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Abstract

A novel and uniform framework for both face identification and verification is presented in this paper. The framework is based on a
combination of Gabor wavelets and General Discriminant Analysis, and can be considered appearance based in that features are extracted
from the whole face image. The feature vectors are then subjected to subspace projection. The design of Gabor filters for facial feature
extraction is also discussed, which is seldom reported in the literature. The method has been tested extensively for both identification and
verification applications. The FERET and BANCA face databases were used to generate the results. Experiments show that Gabor
wavelets can significantly improve system performance whilst General Discriminant Analysis outperforms other subspace projection
methods such as Principal Component Analysis, Linear Discriminant Analysis, and Kernel Principal Component Analysis. Our method
has achieved 97.5% recognition rate on the FERET database, and 5.96% verification error rate on the BANCA database. This is a sig-
nificantly better performance than that attainable with other popular approaches reported in the literature. In particular, our verification
system performed better than most of the systems in the 2004 International Face Verification Competition, using the BANCA face
database and specially designed test protocols.
� 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Automatic face recognition has rapidly developed over
the years and is now a highly active field of research, with
important applications in security surveillance, access con-
trol, human–machine interaction, and a host of other
domains.

Early face recognition work was represented by Von der
Malsburg’s Dynamic Link Architecture [1], an elastic
matching process in which a test face, represented as a
graph with Gabor wavelet responses as the nodes, is asso-
ciated with one of a number of stored face graphs. The
matching process maximises the similarities between the
0262-8856/$ - see front matter � 2006 Elsevier B.V. All rights reserved.
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test and the corresponding model face graph. A variant
of this is the Face Bunch Graph [2], which was proposed
to cope with the specific variability of face images. Gabor
wavelets are applied at manually selected fiducial points
(eyes, mouth, nose, etc.) of several images of a face and
the results, referred to as ‘‘jets’’, are packed in a graph
called the face bunch graph. Disadvantages of this
approach include rigid alignment of facial features and lim-
ited ability in handling pose variations. Instead of graphs,
Hidden Markov Models (HMMs) represent a face image
as a sequence of ‘states’. The goal of training a HMM is
to optimise its parameters to ‘best’ describe the observation
vectors representing a class, and recognition is carried out
by matching a test image against each of the trained
HHMs. An interesting variant of HMM is the Embedded
HMM [3], in which super-states of an embedded HMM
represent primary facial regions (forehead, eyes, nose,
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mouth, and chin) whilst embedded states within each
super-state describe in more detail each of the facial
regions. This approach is computationally expensive, as it
requires the computation of a probabilistic distance to each
stored HHM when classifying a new image.

Linear transform based methods such as Eigenface [4],
Fisherface [5], and Independent Component Analysis
(ICA) [6] have had a significant influence within the face
recognition community for a considerable time. Eigenfaces
are a set of eigenvectors arising from applying Principal
Component Analysis (PCA) to a collection of images,
and any face image could then be described by its projec-
tion coefficients onto the eigenfaces thus generated. This
significantly reduces the dimension of the relevant face vec-
tors, giving greater tractability in practical application.
Fisherfaces are based on Linear Discriminant Analysis
(LDA), the objective of which is to maximize class separa-
bility, defined as the ratio of the between-class scatter
matrix to the within-class scatter matrix. Whilst in PCA
the emphasis is on de-correlation of variables, ICA aims
at variable independence, a much stronger condition. How-
ever, Baek [7] presented a comparison of PCA and ICA
and concluded that, when a proper distance metric was
used, PCA outperformed ICA significantly on the FERET
face database [8] of more than 1000 images. Kernel based
methods [9], exemplified by Kernel Principal Component
Analysis (KPCA) [10,11], Kernel Fisher Discriminant
Analysis (KFDA) [12,13] and General Discriminant Anal-
ysis (GDA) [14] have significantly outperformed PCA,
LDA, ICA and neural networks in similar recognition
tasks. The support vector machine (SVM) approach [15]
is another example of a Kernel method, which seeks a
unique hyperplane yielding the maximum margin of sepa-
ration between two classes through constrained optimisa-
tion. Phillips [16] trained a single SVM to distinguish
between within-class and between-class images. Jonsson
[17] trained a SVM for each class. Both used linear trans-
form based methods for feature extraction.

