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ABSTRACT

In the past few years several systems for object recon-
struction based on the analysis of 2D images have been pro-
posed. In order for such systems to be of practical use, the
3D data extraction process is expected to be fast and reli-
able. In this paper we propose a general approach for the
reconstruction of complete 3D objects based on a mesh fu-
sion algorithm. Every surface patch is obtained as a depth
map using an algorithm based on graph cuts theory. Each
depth map is then triangulated before using it in a fusion
algorithm based on a voxel-set carving approach. The re-
sult of the process is a closed mesh representing the object
surface with sub-voxel resolution.

1. INTRODUCTION

Reconstructing an object’s tridimensional shape for a set of
cameras is a classic vision problem. In the last few years,
it has attracted a great deal of interest, partly due to the
number of application both in vision and in graphics that
require good reconstructions. In order to get the complete
model of an object, we must extract 3D informations from a
large set of cameras and this often leads to a time-expensive
process. In this paper, we show how a divide and conquer
approach can be used to speed up the entire process guar-
anteeing a good precision of the final model. In order to do
this task, we chose to create a complete model of the inter-
ested object by linking together several surface patches re-
constructed rapidly by a graph-cuts algorithm. The linking
process is accomplished by a mesh fusion algorithm based
on a volume of fluid approach, using a volumetric function.

2. DEPTH-MAP RECONSTRUCTION

In this section we show how to reconstruct accurately a por-
tion of the surface of the object present in the analyzed
scene. This is the crucial step of the reconstruction process.
In fact we will link the surface patches resulting from this
step to obtain the final complete object by the fusion algo-
rithm described in the next section. We have chosen to use
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the known graph cuts approach [1, 2, 3, 5], adapting it to
the problem of depth map reconstruction. In the next para-
graph we propose a short description of the energy mini-
mization approach; after that we will show how to formulate
the problem of depth map reconstruction in term of energy
minimization.

2.1. Energy minimization approach

Our approach to depth map reconstruction is similar to some
recent work that give strong results for stereo matching and
image restoration. It is well known that both problems can
be elegantly stated in term of energy minimization [2, 3]. In
the last few years powerful energy minimization algorithms
have been developed based on graph cuts [2, 4, 6]. This
methods are fast enough to be practical, but unlike simu-
lated annealing, graph cuts methods cannot be applied to an
arbitrary function. In this paper we will use some recent
results [3] that give graph constructions for a quite general
class of energy functions. The energy minimization formal-
ism has several advantages. It allows a clean specification
of the problem to be solved, as opposed to the algorithm
used to solve it. In addiction, energy minimization naturally
allows the use of soft constraints, such as spatial coherence.
In an energy minimization framework, it is possible to cause
ambiguities to be resolved in a manner that leads to a spa-
tially smooth answer. Finally, energy minimization avoids
being trapped by early hard decision.

2.2. Problem formulation

Suppose we are given n calibrated images of the same scene
taken from different viewpoints (or at different moments of
time). Let assume a camera as the preferred one and let P be
the set of pixels of the corresponding image. A pixel p € P
corresponds to a ray in 3D-space. Consider the first inter-
section of this ray with an object in the scene. Our goal is to
find the depth of this point for all the pixel of the preferred
image. So we want to find a labeling f : P — £ where £
is a discrete set of labels corresponding to increasing depths



from the preferred camera. Equivalently, we want to obtain
the depth map of the pixels in the preferred image.

A pair (p,l) where p € P, 1 € L corresponds to some
point in 3D-space. We will refer to such points as 3D-points.
We define our energy function as consisting of two terms:

E(f) = Edatu(f) + Esmooth(f)

In their work, Kolmogorov and Zabih [1] formulate the
problem of scene reconstruction in a slightly different man-
ner that permits to obtain a depth map for every image in the
input set by an energy minimization approach. This leads to
a computational expensive algorithm whose result is a unor-
ganized clouds of point representing the surface of the vis-
ible part of the scene to reconstruct. Moveover, to have an
effective reconstruction from the input set, cameras must re-
spect some particular restrictive configuration, whereas with
our definition we can treat a very large number of camera
configurations without distinctions. It can be also noted that
in our approach it is no long necessary the visibility term
defined in [1]. In fact, assuming that the set of label corre-
sponds to the increasing depths from the preferred camera,
there cannot exists occluding pixels in the same image and
consequently it is no long necessary for a visibility term.
Moreover, also the other term are quite different. Our data
term is defined as follow:

