trajectory depicted in Fig. 2, are summarized in
Table II. In Table II, the maximum steady-state error is defined
as the maximum absolute value of error that occurs after 4 s of
the trial. The maximum steady-state errors range from 4.25 to
7.55 with a mean of 6.32 and a standard deviation of 1.18 .
The rms tracking errors range from 2 to 3.47 with a mean rms
error of 2.75 and a standard deviation of 0.53 . The tracking
error results for Subject B and the corresponding output voltages
computed by the RISE method (prior to voltage modulation) are
shown in Fig. 2. The results successfully illustrate the ability of
the RISE controller to track the desired two period trajectory.

To further illustrate the performance of the developed con-
troller, experiments were also conducted for trajectories with
faster and slower periods and larger ranges of motion. Specifi-
cally, the controller’s performance was tested for a desired tra-
jectory with a constant 2 s period, a constant 6 s period, a triple
periodic trajectory with cycles of 2, 4, and 6 s and for a higher
range of motion of 65 . As indicated in Table I, the results for the
two period trajectory yielded similar results for all the subjects.
Hence, these additional tests were performed on a single indi-
vidual to simply illustrate the capabilities of the controller, with
the understanding that some variations would be apparent when
implemented on different individuals. The rms tracking errors
and maximum steady-state errors are provided in Table III. The
rms error and maximum steady state error is the lowest for a
constant 6 s period desired trajectory and higher for faster trajec-
tories and higher range of motion. These results are an expected
outcome since tracking more aggressive trajectories generally
yield more error. The triple periodic trajectory consists of a mix
of slower and faster period trajectories, therefore the rms and
maximum steady state error is moderate compared to the more

Fig. 2. Top plots: Actual left limb trajectory of a subject (solid line) versus
the desired two periodic trajectory (dashed line) input. (left leg—top left plot
and right leg—top right plot). Middle plots: The tracking error (desired angle
minus actual angle) of a subject’s leg tracking a two periodic desired trajectory.
(left leg—middle left plot and right leg—middle right plot). Bottom plots: The
computed RISE voltage during knee joint tracking for the case of two period
trajectory (left leg—bottom left plot and right leg—bottom right plot).

TABLE II
EXPERIMENTAL RESULTS FOR TWO PERIOD DESIRED TRAJECTORY

aggressive 2 s period and higher range of motion desired trajec-
tories. Figs. 3–6 depict the errors for the experiments summa-
rized in Table III.

Additional experiments were also conducted to examine the
performance of the controller in response to step changes and
changing loads. Specifically, a desired trajectory of a step input
was commanded with a 10 lb load attached to the LEM. An
additional 10 lb load was added once the limb stabilized after
a step down of 15 . The limb was again commanded to perform
a step response to raise the limb back up an additional 15 with
the total load of 20 lb. The results are shown in Fig. 7. The
steady state error was within 1 . A maximum error of 3 was
observed when the external load was added. The results give
some indication of the controller’s ability to adapt to changes in
load and step inputs and motivate possible future case studies
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TABLE III
SUMMARIZED EXPERIMENTAL RESULTS FOR MULTIPLE, HIGHER FREQUENCIES

AND HIGHER RANGE OF MOTION. COLUMN (A) INDICATES RMS ERROR IN

DEGREES, AND COLUMN (B) INDICATES MAXIMUM STEADY STATE ERROR

IN DEGREES

Fig. 3. Top plot: Actual limb trajectory (solid line) versus the desired triple
periodic trajectory (dashed line). Bottom plot: The limb tracking error (desired
angle minus actual angle) of a subject tracking a triple periodic desired trajec-
tory.

Fig. 4. Top plot: Actual limb trajectory (solid line) versus the desired constant
period (2 s) trajectory (dashed line). Bottom plot: The limb tracking error (de-
sired angle minus actual angle) of a subject tracking a constant period (2 s)
desired trajectory.

with neurologically impaired individuals that express muscle
spasticity.

For each experiment, the computed voltage input was mod-
ulated by a fixed pulse width of 100 and fixed frequency of
30 Hz. The stimulation frequency was selected based on sub-
ject comfort and to minimize fatigue. During preliminary ex-
periments with stimulation frequencies of 100 Hz, the subjects
fatigued approximately two times faster than in the current re-
sults. The results also indicate that a 100 pulse width was
acceptable, though future studies will investigate higher pulse

Fig. 5. Top plot: Actual limb trajectory (solid line) versus the triple periodic
desired trajectory with higher range of motion (dashed line). Bottom plot: The
limb tracking error (desired angle minus actual angle) of a subject tracking a
triple periodic desired trajectory with higher range of motion.

Fig. 6. Top plot: Actual limb trajectory (solid line) versus the desired constant
period (6 s) trajectory (dashed line). Bottom plot: The limb tracking error (de-
sired angle minus actual angle) of a subject tracking a constant period (6 s)
desired trajectory.

Fig. 7. Top plot : Actual limb trajectory (solid line) versus desired step tra-
jectory (dashed line). The limb is tested for two step inputs. The load is added
once the limb stabilizes ( between 23 and 24 s interval). Bottom plot: The limb
tracking error for step inputs.

widths in the range of 300–350 which recruit more slow fa-
tiguing motor units [25]. Our previous preliminary experiments
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indicated that longer pulse widths (e.g., 1 ms) produced similar
effects as a direct current voltage.