Although significant progress has been made in appear-
ance-based face recognition, to our knowledge, the applica-
tion of KPCA or GDA in face verification has seldom been
reported in the literature. Despite the wide application of
Gabor filters for feature extraction [1,2,18], the design of
Gabor filters is rarely discussed. In this paper, we describe
an approach that combines Gabor feature extraction and
Kernel subspace projection techniques to produce a robust
and uniform system framework for both face identification
and verification. This involves extracting discriminant fea-
tures from images using a sequence of Gabor wavelets at
different scale and orientations and projecting feature vec-
tors to a subspace before identification, or verification, can
take place. The design of Gabor filters is also discussed
based on experiments. Our method is hereafter referred
to in this paper as the Gabor + GDA.

Extensive experiments have been conducted to evaluate
the performance of Gabor + GDA against existing meth-
ods in the literature. Gabor features have also shown
robustness against variations of head pose and camera ori-
entation The generalization ability of the novel
Gabor + GDA method has also been observed. Since the
FERET [8] and BANCA database [19,20], specially
designed to test face identification and verification algo-
rithms, are used for the evaluation of our algorithms, our
results are directly comparable with other methods, and
comparisons with a number of popular approaches will
be made to illustrate the advantages of the proposed new
method.

The contribution of this paper is therefore threefold.
First, we discuss how to design Gabor filters empirically
for facial feature extraction and demonstrate that the pro-
posed novel Gabor + GDA framework is robust and uni-
form for both identification and verification. Second, we
show that GDA outperforms other subspace projection
techniques such as PCA, LDA, and KPCA, and that differ-
ent distance measures can have significant effects on sub-
space based methods. Finally, we show evidence to
support the findings reported by some other researchers
that PCA outperforms LDA when the training set is non-
representative.

The paper is organized as follows. In Section 2, Gabor
wavelets are defined and the methodology to extract dis-
criminative Gabor features from face images are outlined.
Section 3 introduces Generalized Discriminant Analysis,
while the strategy to combine the Gabor and GDA con-
cepts is given in Section 4. Experimental results for identi-
fication and verification using the FERET and BANCA
database are given in Section 5, and some important con-
clusions are drawn in Section 6.

2. Gabor feature extraction

2.1. Gabor wavelets

The characteristics of the Gabor wavelets (filters), espe-
cially for frequency and orientation representations, are
similar to those of the human visual system, and they have
been found to be particularly appropriate for texture repre-
sentation and discrimination. The Gabor filters-based fea-
tures, directly extracted from gray-level images, have
been successfully and widely applied to texture segmenta-
tion [21,22], handwritten numerals recognition [23] and fin-
gerprint recognition [24]. In the spatial domain, a 2D
Gabor filter is a Gaussian kernel function modulated by
a sinusoidal plane wave:

uPðf ;h;c;gÞðx; yÞ ¼
f 2

pcg
expð�ða2x02 þ b2y02ÞÞ expðj2pfx0Þ

x0 ¼ x cos hþ y sin h ð1Þ
y0 ¼ �x sin hþ y cos h

where f is the central frequency of the sinusoidal plane
wave, h is the anti-clockwise rotation of the Gaussian
and the plane wave, a is the sharpness of the Gaussian
along the major axis parallel to the wave, and b is the
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sharpness of the Gaussian minor axis perpendicular to the
wave. c ¼ f

a and g ¼ f
b are defined to keep the ratio between

frequency and sharpness constant. The Gabor filters are
self-similar – all filters can be generated from one mother
wavelet by dilation and rotation. Each filter is in the shape
of plane waves with frequency f, restricted by a Gaussian
envelope function with relative width a and b. To extract
useful features from an image, e.g. face, normally a set of
Gabor filters with different frequencies and orientations
are required:

uu;v ¼ uPðfu;hv ;c;gÞ; fu ¼ fmax=
ffiffiffi
2
p u

; hv ¼
v
8
p;

u ¼ 0; . . . ;U � 1; v ¼ 0; . . . ; V � 1 ð2Þ
2.2. Design of Gabor filters for facial feature extraction