Edata(f) = Z D(p)

peP

where D(p) is a non-positive value which results from
the differences in intensity between corresponding pixels.
D(p) is computed for every pixel of the preferred image
(we indicate this image with the index j) by this steps:

1. from p, we get the corresponding 3D-point by retro-

projecting it from the preferred camera center of pro-
jection with the selected depth and then we project
this 3D-point on each other calibrated image obtain-
ing a set of n — 1 corresponding pixels
{av, a2, i anli # 5}
The window dimensions usually range from 3 x 3
to 7 x 7: bigger windows are useful for poorly tex-
tured surfaces but become inefficient when cameras
in the set present wide differences in viewpoint and
rotations, their extension must then be chosen accord-
ingly to the acquisition set.

2. on every non-preferred image we compute the SSD
(Sum of Square Difference) using a square window
centered on ¢; and the one centered on p, obtaining
the set of values {dy,ds,...,d;,...,d,|i # j}.

3. finally we evaluate the energy data term for the p
point as follows:

D(p) =min(0, Y di—K) (1)
i=1
iF# ]
where K is a positive constant large enough to cap-

ture significant variation of the SSD function (a typi-
cal value is K = 30).

The smoothness term is quite similar to the one used in
[1] and its goal is to make neighboring pixels in the pre-
ferred image tend to have similar depths. The smoothness
term is defined as follow:

Eamootn() =Y Vipay(f(0), f@) @)

{p,a}eN

This term involves a notion of neighborhood: we as-
sume that there is a neighborhood system on pixel

Nc{{pd} | p,acP}

This can be the usual 4-neighborhood system: pixels
p = (pz,py) and ¢ = (¢, gy) are neighbors if they are in
the same image and |p, — ¢z| + [Py — ¢y = 1.

In [1], the function VJ,, ,, assumes the following form:

ifl, # 1,
otherwise

U
Vvt Up,lg) = { 0 ) 3)
where the Uy, o1 is the following non-decreasing func-
tion:

oo 3\ ifAI(pg) <5
{Pa} =) N otherwise

Where AI(p,r) is the average of values |Intensity(p) —
Intensity(r)| for all three bands(R,G,B). To make the re-
construction smooth while preserving discontinuities, we
choose to follow a particular strategy in the use of the smooth-
ness term. In fact, it is known that graph cuts techniques
often yields flat and blocky results. This may not be impor-
tant for disparity maps, but is crucial for shape reconstruc-
tion. To avoid this problem, we make a first cycle of the
reconstruction algorithm with a limited set of labels, in or-
der to reach rapidly a value of the energy near to the local
minimum that could be got at convergence with the origi-
nal algorithm. This corresponds to a good approximation
of the position of the 3D-points, that can be improved with
a second cycle at double resolution where we change the
function Vi, o1 defined in (3) with this new function:

“)

if |l, — 4| > z_threshold

. U
V{pyq}(li” lg) = { 0 oy otherwise

)



In fact, this function relaxes the penalty mechanism of
the smoothness term, giving a 0 penalty not only to the
neighboring pixels that lie at the same depth but also to the
ones that stay sufficiently near one another. The idea is sup-
ported by the fact that after the first cycle of the algorithm,
only some of the pixels are approximatively well positioned
in 3D-space by the consistency measure given by the data
term, while the other are positioned only by the effect of the
smoothness term which forces them to lie on the same level
of neighboring pixel, resulting in flat blocks. Thus, relaxing
the constraint imposed by the first smoothness term, neigh-
boring pixels have greater chance to occupy adjacent depths
correctly.

2.3. Graph cuts Algorithm

Thanks to our energy redefinition the results obtained from
the standard graph cuts algorithm (as defined in [1]) are
much more accurate. As shown in the next paragraph fur-
ther depth map optimization guarantees an high fidelity to
the reconstructed data.