The use of the RISE control structure is motivated by its im-
plicit learning characteristics [31] and its ability to compensate
for additive system disturbances and parametric uncertainties in
the system. The advantage of the RISE controller is that it does
not require muscle model knowledge and guarantees asymptotic
stability of the nonlinear system. The experimental results indi-
cate that this feedback method may have promise in some clin-
ical applications.

Although the RISE controller was successfully imple-
mented, the performance of the controller may be improved
by including a feedforward control structure such as neural
networks (a black box function approximation technique) or
physiological/phenomenological muscle models. Since the
RISE controller is a high gain feedback controller that yields
asymptotic performance, adding a feedforward control element
may improve transient and steady state performance and reduce
the overall control effort, thereby reducing muscle fatigue.
Another possible improvement to the controller is to account
for fatigue. Fatigue can be reduced for short durations by
selecting optimal stimulation parameters, but FES may require
a controller that adapts with fatigue to yield performance gains
for longer time durations. Therefore, our future goal will be to
include a fatigue model in the system to enhance the controller
performance.

VI. CONCLUSION

A Lyapunov-based stability analysis indicates that the devel-
oped closed-loop nonlinear control method yields asymptotic
tracking for a nonlinear muscle activation and limb dynamics,
even in the presence of additive disturbances. Experiments using
external electrodes on human subjects demonstrated the ability
of the RISE controller to enable a limb to track a desired trajec-
tory composed of varying amplitude and frequency sinusoids,
step changes, and changes in the load. Specifically, the exper-
imental results indicated that with no muscle model (and only
voltage amplitude modulation), the RISE algorithm could deter-
mine the appropriate stimulation voltage for the tracking objec-
tive. For the fastest tested trajectory the maximum steady-state
tracking errors were approximately 10 , whereas the maximum
steady-state error in slower trajectories were as little as approx-
imately 4 . An advantage of this controller is that it can be ap-
plied without knowledge of patient specific parameters like limb
mass or inertia, limb center of gravity location, parameters that
model passive, and elastic force elements. Thus, its application
would not require specific expertise or extensive testing prior to
use. The control development also accounts for unmodeled dis-
turbance (e.g., muscle spasticity) that are commonly observed
in clinical populations. The proposed strategy holds promise for
clinical implementation of the controller as a therapeutic tool to
enhance muscle function during isolated joint movements. We
do, however, recognize that our results have yet to be demon-
strated to elicit functional movements (e.g., walking) in popu-
lations without the ability to voluntarily activate their muscles.

As such, future directions will focus on such studies to demon-
strate the effectiveness of the controller under such conditions.
Although the trajectories used in the experiments may not be
truly functional, the controller can be applied to any continuous
trajectory. This is clinically relevant because trajectory-based
movements are necessary for the performance of many FES aug-
mented tasks (e.g., repetitive stepping during walking). Whether
the desired trajectories are based on limb position, as in the cur-
rent result, or other information (e.g., desired joint kinetics or
kinematics), the ability to precisely track a desired pattern is
fundamental to eliciting reproducible movement patterns during
functional tasks. An advantage of the control development is
that it allows for inter- as well as intra-individual variations in
trajectory tracking (i.e. task performance) to be accounted for
both within and between sessions (e.g., during rehabilitation
training), thus potentially providing a tool to aid in the future
advancement of rehabilitation. A possible disadvantage of the
controller is that high gains are used to achieve the robustness
to disturbances and unmodeled effects. Further efforts will in-
vestigate augmenting the developed RISE structure with feed-
forward control architectures that can accommodate for distur-
bances without requiring high gain feedback.

APPENDIX

The following development is a brief Lyapunov-based proof.
The complete stability analysis and development of the RISE
method can be found in [15], [16], [32], [33].

Proof for theorem 1: Let be a domain containing
, where is defined as

(25)

and the auxiliary function is defined as

(26)

The auxiliary function in (26) is defined as

(27)

The derivative of can be expressed as

(28)

Provided the sufficient conditions stated in Theorem 1 are sat-
isfied, the following inequality can be obtained:

(29)

Hence, (29) can be used to conclude that .
Let denote a continuously differentiable, posi-

tive definite function defined as

(30)
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which satisfy the inequalities

(31)

provided the sufficient condition introduced Theorem 1 is satis-
fied, where are continuous, positive definite
functions. After taking the derivative of (30) and utilizing (8),
(9), (17), (26), and (27) can be expressed as

(32)

As shown in (32) the unique integral signum term in the
RISE controller is used to compensate for the disturbance
terms included in , provided the control
gain is selected according to (24). Using (19), the term

, can be upper bounded by following in-
equality:

to obtain

(33)

Completing the squares for the bracketed terms in (33) yields

(34)
The following expression can be obtained from (34):

(35)

where is a continuous positive definite function, provided
is selected sufficiently large based on the initial conditions

of the system. That is, the region of attraction can be made ar-
bitrarily large to include any initial conditions by increasing the
control gain (i.e., a semi-global type of stability result). By in-
voking [34, Theorem 8.4], the semi-global asymptotic tracking
in (23) can be achieved.
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