As shown in Eqs. (1) and (2), following parameters need
to be determined to design Gabor filters for feature extrac-
tion: the highest peak frequency fmax, the ratio between
centre frequency and the sharpness of Gaussian major axis:
c and minor axis: g, the number of scales U and orienta-
tions V. According to the Nyquist sampling theory, a signal
containing frequencies higher than half of the sampling fre-
quency cannot be reconstructed completely. Therefore, the
upper limit frequency for a 2D image is 0.5 cycles/pixel,
while the low limit is 0. However, useful frequency band
of face images is much narrower. We observe from sample
face images in the frequency domain that useful infor-
mation is mainly contained in the low frequency band.
Therefore, we choose fmax = 0.25 for face recognition.
Parameters c and g determine the ratio between the centre
frequency and the size of Gaussian envelope. Once the
ratio is fixed, the size of the Gaussian envelope monotoni-
cally decreases with the value of centre frequency. The
higher is the centre frequency of the Gabor sinusoidal
carrier, the smaller area the Gaussian envelop will cover
in spacial domain. This is reasonable since the high fre-
quency signal changes faster. We assume a = b and
Original 
Image

Gabor Filters

Fig. 1. Convolution results of a fac
c ¼ g ¼
ffiffiffi
2
p

, as used by most researchers [2,18]. Since there
is no theoretical basis available for selecting scales and ori-
entations, we performed some experimental evaluations on
different combinations of the two parameters. The results
show that 5 scales and 8 orientations shall be used for face
recognition purpose. Details of the experiments are shown
in Section 5.1.

2.3. Gabor representation of face images

The Gabor representation of a face image Ið~xÞ can be
obtained by convolving the image with the family of Gabor
filters as defined by (1):

Gu;vð~xÞ ¼ ðI � uu;vÞð~xÞ ð3Þ

where Gu;vð~xÞ denotes the convolution result corresponding
to the Gabor filter at orientation u and scale v. Fig. 1.
shows the convolution result of a face image with two Ga-
bor filters. The face image is convolved with two Gabor fil-
ters at different orientations and scales, both magnitude
and real part of the convolution results are shown. As a re-
sult, image Ið~xÞ can be represented by a set of Gabor wave-
let coefficients fGu;vð~xÞ; u ¼ 0; . . . ; 4; v ¼ 0; . . . ; 7g. The
magnitude of each Gu;vð~xÞ is then downsampled by a factor
r, normalized to zero mean and unit variance, and turned
to a vector xr

u;v by concatenating the rows [18]. A discrimi-
native feature vector xr can be derived to represent the im-
age I by concatenating those vectors xr

u;v:

xr ¼ ððxr
0;0Þ

tðxr
0;1Þ

t � � � ðxr
4;7Þ

tÞt ð4Þ

The derived feature vector xr thus encompasses all the
elements of the Gabor wavelet representation set
fGu;vð~xÞ; u ¼ 0; . . . ; 4; v ¼ 0; . . . ; 7g. However, the dimen-
sion of the vector is quite high, e.g., for a 128 · 128 image,
the vector dimension is l = 10240 when the downsampling
factor r = 64. In the following sections, we will introduce
subspace projection techniques to reduce feature
dimension.
Convolution Result 

Magnitude Real Part

e image with two Gabor filters.
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3. Generalized Discriminant Analysis

Classical Discriminant Analysis techniques, such as
Principal Component Analysis (PCA) and Linear Discrim-
inant Analysis (LDA), have been successfully applied to
face recognition since Turk’s pioneering work [4]. Well
known as the Eigenface method, PCA identifies a subspace
spanned by the training images, which could decorrelate
the variance of pixel values. Unlike PCA, LDA aims to find
a projection matrix W which is optimized to separate differ-
ent classes, i.e., maximizes the quotient of the determinant
of Sb and Sw,

W ¼ arg max
jW T SbW j
jW T SwW j ð5Þ

where Sb, Sw are the between-class scatter and within-class
scatter, respectively. It was shown in [25] that the projec-
tion matrix W can be computed from the eigenvectors of
S�1

w Sb. However, due to the high dimensionality of the fea-
ture vector, especially in face recognition, Sw is usually sin-
gular, i.e., the inversion of Sw does not exist. Several
techniques, such as the PCA + LDA [26], Regularized
LDA (RLDA) [27], Enhanced LDA (ELDA) [28] and Di-
rect LDA (DLDA) [29] have been proposed in literature
to solve the Small Sample Size (SSS) problem.