2.4. Depth map optimization

Even though the graph cuts algorithm is able to reconstruct
an accurate depth map, it works only with a limited set of
depths and, thus, it introduce a considerable quantization
error in the position of each 3D-point. To overcome this
problem, it is necessary an optimization step which yields
the depth map more regular. The output of this process is
a new depth map, where the discontinuities are preserved
while the other parts become smoothed. To do this work,
we consider the depth map as a functions of two variables
defined on the preferred image and we apply a sequence
of bidimensional filters on it. In particular, we start with a
median filter to eliminate possible outliers and then we ap-
ply a dithering technique: some white noise is added to the
depth function and, then, a low pass filter is used to yields
the depth map smooth. To preserve discontinuities, the bidi-
mensional low pass filter keeps the information needed from
the neighbors of a pixel only if the depth distance is below
a certain threshold. The size of the filter windows and this
threshold are empirically chosen on the basis of the current
reconstruction.

3. MESH FUSION BY A VOLUMETRIC
APPROACH

In order to create a complete model of the object to re-
construct we can think to melt together the several surface
patches obtained with the previous graph cuts based method.
We chose a volumetric representation of the scene that use a
voxelset made of cubic voxels, with an approach similar to
the already known volume-of-fluid technique. Each voxel

can assume a value in the [—1, +1] interval. The entire vox-
elset can be seen as a volumetric function which represents
the surface of the object as the zero levelset. Negative val-
ues of the function indicate the space inside the object while
positive values stay for external space. Near the surface,
each voxel assumes an intermediate value on the basis of
its distance from the closer depth map. The algorithm starts
initializing every voxel to the —1 value. By this way the vol-
umetric function represents a solid block where subsequent
steps will carve the surface of the object. At this point, we
select a depht map and assign a value to each voxel of the
voxelset with the steps explained in figure 1 using a bilinear
interpolation between neighboor points in the depth map.
The following criterion is followed: a voxel value can only
be changed with a greater one.

Mesh contour

(1) External voxel _7@ A | 05 4T | a9

, 1 LGowos | 1 | 4
(2) External narrowband voxel +—* —Q

cl ) 4 5
{’ # |48 b7 | A 1
101447 4 |« 4
(3) Internal narrowband \’(J.‘{t'l*’7£:
-
08 | -1 @ 4t | A
(4) Internal voxel 7*J.—*)_’

Fig. 1. Modelling of the volumetric function from a mesh.

Repeating this steps for every mesh will lead to a vol-
umetric function whose zero leveset locates the object sur-
face. The resulting object can be seen as a sort of convex
hull obtained by linking together the meshes and taking only
the part of the 3D space contained in their intersection.

4. EXPERIMENTAL RESULTS

The proposed algorithm has been applied to a set of images
of a synthetic teapot and then to a set of images of a real
object, a skull, acquired with a trinocular calibrated camera
system. The teapot has been modeled by a 3D software and
several snapshots have been rendered from it. The skull has
been located on a turntable and a sequence of snapshots has
been taken for every position of the turntable. For both the
object, some images have been selected in triplets. From
each triplet a depth map is reconstructed. Figure 2(a) shows
a triplet of images of the teapot, while figure 2(b) shows
the corresponding reconstructed surface patch; the complete
object reconstructed by the volumetric algorithm is visual-
ized in figure 2(c). Analogously, figure 3(a) shows a triplet
of images of the skull, while figure 3(b) shows the corre-



sponding surface patch; the complete model of the skull
is shown in figure 3(c). Both the final teapot and skull
model have been obtained by melting together eight surface
patches taken from different position. The parameters K of
equation (1) and A\ of equation (4) are determined heuristi-
cally: optimal values depend on the images we are process-
ing. The parameters can be varied to gain some insight
about the algorithm: for big values of A the smoothness
dominates the correlation, resulting in a map with many flat
blocks of pixels, whereas little values of A yields to an ir-
regular depth map with many wrong discontinuities. In our
experiment, we chose the values K = 30 and A = 5.

5. CONCLUSIONS

3D reconstruction from a set of images is a critical process.
In order to perform this task we presented a reconstruction
algorithm based on graph cuts theory. We have defined an
energy function whose minimum represents the solution to
our problem and we implemented a technique to raffinate
the obtained depth maps. A virtue of this approach is the
algorithm speed. In fact, we chose to build up a complete
model of an object linking together several depth maps, re-
ducing the computational effort either in the time needed
and in the memory space required for reconstruct each of
them. A volumetric approach has been used to do this task.
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Fig. 2. (a) teapot image triplet. (b) corresponding surface
patch (c) complete model of the teapot

Fig. 3. ((a) skull image triplet. (b) corresponding surface
patch (c) complete model of the skull