Similar to LDA, the purpose of GDA [14] is to maxi-
mize the quotient between the inter-classes inertia and the
intra-classes inertia in a mapped feature space. Considering
a C-class problem and letting Nc be the number of samples
in class c, a set of training patterns from the C classes can
be defined as fxck; c ¼ 1; 2; . . . ;C; k ¼ 1; 2; . . . ;N cg; N ¼PC

c¼1N c. Given a nonlinear mapping /: RN fi F, the set
of training samples in the mapped feature space can be
represented as {/(xck), c = 1, 2, . . ., C; k = 1, 2,. . ., Nc}.
The Sb and Sw of the training set can be computed as:

Sw ¼
1

C

XC

c¼1

1

N c

XNc

k¼1

/ðxckÞ/ðxckÞT ð6Þ

Sb ¼
1

C

XC

c¼1

ðlc � lÞðlc � lÞT ð7Þ

GDA finds the eigenvalues k P 0 and eigenvectors
v 2 Fn{0} satisfying

kSwv ¼ Sbv ð8Þ
where all solutions v lie in the span of / (x11), . . ., /
(xck), . . . and there exist coefficients ack such that

v ¼
XC

c¼1

XNc

k¼1

ack/ðxckÞ ð9Þ

Using kernel techniques, the dot product of a sample i from
class p and the other sample j from class q in the feature
space, denoted as (kij)pq, can be calculated by a kernel func-
tion, e.g., radial basis kernel as below:

ðkijÞpq ¼ /ðxpiÞ � /ðxqjÞ ¼ kðxpi; xqjÞ ¼ e�jxpi�xqjj2=r ð10Þ
Let K be a M · M matrix defined on the class elements by
ððKpqÞ p ¼ 1; . . . ;C

q ¼ 1; . . . ;C
Þ, where Kpq is a matrix composed of dot prod-

ucts between vectors from class p and q in feature space:

Kpq ¼ ðkijÞ i ¼ 1; . . . ;Np

j ¼ 1; . . . ;N q

ð11Þ

We also define a M · M block diagonal matrix:

U ¼ ðUcÞc¼1;...;C ð12Þ

where Uc is Nc · Nc a matrix with terms all equal to 1
Nc

.
By substituting (6), (7) and (9) into (8) and taking inner-

product with vector /(xij) on both sides, the solution of (8)
can be achieved by solving:

kKK a ¼ KUK a ð13Þ

where a denotes a column vector with entries ack,
c = 1, . . . ,C, k = 1, . . ., Nc. The solution of a in Eq. (13)
is equivalent to find the eigenvectors of the matrix
(KK)�1 KUK. However, similar to the SSS problem, the
matrix K might not be reversible. We find the eigenvector
a by first diagonalising matrix K (see [14] for more details).
Once the first L significant eigenvectors are found, a projec-
tion matrix can be constructed as:

W ¼ ½a1a2 . . . aL� ð14Þ

The projection of x in the L-dimensional GDA space is
given by:

y ¼ kxW ð15Þ

where

kx ¼ ½kðx; x11Þ . . . kðx; xckÞ . . . kðx; xCNcÞ� ð16Þ
4. Combining Gabor feature and GDA for identification and
verification

In our approach we propose to transform the Gabor
feature space into the GDA space to reduce Gabor feature
dimension for face recognition. Compared with the raw
pixel features used by classical subspace methods such as
Eigenface and Fisherface, Gabor features contain more
discriminant information and are thus more robust against
variations in illumination, pose and expressions. Figs. 2
and 3 show the system structure for face identification
and verification respectively. The identification task is
inherently more difficult than verification, since the input
face image must be compared with, and matched to, each
face in the enrolment database. The test face is then identi-
fied as belonging to the face class (i.e. the individual) which
shows the highest similarity.

Both identification and verification require a similarity
measure reflecting the differences between two facial fea-
tures in the GDA space. Given a Gabor feature vector
extracted from a face image x and a subspace projection
matrix W derived from the GDA subspace analysis, a
discriminant feature y with low dimension can be derived
by y = kxW. As described below, three different distance
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measures dE, dc, dM are used in our work to calculate the
distance between two sample projections y1 and y2. These
are:

Euclidean Distance (Eu):

dEðy1; y2Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðy1 � y2Þ

T ðy1 � y2Þ
q

ð17Þ

Mahalanobis Distance (Ma):

dMðy1; y2Þ ¼ ðy1 � y2Þ
T
X�1

ðy1 � y2Þ ð18Þ

Normalized Correlation (Nc):

dCðy1; y2Þ ¼
yT

1 y2

ky1kky2k
ð19Þ

where
P

is the covariance matrix, and iÆi denotes the norm
operator. While the simple nearest neighbour classifier is
used in our work for identification, the decision rule in ver-
ification is defined as follows: the claimed identity is accept-
ed if the mean distance of the test face with the training
images of the identity is below a global threshold, other-
wise it is rejected.

5. Experimental results

5.1. Results for identification

5.1.1. The FERET database

The standard test bed adopted in similar studies, the
FERET database [8], was used to test our algorithm for
identification. The results are reported in terms of the stan-
dard recognition rate. Specifically, this is the ratio between
the number of correctly identified face images and the num-
ber of test images. Six hundred frontal face images from
200 subjects are selected, where all the subjects are in an
upright, frontal position, with tolerance for some tilting
and rotation of up to 10 degrees. The 600 face images were
acquired under varying illumination conditions and facial
expressions. Each subject has three images of size
256 · 384 with 256 gray levels. The following procedures
were applied to normalize the face images prior to the
experiments:

• The centers of the eyes of each image are manually
marked, each image is rotated and scaled to align the
centers of the eyes.

• Each face image is cropped to the size of 128 · 128 to
extract the facial region, and normalized to zero mean
and unit variance.

To test the algorithms, two images of each subject are
randomly chosen for training, while the remaining one is
used for testing. Fig. 4 shows sample images from the data-
base. The first two rows are the example training images
while the third row shows the example test images. It can
be seen from this figure that the test images all display vari-
ations in illumination and facial expression.

5.1.2. Tuning Gabor filter parameters

In the first experiment, we aim to find the best Gabor fil-
ter parameters for face recognition purposes. The simple
PCA subspace projection and the nearest neighbour classi-
fier are used to test the parameters. The number of scales of
Gabor filters defines the range of frequency information
the filters can extract, while the number of orientations
specifies the resolution of the extracted directional features.
The larger is the number of scales, the more information
from low frequency bands will be extracted. We first vary
the number of orientations and keep the number of scales
fixed Fig. 5 shows the performance of the face recognition
system when number of orientations varies between 5 and
3. It can be observed from the figure that the performance
increase with the number of orientations. The higher is the
orientation resolution, the better the performance. The
results suggest that important features in faces are in



Fig. 4. Example training images (top 2 rows) and test images (bottom row) of the FERET database.
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different orientations, e.g., eyes, mouths, etc. Eight orienta-
tions seem to be a good choice in our experiments.

The system initially performs better as the number of
scales of Gabor filters increases. However, when the num-
ber of scales reaches five, the performance becomes stable,
see Fig. 6. Since most of the useful information in face
images is contained within a limited frequency band, the
inclusion of more scales will result in redundant informa-
tion and thus reduce system performance. Five scales
appear to be have achieved good performance in our exper-
iments. Therefore, we choose to use Gabor filters of five
scales and eight orientations in the following experiments.

5.1.3. Comparison of different distance measures

In the next experiment, we tested with the three similar-
ity measures Eu, Ma and Nc for the proposed
Gabor + GDA method. As shown in Fig. 7, normalized
correlation achieved the best performance for GDA among
the three distance measures, while the difference between
performance using Euclidean distance and Mahalanobis
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distance is not large. However, the results are different for
different subspace projection methods. For example,
Mahalanobis is the best distance measure for KPCA,
which achieves significantly higher recognition rates than
the other two measures. Similar results are also observed
for the linear subspace projection methods, PCA and
LDA. It seems that for expressive features derived in
PCA and KPCA space, the Mahalanobis distance measure
is more suitable than the others; while for discriminating
features extracted by LDA and GDA, the correlation dis-
tance measure seems to be the best choice.

5.1.4. Comparison with other subspace methods

The comparative results of PCA, LDA, KPCA and
GDA on the Gabor feature vector with the respective opti-
mized distance measures are shown in Fig. 8.

It can be seen that nonlinear subspace methods are per-
forming fundamentally better than their corresponding lin-
ear approaches. In other words, KPCA performs better
than PCA and GDA performs better than LDA. In fact,
GDA performs the best among these four algorithms
while, following GDA, LDA performs better than KPCA
and PCA. A recognition rate as high as 97.5% is achieved
for the novel Gabor + GDA approach when the dimension
is set at 35.

5.1.5. Gabor features versus raw pixel values

To emphasise the discriminating power of the extracted
Gabor feature vector, the comparative performance of
PCA, Gabor + PCA, GDA and Gabor + GDA are also
shown in Fig. 9. When the Gabor feature vector is not
used, the pixel values of face images are simply concatenated
to a feature vector. For example, the length of a raw pixel
feature vector will be 128 · 128 = 16,384 for an image with
size 128 · 128. It is apparent that the adoption of the
Gabor feature vector improves the performance of PCA
and GDA by a large margin. The Gabor + PCA method
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Fig. 8. Experimental results of PCA, LDA, KPCA and GDA using Gabor
features.
achieves 20% higher accuracy than PCA, while 6%
improvement is observed for GDA when Gabor wavelets
are applied. An improvement for Gabor + LDA and
Gabor + KPCA has also been observed in the experiments.

5.1.6. Comparison with other methods

For further comparison of Gabor feature and GDA
based methods with other approaches, the results on the
same database for the Radial Basis Function (RBF) neural
network [30] and HMM [3,31] based methods are shown in
Table 1. Raw pixel features are used for RBF based meth-
ods, in that the normalized pixel values of the image are
input directly to the network for personal identity determi-
nation. The two layers of the RBF network and HMMs are
trained using the same training set, with parameters opti-
mized for best performance. To make RBF the same struc-
ture as in the case of GDA, which takes the inner product
of the input data with all of the training samples, the net-
work is designed with 400 nodes for the input layer and
200 nodes for the output layer. While the DCT-HMM uses
DCT (Discrete Cosine Transform) coefficients for observa-
tion vector extraction, DWT-HMM adopts DWT (Discrete
Wavelet Transform) for more robust feature extraction. As
shown in Table 1, Gabor + GDA performs significantly
better than either of the other two methods used for
comparison.
Table 1
Comparative results of Gabor + GDA with other methods on part of the
FERET database

Method Recognition rate (%)

RBF Network 75
DCT-HMM 32.5
DWT-HMM 44.5
Gabor + GDA 97.5
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5.2. Results for verification

5.2.1. The BANCA database

The BANCA database [19] is used to test our algorithms
in the corresponding verification application, which has
been specially designed to test face verification systems.
The BANCA database consists of images from 52 subjects
captured in 12 sessions. Ten face images are captured for
each person in each session. The 12 sessions are composed
of 3 different scenarios: (1) Controlled scenario (c) for ses-
sions 1–4, (2) Degraded scenario (d) for sessions 5–8, (3)
Adverse scenario (a) for sessions 9–12. A web cam was
used in the Degraded scenario and a high quality camera
was used in the Controlled and Adverse scenarios. Images
are captured with normal pose in the Controlled and
Adverse scenarios, whilst the head down pose is required
in the Adverse scenario.

Fig. 10 shows the sample images captured in different
scenarios. Seven test protocols, which identify different
training and testing images, are defined in [19] to evaluate
verification algorithms. We selected protocol P in our
experiments since it is the most challenging. The protocol
specifies the partitioning of the database into two disjoint
sets: a development set (26 subjects) and an evaluation set

(26 subjects). For each set, 5 images from each person cap-
tured in the 1st session (Controlled scenario) are used as
training images, while 2730 selected images captured in
all three scenario are used for testing. Each set thus consists
of 130 training images, and test images consisting of 1170
client accesses and 1560 impostor accesses [19]. The same
normalization process as used in the identification test
was similarly applied here. Thus, face images are rotated,
translated and scaled according to the position of the eyes.
Fig. 10. Example images in
The images are cropped to standard size (48 · 48) and
rotated so that the eyes are placed at fixed points. To
reduce illumination variations, all of the images are shifted
and scaled such that the mean values of all pixels equals
zero, while the standard deviation equals one.

5.2.2. Performance metrics

Two error-related metrics (FAR and FRR) are used to
measure performance of the verification system. The false
acceptance rate, or FAR, is the measure of the likelihood
that the biometric security system will incorrectly accept
an access attempt by an unauthorized user. The false rejec-
tion rate, or FRR, is the measure of the likelihood that the
biometric security system will incorrectly reject an access
attempt by an authorized user. The values of FAR and
FRR are computed using:

FAR ¼ nac

nu
; FRR ¼ nre

na
ð20Þ

where na is the number of access attempts by an authorized
user, nu is the number of access attempts by an unauthorized
user, nac is the number of acceptances for unauthorized users
and nre is the number of rejections for authorized users.

A system can be tuned for a particular application by
varying the value of these two metrics. A low value for
both metrics is often desirable though, unfortunately, try-
ing to minimise FAR or FRR requires a trade-off between
the two metrics. Thus, system design requires the knowl-
edge of the target application domain in order to determine
the optimum balance between the two measures in practice.
The Receiver Operating Curve (ROC) plots FAR versus
FRR [17] for a system and can be used as a guide for the
selection of an appropriate operating point for the system
the BANCA database.



Table 2
Verification performance on the development set

Method Distance measure FAR (%) FRR (%) EER (%)

PCA Ma 18.52 19.65 19.09
LDA Nc 22.62 22.64 22.63
Gabor + PCA Ma 8.20 8.11 8.15
Gabor + LDA Nc 13.01 13.41 13.21
Gabor + KPCA Ma 10.38 10.34 10.36
Gabor + GDA Nc 6.02 5.89 5.96
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in relation to the target application. The closer the ROC-
curve lies to the x and y axes, the lower the verification
error and thus the more reliable the system. From the
ROC-curve, the Equal Error Rate (EER) is defined as the
point where the value of FAR equals the value of FRR.
The value of EER, although not reflecting the differences
in FAR/FRR trajectories, is often regarded as a useful
composite system performance indicator for a verification
system. Thus, from this point of view, the lower is the value
of EER, the more reliable the system overall.

5.2.3. Parameter tuning and results on the development set

The first series of verification experiments were conducted
using the development set. Using the extracted Gabor
features and GDA subspace projection techniques for face
verification, all parameters (e.g. feature dimension, dis-
tance measure and decision threshold, etc.) are optimized
for the best performance. The ROC curves generated are
displayed in Fig. 11, while Table 2 shows the EER and cor-
responding FAR and FRR of the Gabor feature based ver-
ification algorithms using different subspace projection
techniques, with the method of PCA and LDA as the base-
line. Comparing Gabor + PCA and Gabor + LDA with
the corresponding baseline, we observe a large margin of
improvement when Gabor features are used. Eleven per-
cent improvement has been achieved for PCA when Gabor
features instead of original images are used for verification.
The observation verified the effectiveness of Gabor features
for classification. Although a number of papers available in
the literature report the advantages of LDA over PCA, this
experiment reveals the LDA algorithms to perform less
well than PCA. However, several papers have also reported
similar results (see, for example [32,33]) to ours. As indicat-
ed in [33], there is no guarantee that LDA will outperform
PCA when a small (or non-representative) training set is
used. In these experiments, the training set consists only
of images captured in the Controlled scenario, while the
test images were captured using different cameras (Degrad-
ed scenario) and in significantly different poses (Adverse
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Fig. 11. ROC curve of Gabor based verification.
scenario). However, as a kernel version of LDA, GDA still
achieves the best performance.

The Mahalanobis distance measure (Ma) was found to
be the most suitable measure for both PCA and KPCA,
while the Nc distance measure is seen to be optimal for
LDA and GDA. This observation is the same as that which
was made in relation to the identification experiments. It
can be seen from Table 2 that the Gabor + GDA method
performs the best of the approaches considered, with only
a 5.96% EER. The EER for the Gabor + KPCA method is
around 10.36%, which is worse than the Gabor + PCA
approach.

5.2.4. Generalization test using the tuned parameters

An independent evaluation set was designed in protocol

P to test the generalization ability of verification algo-
rithms. The evaluation set consists of the same number of
subjects and images as that of the development set. However,
the subjects of the evaluation set are distinct from those
in the development set. With parameters adjusted and
performance optimized using the development set, the
generalization ability of algorithms can be further analyzed
using the evaluation set. The value of EER attained with
respect to the methods Gabor + PCA, Gabor + LDA,
Gabor + KPCA and Gabor + GDA on the evaluation set

are tabulated in Table 3. In each case, the system has been
tuned to the development set in the first series of experi-
ments, i.e., the decision threshold has been decided upon
during the development phase. Again, the Gabor + GDA
method achieves the lowest EER, while Gabor + PCA is
better than Gabor + KPCA and Gabor + LDA.

5.2.5. Comparison with other methods

The 2004 international face verification competition
[20], held in conjunction with the International Conference
on Pattern Recognition (ICPR) 2004, has been adopted as
an informal benchmark for comparisons within the
research community. The competition adopted the BAN-
Table 3
Verification performance on the evaluation set

Method FAR (%) FRR (%) EER (%)

Gabor + PCA 7.17 9.57 8.37
Gabor + LDA 7.56 10.51 9.04
Gabor + KPCA 8.26 13.33 10.79
Gabor + GDA 7.75 7.43 7.69



Table 4
Comparison with other verification methods

Method EER (%)

Development set Evaluation set

DCT-HMM 25.23 26.25
LDA 12.46 13.66
LDA + SVM 12.61 13.84
Elastic Bunch Graph Matching 12.10 16.80
Fusion of Gabor and global features 2.61 1.85
Gabor + GDA 5.96 7.69
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CA database and protocol P for evaluation. Since the same
database and protocol was used in our experiments, our
verification results are directly comparable with those of
the participants in the competition, providing a useful
focus for further discussion. Table 4 shows the EER of a
number of popular techniques on both the development

set and evaluation set, which are directly extracted from
the test report [20]. The results are very encouraging, with
the EER returned by our method on both the development

set and evaluation set seen to be significantly better than
many popular methods reported in the literature, such as
LDA, Elastic Bunch Graph Matching, HMM, etc. Since
LDA can be implemented in various ways, the difference
of the results for LDA reported in Tables 2 and 4 could
be caused by the difference in our implementations and
other researcher’s. The method fusing Gabor with other
features outperformed our method, suggesting that the per-
formance of Gabor + GDA could be further improved by
fusing other complementary features. However, such
fusion could bring large computation burden to the system
and make it not practical for real applications.

6. Discussion

In this paper, we have proposed a novel Gabor + GDA
method for face identification and verification. The design
of Gabor filters for facial feature extraction has also been
discussed and experimentally tested for face recognition
purposes. Extensive experiments have been conducted to
evaluate the performance of the algorithm and compare
it with alternative approaches, using the FERET and
BANCA databases for reference. The proposed method
achieves 97.5% recognition rate on the FERET database,
which is significantly better than the Eigenface, Fisherface
and HMM approaches. The method has also been exten-
sively tested using the BANCA database, where the devel-

opment set was used for algorithm optimisation and the
evaluation set was used for generalization test. Our method
outperformed all entries listed in Table 4 to the 2004 Inter-
national Face Verification Competition, except one that
fuses Gabor and global image features. However, the
fusion scheme may bring large computational burden to
the system.

Our verification tests support the claim by a number of
other researchers [32,33] that PCA outperforms LDA when
the training set is not representative. This suggests that the
application itself should be considered when choosing rec-
ognition algorithms. The comparison among different dis-
tance measures such as the Euclidean, Mahalanobis and
Correlation measures, clearly shows that PCA and KPCA
favour the Mahalanobis distance measure, while LDA and
GDA are better served by the Correlation measure. Since
the Euclidean distance treats each component of the fea-
ture vector equally, the results suggest that more sophisti-
cated metrics, (such as the Mahalanobis and Correlation
measures) should be used for subspace-based methods.
As a weighted distance metric, Mahalanobis weights each
component with its variance. When PCA subspace is used,
each component of the feature vector has been decorrelated
with others. The motivations for adopting the Mahalan-
obis metric (i.e., the larger the variance, the more signifi-
cant the associated component), are thus most exploited
in the PCA space. With an aim to maximize the class sep-
arability, the components of the LDA feature vector have
already been associated with their significance for classifi-
cation. Inaccurate weighting of the Mahalanobis scheme
could counteract such significance measures and direct cor-
relation thus become more desirable.

Though the robustness and accuracy of Gabor + GDA
has been extensively tested and evaluated we are currently
developing methods to reduce the feature dimension fur-
ther, using high level feature selection schemes such as
boosting [34,35], mutual information [36], etc.
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